The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_ktrace.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1989, 1993
    3  *      The Regents of the University of California.
    4  * Copyright (c) 2005 Robert N. M. Watson
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 4. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)kern_ktrace.c       8.2 (Berkeley) 9/23/93
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD: releng/9.2/sys/kern/kern_ktrace.c 267018 2014-06-03 19:03:11Z delphij $");
   36 
   37 #include "opt_ktrace.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/systm.h>
   41 #include <sys/fcntl.h>
   42 #include <sys/kernel.h>
   43 #include <sys/kthread.h>
   44 #include <sys/lock.h>
   45 #include <sys/mutex.h>
   46 #include <sys/malloc.h>
   47 #include <sys/mount.h>
   48 #include <sys/namei.h>
   49 #include <sys/priv.h>
   50 #include <sys/proc.h>
   51 #include <sys/unistd.h>
   52 #include <sys/vnode.h>
   53 #include <sys/socket.h>
   54 #include <sys/stat.h>
   55 #include <sys/ktrace.h>
   56 #include <sys/sx.h>
   57 #include <sys/sysctl.h>
   58 #include <sys/sysent.h>
   59 #include <sys/syslog.h>
   60 #include <sys/sysproto.h>
   61 
   62 #include <security/mac/mac_framework.h>
   63 
   64 /*
   65  * The ktrace facility allows the tracing of certain key events in user space
   66  * processes, such as system calls, signal delivery, context switches, and
   67  * user generated events using utrace(2).  It works by streaming event
   68  * records and data to a vnode associated with the process using the
   69  * ktrace(2) system call.  In general, records can be written directly from
   70  * the context that generates the event.  One important exception to this is
   71  * during a context switch, where sleeping is not permitted.  To handle this
   72  * case, trace events are generated using in-kernel ktr_request records, and
   73  * then delivered to disk at a convenient moment -- either immediately, the
   74  * next traceable event, at system call return, or at process exit.
   75  *
   76  * When dealing with multiple threads or processes writing to the same event
   77  * log, ordering guarantees are weak: specifically, if an event has multiple
   78  * records (i.e., system call enter and return), they may be interlaced with
   79  * records from another event.  Process and thread ID information is provided
   80  * in the record, and user applications can de-interlace events if required.
   81  */
   82 
   83 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
   84 
   85 #ifdef KTRACE
   86 
   87 FEATURE(ktrace, "Kernel support for system-call tracing");
   88 
   89 #ifndef KTRACE_REQUEST_POOL
   90 #define KTRACE_REQUEST_POOL     100
   91 #endif
   92 
   93 struct ktr_request {
   94         struct  ktr_header ktr_header;
   95         void    *ktr_buffer;
   96         union {
   97                 struct  ktr_proc_ctor ktr_proc_ctor;
   98                 struct  ktr_syscall ktr_syscall;
   99                 struct  ktr_sysret ktr_sysret;
  100                 struct  ktr_genio ktr_genio;
  101                 struct  ktr_psig ktr_psig;
  102                 struct  ktr_csw ktr_csw;
  103                 struct  ktr_fault ktr_fault;
  104                 struct  ktr_faultend ktr_faultend;
  105         } ktr_data;
  106         STAILQ_ENTRY(ktr_request) ktr_list;
  107 };
  108 
  109 static int data_lengths[] = {
  110         0,                                      /* none */
  111         offsetof(struct ktr_syscall, ktr_args), /* KTR_SYSCALL */
  112         sizeof(struct ktr_sysret),              /* KTR_SYSRET */
  113         0,                                      /* KTR_NAMEI */
  114         sizeof(struct ktr_genio),               /* KTR_GENIO */
  115         sizeof(struct ktr_psig),                /* KTR_PSIG */
  116         sizeof(struct ktr_csw),                 /* KTR_CSW */
  117         0,                                      /* KTR_USER */
  118         0,                                      /* KTR_STRUCT */
  119         0,                                      /* KTR_SYSCTL */
  120         sizeof(struct ktr_proc_ctor),           /* KTR_PROCCTOR */
  121         0,                                      /* KTR_PROCDTOR */
  122         0,                                      /* unused */
  123         sizeof(struct ktr_fault),               /* KTR_FAULT */
  124         sizeof(struct ktr_faultend),            /* KTR_FAULTEND */
  125 };
  126 
  127 static STAILQ_HEAD(, ktr_request) ktr_free;
  128 
  129 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD, 0, "KTRACE options");
  130 
  131 static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
  132 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
  133 
  134 static u_int ktr_geniosize = PAGE_SIZE;
  135 TUNABLE_INT("kern.ktrace.genio_size", &ktr_geniosize);
  136 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RW, &ktr_geniosize,
  137     0, "Maximum size of genio event payload");
  138 
  139 static int print_message = 1;
  140 static struct mtx ktrace_mtx;
  141 static struct sx ktrace_sx;
  142 
  143 static void ktrace_init(void *dummy);
  144 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
  145 static u_int ktrace_resize_pool(u_int oldsize, u_int newsize);
  146 static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type);
  147 static struct ktr_request *ktr_getrequest(int type);
  148 static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
  149 static void ktr_freeproc(struct proc *p, struct ucred **uc,
  150     struct vnode **vp);
  151 static void ktr_freerequest(struct ktr_request *req);
  152 static void ktr_freerequest_locked(struct ktr_request *req);
  153 static void ktr_writerequest(struct thread *td, struct ktr_request *req);
  154 static int ktrcanset(struct thread *,struct proc *);
  155 static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
  156 static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
  157 static void ktrprocctor_entered(struct thread *, struct proc *);
  158 
  159 /*
  160  * ktrace itself generates events, such as context switches, which we do not
  161  * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
  162  * whether or not it is in a region where tracing of events should be
  163  * suppressed.
  164  */
  165 static void
  166 ktrace_enter(struct thread *td)
  167 {
  168 
  169         KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
  170         td->td_pflags |= TDP_INKTRACE;
  171 }
  172 
  173 static void
  174 ktrace_exit(struct thread *td)
  175 {
  176 
  177         KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
  178         td->td_pflags &= ~TDP_INKTRACE;
  179 }
  180 
  181 static void
  182 ktrace_assert(struct thread *td)
  183 {
  184 
  185         KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
  186 }
  187 
  188 static void
  189 ktrace_init(void *dummy)
  190 {
  191         struct ktr_request *req;
  192         int i;
  193 
  194         mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
  195         sx_init(&ktrace_sx, "ktrace_sx");
  196         STAILQ_INIT(&ktr_free);
  197         for (i = 0; i < ktr_requestpool; i++) {
  198                 req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
  199                 STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
  200         }
  201 }
  202 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
  203 
  204 static int
  205 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
  206 {
  207         struct thread *td;
  208         u_int newsize, oldsize, wantsize;
  209         int error;
  210 
  211         /* Handle easy read-only case first to avoid warnings from GCC. */
  212         if (!req->newptr) {
  213                 oldsize = ktr_requestpool;
  214                 return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
  215         }
  216 
  217         error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
  218         if (error)
  219                 return (error);
  220         td = curthread;
  221         ktrace_enter(td);
  222         oldsize = ktr_requestpool;
  223         newsize = ktrace_resize_pool(oldsize, wantsize);
  224         ktrace_exit(td);
  225         error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
  226         if (error)
  227                 return (error);
  228         if (wantsize > oldsize && newsize < wantsize)
  229                 return (ENOSPC);
  230         return (0);
  231 }
  232 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT|CTLFLAG_RW,
  233     &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU",
  234     "Pool buffer size for ktrace(1)");
  235 
  236 static u_int
  237 ktrace_resize_pool(u_int oldsize, u_int newsize)
  238 {
  239         STAILQ_HEAD(, ktr_request) ktr_new;
  240         struct ktr_request *req;
  241         int bound;
  242 
  243         print_message = 1;
  244         bound = newsize - oldsize;
  245         if (bound == 0)
  246                 return (ktr_requestpool);
  247         if (bound < 0) {
  248                 mtx_lock(&ktrace_mtx);
  249                 /* Shrink pool down to newsize if possible. */
  250                 while (bound++ < 0) {
  251                         req = STAILQ_FIRST(&ktr_free);
  252                         if (req == NULL)
  253                                 break;
  254                         STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
  255                         ktr_requestpool--;
  256                         free(req, M_KTRACE);
  257                 }
  258         } else {
  259                 /* Grow pool up to newsize. */
  260                 STAILQ_INIT(&ktr_new);
  261                 while (bound-- > 0) {
  262                         req = malloc(sizeof(struct ktr_request), M_KTRACE,
  263                             M_WAITOK);
  264                         STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list);
  265                 }
  266                 mtx_lock(&ktrace_mtx);
  267                 STAILQ_CONCAT(&ktr_free, &ktr_new);
  268                 ktr_requestpool += (newsize - oldsize);
  269         }
  270         mtx_unlock(&ktrace_mtx);
  271         return (ktr_requestpool);
  272 }
  273 
  274 /* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
  275 CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
  276     (sizeof((struct thread *)NULL)->td_name));
  277 
  278 static struct ktr_request *
  279 ktr_getrequest_entered(struct thread *td, int type)
  280 {
  281         struct ktr_request *req;
  282         struct proc *p = td->td_proc;
  283         int pm;
  284 
  285         mtx_lock(&ktrace_mtx);
  286         if (!KTRCHECK(td, type)) {
  287                 mtx_unlock(&ktrace_mtx);
  288                 return (NULL);
  289         }
  290         req = STAILQ_FIRST(&ktr_free);
  291         if (req != NULL) {
  292                 STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
  293                 req->ktr_header.ktr_type = type;
  294                 if (p->p_traceflag & KTRFAC_DROP) {
  295                         req->ktr_header.ktr_type |= KTR_DROP;
  296                         p->p_traceflag &= ~KTRFAC_DROP;
  297                 }
  298                 mtx_unlock(&ktrace_mtx);
  299                 microtime(&req->ktr_header.ktr_time);
  300                 req->ktr_header.ktr_pid = p->p_pid;
  301                 req->ktr_header.ktr_tid = td->td_tid;
  302                 bcopy(td->td_name, req->ktr_header.ktr_comm,
  303                     sizeof(req->ktr_header.ktr_comm));
  304                 req->ktr_buffer = NULL;
  305                 req->ktr_header.ktr_len = 0;
  306         } else {
  307                 p->p_traceflag |= KTRFAC_DROP;
  308                 pm = print_message;
  309                 print_message = 0;
  310                 mtx_unlock(&ktrace_mtx);
  311                 if (pm)
  312                         printf("Out of ktrace request objects.\n");
  313         }
  314         return (req);
  315 }
  316 
  317 static struct ktr_request *
  318 ktr_getrequest(int type)
  319 {
  320         struct thread *td = curthread;
  321         struct ktr_request *req;
  322 
  323         ktrace_enter(td);
  324         req = ktr_getrequest_entered(td, type);
  325         if (req == NULL)
  326                 ktrace_exit(td);
  327 
  328         return (req);
  329 }
  330 
  331 /*
  332  * Some trace generation environments don't permit direct access to VFS,
  333  * such as during a context switch where sleeping is not allowed.  Under these
  334  * circumstances, queue a request to the thread to be written asynchronously
  335  * later.
  336  */
  337 static void
  338 ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
  339 {
  340 
  341         mtx_lock(&ktrace_mtx);
  342         STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
  343         mtx_unlock(&ktrace_mtx);
  344 }
  345 
  346 /*
  347  * Drain any pending ktrace records from the per-thread queue to disk.  This
  348  * is used both internally before committing other records, and also on
  349  * system call return.  We drain all the ones we can find at the time when
  350  * drain is requested, but don't keep draining after that as those events
  351  * may be approximately "after" the current event.
  352  */
  353 static void
  354 ktr_drain(struct thread *td)
  355 {
  356         struct ktr_request *queued_req;
  357         STAILQ_HEAD(, ktr_request) local_queue;
  358 
  359         ktrace_assert(td);
  360         sx_assert(&ktrace_sx, SX_XLOCKED);
  361 
  362         STAILQ_INIT(&local_queue);
  363 
  364         if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
  365                 mtx_lock(&ktrace_mtx);
  366                 STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
  367                 mtx_unlock(&ktrace_mtx);
  368 
  369                 while ((queued_req = STAILQ_FIRST(&local_queue))) {
  370                         STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
  371                         ktr_writerequest(td, queued_req);
  372                         ktr_freerequest(queued_req);
  373                 }
  374         }
  375 }
  376 
  377 /*
  378  * Submit a trace record for immediate commit to disk -- to be used only
  379  * where entering VFS is OK.  First drain any pending records that may have
  380  * been cached in the thread.
  381  */
  382 static void
  383 ktr_submitrequest(struct thread *td, struct ktr_request *req)
  384 {
  385 
  386         ktrace_assert(td);
  387 
  388         sx_xlock(&ktrace_sx);
  389         ktr_drain(td);
  390         ktr_writerequest(td, req);
  391         ktr_freerequest(req);
  392         sx_xunlock(&ktrace_sx);
  393         ktrace_exit(td);
  394 }
  395 
  396 static void
  397 ktr_freerequest(struct ktr_request *req)
  398 {
  399 
  400         mtx_lock(&ktrace_mtx);
  401         ktr_freerequest_locked(req);
  402         mtx_unlock(&ktrace_mtx);
  403 }
  404 
  405 static void
  406 ktr_freerequest_locked(struct ktr_request *req)
  407 {
  408 
  409         mtx_assert(&ktrace_mtx, MA_OWNED);
  410         if (req->ktr_buffer != NULL)
  411                 free(req->ktr_buffer, M_KTRACE);
  412         STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
  413 }
  414 
  415 /*
  416  * Disable tracing for a process and release all associated resources.
  417  * The caller is responsible for releasing a reference on the returned
  418  * vnode and credentials.
  419  */
  420 static void
  421 ktr_freeproc(struct proc *p, struct ucred **uc, struct vnode **vp)
  422 {
  423         struct ktr_request *req;
  424 
  425         PROC_LOCK_ASSERT(p, MA_OWNED);
  426         mtx_assert(&ktrace_mtx, MA_OWNED);
  427         *uc = p->p_tracecred;
  428         p->p_tracecred = NULL;
  429         if (vp != NULL)
  430                 *vp = p->p_tracevp;
  431         p->p_tracevp = NULL;
  432         p->p_traceflag = 0;
  433         while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) {
  434                 STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list);
  435                 ktr_freerequest_locked(req);
  436         }
  437 }
  438 
  439 void
  440 ktrsyscall(code, narg, args)
  441         int code, narg;
  442         register_t args[];
  443 {
  444         struct ktr_request *req;
  445         struct ktr_syscall *ktp;
  446         size_t buflen;
  447         char *buf = NULL;
  448 
  449         buflen = sizeof(register_t) * narg;
  450         if (buflen > 0) {
  451                 buf = malloc(buflen, M_KTRACE, M_WAITOK);
  452                 bcopy(args, buf, buflen);
  453         }
  454         req = ktr_getrequest(KTR_SYSCALL);
  455         if (req == NULL) {
  456                 if (buf != NULL)
  457                         free(buf, M_KTRACE);
  458                 return;
  459         }
  460         ktp = &req->ktr_data.ktr_syscall;
  461         ktp->ktr_code = code;
  462         ktp->ktr_narg = narg;
  463         if (buflen > 0) {
  464                 req->ktr_header.ktr_len = buflen;
  465                 req->ktr_buffer = buf;
  466         }
  467         ktr_submitrequest(curthread, req);
  468 }
  469 
  470 void
  471 ktrsysret(code, error, retval)
  472         int code, error;
  473         register_t retval;
  474 {
  475         struct ktr_request *req;
  476         struct ktr_sysret *ktp;
  477 
  478         req = ktr_getrequest(KTR_SYSRET);
  479         if (req == NULL)
  480                 return;
  481         ktp = &req->ktr_data.ktr_sysret;
  482         ktp->ktr_code = code;
  483         ktp->ktr_error = error;
  484         ktp->ktr_retval = ((error == 0) ? retval: 0);           /* what about val2 ? */
  485         ktr_submitrequest(curthread, req);
  486 }
  487 
  488 /*
  489  * When a setuid process execs, disable tracing.
  490  *
  491  * XXX: We toss any pending asynchronous records.
  492  */
  493 void
  494 ktrprocexec(struct proc *p, struct ucred **uc, struct vnode **vp)
  495 {
  496 
  497         PROC_LOCK_ASSERT(p, MA_OWNED);
  498         mtx_lock(&ktrace_mtx);
  499         ktr_freeproc(p, uc, vp);
  500         mtx_unlock(&ktrace_mtx);
  501 }
  502 
  503 /*
  504  * When a process exits, drain per-process asynchronous trace records
  505  * and disable tracing.
  506  */
  507 void
  508 ktrprocexit(struct thread *td)
  509 {
  510         struct ktr_request *req;
  511         struct proc *p;
  512         struct ucred *cred;
  513         struct vnode *vp;
  514         int vfslocked;
  515 
  516         p = td->td_proc;
  517         if (p->p_traceflag == 0)
  518                 return;
  519 
  520         ktrace_enter(td);
  521         req = ktr_getrequest_entered(td, KTR_PROCDTOR);
  522         if (req != NULL)
  523                 ktr_enqueuerequest(td, req);
  524         sx_xlock(&ktrace_sx);
  525         ktr_drain(td);
  526         sx_xunlock(&ktrace_sx);
  527         PROC_LOCK(p);
  528         mtx_lock(&ktrace_mtx);
  529         ktr_freeproc(p, &cred, &vp);
  530         mtx_unlock(&ktrace_mtx);
  531         PROC_UNLOCK(p);
  532         if (vp != NULL) {
  533                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  534                 vrele(vp);
  535                 VFS_UNLOCK_GIANT(vfslocked);
  536         }
  537         if (cred != NULL)
  538                 crfree(cred);
  539         ktrace_exit(td);
  540 }
  541 
  542 static void
  543 ktrprocctor_entered(struct thread *td, struct proc *p)
  544 {
  545         struct ktr_proc_ctor *ktp;
  546         struct ktr_request *req;
  547         struct thread *td2;
  548 
  549         ktrace_assert(td);
  550         td2 = FIRST_THREAD_IN_PROC(p);
  551         req = ktr_getrequest_entered(td2, KTR_PROCCTOR);
  552         if (req == NULL)
  553                 return;
  554         ktp = &req->ktr_data.ktr_proc_ctor;
  555         ktp->sv_flags = p->p_sysent->sv_flags;
  556         ktr_enqueuerequest(td2, req);
  557 }
  558 
  559 void
  560 ktrprocctor(struct proc *p)
  561 {
  562         struct thread *td = curthread;
  563 
  564         if ((p->p_traceflag & KTRFAC_MASK) == 0)
  565                 return;
  566 
  567         ktrace_enter(td);
  568         ktrprocctor_entered(td, p);
  569         ktrace_exit(td);
  570 }
  571 
  572 /*
  573  * When a process forks, enable tracing in the new process if needed.
  574  */
  575 void
  576 ktrprocfork(struct proc *p1, struct proc *p2)
  577 {
  578 
  579         PROC_LOCK(p1);
  580         mtx_lock(&ktrace_mtx);
  581         KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
  582         if (p1->p_traceflag & KTRFAC_INHERIT) {
  583                 p2->p_traceflag = p1->p_traceflag;
  584                 if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
  585                         VREF(p2->p_tracevp);
  586                         KASSERT(p1->p_tracecred != NULL,
  587                             ("ktrace vnode with no cred"));
  588                         p2->p_tracecred = crhold(p1->p_tracecred);
  589                 }
  590         }
  591         mtx_unlock(&ktrace_mtx);
  592         PROC_UNLOCK(p1);
  593 
  594         ktrprocctor(p2);
  595 }
  596 
  597 /*
  598  * When a thread returns, drain any asynchronous records generated by the
  599  * system call.
  600  */
  601 void
  602 ktruserret(struct thread *td)
  603 {
  604 
  605         ktrace_enter(td);
  606         sx_xlock(&ktrace_sx);
  607         ktr_drain(td);
  608         sx_xunlock(&ktrace_sx);
  609         ktrace_exit(td);
  610 }
  611 
  612 void
  613 ktrnamei(path)
  614         char *path;
  615 {
  616         struct ktr_request *req;
  617         int namelen;
  618         char *buf = NULL;
  619 
  620         namelen = strlen(path);
  621         if (namelen > 0) {
  622                 buf = malloc(namelen, M_KTRACE, M_WAITOK);
  623                 bcopy(path, buf, namelen);
  624         }
  625         req = ktr_getrequest(KTR_NAMEI);
  626         if (req == NULL) {
  627                 if (buf != NULL)
  628                         free(buf, M_KTRACE);
  629                 return;
  630         }
  631         if (namelen > 0) {
  632                 req->ktr_header.ktr_len = namelen;
  633                 req->ktr_buffer = buf;
  634         }
  635         ktr_submitrequest(curthread, req);
  636 }
  637 
  638 void
  639 ktrsysctl(name, namelen)
  640         int *name;
  641         u_int namelen;
  642 {
  643         struct ktr_request *req;
  644         u_int mib[CTL_MAXNAME + 2];
  645         char *mibname;
  646         size_t mibnamelen;
  647         int error;
  648 
  649         /* Lookup name of mib. */    
  650         KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
  651         mib[0] = 0;
  652         mib[1] = 1;
  653         bcopy(name, mib + 2, namelen * sizeof(*name));
  654         mibnamelen = 128;
  655         mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
  656         error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
  657             NULL, 0, &mibnamelen, 0);
  658         if (error) {
  659                 free(mibname, M_KTRACE);
  660                 return;
  661         }
  662         req = ktr_getrequest(KTR_SYSCTL);
  663         if (req == NULL) {
  664                 free(mibname, M_KTRACE);
  665                 return;
  666         }
  667         req->ktr_header.ktr_len = mibnamelen;
  668         req->ktr_buffer = mibname;
  669         ktr_submitrequest(curthread, req);
  670 }
  671 
  672 void
  673 ktrgenio(fd, rw, uio, error)
  674         int fd;
  675         enum uio_rw rw;
  676         struct uio *uio;
  677         int error;
  678 {
  679         struct ktr_request *req;
  680         struct ktr_genio *ktg;
  681         int datalen;
  682         char *buf;
  683 
  684         if (error) {
  685                 free(uio, M_IOV);
  686                 return;
  687         }
  688         uio->uio_offset = 0;
  689         uio->uio_rw = UIO_WRITE;
  690         datalen = MIN(uio->uio_resid, ktr_geniosize);
  691         buf = malloc(datalen, M_KTRACE, M_WAITOK);
  692         error = uiomove(buf, datalen, uio);
  693         free(uio, M_IOV);
  694         if (error) {
  695                 free(buf, M_KTRACE);
  696                 return;
  697         }
  698         req = ktr_getrequest(KTR_GENIO);
  699         if (req == NULL) {
  700                 free(buf, M_KTRACE);
  701                 return;
  702         }
  703         ktg = &req->ktr_data.ktr_genio;
  704         ktg->ktr_fd = fd;
  705         ktg->ktr_rw = rw;
  706         req->ktr_header.ktr_len = datalen;
  707         req->ktr_buffer = buf;
  708         ktr_submitrequest(curthread, req);
  709 }
  710 
  711 void
  712 ktrpsig(sig, action, mask, code)
  713         int sig;
  714         sig_t action;
  715         sigset_t *mask;
  716         int code;
  717 {
  718         struct thread *td = curthread;
  719         struct ktr_request *req;
  720         struct ktr_psig *kp;
  721 
  722         req = ktr_getrequest(KTR_PSIG);
  723         if (req == NULL)
  724                 return;
  725         kp = &req->ktr_data.ktr_psig;
  726         kp->signo = (char)sig;
  727         kp->action = action;
  728         kp->mask = *mask;
  729         kp->code = code;
  730         ktr_enqueuerequest(td, req);
  731         ktrace_exit(td);
  732 }
  733 
  734 void
  735 ktrcsw(out, user, wmesg)
  736         int out, user;
  737         const char *wmesg;
  738 {
  739         struct thread *td = curthread;
  740         struct ktr_request *req;
  741         struct ktr_csw *kc;
  742 
  743         req = ktr_getrequest(KTR_CSW);
  744         if (req == NULL)
  745                 return;
  746         kc = &req->ktr_data.ktr_csw;
  747         kc->out = out;
  748         kc->user = user;
  749         if (wmesg != NULL)
  750                 strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg));
  751         else
  752                 bzero(kc->wmesg, sizeof(kc->wmesg));
  753         ktr_enqueuerequest(td, req);
  754         ktrace_exit(td);
  755 }
  756 
  757 void
  758 ktrstruct(name, data, datalen)
  759         const char *name;
  760         void *data;
  761         size_t datalen;
  762 {
  763         struct ktr_request *req;
  764         char *buf = NULL;
  765         size_t buflen;
  766 
  767         if (!data)
  768                 datalen = 0;
  769         buflen = strlen(name) + 1 + datalen;
  770         buf = malloc(buflen, M_KTRACE, M_WAITOK);
  771         strcpy(buf, name);
  772         bcopy(data, buf + strlen(name) + 1, datalen);
  773         if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
  774                 free(buf, M_KTRACE);
  775                 return;
  776         }
  777         req->ktr_buffer = buf;
  778         req->ktr_header.ktr_len = buflen;
  779         ktr_submitrequest(curthread, req);
  780 }
  781 
  782 void
  783 ktrfault(vaddr, type)
  784         vm_offset_t vaddr;
  785         int type;
  786 {
  787         struct thread *td = curthread;
  788         struct ktr_request *req;
  789         struct ktr_fault *kf;
  790 
  791         req = ktr_getrequest(KTR_FAULT);
  792         if (req == NULL)
  793                 return;
  794         kf = &req->ktr_data.ktr_fault;
  795         kf->vaddr = vaddr;
  796         kf->type = type;
  797         ktr_enqueuerequest(td, req);
  798         ktrace_exit(td);
  799 }
  800 
  801 void
  802 ktrfaultend(result)
  803         int result;
  804 {
  805         struct thread *td = curthread;
  806         struct ktr_request *req;
  807         struct ktr_faultend *kf;
  808 
  809         req = ktr_getrequest(KTR_FAULTEND);
  810         if (req == NULL)
  811                 return;
  812         kf = &req->ktr_data.ktr_faultend;
  813         kf->result = result;
  814         ktr_enqueuerequest(td, req);
  815         ktrace_exit(td);
  816 }
  817 #endif /* KTRACE */
  818 
  819 /* Interface and common routines */
  820 
  821 #ifndef _SYS_SYSPROTO_H_
  822 struct ktrace_args {
  823         char    *fname;
  824         int     ops;
  825         int     facs;
  826         int     pid;
  827 };
  828 #endif
  829 /* ARGSUSED */
  830 int
  831 sys_ktrace(td, uap)
  832         struct thread *td;
  833         register struct ktrace_args *uap;
  834 {
  835 #ifdef KTRACE
  836         register struct vnode *vp = NULL;
  837         register struct proc *p;
  838         struct pgrp *pg;
  839         int facs = uap->facs & ~KTRFAC_ROOT;
  840         int ops = KTROP(uap->ops);
  841         int descend = uap->ops & KTRFLAG_DESCEND;
  842         int nfound, ret = 0;
  843         int flags, error = 0, vfslocked;
  844         struct nameidata nd;
  845         struct ucred *cred;
  846 
  847         /*
  848          * Need something to (un)trace.
  849          */
  850         if (ops != KTROP_CLEARFILE && facs == 0)
  851                 return (EINVAL);
  852 
  853         ktrace_enter(td);
  854         if (ops != KTROP_CLEAR) {
  855                 /*
  856                  * an operation which requires a file argument.
  857                  */
  858                 NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_USERSPACE,
  859                     uap->fname, td);
  860                 flags = FREAD | FWRITE | O_NOFOLLOW;
  861                 error = vn_open(&nd, &flags, 0, NULL);
  862                 if (error) {
  863                         ktrace_exit(td);
  864                         return (error);
  865                 }
  866                 vfslocked = NDHASGIANT(&nd);
  867                 NDFREE(&nd, NDF_ONLY_PNBUF);
  868                 vp = nd.ni_vp;
  869                 VOP_UNLOCK(vp, 0);
  870                 if (vp->v_type != VREG) {
  871                         (void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
  872                         VFS_UNLOCK_GIANT(vfslocked);
  873                         ktrace_exit(td);
  874                         return (EACCES);
  875                 }
  876                 VFS_UNLOCK_GIANT(vfslocked);
  877         }
  878         /*
  879          * Clear all uses of the tracefile.
  880          */
  881         if (ops == KTROP_CLEARFILE) {
  882                 int vrele_count;
  883 
  884                 vrele_count = 0;
  885                 sx_slock(&allproc_lock);
  886                 FOREACH_PROC_IN_SYSTEM(p) {
  887                         PROC_LOCK(p);
  888                         if (p->p_tracevp == vp) {
  889                                 if (ktrcanset(td, p)) {
  890                                         mtx_lock(&ktrace_mtx);
  891                                         ktr_freeproc(p, &cred, NULL);
  892                                         mtx_unlock(&ktrace_mtx);
  893                                         vrele_count++;
  894                                         crfree(cred);
  895                                 } else
  896                                         error = EPERM;
  897                         }
  898                         PROC_UNLOCK(p);
  899                 }
  900                 sx_sunlock(&allproc_lock);
  901                 if (vrele_count > 0) {
  902                         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  903                         while (vrele_count-- > 0)
  904                                 vrele(vp);
  905                         VFS_UNLOCK_GIANT(vfslocked);
  906                 }
  907                 goto done;
  908         }
  909         /*
  910          * do it
  911          */
  912         sx_slock(&proctree_lock);
  913         if (uap->pid < 0) {
  914                 /*
  915                  * by process group
  916                  */
  917                 pg = pgfind(-uap->pid);
  918                 if (pg == NULL) {
  919                         sx_sunlock(&proctree_lock);
  920                         error = ESRCH;
  921                         goto done;
  922                 }
  923                 /*
  924                  * ktrops() may call vrele(). Lock pg_members
  925                  * by the proctree_lock rather than pg_mtx.
  926                  */
  927                 PGRP_UNLOCK(pg);
  928                 nfound = 0;
  929                 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  930                         PROC_LOCK(p);
  931                         if (p->p_state == PRS_NEW ||
  932                             p_cansee(td, p) != 0) {
  933                                 PROC_UNLOCK(p); 
  934                                 continue;
  935                         }
  936                         nfound++;
  937                         if (descend)
  938                                 ret |= ktrsetchildren(td, p, ops, facs, vp);
  939                         else
  940                                 ret |= ktrops(td, p, ops, facs, vp);
  941                 }
  942                 if (nfound == 0) {
  943                         sx_sunlock(&proctree_lock);
  944                         error = ESRCH;
  945                         goto done;
  946                 }
  947         } else {
  948                 /*
  949                  * by pid
  950                  */
  951                 p = pfind(uap->pid);
  952                 if (p == NULL)
  953                         error = ESRCH;
  954                 else
  955                         error = p_cansee(td, p);
  956                 if (error) {
  957                         if (p != NULL)
  958                                 PROC_UNLOCK(p);
  959                         sx_sunlock(&proctree_lock);
  960                         goto done;
  961                 }
  962                 if (descend)
  963                         ret |= ktrsetchildren(td, p, ops, facs, vp);
  964                 else
  965                         ret |= ktrops(td, p, ops, facs, vp);
  966         }
  967         sx_sunlock(&proctree_lock);
  968         if (!ret)
  969                 error = EPERM;
  970 done:
  971         if (vp != NULL) {
  972                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
  973                 (void) vn_close(vp, FWRITE, td->td_ucred, td);
  974                 VFS_UNLOCK_GIANT(vfslocked);
  975         }
  976         ktrace_exit(td);
  977         return (error);
  978 #else /* !KTRACE */
  979         return (ENOSYS);
  980 #endif /* KTRACE */
  981 }
  982 
  983 /* ARGSUSED */
  984 int
  985 sys_utrace(td, uap)
  986         struct thread *td;
  987         register struct utrace_args *uap;
  988 {
  989 
  990 #ifdef KTRACE
  991         struct ktr_request *req;
  992         void *cp;
  993         int error;
  994 
  995         if (!KTRPOINT(td, KTR_USER))
  996                 return (0);
  997         if (uap->len > KTR_USER_MAXLEN)
  998                 return (EINVAL);
  999         cp = malloc(uap->len, M_KTRACE, M_WAITOK);
 1000         error = copyin(uap->addr, cp, uap->len);
 1001         if (error) {
 1002                 free(cp, M_KTRACE);
 1003                 return (error);
 1004         }
 1005         req = ktr_getrequest(KTR_USER);
 1006         if (req == NULL) {
 1007                 free(cp, M_KTRACE);
 1008                 return (ENOMEM);
 1009         }
 1010         req->ktr_buffer = cp;
 1011         req->ktr_header.ktr_len = uap->len;
 1012         ktr_submitrequest(td, req);
 1013         return (0);
 1014 #else /* !KTRACE */
 1015         return (ENOSYS);
 1016 #endif /* KTRACE */
 1017 }
 1018 
 1019 #ifdef KTRACE
 1020 static int
 1021 ktrops(td, p, ops, facs, vp)
 1022         struct thread *td;
 1023         struct proc *p;
 1024         int ops, facs;
 1025         struct vnode *vp;
 1026 {
 1027         struct vnode *tracevp = NULL;
 1028         struct ucred *tracecred = NULL;
 1029 
 1030         PROC_LOCK_ASSERT(p, MA_OWNED);
 1031         if (!ktrcanset(td, p)) {
 1032                 PROC_UNLOCK(p);
 1033                 return (0);
 1034         }
 1035         if (p->p_flag & P_WEXIT) {
 1036                 /* If the process is exiting, just ignore it. */
 1037                 PROC_UNLOCK(p);
 1038                 return (1);
 1039         }
 1040         mtx_lock(&ktrace_mtx);
 1041         if (ops == KTROP_SET) {
 1042                 if (p->p_tracevp != vp) {
 1043                         /*
 1044                          * if trace file already in use, relinquish below
 1045                          */
 1046                         tracevp = p->p_tracevp;
 1047                         VREF(vp);
 1048                         p->p_tracevp = vp;
 1049                 }
 1050                 if (p->p_tracecred != td->td_ucred) {
 1051                         tracecred = p->p_tracecred;
 1052                         p->p_tracecred = crhold(td->td_ucred);
 1053                 }
 1054                 p->p_traceflag |= facs;
 1055                 if (priv_check(td, PRIV_KTRACE) == 0)
 1056                         p->p_traceflag |= KTRFAC_ROOT;
 1057         } else {
 1058                 /* KTROP_CLEAR */
 1059                 if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0)
 1060                         /* no more tracing */
 1061                         ktr_freeproc(p, &tracecred, &tracevp);
 1062         }
 1063         mtx_unlock(&ktrace_mtx);
 1064         if ((p->p_traceflag & KTRFAC_MASK) != 0)
 1065                 ktrprocctor_entered(td, p);
 1066         PROC_UNLOCK(p);
 1067         if (tracevp != NULL) {
 1068                 int vfslocked;
 1069 
 1070                 vfslocked = VFS_LOCK_GIANT(tracevp->v_mount);
 1071                 vrele(tracevp);
 1072                 VFS_UNLOCK_GIANT(vfslocked);
 1073         }
 1074         if (tracecred != NULL)
 1075                 crfree(tracecred);
 1076 
 1077         return (1);
 1078 }
 1079 
 1080 static int
 1081 ktrsetchildren(td, top, ops, facs, vp)
 1082         struct thread *td;
 1083         struct proc *top;
 1084         int ops, facs;
 1085         struct vnode *vp;
 1086 {
 1087         register struct proc *p;
 1088         register int ret = 0;
 1089 
 1090         p = top;
 1091         PROC_LOCK_ASSERT(p, MA_OWNED);
 1092         sx_assert(&proctree_lock, SX_LOCKED);
 1093         for (;;) {
 1094                 ret |= ktrops(td, p, ops, facs, vp);
 1095                 /*
 1096                  * If this process has children, descend to them next,
 1097                  * otherwise do any siblings, and if done with this level,
 1098                  * follow back up the tree (but not past top).
 1099                  */
 1100                 if (!LIST_EMPTY(&p->p_children))
 1101                         p = LIST_FIRST(&p->p_children);
 1102                 else for (;;) {
 1103                         if (p == top)
 1104                                 return (ret);
 1105                         if (LIST_NEXT(p, p_sibling)) {
 1106                                 p = LIST_NEXT(p, p_sibling);
 1107                                 break;
 1108                         }
 1109                         p = p->p_pptr;
 1110                 }
 1111                 PROC_LOCK(p);
 1112         }
 1113         /*NOTREACHED*/
 1114 }
 1115 
 1116 static void
 1117 ktr_writerequest(struct thread *td, struct ktr_request *req)
 1118 {
 1119         struct ktr_header *kth;
 1120         struct vnode *vp;
 1121         struct proc *p;
 1122         struct ucred *cred;
 1123         struct uio auio;
 1124         struct iovec aiov[3];
 1125         struct mount *mp;
 1126         int datalen, buflen, vrele_count;
 1127         int error, vfslocked;
 1128 
 1129         /*
 1130          * We hold the vnode and credential for use in I/O in case ktrace is
 1131          * disabled on the process as we write out the request.
 1132          *
 1133          * XXXRW: This is not ideal: we could end up performing a write after
 1134          * the vnode has been closed.
 1135          */
 1136         mtx_lock(&ktrace_mtx);
 1137         vp = td->td_proc->p_tracevp;
 1138         cred = td->td_proc->p_tracecred;
 1139 
 1140         /*
 1141          * If vp is NULL, the vp has been cleared out from under this
 1142          * request, so just drop it.  Make sure the credential and vnode are
 1143          * in sync: we should have both or neither.
 1144          */
 1145         if (vp == NULL) {
 1146                 KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
 1147                 mtx_unlock(&ktrace_mtx);
 1148                 return;
 1149         }
 1150         VREF(vp);
 1151         KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
 1152         crhold(cred);
 1153         mtx_unlock(&ktrace_mtx);
 1154 
 1155         kth = &req->ktr_header;
 1156         KASSERT(((u_short)kth->ktr_type & ~KTR_DROP) <
 1157             sizeof(data_lengths) / sizeof(data_lengths[0]),
 1158             ("data_lengths array overflow"));
 1159         datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
 1160         buflen = kth->ktr_len;
 1161         auio.uio_iov = &aiov[0];
 1162         auio.uio_offset = 0;
 1163         auio.uio_segflg = UIO_SYSSPACE;
 1164         auio.uio_rw = UIO_WRITE;
 1165         aiov[0].iov_base = (caddr_t)kth;
 1166         aiov[0].iov_len = sizeof(struct ktr_header);
 1167         auio.uio_resid = sizeof(struct ktr_header);
 1168         auio.uio_iovcnt = 1;
 1169         auio.uio_td = td;
 1170         if (datalen != 0) {
 1171                 aiov[1].iov_base = (caddr_t)&req->ktr_data;
 1172                 aiov[1].iov_len = datalen;
 1173                 auio.uio_resid += datalen;
 1174                 auio.uio_iovcnt++;
 1175                 kth->ktr_len += datalen;
 1176         }
 1177         if (buflen != 0) {
 1178                 KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
 1179                 aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
 1180                 aiov[auio.uio_iovcnt].iov_len = buflen;
 1181                 auio.uio_resid += buflen;
 1182                 auio.uio_iovcnt++;
 1183         }
 1184 
 1185         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 1186         vn_start_write(vp, &mp, V_WAIT);
 1187         vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 1188 #ifdef MAC
 1189         error = mac_vnode_check_write(cred, NOCRED, vp);
 1190         if (error == 0)
 1191 #endif
 1192                 error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
 1193         VOP_UNLOCK(vp, 0);
 1194         vn_finished_write(mp);
 1195         crfree(cred);
 1196         if (!error) {
 1197                 vrele(vp);
 1198                 VFS_UNLOCK_GIANT(vfslocked);
 1199                 return;
 1200         }
 1201         VFS_UNLOCK_GIANT(vfslocked);
 1202 
 1203         /*
 1204          * If error encountered, give up tracing on this vnode.  We defer
 1205          * all the vrele()'s on the vnode until after we are finished walking
 1206          * the various lists to avoid needlessly holding locks.
 1207          * NB: at this point we still hold the vnode reference that must
 1208          * not go away as we need the valid vnode to compare with. Thus let
 1209          * vrele_count start at 1 and the reference will be freed
 1210          * by the loop at the end after our last use of vp.
 1211          */
 1212         log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
 1213             error);
 1214         vrele_count = 1;
 1215         /*
 1216          * First, clear this vnode from being used by any processes in the
 1217          * system.
 1218          * XXX - If one process gets an EPERM writing to the vnode, should
 1219          * we really do this?  Other processes might have suitable
 1220          * credentials for the operation.
 1221          */
 1222         cred = NULL;
 1223         sx_slock(&allproc_lock);
 1224         FOREACH_PROC_IN_SYSTEM(p) {
 1225                 PROC_LOCK(p);
 1226                 if (p->p_tracevp == vp) {
 1227                         mtx_lock(&ktrace_mtx);
 1228                         ktr_freeproc(p, &cred, NULL);
 1229                         mtx_unlock(&ktrace_mtx);
 1230                         vrele_count++;
 1231                 }
 1232                 PROC_UNLOCK(p);
 1233                 if (cred != NULL) {
 1234                         crfree(cred);
 1235                         cred = NULL;
 1236                 }
 1237         }
 1238         sx_sunlock(&allproc_lock);
 1239 
 1240         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 1241         while (vrele_count-- > 0)
 1242                 vrele(vp);
 1243         VFS_UNLOCK_GIANT(vfslocked);
 1244 }
 1245 
 1246 /*
 1247  * Return true if caller has permission to set the ktracing state
 1248  * of target.  Essentially, the target can't possess any
 1249  * more permissions than the caller.  KTRFAC_ROOT signifies that
 1250  * root previously set the tracing status on the target process, and
 1251  * so, only root may further change it.
 1252  */
 1253 static int
 1254 ktrcanset(td, targetp)
 1255         struct thread *td;
 1256         struct proc *targetp;
 1257 {
 1258 
 1259         PROC_LOCK_ASSERT(targetp, MA_OWNED);
 1260         if (targetp->p_traceflag & KTRFAC_ROOT &&
 1261             priv_check(td, PRIV_KTRACE))
 1262                 return (0);
 1263 
 1264         if (p_candebug(td, targetp) != 0)
 1265                 return (0);
 1266 
 1267         return (1);
 1268 }
 1269 
 1270 #endif /* KTRACE */

Cache object: 032abec00efca38fb5f5fbdb63a03672


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.