The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_ktrace.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1989, 1993
    3  *      The Regents of the University of California.
    4  * Copyright (c) 2005 Robert N. M. Watson
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 4. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)kern_ktrace.c       8.2 (Berkeley) 9/23/93
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_ktrace.h"
   38 #include "opt_mac.h"
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/fcntl.h>
   43 #include <sys/kernel.h>
   44 #include <sys/kthread.h>
   45 #include <sys/lock.h>
   46 #include <sys/mutex.h>
   47 #include <sys/mac.h>
   48 #include <sys/malloc.h>
   49 #include <sys/mount.h>
   50 #include <sys/namei.h>
   51 #include <sys/proc.h>
   52 #include <sys/unistd.h>
   53 #include <sys/vnode.h>
   54 #include <sys/ktrace.h>
   55 #include <sys/sx.h>
   56 #include <sys/condvar.h>
   57 #include <sys/sysctl.h>
   58 #include <sys/syslog.h>
   59 #include <sys/sysproto.h>
   60 
   61 /*
   62  * The ktrace facility allows the tracing of certain key events in user space
   63  * processes, such as system calls, signal delivery, context switches, and
   64  * user generated events using utrace(2).  It works by streaming event
   65  * records and data to a vnode associated with the process using the
   66  * ktrace(2) system call.  In general, records can be written directly from
   67  * the context that generates the event.  One important exception to this is
   68  * during a context switch, where sleeping is not permitted.  To handle this
   69  * case, trace events are generated using in-kernel ktr_request records, and
   70  * then delivered to disk at a convenient moment -- either immediately, the
   71  * next traceable event, at system call return, or at process exit.
   72  *
   73  * When dealing with multiple threads or processes writing to the same event
   74  * log, ordering guarantees are weak: specifically, if an event has multiple
   75  * records (i.e., system call enter and return), they may be interlaced with
   76  * records from another event.  Process and thread ID information is provided
   77  * in the record, and user applications can de-interlace events if required.
   78  */
   79 
   80 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
   81 
   82 #ifdef KTRACE
   83 
   84 #ifndef KTRACE_REQUEST_POOL
   85 #define KTRACE_REQUEST_POOL     100
   86 #endif
   87 
   88 struct ktr_request {
   89         struct  ktr_header ktr_header;
   90         void    *ktr_buffer;
   91         union {
   92                 struct  ktr_syscall ktr_syscall;
   93                 struct  ktr_sysret ktr_sysret;
   94                 struct  ktr_genio ktr_genio;
   95                 struct  ktr_psig ktr_psig;
   96                 struct  ktr_csw ktr_csw;
   97         } ktr_data;
   98         STAILQ_ENTRY(ktr_request) ktr_list;
   99 };
  100 
  101 static int data_lengths[] = {
  102         0,                                      /* none */
  103         offsetof(struct ktr_syscall, ktr_args), /* KTR_SYSCALL */
  104         sizeof(struct ktr_sysret),              /* KTR_SYSRET */
  105         0,                                      /* KTR_NAMEI */
  106         sizeof(struct ktr_genio),               /* KTR_GENIO */
  107         sizeof(struct ktr_psig),                /* KTR_PSIG */
  108         sizeof(struct ktr_csw),                 /* KTR_CSW */
  109         0                                       /* KTR_USER */
  110 };
  111 
  112 static STAILQ_HEAD(, ktr_request) ktr_free;
  113 
  114 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options");
  115 
  116 static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
  117 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
  118 
  119 static u_int ktr_geniosize = PAGE_SIZE;
  120 TUNABLE_INT("kern.ktrace.genio_size", &ktr_geniosize);
  121 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RW, &ktr_geniosize,
  122     0, "Maximum size of genio event payload");
  123 
  124 static int print_message = 1;
  125 struct mtx ktrace_mtx;
  126 static struct cv ktrace_cv;
  127 static struct sx ktrace_sx;
  128 
  129 static void ktrace_init(void *dummy);
  130 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
  131 static u_int ktrace_resize_pool(u_int newsize);
  132 static struct ktr_request *ktr_getrequest(int type);
  133 static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
  134 static void ktr_freerequest(struct ktr_request *req);
  135 static void ktr_writerequest(struct thread *td, struct ktr_request *req);
  136 static int ktrcanset(struct thread *,struct proc *);
  137 static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
  138 static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
  139 
  140 /*
  141  * ktrace itself generates events, such as context switches, which we do not
  142  * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
  143  * whether or not it is in a region where tracing of events should be
  144  * suppressed.
  145  */
  146 static void
  147 ktrace_enter(struct thread *td)
  148 {
  149 
  150         KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
  151         td->td_pflags |= TDP_INKTRACE;
  152 }
  153 
  154 static void
  155 ktrace_exit(struct thread *td)
  156 {
  157 
  158         KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
  159         td->td_pflags &= ~TDP_INKTRACE;
  160 }
  161 
  162 static void
  163 ktrace_assert(struct thread *td)
  164 {
  165 
  166         KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
  167 }
  168 
  169 static void
  170 ktrace_init(void *dummy)
  171 {
  172         struct ktr_request *req;
  173         int i;
  174 
  175         mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
  176         sx_init(&ktrace_sx, "ktrace_sx");
  177         cv_init(&ktrace_cv, "ktrace");
  178         STAILQ_INIT(&ktr_free);
  179         for (i = 0; i < ktr_requestpool; i++) {
  180                 req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
  181                 STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
  182         }
  183 }
  184 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
  185 
  186 static int
  187 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
  188 {
  189         struct thread *td;
  190         u_int newsize, oldsize, wantsize;
  191         int error;
  192 
  193         /* Handle easy read-only case first to avoid warnings from GCC. */
  194         if (!req->newptr) {
  195                 mtx_lock(&ktrace_mtx);
  196                 oldsize = ktr_requestpool;
  197                 mtx_unlock(&ktrace_mtx);
  198                 return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
  199         }
  200 
  201         error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
  202         if (error)
  203                 return (error);
  204         td = curthread;
  205         ktrace_enter(td);
  206         mtx_lock(&ktrace_mtx);
  207         oldsize = ktr_requestpool;
  208         newsize = ktrace_resize_pool(wantsize);
  209         mtx_unlock(&ktrace_mtx);
  210         ktrace_exit(td);
  211         error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
  212         if (error)
  213                 return (error);
  214         if (wantsize > oldsize && newsize < wantsize)
  215                 return (ENOSPC);
  216         return (0);
  217 }
  218 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW,
  219     &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU", "");
  220 
  221 static u_int
  222 ktrace_resize_pool(u_int newsize)
  223 {
  224         struct ktr_request *req;
  225         int bound;
  226 
  227         mtx_assert(&ktrace_mtx, MA_OWNED);
  228         print_message = 1;
  229         bound = newsize - ktr_requestpool;
  230         if (bound == 0)
  231                 return (ktr_requestpool);
  232         if (bound < 0)
  233                 /* Shrink pool down to newsize if possible. */
  234                 while (bound++ < 0) {
  235                         req = STAILQ_FIRST(&ktr_free);
  236                         if (req == NULL)
  237                                 return (ktr_requestpool);
  238                         STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
  239                         ktr_requestpool--;
  240                         mtx_unlock(&ktrace_mtx);
  241                         free(req, M_KTRACE);
  242                         mtx_lock(&ktrace_mtx);
  243                 }
  244         else
  245                 /* Grow pool up to newsize. */
  246                 while (bound-- > 0) {
  247                         mtx_unlock(&ktrace_mtx);
  248                         req = malloc(sizeof(struct ktr_request), M_KTRACE,
  249                             M_WAITOK);
  250                         mtx_lock(&ktrace_mtx);
  251                         STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
  252                         ktr_requestpool++;
  253                 }
  254         return (ktr_requestpool);
  255 }
  256 
  257 static struct ktr_request *
  258 ktr_getrequest(int type)
  259 {
  260         struct ktr_request *req;
  261         struct thread *td = curthread;
  262         struct proc *p = td->td_proc;
  263         int pm;
  264 
  265         ktrace_enter(td);       /* XXX: In caller instead? */
  266         mtx_lock(&ktrace_mtx);
  267         if (!KTRCHECK(td, type)) {
  268                 mtx_unlock(&ktrace_mtx);
  269                 ktrace_exit(td);
  270                 return (NULL);
  271         }
  272         req = STAILQ_FIRST(&ktr_free);
  273         if (req != NULL) {
  274                 STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
  275                 req->ktr_header.ktr_type = type;
  276                 if (p->p_traceflag & KTRFAC_DROP) {
  277                         req->ktr_header.ktr_type |= KTR_DROP;
  278                         p->p_traceflag &= ~KTRFAC_DROP;
  279                 }
  280                 mtx_unlock(&ktrace_mtx);
  281                 microtime(&req->ktr_header.ktr_time);
  282                 req->ktr_header.ktr_pid = p->p_pid;
  283                 req->ktr_header.ktr_tid = td->td_tid;
  284                 bcopy(p->p_comm, req->ktr_header.ktr_comm, MAXCOMLEN + 1);
  285                 req->ktr_buffer = NULL;
  286                 req->ktr_header.ktr_len = 0;
  287         } else {
  288                 p->p_traceflag |= KTRFAC_DROP;
  289                 pm = print_message;
  290                 print_message = 0;
  291                 mtx_unlock(&ktrace_mtx);
  292                 if (pm)
  293                         printf("Out of ktrace request objects.\n");
  294                 ktrace_exit(td);
  295         }
  296         return (req);
  297 }
  298 
  299 /*
  300  * Some trace generation environments don't permit direct access to VFS,
  301  * such as during a context switch where sleeping is not allowed.  Under these
  302  * circumstances, queue a request to the thread to be written asynchronously
  303  * later.
  304  */
  305 static void
  306 ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
  307 {
  308 
  309         mtx_lock(&ktrace_mtx);
  310         STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
  311         mtx_unlock(&ktrace_mtx);
  312         ktrace_exit(td);
  313 }
  314 
  315 /*
  316  * Drain any pending ktrace records from the per-thread queue to disk.  This
  317  * is used both internally before committing other records, and also on
  318  * system call return.  We drain all the ones we can find at the time when
  319  * drain is requested, but don't keep draining after that as those events
  320  * may me approximately "after" the current event.
  321  */
  322 static void
  323 ktr_drain(struct thread *td)
  324 {
  325         struct ktr_request *queued_req;
  326         STAILQ_HEAD(, ktr_request) local_queue;
  327 
  328         ktrace_assert(td);
  329         sx_assert(&ktrace_sx, SX_XLOCKED);
  330 
  331         STAILQ_INIT(&local_queue);      /* XXXRW: needed? */
  332 
  333         if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
  334                 mtx_lock(&ktrace_mtx);
  335                 STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
  336                 mtx_unlock(&ktrace_mtx);
  337 
  338                 while ((queued_req = STAILQ_FIRST(&local_queue))) {
  339                         STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
  340                         ktr_writerequest(td, queued_req);
  341                         ktr_freerequest(queued_req);
  342                 }
  343         }
  344 }
  345 
  346 /*
  347  * Submit a trace record for immediate commit to disk -- to be used only
  348  * where entering VFS is OK.  First drain any pending records that may have
  349  * been cached in the thread.
  350  */
  351 static void
  352 ktr_submitrequest(struct thread *td, struct ktr_request *req)
  353 {
  354 
  355         ktrace_assert(td);
  356 
  357         sx_xlock(&ktrace_sx);
  358         ktr_drain(td);
  359         ktr_writerequest(td, req);
  360         ktr_freerequest(req);
  361         sx_xunlock(&ktrace_sx);
  362 
  363         ktrace_exit(td);
  364 }
  365 
  366 static void
  367 ktr_freerequest(struct ktr_request *req)
  368 {
  369 
  370         if (req->ktr_buffer != NULL)
  371                 free(req->ktr_buffer, M_KTRACE);
  372         mtx_lock(&ktrace_mtx);
  373         STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
  374         mtx_unlock(&ktrace_mtx);
  375 }
  376 
  377 /*
  378  * MPSAFE
  379  */
  380 void
  381 ktrsyscall(code, narg, args)
  382         int code, narg;
  383         register_t args[];
  384 {
  385         struct ktr_request *req;
  386         struct ktr_syscall *ktp;
  387         size_t buflen;
  388         char *buf = NULL;
  389 
  390         buflen = sizeof(register_t) * narg;
  391         if (buflen > 0) {
  392                 buf = malloc(buflen, M_KTRACE, M_WAITOK);
  393                 bcopy(args, buf, buflen);
  394         }
  395         req = ktr_getrequest(KTR_SYSCALL);
  396         if (req == NULL) {
  397                 if (buf != NULL)
  398                         free(buf, M_KTRACE);
  399                 return;
  400         }
  401         ktp = &req->ktr_data.ktr_syscall;
  402         ktp->ktr_code = code;
  403         ktp->ktr_narg = narg;
  404         if (buflen > 0) {
  405                 req->ktr_header.ktr_len = buflen;
  406                 req->ktr_buffer = buf;
  407         }
  408         ktr_submitrequest(curthread, req);
  409 }
  410 
  411 /*
  412  * MPSAFE
  413  */
  414 void
  415 ktrsysret(code, error, retval)
  416         int code, error;
  417         register_t retval;
  418 {
  419         struct ktr_request *req;
  420         struct ktr_sysret *ktp;
  421 
  422         req = ktr_getrequest(KTR_SYSRET);
  423         if (req == NULL)
  424                 return;
  425         ktp = &req->ktr_data.ktr_sysret;
  426         ktp->ktr_code = code;
  427         ktp->ktr_error = error;
  428         ktp->ktr_retval = retval;               /* what about val2 ? */
  429         ktr_submitrequest(curthread, req);
  430 }
  431 
  432 /*
  433  * When a process exits, drain per-process asynchronous trace records.
  434  */
  435 void
  436 ktrprocexit(struct thread *td)
  437 {
  438 
  439         ktrace_enter(td);
  440         sx_xlock(&ktrace_sx);
  441         ktr_drain(td);
  442         sx_xunlock(&ktrace_sx);
  443         ktrace_exit(td);
  444 }
  445 
  446 /*
  447  * When a thread returns, drain any asynchronous records generated by the
  448  * system call.
  449  */
  450 void
  451 ktruserret(struct thread *td)
  452 {
  453 
  454         ktrace_enter(td);
  455         sx_xlock(&ktrace_sx);
  456         ktr_drain(td);
  457         sx_xunlock(&ktrace_sx);
  458         ktrace_exit(td);
  459 }
  460 
  461 void
  462 ktrnamei(path)
  463         char *path;
  464 {
  465         struct ktr_request *req;
  466         int namelen;
  467         char *buf = NULL;
  468 
  469         namelen = strlen(path);
  470         if (namelen > 0) {
  471                 buf = malloc(namelen, M_KTRACE, M_WAITOK);
  472                 bcopy(path, buf, namelen);
  473         }
  474         req = ktr_getrequest(KTR_NAMEI);
  475         if (req == NULL) {
  476                 if (buf != NULL)
  477                         free(buf, M_KTRACE);
  478                 return;
  479         }
  480         if (namelen > 0) {
  481                 req->ktr_header.ktr_len = namelen;
  482                 req->ktr_buffer = buf;
  483         }
  484         ktr_submitrequest(curthread, req);
  485 }
  486 
  487 void
  488 ktrgenio(fd, rw, uio, error)
  489         int fd;
  490         enum uio_rw rw;
  491         struct uio *uio;
  492         int error;
  493 {
  494         struct ktr_request *req;
  495         struct ktr_genio *ktg;
  496         int datalen;
  497         char *buf;
  498 
  499         if (error) {
  500                 free(uio, M_IOV);
  501                 return;
  502         }
  503         uio->uio_offset = 0;
  504         uio->uio_rw = UIO_WRITE;
  505         datalen = imin(uio->uio_resid, ktr_geniosize);
  506         buf = malloc(datalen, M_KTRACE, M_WAITOK);
  507         error = uiomove(buf, datalen, uio);
  508         free(uio, M_IOV);
  509         if (error) {
  510                 free(buf, M_KTRACE);
  511                 return;
  512         }
  513         req = ktr_getrequest(KTR_GENIO);
  514         if (req == NULL) {
  515                 free(buf, M_KTRACE);
  516                 return;
  517         }
  518         ktg = &req->ktr_data.ktr_genio;
  519         ktg->ktr_fd = fd;
  520         ktg->ktr_rw = rw;
  521         req->ktr_header.ktr_len = datalen;
  522         req->ktr_buffer = buf;
  523         ktr_submitrequest(curthread, req);
  524 }
  525 
  526 void
  527 ktrpsig(sig, action, mask, code)
  528         int sig;
  529         sig_t action;
  530         sigset_t *mask;
  531         int code;
  532 {
  533         struct ktr_request *req;
  534         struct ktr_psig *kp;
  535 
  536         req = ktr_getrequest(KTR_PSIG);
  537         if (req == NULL)
  538                 return;
  539         kp = &req->ktr_data.ktr_psig;
  540         kp->signo = (char)sig;
  541         kp->action = action;
  542         kp->mask = *mask;
  543         kp->code = code;
  544         ktr_enqueuerequest(curthread, req);
  545 }
  546 
  547 void
  548 ktrcsw(out, user)
  549         int out, user;
  550 {
  551         struct ktr_request *req;
  552         struct ktr_csw *kc;
  553 
  554         req = ktr_getrequest(KTR_CSW);
  555         if (req == NULL)
  556                 return;
  557         kc = &req->ktr_data.ktr_csw;
  558         kc->out = out;
  559         kc->user = user;
  560         ktr_enqueuerequest(curthread, req);
  561 }
  562 #endif /* KTRACE */
  563 
  564 /* Interface and common routines */
  565 
  566 /*
  567  * ktrace system call
  568  *
  569  * MPSAFE
  570  */
  571 #ifndef _SYS_SYSPROTO_H_
  572 struct ktrace_args {
  573         char    *fname;
  574         int     ops;
  575         int     facs;
  576         int     pid;
  577 };
  578 #endif
  579 /* ARGSUSED */
  580 int
  581 ktrace(td, uap)
  582         struct thread *td;
  583         register struct ktrace_args *uap;
  584 {
  585 #ifdef KTRACE
  586         register struct vnode *vp = NULL;
  587         register struct proc *p;
  588         struct pgrp *pg;
  589         int facs = uap->facs & ~KTRFAC_ROOT;
  590         int ops = KTROP(uap->ops);
  591         int descend = uap->ops & KTRFLAG_DESCEND;
  592         int nfound, ret = 0;
  593         int flags, error = 0;
  594         struct nameidata nd;
  595         struct ucred *cred;
  596 
  597         /*
  598          * Need something to (un)trace.
  599          */
  600         if (ops != KTROP_CLEARFILE && facs == 0)
  601                 return (EINVAL);
  602 
  603         ktrace_enter(td);
  604         if (ops != KTROP_CLEAR) {
  605                 /*
  606                  * an operation which requires a file argument.
  607                  */
  608                 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname, td);
  609                 flags = FREAD | FWRITE | O_NOFOLLOW;
  610                 mtx_lock(&Giant);
  611                 error = vn_open(&nd, &flags, 0, -1);
  612                 if (error) {
  613                         mtx_unlock(&Giant);
  614                         ktrace_exit(td);
  615                         return (error);
  616                 }
  617                 NDFREE(&nd, NDF_ONLY_PNBUF);
  618                 vp = nd.ni_vp;
  619                 VOP_UNLOCK(vp, 0, td);
  620                 if (vp->v_type != VREG) {
  621                         (void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
  622                         mtx_unlock(&Giant);
  623                         ktrace_exit(td);
  624                         return (EACCES);
  625                 }
  626                 mtx_unlock(&Giant);
  627         }
  628         /*
  629          * Clear all uses of the tracefile.
  630          */
  631         if (ops == KTROP_CLEARFILE) {
  632                 sx_slock(&allproc_lock);
  633                 LIST_FOREACH(p, &allproc, p_list) {
  634                         PROC_LOCK(p);
  635                         if (p->p_tracevp == vp) {
  636                                 if (ktrcanset(td, p)) {
  637                                         mtx_lock(&ktrace_mtx);
  638                                         cred = p->p_tracecred;
  639                                         p->p_tracecred = NULL;
  640                                         p->p_tracevp = NULL;
  641                                         p->p_traceflag = 0;
  642                                         mtx_unlock(&ktrace_mtx);
  643                                         PROC_UNLOCK(p);
  644                                         mtx_lock(&Giant);
  645                                         (void) vn_close(vp, FREAD|FWRITE,
  646                                                 cred, td);
  647                                         mtx_unlock(&Giant);
  648                                         crfree(cred);
  649                                 } else {
  650                                         PROC_UNLOCK(p);
  651                                         error = EPERM;
  652                                 }
  653                         } else
  654                                 PROC_UNLOCK(p);
  655                 }
  656                 sx_sunlock(&allproc_lock);
  657                 goto done;
  658         }
  659         /*
  660          * do it
  661          */
  662         sx_slock(&proctree_lock);
  663         if (uap->pid < 0) {
  664                 /*
  665                  * by process group
  666                  */
  667                 pg = pgfind(-uap->pid);
  668                 if (pg == NULL) {
  669                         sx_sunlock(&proctree_lock);
  670                         error = ESRCH;
  671                         goto done;
  672                 }
  673                 /*
  674                  * ktrops() may call vrele(). Lock pg_members
  675                  * by the proctree_lock rather than pg_mtx.
  676                  */
  677                 PGRP_UNLOCK(pg);
  678                 nfound = 0;
  679                 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  680                         PROC_LOCK(p);
  681                         if (p_cansee(td, p) != 0) {
  682                                 PROC_UNLOCK(p); 
  683                                 continue;
  684                         }
  685                         PROC_UNLOCK(p); 
  686                         nfound++;
  687                         if (descend)
  688                                 ret |= ktrsetchildren(td, p, ops, facs, vp);
  689                         else
  690                                 ret |= ktrops(td, p, ops, facs, vp);
  691                 }
  692                 if (nfound == 0) {
  693                         sx_sunlock(&proctree_lock);
  694                         error = ESRCH;
  695                         goto done;
  696                 }
  697         } else {
  698                 /*
  699                  * by pid
  700                  */
  701                 p = pfind(uap->pid);
  702                 if (p == NULL) {
  703                         sx_sunlock(&proctree_lock);
  704                         error = ESRCH;
  705                         goto done;
  706                 }
  707                 error = p_cansee(td, p);
  708                 /*
  709                  * The slock of the proctree lock will keep this process
  710                  * from going away, so unlocking the proc here is ok.
  711                  */
  712                 PROC_UNLOCK(p);
  713                 if (error) {
  714                         sx_sunlock(&proctree_lock);
  715                         goto done;
  716                 }
  717                 if (descend)
  718                         ret |= ktrsetchildren(td, p, ops, facs, vp);
  719                 else
  720                         ret |= ktrops(td, p, ops, facs, vp);
  721         }
  722         sx_sunlock(&proctree_lock);
  723         if (!ret)
  724                 error = EPERM;
  725 done:
  726         if (vp != NULL) {
  727                 mtx_lock(&Giant);
  728                 (void) vn_close(vp, FWRITE, td->td_ucred, td);
  729                 mtx_unlock(&Giant);
  730         }
  731         ktrace_exit(td);
  732         return (error);
  733 #else /* !KTRACE */
  734         return (ENOSYS);
  735 #endif /* KTRACE */
  736 }
  737 
  738 /*
  739  * utrace system call
  740  *
  741  * MPSAFE
  742  */
  743 /* ARGSUSED */
  744 int
  745 utrace(td, uap)
  746         struct thread *td;
  747         register struct utrace_args *uap;
  748 {
  749 
  750 #ifdef KTRACE
  751         struct ktr_request *req;
  752         void *cp;
  753         int error;
  754 
  755         if (!KTRPOINT(td, KTR_USER))
  756                 return (0);
  757         if (uap->len > KTR_USER_MAXLEN)
  758                 return (EINVAL);
  759         cp = malloc(uap->len, M_KTRACE, M_WAITOK);
  760         error = copyin(uap->addr, cp, uap->len);
  761         if (error) {
  762                 free(cp, M_KTRACE);
  763                 return (error);
  764         }
  765         req = ktr_getrequest(KTR_USER);
  766         if (req == NULL) {
  767                 free(cp, M_KTRACE);
  768                 return (ENOMEM);
  769         }
  770         req->ktr_buffer = cp;
  771         req->ktr_header.ktr_len = uap->len;
  772         ktr_submitrequest(td, req);
  773         return (0);
  774 #else /* !KTRACE */
  775         return (ENOSYS);
  776 #endif /* KTRACE */
  777 }
  778 
  779 #ifdef KTRACE
  780 static int
  781 ktrops(td, p, ops, facs, vp)
  782         struct thread *td;
  783         struct proc *p;
  784         int ops, facs;
  785         struct vnode *vp;
  786 {
  787         struct vnode *tracevp = NULL;
  788         struct ucred *tracecred = NULL;
  789 
  790         PROC_LOCK(p);
  791         if (!ktrcanset(td, p)) {
  792                 PROC_UNLOCK(p);
  793                 return (0);
  794         }
  795         mtx_lock(&ktrace_mtx);
  796         if (ops == KTROP_SET) {
  797                 if (p->p_tracevp != vp) {
  798                         /*
  799                          * if trace file already in use, relinquish below
  800                          */
  801                         tracevp = p->p_tracevp;
  802                         VREF(vp);
  803                         p->p_tracevp = vp;
  804                 }
  805                 if (p->p_tracecred != td->td_ucred) {
  806                         tracecred = p->p_tracecred;
  807                         p->p_tracecred = crhold(td->td_ucred);
  808                 }
  809                 p->p_traceflag |= facs;
  810                 if (suser_cred(td->td_ucred, SUSER_ALLOWJAIL) == 0)
  811                         p->p_traceflag |= KTRFAC_ROOT;
  812         } else {
  813                 /* KTROP_CLEAR */
  814                 if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) {
  815                         /* no more tracing */
  816                         p->p_traceflag = 0;
  817                         tracevp = p->p_tracevp;
  818                         p->p_tracevp = NULL;
  819                         tracecred = p->p_tracecred;
  820                         p->p_tracecred = NULL;
  821                 }
  822         }
  823         mtx_unlock(&ktrace_mtx);
  824         PROC_UNLOCK(p);
  825         if (tracevp != NULL) {
  826                 int vfslocked;
  827 
  828                 vfslocked = VFS_LOCK_GIANT(tracevp->v_mount);
  829                 vrele(tracevp);
  830                 VFS_UNLOCK_GIANT(vfslocked);
  831         }
  832         if (tracecred != NULL)
  833                 crfree(tracecred);
  834 
  835         return (1);
  836 }
  837 
  838 static int
  839 ktrsetchildren(td, top, ops, facs, vp)
  840         struct thread *td;
  841         struct proc *top;
  842         int ops, facs;
  843         struct vnode *vp;
  844 {
  845         register struct proc *p;
  846         register int ret = 0;
  847 
  848         p = top;
  849         sx_assert(&proctree_lock, SX_LOCKED);
  850         for (;;) {
  851                 ret |= ktrops(td, p, ops, facs, vp);
  852                 /*
  853                  * If this process has children, descend to them next,
  854                  * otherwise do any siblings, and if done with this level,
  855                  * follow back up the tree (but not past top).
  856                  */
  857                 if (!LIST_EMPTY(&p->p_children))
  858                         p = LIST_FIRST(&p->p_children);
  859                 else for (;;) {
  860                         if (p == top)
  861                                 return (ret);
  862                         if (LIST_NEXT(p, p_sibling)) {
  863                                 p = LIST_NEXT(p, p_sibling);
  864                                 break;
  865                         }
  866                         p = p->p_pptr;
  867                 }
  868         }
  869         /*NOTREACHED*/
  870 }
  871 
  872 static void
  873 ktr_writerequest(struct thread *td, struct ktr_request *req)
  874 {
  875         struct ktr_header *kth;
  876         struct vnode *vp;
  877         struct proc *p;
  878         struct ucred *cred;
  879         struct uio auio;
  880         struct iovec aiov[3];
  881         struct mount *mp;
  882         int datalen, buflen, vrele_count;
  883         int error;
  884 
  885         /*
  886          * We hold the vnode and credential for use in I/O in case ktrace is
  887          * disabled on the process as we write out the request.
  888          *
  889          * XXXRW: This is not ideal: we could end up performing a write after
  890          * the vnode has been closed.
  891          */
  892         mtx_lock(&ktrace_mtx);
  893         vp = td->td_proc->p_tracevp;
  894         cred = td->td_proc->p_tracecred;
  895 
  896         /*
  897          * If vp is NULL, the vp has been cleared out from under this
  898          * request, so just drop it.  Make sure the credential and vnode are
  899          * in sync: we should have both or neither.
  900          */
  901         if (vp == NULL) {
  902                 KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
  903                 mtx_unlock(&ktrace_mtx);
  904                 return;
  905         }
  906         VREF(vp);
  907         KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
  908         crhold(cred);
  909         mtx_unlock(&ktrace_mtx);
  910 
  911         kth = &req->ktr_header;
  912         datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
  913         buflen = kth->ktr_len;
  914         auio.uio_iov = &aiov[0];
  915         auio.uio_offset = 0;
  916         auio.uio_segflg = UIO_SYSSPACE;
  917         auio.uio_rw = UIO_WRITE;
  918         aiov[0].iov_base = (caddr_t)kth;
  919         aiov[0].iov_len = sizeof(struct ktr_header);
  920         auio.uio_resid = sizeof(struct ktr_header);
  921         auio.uio_iovcnt = 1;
  922         auio.uio_td = td;
  923         if (datalen != 0) {
  924                 aiov[1].iov_base = (caddr_t)&req->ktr_data;
  925                 aiov[1].iov_len = datalen;
  926                 auio.uio_resid += datalen;
  927                 auio.uio_iovcnt++;
  928                 kth->ktr_len += datalen;
  929         }
  930         if (buflen != 0) {
  931                 KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
  932                 aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
  933                 aiov[auio.uio_iovcnt].iov_len = buflen;
  934                 auio.uio_resid += buflen;
  935                 auio.uio_iovcnt++;
  936         }
  937 
  938         mtx_lock(&Giant);
  939         vn_start_write(vp, &mp, V_WAIT);
  940         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
  941         (void)VOP_LEASE(vp, td, cred, LEASE_WRITE);
  942 #ifdef MAC
  943         error = mac_check_vnode_write(cred, NOCRED, vp);
  944         if (error == 0)
  945 #endif
  946                 error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
  947         VOP_UNLOCK(vp, 0, td);
  948         vn_finished_write(mp);
  949         crfree(cred);
  950         if (!error) {
  951                 vrele(vp);
  952                 mtx_unlock(&Giant);
  953                 return;
  954         }
  955         mtx_unlock(&Giant);
  956 
  957         /*
  958          * If error encountered, give up tracing on this vnode.  We defer
  959          * all the vrele()'s on the vnode until after we are finished walking
  960          * the various lists to avoid needlessly holding locks.
  961          * NB: at this point we still hold the vnode reference that must
  962          * not go away as we need the valid vnode to compare with. Thus let
  963          * vrele_count start at 1 and the reference will be freed
  964          * by the loop at the end after our last use of vp.
  965          */
  966         log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
  967             error);
  968         vrele_count = 1;
  969         /*
  970          * First, clear this vnode from being used by any processes in the
  971          * system.
  972          * XXX - If one process gets an EPERM writing to the vnode, should
  973          * we really do this?  Other processes might have suitable
  974          * credentials for the operation.
  975          */
  976         cred = NULL;
  977         sx_slock(&allproc_lock);
  978         LIST_FOREACH(p, &allproc, p_list) {
  979                 PROC_LOCK(p);
  980                 if (p->p_tracevp == vp) {
  981                         mtx_lock(&ktrace_mtx);
  982                         p->p_tracevp = NULL;
  983                         p->p_traceflag = 0;
  984                         cred = p->p_tracecred;
  985                         p->p_tracecred = NULL;
  986                         mtx_unlock(&ktrace_mtx);
  987                         vrele_count++;
  988                 }
  989                 PROC_UNLOCK(p);
  990                 if (cred != NULL) {
  991                         crfree(cred);
  992                         cred = NULL;
  993                 }
  994         }
  995         sx_sunlock(&allproc_lock);
  996 
  997         /*
  998          * We can't clear any pending requests in threads that have cached
  999          * them but not yet committed them, as those are per-thread.  The
 1000          * thread will have to clear it itself on system call return.
 1001          */
 1002         mtx_lock(&Giant);
 1003         while (vrele_count-- > 0)
 1004                 vrele(vp);
 1005         mtx_unlock(&Giant);
 1006 }
 1007 
 1008 /*
 1009  * Return true if caller has permission to set the ktracing state
 1010  * of target.  Essentially, the target can't possess any
 1011  * more permissions than the caller.  KTRFAC_ROOT signifies that
 1012  * root previously set the tracing status on the target process, and
 1013  * so, only root may further change it.
 1014  */
 1015 static int
 1016 ktrcanset(td, targetp)
 1017         struct thread *td;
 1018         struct proc *targetp;
 1019 {
 1020 
 1021         PROC_LOCK_ASSERT(targetp, MA_OWNED);
 1022         if (targetp->p_traceflag & KTRFAC_ROOT &&
 1023             suser_cred(td->td_ucred, SUSER_ALLOWJAIL))
 1024                 return (0);
 1025 
 1026         if (p_candebug(td, targetp) != 0)
 1027                 return (0);
 1028 
 1029         return (1);
 1030 }
 1031 
 1032 #endif /* KTRACE */

Cache object: 2d6ad93d175afcb50f19fce55a737ed9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.