The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_ktrace.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1989, 1993
    3  *      The Regents of the University of California.
    4  * Copyright (c) 2005 Robert N. M. Watson
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 4. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)kern_ktrace.c       8.2 (Berkeley) 9/23/93
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_ktrace.h"
   38 #include "opt_mac.h"
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/fcntl.h>
   43 #include <sys/kernel.h>
   44 #include <sys/kthread.h>
   45 #include <sys/lock.h>
   46 #include <sys/mutex.h>
   47 #include <sys/malloc.h>
   48 #include <sys/mount.h>
   49 #include <sys/namei.h>
   50 #include <sys/priv.h>
   51 #include <sys/proc.h>
   52 #include <sys/unistd.h>
   53 #include <sys/vnode.h>
   54 #include <sys/ktrace.h>
   55 #include <sys/sx.h>
   56 #include <sys/sysctl.h>
   57 #include <sys/syslog.h>
   58 #include <sys/sysproto.h>
   59 
   60 #include <security/mac/mac_framework.h>
   61 
   62 /*
   63  * The ktrace facility allows the tracing of certain key events in user space
   64  * processes, such as system calls, signal delivery, context switches, and
   65  * user generated events using utrace(2).  It works by streaming event
   66  * records and data to a vnode associated with the process using the
   67  * ktrace(2) system call.  In general, records can be written directly from
   68  * the context that generates the event.  One important exception to this is
   69  * during a context switch, where sleeping is not permitted.  To handle this
   70  * case, trace events are generated using in-kernel ktr_request records, and
   71  * then delivered to disk at a convenient moment -- either immediately, the
   72  * next traceable event, at system call return, or at process exit.
   73  *
   74  * When dealing with multiple threads or processes writing to the same event
   75  * log, ordering guarantees are weak: specifically, if an event has multiple
   76  * records (i.e., system call enter and return), they may be interlaced with
   77  * records from another event.  Process and thread ID information is provided
   78  * in the record, and user applications can de-interlace events if required.
   79  */
   80 
   81 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
   82 
   83 #ifdef KTRACE
   84 
   85 #ifndef KTRACE_REQUEST_POOL
   86 #define KTRACE_REQUEST_POOL     100
   87 #endif
   88 
   89 struct ktr_request {
   90         struct  ktr_header ktr_header;
   91         void    *ktr_buffer;
   92         union {
   93                 struct  ktr_syscall ktr_syscall;
   94                 struct  ktr_sysret ktr_sysret;
   95                 struct  ktr_genio ktr_genio;
   96                 struct  ktr_psig ktr_psig;
   97                 struct  ktr_csw ktr_csw;
   98         } ktr_data;
   99         STAILQ_ENTRY(ktr_request) ktr_list;
  100 };
  101 
  102 static int data_lengths[] = {
  103         0,                                      /* none */
  104         offsetof(struct ktr_syscall, ktr_args), /* KTR_SYSCALL */
  105         sizeof(struct ktr_sysret),              /* KTR_SYSRET */
  106         0,                                      /* KTR_NAMEI */
  107         sizeof(struct ktr_genio),               /* KTR_GENIO */
  108         sizeof(struct ktr_psig),                /* KTR_PSIG */
  109         sizeof(struct ktr_csw),                 /* KTR_CSW */
  110         0                                       /* KTR_USER */
  111 };
  112 
  113 static STAILQ_HEAD(, ktr_request) ktr_free;
  114 
  115 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options");
  116 
  117 static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
  118 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
  119 
  120 static u_int ktr_geniosize = PAGE_SIZE;
  121 TUNABLE_INT("kern.ktrace.genio_size", &ktr_geniosize);
  122 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RW, &ktr_geniosize,
  123     0, "Maximum size of genio event payload");
  124 
  125 static int print_message = 1;
  126 struct mtx ktrace_mtx;
  127 static struct sx ktrace_sx;
  128 
  129 static void ktrace_init(void *dummy);
  130 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
  131 static u_int ktrace_resize_pool(u_int newsize);
  132 static struct ktr_request *ktr_getrequest(int type);
  133 static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
  134 static void ktr_freerequest(struct ktr_request *req);
  135 static void ktr_writerequest(struct thread *td, struct ktr_request *req);
  136 static int ktrcanset(struct thread *,struct proc *);
  137 static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
  138 static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
  139 
  140 /*
  141  * ktrace itself generates events, such as context switches, which we do not
  142  * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
  143  * whether or not it is in a region where tracing of events should be
  144  * suppressed.
  145  */
  146 static void
  147 ktrace_enter(struct thread *td)
  148 {
  149 
  150         KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
  151         td->td_pflags |= TDP_INKTRACE;
  152 }
  153 
  154 static void
  155 ktrace_exit(struct thread *td)
  156 {
  157 
  158         KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
  159         td->td_pflags &= ~TDP_INKTRACE;
  160 }
  161 
  162 static void
  163 ktrace_assert(struct thread *td)
  164 {
  165 
  166         KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
  167 }
  168 
  169 static void
  170 ktrace_init(void *dummy)
  171 {
  172         struct ktr_request *req;
  173         int i;
  174 
  175         mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
  176         sx_init(&ktrace_sx, "ktrace_sx");
  177         STAILQ_INIT(&ktr_free);
  178         for (i = 0; i < ktr_requestpool; i++) {
  179                 req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
  180                 STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
  181         }
  182 }
  183 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
  184 
  185 static int
  186 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
  187 {
  188         struct thread *td;
  189         u_int newsize, oldsize, wantsize;
  190         int error;
  191 
  192         /* Handle easy read-only case first to avoid warnings from GCC. */
  193         if (!req->newptr) {
  194                 mtx_lock(&ktrace_mtx);
  195                 oldsize = ktr_requestpool;
  196                 mtx_unlock(&ktrace_mtx);
  197                 return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
  198         }
  199 
  200         error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
  201         if (error)
  202                 return (error);
  203         td = curthread;
  204         ktrace_enter(td);
  205         mtx_lock(&ktrace_mtx);
  206         oldsize = ktr_requestpool;
  207         newsize = ktrace_resize_pool(wantsize);
  208         mtx_unlock(&ktrace_mtx);
  209         ktrace_exit(td);
  210         error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
  211         if (error)
  212                 return (error);
  213         if (wantsize > oldsize && newsize < wantsize)
  214                 return (ENOSPC);
  215         return (0);
  216 }
  217 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW,
  218     &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU", "");
  219 
  220 static u_int
  221 ktrace_resize_pool(u_int newsize)
  222 {
  223         struct ktr_request *req;
  224         int bound;
  225 
  226         mtx_assert(&ktrace_mtx, MA_OWNED);
  227         print_message = 1;
  228         bound = newsize - ktr_requestpool;
  229         if (bound == 0)
  230                 return (ktr_requestpool);
  231         if (bound < 0)
  232                 /* Shrink pool down to newsize if possible. */
  233                 while (bound++ < 0) {
  234                         req = STAILQ_FIRST(&ktr_free);
  235                         if (req == NULL)
  236                                 return (ktr_requestpool);
  237                         STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
  238                         ktr_requestpool--;
  239                         mtx_unlock(&ktrace_mtx);
  240                         free(req, M_KTRACE);
  241                         mtx_lock(&ktrace_mtx);
  242                 }
  243         else
  244                 /* Grow pool up to newsize. */
  245                 while (bound-- > 0) {
  246                         mtx_unlock(&ktrace_mtx);
  247                         req = malloc(sizeof(struct ktr_request), M_KTRACE,
  248                             M_WAITOK);
  249                         mtx_lock(&ktrace_mtx);
  250                         STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
  251                         ktr_requestpool++;
  252                 }
  253         return (ktr_requestpool);
  254 }
  255 
  256 static struct ktr_request *
  257 ktr_getrequest(int type)
  258 {
  259         struct ktr_request *req;
  260         struct thread *td = curthread;
  261         struct proc *p = td->td_proc;
  262         int pm;
  263 
  264         ktrace_enter(td);       /* XXX: In caller instead? */
  265         mtx_lock(&ktrace_mtx);
  266         if (!KTRCHECK(td, type)) {
  267                 mtx_unlock(&ktrace_mtx);
  268                 ktrace_exit(td);
  269                 return (NULL);
  270         }
  271         req = STAILQ_FIRST(&ktr_free);
  272         if (req != NULL) {
  273                 STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
  274                 req->ktr_header.ktr_type = type;
  275                 if (p->p_traceflag & KTRFAC_DROP) {
  276                         req->ktr_header.ktr_type |= KTR_DROP;
  277                         p->p_traceflag &= ~KTRFAC_DROP;
  278                 }
  279                 mtx_unlock(&ktrace_mtx);
  280                 microtime(&req->ktr_header.ktr_time);
  281                 req->ktr_header.ktr_pid = p->p_pid;
  282                 req->ktr_header.ktr_tid = td->td_tid;
  283                 bcopy(p->p_comm, req->ktr_header.ktr_comm, MAXCOMLEN + 1);
  284                 req->ktr_buffer = NULL;
  285                 req->ktr_header.ktr_len = 0;
  286         } else {
  287                 p->p_traceflag |= KTRFAC_DROP;
  288                 pm = print_message;
  289                 print_message = 0;
  290                 mtx_unlock(&ktrace_mtx);
  291                 if (pm)
  292                         printf("Out of ktrace request objects.\n");
  293                 ktrace_exit(td);
  294         }
  295         return (req);
  296 }
  297 
  298 /*
  299  * Some trace generation environments don't permit direct access to VFS,
  300  * such as during a context switch where sleeping is not allowed.  Under these
  301  * circumstances, queue a request to the thread to be written asynchronously
  302  * later.
  303  */
  304 static void
  305 ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
  306 {
  307 
  308         mtx_lock(&ktrace_mtx);
  309         STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
  310         mtx_unlock(&ktrace_mtx);
  311         ktrace_exit(td);
  312 }
  313 
  314 /*
  315  * Drain any pending ktrace records from the per-thread queue to disk.  This
  316  * is used both internally before committing other records, and also on
  317  * system call return.  We drain all the ones we can find at the time when
  318  * drain is requested, but don't keep draining after that as those events
  319  * may me approximately "after" the current event.
  320  */
  321 static void
  322 ktr_drain(struct thread *td)
  323 {
  324         struct ktr_request *queued_req;
  325         STAILQ_HEAD(, ktr_request) local_queue;
  326 
  327         ktrace_assert(td);
  328         sx_assert(&ktrace_sx, SX_XLOCKED);
  329 
  330         STAILQ_INIT(&local_queue);      /* XXXRW: needed? */
  331 
  332         if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
  333                 mtx_lock(&ktrace_mtx);
  334                 STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
  335                 mtx_unlock(&ktrace_mtx);
  336 
  337                 while ((queued_req = STAILQ_FIRST(&local_queue))) {
  338                         STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
  339                         ktr_writerequest(td, queued_req);
  340                         ktr_freerequest(queued_req);
  341                 }
  342         }
  343 }
  344 
  345 /*
  346  * Submit a trace record for immediate commit to disk -- to be used only
  347  * where entering VFS is OK.  First drain any pending records that may have
  348  * been cached in the thread.
  349  */
  350 static void
  351 ktr_submitrequest(struct thread *td, struct ktr_request *req)
  352 {
  353 
  354         ktrace_assert(td);
  355 
  356         sx_xlock(&ktrace_sx);
  357         ktr_drain(td);
  358         ktr_writerequest(td, req);
  359         ktr_freerequest(req);
  360         sx_xunlock(&ktrace_sx);
  361 
  362         ktrace_exit(td);
  363 }
  364 
  365 static void
  366 ktr_freerequest(struct ktr_request *req)
  367 {
  368 
  369         if (req->ktr_buffer != NULL)
  370                 free(req->ktr_buffer, M_KTRACE);
  371         mtx_lock(&ktrace_mtx);
  372         STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
  373         mtx_unlock(&ktrace_mtx);
  374 }
  375 
  376 void
  377 ktrsyscall(code, narg, args)
  378         int code, narg;
  379         register_t args[];
  380 {
  381         struct ktr_request *req;
  382         struct ktr_syscall *ktp;
  383         size_t buflen;
  384         char *buf = NULL;
  385 
  386         buflen = sizeof(register_t) * narg;
  387         if (buflen > 0) {
  388                 buf = malloc(buflen, M_KTRACE, M_WAITOK);
  389                 bcopy(args, buf, buflen);
  390         }
  391         req = ktr_getrequest(KTR_SYSCALL);
  392         if (req == NULL) {
  393                 if (buf != NULL)
  394                         free(buf, M_KTRACE);
  395                 return;
  396         }
  397         ktp = &req->ktr_data.ktr_syscall;
  398         ktp->ktr_code = code;
  399         ktp->ktr_narg = narg;
  400         if (buflen > 0) {
  401                 req->ktr_header.ktr_len = buflen;
  402                 req->ktr_buffer = buf;
  403         }
  404         ktr_submitrequest(curthread, req);
  405 }
  406 
  407 void
  408 ktrsysret(code, error, retval)
  409         int code, error;
  410         register_t retval;
  411 {
  412         struct ktr_request *req;
  413         struct ktr_sysret *ktp;
  414 
  415         req = ktr_getrequest(KTR_SYSRET);
  416         if (req == NULL)
  417                 return;
  418         ktp = &req->ktr_data.ktr_sysret;
  419         ktp->ktr_code = code;
  420         ktp->ktr_error = error;
  421         ktp->ktr_retval = retval;               /* what about val2 ? */
  422         ktr_submitrequest(curthread, req);
  423 }
  424 
  425 /*
  426  * When a process exits, drain per-process asynchronous trace records.
  427  */
  428 void
  429 ktrprocexit(struct thread *td)
  430 {
  431 
  432         ktrace_enter(td);
  433         sx_xlock(&ktrace_sx);
  434         ktr_drain(td);
  435         sx_xunlock(&ktrace_sx);
  436         ktrace_exit(td);
  437 }
  438 
  439 /*
  440  * When a thread returns, drain any asynchronous records generated by the
  441  * system call.
  442  */
  443 void
  444 ktruserret(struct thread *td)
  445 {
  446 
  447         ktrace_enter(td);
  448         sx_xlock(&ktrace_sx);
  449         ktr_drain(td);
  450         sx_xunlock(&ktrace_sx);
  451         ktrace_exit(td);
  452 }
  453 
  454 void
  455 ktrnamei(path)
  456         char *path;
  457 {
  458         struct ktr_request *req;
  459         int namelen;
  460         char *buf = NULL;
  461 
  462         namelen = strlen(path);
  463         if (namelen > 0) {
  464                 buf = malloc(namelen, M_KTRACE, M_WAITOK);
  465                 bcopy(path, buf, namelen);
  466         }
  467         req = ktr_getrequest(KTR_NAMEI);
  468         if (req == NULL) {
  469                 if (buf != NULL)
  470                         free(buf, M_KTRACE);
  471                 return;
  472         }
  473         if (namelen > 0) {
  474                 req->ktr_header.ktr_len = namelen;
  475                 req->ktr_buffer = buf;
  476         }
  477         ktr_submitrequest(curthread, req);
  478 }
  479 
  480 void
  481 ktrgenio(fd, rw, uio, error)
  482         int fd;
  483         enum uio_rw rw;
  484         struct uio *uio;
  485         int error;
  486 {
  487         struct ktr_request *req;
  488         struct ktr_genio *ktg;
  489         int datalen;
  490         char *buf;
  491 
  492         if (error) {
  493                 free(uio, M_IOV);
  494                 return;
  495         }
  496         uio->uio_offset = 0;
  497         uio->uio_rw = UIO_WRITE;
  498         datalen = imin(uio->uio_resid, ktr_geniosize);
  499         buf = malloc(datalen, M_KTRACE, M_WAITOK);
  500         error = uiomove(buf, datalen, uio);
  501         free(uio, M_IOV);
  502         if (error) {
  503                 free(buf, M_KTRACE);
  504                 return;
  505         }
  506         req = ktr_getrequest(KTR_GENIO);
  507         if (req == NULL) {
  508                 free(buf, M_KTRACE);
  509                 return;
  510         }
  511         ktg = &req->ktr_data.ktr_genio;
  512         ktg->ktr_fd = fd;
  513         ktg->ktr_rw = rw;
  514         req->ktr_header.ktr_len = datalen;
  515         req->ktr_buffer = buf;
  516         ktr_submitrequest(curthread, req);
  517 }
  518 
  519 void
  520 ktrpsig(sig, action, mask, code)
  521         int sig;
  522         sig_t action;
  523         sigset_t *mask;
  524         int code;
  525 {
  526         struct ktr_request *req;
  527         struct ktr_psig *kp;
  528 
  529         req = ktr_getrequest(KTR_PSIG);
  530         if (req == NULL)
  531                 return;
  532         kp = &req->ktr_data.ktr_psig;
  533         kp->signo = (char)sig;
  534         kp->action = action;
  535         kp->mask = *mask;
  536         kp->code = code;
  537         ktr_enqueuerequest(curthread, req);
  538 }
  539 
  540 void
  541 ktrcsw(out, user)
  542         int out, user;
  543 {
  544         struct ktr_request *req;
  545         struct ktr_csw *kc;
  546 
  547         req = ktr_getrequest(KTR_CSW);
  548         if (req == NULL)
  549                 return;
  550         kc = &req->ktr_data.ktr_csw;
  551         kc->out = out;
  552         kc->user = user;
  553         ktr_enqueuerequest(curthread, req);
  554 }
  555 #endif /* KTRACE */
  556 
  557 /* Interface and common routines */
  558 
  559 #ifndef _SYS_SYSPROTO_H_
  560 struct ktrace_args {
  561         char    *fname;
  562         int     ops;
  563         int     facs;
  564         int     pid;
  565 };
  566 #endif
  567 /* ARGSUSED */
  568 int
  569 ktrace(td, uap)
  570         struct thread *td;
  571         register struct ktrace_args *uap;
  572 {
  573 #ifdef KTRACE
  574         register struct vnode *vp = NULL;
  575         register struct proc *p;
  576         struct pgrp *pg;
  577         int facs = uap->facs & ~KTRFAC_ROOT;
  578         int ops = KTROP(uap->ops);
  579         int descend = uap->ops & KTRFLAG_DESCEND;
  580         int nfound, ret = 0;
  581         int flags, error = 0, vfslocked;
  582         struct nameidata nd;
  583         struct ucred *cred;
  584 
  585         /*
  586          * Need something to (un)trace.
  587          */
  588         if (ops != KTROP_CLEARFILE && facs == 0)
  589                 return (EINVAL);
  590 
  591         ktrace_enter(td);
  592         if (ops != KTROP_CLEAR) {
  593                 /*
  594                  * an operation which requires a file argument.
  595                  */
  596                 NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_USERSPACE,
  597                     uap->fname, td);
  598                 flags = FREAD | FWRITE | O_NOFOLLOW;
  599                 error = vn_open(&nd, &flags, 0, NULL);
  600                 if (error) {
  601                         ktrace_exit(td);
  602                         return (error);
  603                 }
  604                 vfslocked = NDHASGIANT(&nd);
  605                 NDFREE(&nd, NDF_ONLY_PNBUF);
  606                 vp = nd.ni_vp;
  607                 VOP_UNLOCK(vp, 0, td);
  608                 if (vp->v_type != VREG) {
  609                         (void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
  610                         VFS_UNLOCK_GIANT(vfslocked);
  611                         ktrace_exit(td);
  612                         return (EACCES);
  613                 }
  614                 VFS_UNLOCK_GIANT(vfslocked);
  615         }
  616         /*
  617          * Clear all uses of the tracefile.
  618          */
  619         if (ops == KTROP_CLEARFILE) {
  620                 int vrele_count;
  621 
  622                 vrele_count = 0;
  623                 sx_slock(&allproc_lock);
  624                 FOREACH_PROC_IN_SYSTEM(p) {
  625                         PROC_LOCK(p);
  626                         if (p->p_tracevp == vp) {
  627                                 if (ktrcanset(td, p)) {
  628                                         mtx_lock(&ktrace_mtx);
  629                                         cred = p->p_tracecred;
  630                                         p->p_tracecred = NULL;
  631                                         p->p_tracevp = NULL;
  632                                         p->p_traceflag = 0;
  633                                         mtx_unlock(&ktrace_mtx);
  634                                         vrele_count++;
  635                                         crfree(cred);
  636                                 } else
  637                                         error = EPERM;
  638                         }
  639                         PROC_UNLOCK(p);
  640                 }
  641                 sx_sunlock(&allproc_lock);
  642                 if (vrele_count > 0) {
  643                         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  644                         while (vrele_count-- > 0)
  645                                 vrele(vp);
  646                         VFS_UNLOCK_GIANT(vfslocked);
  647                 }
  648                 goto done;
  649         }
  650         /*
  651          * do it
  652          */
  653         sx_slock(&proctree_lock);
  654         if (uap->pid < 0) {
  655                 /*
  656                  * by process group
  657                  */
  658                 pg = pgfind(-uap->pid);
  659                 if (pg == NULL) {
  660                         sx_sunlock(&proctree_lock);
  661                         error = ESRCH;
  662                         goto done;
  663                 }
  664                 /*
  665                  * ktrops() may call vrele(). Lock pg_members
  666                  * by the proctree_lock rather than pg_mtx.
  667                  */
  668                 PGRP_UNLOCK(pg);
  669                 nfound = 0;
  670                 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  671                         PROC_LOCK(p);
  672                         if (p_cansee(td, p) != 0) {
  673                                 PROC_UNLOCK(p); 
  674                                 continue;
  675                         }
  676                         PROC_UNLOCK(p); 
  677                         nfound++;
  678                         if (descend)
  679                                 ret |= ktrsetchildren(td, p, ops, facs, vp);
  680                         else
  681                                 ret |= ktrops(td, p, ops, facs, vp);
  682                 }
  683                 if (nfound == 0) {
  684                         sx_sunlock(&proctree_lock);
  685                         error = ESRCH;
  686                         goto done;
  687                 }
  688         } else {
  689                 /*
  690                  * by pid
  691                  */
  692                 p = pfind(uap->pid);
  693                 if (p == NULL) {
  694                         sx_sunlock(&proctree_lock);
  695                         error = ESRCH;
  696                         goto done;
  697                 }
  698                 error = p_cansee(td, p);
  699                 /*
  700                  * The slock of the proctree lock will keep this process
  701                  * from going away, so unlocking the proc here is ok.
  702                  */
  703                 PROC_UNLOCK(p);
  704                 if (error) {
  705                         sx_sunlock(&proctree_lock);
  706                         goto done;
  707                 }
  708                 if (descend)
  709                         ret |= ktrsetchildren(td, p, ops, facs, vp);
  710                 else
  711                         ret |= ktrops(td, p, ops, facs, vp);
  712         }
  713         sx_sunlock(&proctree_lock);
  714         if (!ret)
  715                 error = EPERM;
  716 done:
  717         if (vp != NULL) {
  718                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  719                 (void) vn_close(vp, FWRITE, td->td_ucred, td);
  720                 VFS_UNLOCK_GIANT(vfslocked);
  721         }
  722         ktrace_exit(td);
  723         return (error);
  724 #else /* !KTRACE */
  725         return (ENOSYS);
  726 #endif /* KTRACE */
  727 }
  728 
  729 /* ARGSUSED */
  730 int
  731 utrace(td, uap)
  732         struct thread *td;
  733         register struct utrace_args *uap;
  734 {
  735 
  736 #ifdef KTRACE
  737         struct ktr_request *req;
  738         void *cp;
  739         int error;
  740 
  741         if (!KTRPOINT(td, KTR_USER))
  742                 return (0);
  743         if (uap->len > KTR_USER_MAXLEN)
  744                 return (EINVAL);
  745         cp = malloc(uap->len, M_KTRACE, M_WAITOK);
  746         error = copyin(uap->addr, cp, uap->len);
  747         if (error) {
  748                 free(cp, M_KTRACE);
  749                 return (error);
  750         }
  751         req = ktr_getrequest(KTR_USER);
  752         if (req == NULL) {
  753                 free(cp, M_KTRACE);
  754                 return (ENOMEM);
  755         }
  756         req->ktr_buffer = cp;
  757         req->ktr_header.ktr_len = uap->len;
  758         ktr_submitrequest(td, req);
  759         return (0);
  760 #else /* !KTRACE */
  761         return (ENOSYS);
  762 #endif /* KTRACE */
  763 }
  764 
  765 #ifdef KTRACE
  766 static int
  767 ktrops(td, p, ops, facs, vp)
  768         struct thread *td;
  769         struct proc *p;
  770         int ops, facs;
  771         struct vnode *vp;
  772 {
  773         struct vnode *tracevp = NULL;
  774         struct ucred *tracecred = NULL;
  775 
  776         PROC_LOCK(p);
  777         if (!ktrcanset(td, p)) {
  778                 PROC_UNLOCK(p);
  779                 return (0);
  780         }
  781         mtx_lock(&ktrace_mtx);
  782         if (ops == KTROP_SET) {
  783                 if (p->p_tracevp != vp) {
  784                         /*
  785                          * if trace file already in use, relinquish below
  786                          */
  787                         tracevp = p->p_tracevp;
  788                         VREF(vp);
  789                         p->p_tracevp = vp;
  790                 }
  791                 if (p->p_tracecred != td->td_ucred) {
  792                         tracecred = p->p_tracecred;
  793                         p->p_tracecred = crhold(td->td_ucred);
  794                 }
  795                 p->p_traceflag |= facs;
  796                 if (priv_check(td, PRIV_KTRACE) == 0)
  797                         p->p_traceflag |= KTRFAC_ROOT;
  798         } else {
  799                 /* KTROP_CLEAR */
  800                 if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) {
  801                         /* no more tracing */
  802                         p->p_traceflag = 0;
  803                         tracevp = p->p_tracevp;
  804                         p->p_tracevp = NULL;
  805                         tracecred = p->p_tracecred;
  806                         p->p_tracecred = NULL;
  807                 }
  808         }
  809         mtx_unlock(&ktrace_mtx);
  810         PROC_UNLOCK(p);
  811         if (tracevp != NULL) {
  812                 int vfslocked;
  813 
  814                 vfslocked = VFS_LOCK_GIANT(tracevp->v_mount);
  815                 vrele(tracevp);
  816                 VFS_UNLOCK_GIANT(vfslocked);
  817         }
  818         if (tracecred != NULL)
  819                 crfree(tracecred);
  820 
  821         return (1);
  822 }
  823 
  824 static int
  825 ktrsetchildren(td, top, ops, facs, vp)
  826         struct thread *td;
  827         struct proc *top;
  828         int ops, facs;
  829         struct vnode *vp;
  830 {
  831         register struct proc *p;
  832         register int ret = 0;
  833 
  834         p = top;
  835         sx_assert(&proctree_lock, SX_LOCKED);
  836         for (;;) {
  837                 ret |= ktrops(td, p, ops, facs, vp);
  838                 /*
  839                  * If this process has children, descend to them next,
  840                  * otherwise do any siblings, and if done with this level,
  841                  * follow back up the tree (but not past top).
  842                  */
  843                 if (!LIST_EMPTY(&p->p_children))
  844                         p = LIST_FIRST(&p->p_children);
  845                 else for (;;) {
  846                         if (p == top)
  847                                 return (ret);
  848                         if (LIST_NEXT(p, p_sibling)) {
  849                                 p = LIST_NEXT(p, p_sibling);
  850                                 break;
  851                         }
  852                         p = p->p_pptr;
  853                 }
  854         }
  855         /*NOTREACHED*/
  856 }
  857 
  858 static void
  859 ktr_writerequest(struct thread *td, struct ktr_request *req)
  860 {
  861         struct ktr_header *kth;
  862         struct vnode *vp;
  863         struct proc *p;
  864         struct ucred *cred;
  865         struct uio auio;
  866         struct iovec aiov[3];
  867         struct mount *mp;
  868         int datalen, buflen, vrele_count;
  869         int error, vfslocked;
  870 
  871         /*
  872          * We hold the vnode and credential for use in I/O in case ktrace is
  873          * disabled on the process as we write out the request.
  874          *
  875          * XXXRW: This is not ideal: we could end up performing a write after
  876          * the vnode has been closed.
  877          */
  878         mtx_lock(&ktrace_mtx);
  879         vp = td->td_proc->p_tracevp;
  880         if (vp != NULL)
  881                 VREF(vp);
  882         cred = td->td_proc->p_tracecred;
  883         if (cred != NULL)
  884                 crhold(cred);
  885         mtx_unlock(&ktrace_mtx);
  886 
  887         /*
  888          * If vp is NULL, the vp has been cleared out from under this
  889          * request, so just drop it.  Make sure the credential and vnode are
  890          * in sync: we should have both or neither.
  891          */
  892         if (vp == NULL) {
  893                 KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
  894                 return;
  895         }
  896         KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
  897 
  898         kth = &req->ktr_header;
  899         datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
  900         buflen = kth->ktr_len;
  901         auio.uio_iov = &aiov[0];
  902         auio.uio_offset = 0;
  903         auio.uio_segflg = UIO_SYSSPACE;
  904         auio.uio_rw = UIO_WRITE;
  905         aiov[0].iov_base = (caddr_t)kth;
  906         aiov[0].iov_len = sizeof(struct ktr_header);
  907         auio.uio_resid = sizeof(struct ktr_header);
  908         auio.uio_iovcnt = 1;
  909         auio.uio_td = td;
  910         if (datalen != 0) {
  911                 aiov[1].iov_base = (caddr_t)&req->ktr_data;
  912                 aiov[1].iov_len = datalen;
  913                 auio.uio_resid += datalen;
  914                 auio.uio_iovcnt++;
  915                 kth->ktr_len += datalen;
  916         }
  917         if (buflen != 0) {
  918                 KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
  919                 aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
  920                 aiov[auio.uio_iovcnt].iov_len = buflen;
  921                 auio.uio_resid += buflen;
  922                 auio.uio_iovcnt++;
  923         }
  924 
  925         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  926         vn_start_write(vp, &mp, V_WAIT);
  927         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
  928         (void)VOP_LEASE(vp, td, cred, LEASE_WRITE);
  929 #ifdef MAC
  930         error = mac_check_vnode_write(cred, NOCRED, vp);
  931         if (error == 0)
  932 #endif
  933                 error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
  934         VOP_UNLOCK(vp, 0, td);
  935         vn_finished_write(mp);
  936         vrele(vp);
  937         VFS_UNLOCK_GIANT(vfslocked);
  938         if (!error)
  939                 return;
  940         /*
  941          * If error encountered, give up tracing on this vnode.  We defer
  942          * all the vrele()'s on the vnode until after we are finished walking
  943          * the various lists to avoid needlessly holding locks.
  944          */
  945         log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
  946             error);
  947         vrele_count = 0;
  948         /*
  949          * First, clear this vnode from being used by any processes in the
  950          * system.
  951          * XXX - If one process gets an EPERM writing to the vnode, should
  952          * we really do this?  Other processes might have suitable
  953          * credentials for the operation.
  954          */
  955         cred = NULL;
  956         sx_slock(&allproc_lock);
  957         FOREACH_PROC_IN_SYSTEM(p) {
  958                 PROC_LOCK(p);
  959                 if (p->p_tracevp == vp) {
  960                         mtx_lock(&ktrace_mtx);
  961                         p->p_tracevp = NULL;
  962                         p->p_traceflag = 0;
  963                         cred = p->p_tracecred;
  964                         p->p_tracecred = NULL;
  965                         mtx_unlock(&ktrace_mtx);
  966                         vrele_count++;
  967                 }
  968                 PROC_UNLOCK(p);
  969                 if (cred != NULL) {
  970                         crfree(cred);
  971                         cred = NULL;
  972                 }
  973         }
  974         sx_sunlock(&allproc_lock);
  975 
  976         /*
  977          * We can't clear any pending requests in threads that have cached
  978          * them but not yet committed them, as those are per-thread.  The
  979          * thread will have to clear it itself on system call return.
  980          */
  981         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  982         while (vrele_count-- > 0)
  983                 vrele(vp);
  984         VFS_UNLOCK_GIANT(vfslocked);
  985 }
  986 
  987 /*
  988  * Return true if caller has permission to set the ktracing state
  989  * of target.  Essentially, the target can't possess any
  990  * more permissions than the caller.  KTRFAC_ROOT signifies that
  991  * root previously set the tracing status on the target process, and
  992  * so, only root may further change it.
  993  */
  994 static int
  995 ktrcanset(td, targetp)
  996         struct thread *td;
  997         struct proc *targetp;
  998 {
  999 
 1000         PROC_LOCK_ASSERT(targetp, MA_OWNED);
 1001         if (targetp->p_traceflag & KTRFAC_ROOT &&
 1002             priv_check(td, PRIV_KTRACE))
 1003                 return (0);
 1004 
 1005         if (p_candebug(td, targetp) != 0)
 1006                 return (0);
 1007 
 1008         return (1);
 1009 }
 1010 
 1011 #endif /* KTRACE */

Cache object: 7190fd12ba58663f12e241b04af2d593


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.