The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_lockf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
    5  * Authors: Doug Rabson <dfr@rabson.org>
    6  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 /*-
   30  * Copyright (c) 1982, 1986, 1989, 1993
   31  *      The Regents of the University of California.  All rights reserved.
   32  *
   33  * This code is derived from software contributed to Berkeley by
   34  * Scooter Morris at Genentech Inc.
   35  *
   36  * Redistribution and use in source and binary forms, with or without
   37  * modification, are permitted provided that the following conditions
   38  * are met:
   39  * 1. Redistributions of source code must retain the above copyright
   40  *    notice, this list of conditions and the following disclaimer.
   41  * 2. Redistributions in binary form must reproduce the above copyright
   42  *    notice, this list of conditions and the following disclaimer in the
   43  *    documentation and/or other materials provided with the distribution.
   44  * 3. Neither the name of the University nor the names of its contributors
   45  *    may be used to endorse or promote products derived from this software
   46  *    without specific prior written permission.
   47  *
   48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   58  * SUCH DAMAGE.
   59  *
   60  *      @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94
   61  */
   62 
   63 #include <sys/cdefs.h>
   64 __FBSDID("$FreeBSD$");
   65 
   66 #include "opt_debug_lockf.h"
   67 
   68 #include <sys/param.h>
   69 #include <sys/systm.h>
   70 #include <sys/hash.h>
   71 #include <sys/jail.h>
   72 #include <sys/kernel.h>
   73 #include <sys/limits.h>
   74 #include <sys/lock.h>
   75 #include <sys/mount.h>
   76 #include <sys/mutex.h>
   77 #include <sys/proc.h>
   78 #include <sys/sbuf.h>
   79 #include <sys/stat.h>
   80 #include <sys/sx.h>
   81 #include <sys/unistd.h>
   82 #include <sys/user.h>
   83 #include <sys/vnode.h>
   84 #include <sys/malloc.h>
   85 #include <sys/fcntl.h>
   86 #include <sys/lockf.h>
   87 #include <sys/taskqueue.h>
   88 
   89 #ifdef LOCKF_DEBUG
   90 #include <sys/sysctl.h>
   91 
   92 static int      lockf_debug = 0; /* control debug output */
   93 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
   94 #endif
   95 
   96 static MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
   97 
   98 struct owner_edge;
   99 struct owner_vertex;
  100 struct owner_vertex_list;
  101 struct owner_graph;
  102 
  103 #define NOLOCKF (struct lockf_entry *)0
  104 #define SELF    0x1
  105 #define OTHERS  0x2
  106 static void      lf_init(void *);
  107 static int       lf_hash_owner(caddr_t, struct vnode *, struct flock *, int);
  108 static int       lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
  109     int);
  110 static struct lockf_entry *
  111                  lf_alloc_lock(struct lock_owner *);
  112 static int       lf_free_lock(struct lockf_entry *);
  113 static int       lf_clearlock(struct lockf *, struct lockf_entry *);
  114 static int       lf_overlaps(struct lockf_entry *, struct lockf_entry *);
  115 static int       lf_blocks(struct lockf_entry *, struct lockf_entry *);
  116 static void      lf_free_edge(struct lockf_edge *);
  117 static struct lockf_edge *
  118                  lf_alloc_edge(void);
  119 static void      lf_alloc_vertex(struct lockf_entry *);
  120 static int       lf_add_edge(struct lockf_entry *, struct lockf_entry *);
  121 static void      lf_remove_edge(struct lockf_edge *);
  122 static void      lf_remove_outgoing(struct lockf_entry *);
  123 static void      lf_remove_incoming(struct lockf_entry *);
  124 static int       lf_add_outgoing(struct lockf *, struct lockf_entry *);
  125 static int       lf_add_incoming(struct lockf *, struct lockf_entry *);
  126 static int       lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
  127     int);
  128 static struct lockf_entry *
  129                  lf_getblock(struct lockf *, struct lockf_entry *);
  130 static int       lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
  131 static void      lf_insert_lock(struct lockf *, struct lockf_entry *);
  132 static void      lf_wakeup_lock(struct lockf *, struct lockf_entry *);
  133 static void      lf_update_dependancies(struct lockf *, struct lockf_entry *,
  134     int all, struct lockf_entry_list *);
  135 static void      lf_set_start(struct lockf *, struct lockf_entry *, off_t,
  136         struct lockf_entry_list*);
  137 static void      lf_set_end(struct lockf *, struct lockf_entry *, off_t,
  138         struct lockf_entry_list*);
  139 static int       lf_setlock(struct lockf *, struct lockf_entry *,
  140     struct vnode *, void **cookiep);
  141 static int       lf_cancel(struct lockf *, struct lockf_entry *, void *);
  142 static void      lf_split(struct lockf *, struct lockf_entry *,
  143     struct lockf_entry *, struct lockf_entry_list *);
  144 #ifdef LOCKF_DEBUG
  145 static int       graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
  146     struct owner_vertex_list *path);
  147 static void      graph_check(struct owner_graph *g, int checkorder);
  148 static void      graph_print_vertices(struct owner_vertex_list *set);
  149 #endif
  150 static int       graph_delta_forward(struct owner_graph *g,
  151     struct owner_vertex *x, struct owner_vertex *y,
  152     struct owner_vertex_list *delta);
  153 static int       graph_delta_backward(struct owner_graph *g,
  154     struct owner_vertex *x, struct owner_vertex *y,
  155     struct owner_vertex_list *delta);
  156 static int       graph_add_indices(int *indices, int n,
  157     struct owner_vertex_list *set);
  158 static int       graph_assign_indices(struct owner_graph *g, int *indices,
  159     int nextunused, struct owner_vertex_list *set);
  160 static int       graph_add_edge(struct owner_graph *g,
  161     struct owner_vertex *x, struct owner_vertex *y);
  162 static void      graph_remove_edge(struct owner_graph *g,
  163     struct owner_vertex *x, struct owner_vertex *y);
  164 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
  165     struct lock_owner *lo);
  166 static void      graph_free_vertex(struct owner_graph *g,
  167     struct owner_vertex *v);
  168 static struct owner_graph * graph_init(struct owner_graph *g);
  169 #ifdef LOCKF_DEBUG
  170 static void      lf_print(char *, struct lockf_entry *);
  171 static void      lf_printlist(char *, struct lockf_entry *);
  172 static void      lf_print_owner(struct lock_owner *);
  173 #endif
  174 
  175 /*
  176  * This structure is used to keep track of both local and remote lock
  177  * owners. The lf_owner field of the struct lockf_entry points back at
  178  * the lock owner structure. Each possible lock owner (local proc for
  179  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
  180  * pair for remote locks) is represented by a unique instance of
  181  * struct lock_owner.
  182  *
  183  * If a lock owner has a lock that blocks some other lock or a lock
  184  * that is waiting for some other lock, it also has a vertex in the
  185  * owner_graph below.
  186  *
  187  * Locks:
  188  * (s)          locked by state->ls_lock
  189  * (S)          locked by lf_lock_states_lock
  190  * (g)          locked by lf_owner_graph_lock
  191  * (c)          const until freeing
  192  */
  193 #define LOCK_OWNER_HASH_SIZE    256
  194 
  195 struct lock_owner {
  196         LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
  197         int     lo_refs;            /* (l) Number of locks referring to this */
  198         int     lo_flags;           /* (c) Flags passwd to lf_advlock */
  199         caddr_t lo_id;              /* (c) Id value passed to lf_advlock */
  200         pid_t   lo_pid;             /* (c) Process Id of the lock owner */
  201         int     lo_sysid;           /* (c) System Id of the lock owner */
  202         int     lo_hash;            /* (c) Used to lock the appropriate chain */
  203         struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
  204 };
  205 
  206 LIST_HEAD(lock_owner_list, lock_owner);
  207 
  208 struct lock_owner_chain {
  209         struct sx               lock;
  210         struct lock_owner_list  list;
  211 };
  212 
  213 static struct sx                lf_lock_states_lock;
  214 static struct lockf_list        lf_lock_states; /* (S) */
  215 static struct lock_owner_chain  lf_lock_owners[LOCK_OWNER_HASH_SIZE];
  216 
  217 /*
  218  * Structures for deadlock detection.
  219  *
  220  * We have two types of directed graph, the first is the set of locks,
  221  * both active and pending on a vnode. Within this graph, active locks
  222  * are terminal nodes in the graph (i.e. have no out-going
  223  * edges). Pending locks have out-going edges to each blocking active
  224  * lock that prevents the lock from being granted and also to each
  225  * older pending lock that would block them if it was active. The
  226  * graph for each vnode is naturally acyclic; new edges are only ever
  227  * added to or from new nodes (either new pending locks which only add
  228  * out-going edges or new active locks which only add in-coming edges)
  229  * therefore they cannot create loops in the lock graph.
  230  *
  231  * The second graph is a global graph of lock owners. Each lock owner
  232  * is a vertex in that graph and an edge is added to the graph
  233  * whenever an edge is added to a vnode graph, with end points
  234  * corresponding to owner of the new pending lock and the owner of the
  235  * lock upon which it waits. In order to prevent deadlock, we only add
  236  * an edge to this graph if the new edge would not create a cycle.
  237  * 
  238  * The lock owner graph is topologically sorted, i.e. if a node has
  239  * any outgoing edges, then it has an order strictly less than any
  240  * node to which it has an outgoing edge. We preserve this ordering
  241  * (and detect cycles) on edge insertion using Algorithm PK from the
  242  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
  243  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
  244  * No. 1.7)
  245  */
  246 struct owner_vertex;
  247 
  248 struct owner_edge {
  249         LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
  250         LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
  251         int             e_refs;           /* (g) number of times added */
  252         struct owner_vertex *e_from;      /* (c) out-going from here */
  253         struct owner_vertex *e_to;        /* (c) in-coming to here */
  254 };
  255 LIST_HEAD(owner_edge_list, owner_edge);
  256 
  257 struct owner_vertex {
  258         TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
  259         uint32_t        v_gen;            /* (g) workspace for edge insertion */
  260         int             v_order;          /* (g) order of vertex in graph */
  261         struct owner_edge_list v_outedges;/* (g) list of out-edges */
  262         struct owner_edge_list v_inedges; /* (g) list of in-edges */
  263         struct lock_owner *v_owner;       /* (c) corresponding lock owner */
  264 };
  265 TAILQ_HEAD(owner_vertex_list, owner_vertex);
  266 
  267 struct owner_graph {
  268         struct owner_vertex** g_vertices; /* (g) pointers to vertices */
  269         int             g_size;           /* (g) number of vertices */
  270         int             g_space;          /* (g) space allocated for vertices */
  271         int             *g_indexbuf;      /* (g) workspace for loop detection */
  272         uint32_t        g_gen;            /* (g) increment when re-ordering */
  273 };
  274 
  275 static struct sx                lf_owner_graph_lock;
  276 static struct owner_graph       lf_owner_graph;
  277 
  278 /*
  279  * Initialise various structures and locks.
  280  */
  281 static void
  282 lf_init(void *dummy)
  283 {
  284         int i;
  285 
  286         sx_init(&lf_lock_states_lock, "lock states lock");
  287         LIST_INIT(&lf_lock_states);
  288 
  289         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
  290                 sx_init(&lf_lock_owners[i].lock, "lock owners lock");
  291                 LIST_INIT(&lf_lock_owners[i].list);
  292         }
  293 
  294         sx_init(&lf_owner_graph_lock, "owner graph lock");
  295         graph_init(&lf_owner_graph);
  296 }
  297 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
  298 
  299 /*
  300  * Generate a hash value for a lock owner.
  301  */
  302 static int
  303 lf_hash_owner(caddr_t id, struct vnode *vp, struct flock *fl, int flags)
  304 {
  305         uint32_t h;
  306 
  307         if (flags & F_REMOTE) {
  308                 h = HASHSTEP(0, fl->l_pid);
  309                 h = HASHSTEP(h, fl->l_sysid);
  310         } else if (flags & F_FLOCK) {
  311                 h = ((uintptr_t) id) >> 7;
  312         } else {
  313                 h = ((uintptr_t) vp) >> 7;
  314         }
  315 
  316         return (h % LOCK_OWNER_HASH_SIZE);
  317 }
  318 
  319 /*
  320  * Return true if a lock owner matches the details passed to
  321  * lf_advlock.
  322  */
  323 static int
  324 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
  325     int flags)
  326 {
  327         if (flags & F_REMOTE) {
  328                 return lo->lo_pid == fl->l_pid
  329                         && lo->lo_sysid == fl->l_sysid;
  330         } else {
  331                 return lo->lo_id == id;
  332         }
  333 }
  334 
  335 static struct lockf_entry *
  336 lf_alloc_lock(struct lock_owner *lo)
  337 {
  338         struct lockf_entry *lf;
  339 
  340         lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
  341 
  342 #ifdef LOCKF_DEBUG
  343         if (lockf_debug & 4)
  344                 printf("Allocated lock %p\n", lf);
  345 #endif
  346         if (lo) {
  347                 sx_xlock(&lf_lock_owners[lo->lo_hash].lock);
  348                 lo->lo_refs++;
  349                 sx_xunlock(&lf_lock_owners[lo->lo_hash].lock);
  350                 lf->lf_owner = lo;
  351         }
  352 
  353         return (lf);
  354 }
  355 
  356 static int
  357 lf_free_lock(struct lockf_entry *lock)
  358 {
  359         struct sx *chainlock;
  360 
  361         KASSERT(lock->lf_refs > 0, ("lockf_entry negative ref count %p", lock));
  362         if (--lock->lf_refs > 0)
  363                 return (0);
  364         /*
  365          * Adjust the lock_owner reference count and
  366          * reclaim the entry if this is the last lock
  367          * for that owner.
  368          */
  369         struct lock_owner *lo = lock->lf_owner;
  370         if (lo) {
  371                 KASSERT(LIST_EMPTY(&lock->lf_outedges),
  372                     ("freeing lock with dependencies"));
  373                 KASSERT(LIST_EMPTY(&lock->lf_inedges),
  374                     ("freeing lock with dependants"));
  375                 chainlock = &lf_lock_owners[lo->lo_hash].lock;
  376                 sx_xlock(chainlock);
  377                 KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
  378                 lo->lo_refs--;
  379                 if (lo->lo_refs == 0) {
  380 #ifdef LOCKF_DEBUG
  381                         if (lockf_debug & 1)
  382                                 printf("lf_free_lock: freeing lock owner %p\n",
  383                                     lo);
  384 #endif
  385                         if (lo->lo_vertex) {
  386                                 sx_xlock(&lf_owner_graph_lock);
  387                                 graph_free_vertex(&lf_owner_graph,
  388                                     lo->lo_vertex);
  389                                 sx_xunlock(&lf_owner_graph_lock);
  390                         }
  391                         LIST_REMOVE(lo, lo_link);
  392                         free(lo, M_LOCKF);
  393 #ifdef LOCKF_DEBUG
  394                         if (lockf_debug & 4)
  395                                 printf("Freed lock owner %p\n", lo);
  396 #endif
  397                 }
  398                 sx_unlock(chainlock);
  399         }
  400         if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
  401                 vrele(lock->lf_vnode);
  402                 lock->lf_vnode = NULL;
  403         }
  404 #ifdef LOCKF_DEBUG
  405         if (lockf_debug & 4)
  406                 printf("Freed lock %p\n", lock);
  407 #endif
  408         free(lock, M_LOCKF);
  409         return (1);
  410 }
  411 
  412 /*
  413  * Advisory record locking support
  414  */
  415 int
  416 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
  417     u_quad_t size)
  418 {
  419         struct lockf *state;
  420         struct flock *fl = ap->a_fl;
  421         struct lockf_entry *lock;
  422         struct vnode *vp = ap->a_vp;
  423         caddr_t id = ap->a_id;
  424         int flags = ap->a_flags;
  425         int hash;
  426         struct lock_owner *lo;
  427         off_t start, end, oadd;
  428         int error;
  429 
  430         /*
  431          * Handle the F_UNLKSYS case first - no need to mess about
  432          * creating a lock owner for this one.
  433          */
  434         if (ap->a_op == F_UNLCKSYS) {
  435                 lf_clearremotesys(fl->l_sysid);
  436                 return (0);
  437         }
  438 
  439         /*
  440          * Convert the flock structure into a start and end.
  441          */
  442         switch (fl->l_whence) {
  443         case SEEK_SET:
  444         case SEEK_CUR:
  445                 /*
  446                  * Caller is responsible for adding any necessary offset
  447                  * when SEEK_CUR is used.
  448                  */
  449                 start = fl->l_start;
  450                 break;
  451 
  452         case SEEK_END:
  453                 if (size > OFF_MAX ||
  454                     (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
  455                         return (EOVERFLOW);
  456                 start = size + fl->l_start;
  457                 break;
  458 
  459         default:
  460                 return (EINVAL);
  461         }
  462         if (start < 0)
  463                 return (EINVAL);
  464         if (fl->l_len < 0) {
  465                 if (start == 0)
  466                         return (EINVAL);
  467                 end = start - 1;
  468                 start += fl->l_len;
  469                 if (start < 0)
  470                         return (EINVAL);
  471         } else if (fl->l_len == 0) {
  472                 end = OFF_MAX;
  473         } else {
  474                 oadd = fl->l_len - 1;
  475                 if (oadd > OFF_MAX - start)
  476                         return (EOVERFLOW);
  477                 end = start + oadd;
  478         }
  479 
  480 retry_setlock:
  481 
  482         /*
  483          * Avoid the common case of unlocking when inode has no locks.
  484          */
  485         if (ap->a_op != F_SETLK && (*statep) == NULL) {
  486                 VI_LOCK(vp);
  487                 if ((*statep) == NULL) {
  488                         fl->l_type = F_UNLCK;
  489                         VI_UNLOCK(vp);
  490                         return (0);
  491                 }
  492                 VI_UNLOCK(vp);
  493         }
  494 
  495         /*
  496          * Map our arguments to an existing lock owner or create one
  497          * if this is the first time we have seen this owner.
  498          */
  499         hash = lf_hash_owner(id, vp, fl, flags);
  500         sx_xlock(&lf_lock_owners[hash].lock);
  501         LIST_FOREACH(lo, &lf_lock_owners[hash].list, lo_link)
  502                 if (lf_owner_matches(lo, id, fl, flags))
  503                         break;
  504         if (!lo) {
  505                 /*
  506                  * We initialise the lock with a reference
  507                  * count which matches the new lockf_entry
  508                  * structure created below.
  509                  */
  510                 lo = malloc(sizeof(struct lock_owner), M_LOCKF,
  511                     M_WAITOK|M_ZERO);
  512 #ifdef LOCKF_DEBUG
  513                 if (lockf_debug & 4)
  514                         printf("Allocated lock owner %p\n", lo);
  515 #endif
  516 
  517                 lo->lo_refs = 1;
  518                 lo->lo_flags = flags;
  519                 lo->lo_id = id;
  520                 lo->lo_hash = hash;
  521                 if (flags & F_REMOTE) {
  522                         lo->lo_pid = fl->l_pid;
  523                         lo->lo_sysid = fl->l_sysid;
  524                 } else if (flags & F_FLOCK) {
  525                         lo->lo_pid = -1;
  526                         lo->lo_sysid = 0;
  527                 } else {
  528                         struct proc *p = (struct proc *) id;
  529                         lo->lo_pid = p->p_pid;
  530                         lo->lo_sysid = 0;
  531                 }
  532                 lo->lo_vertex = NULL;
  533 
  534 #ifdef LOCKF_DEBUG
  535                 if (lockf_debug & 1) {
  536                         printf("lf_advlockasync: new lock owner %p ", lo);
  537                         lf_print_owner(lo);
  538                         printf("\n");
  539                 }
  540 #endif
  541 
  542                 LIST_INSERT_HEAD(&lf_lock_owners[hash].list, lo, lo_link);
  543         } else {
  544                 /*
  545                  * We have seen this lock owner before, increase its
  546                  * reference count to account for the new lockf_entry
  547                  * structure we create below.
  548                  */
  549                 lo->lo_refs++;
  550         }
  551         sx_xunlock(&lf_lock_owners[hash].lock);
  552 
  553         /*
  554          * Create the lockf structure. We initialise the lf_owner
  555          * field here instead of in lf_alloc_lock() to avoid paying
  556          * the lf_lock_owners_lock tax twice.
  557          */
  558         lock = lf_alloc_lock(NULL);
  559         lock->lf_refs = 1;
  560         lock->lf_start = start;
  561         lock->lf_end = end;
  562         lock->lf_owner = lo;
  563         lock->lf_vnode = vp;
  564         if (flags & F_REMOTE) {
  565                 /*
  566                  * For remote locks, the caller may release its ref to
  567                  * the vnode at any time - we have to ref it here to
  568                  * prevent it from being recycled unexpectedly.
  569                  */
  570                 vref(vp);
  571         }
  572 
  573         lock->lf_type = fl->l_type;
  574         LIST_INIT(&lock->lf_outedges);
  575         LIST_INIT(&lock->lf_inedges);
  576         lock->lf_async_task = ap->a_task;
  577         lock->lf_flags = ap->a_flags;
  578 
  579         /*
  580          * Do the requested operation. First find our state structure
  581          * and create a new one if necessary - the caller's *statep
  582          * variable and the state's ls_threads count is protected by
  583          * the vnode interlock.
  584          */
  585         VI_LOCK(vp);
  586         if (VN_IS_DOOMED(vp)) {
  587                 VI_UNLOCK(vp);
  588                 lf_free_lock(lock);
  589                 return (ENOENT);
  590         }
  591 
  592         /*
  593          * Allocate a state structure if necessary.
  594          */
  595         state = *statep;
  596         if (state == NULL) {
  597                 struct lockf *ls;
  598 
  599                 VI_UNLOCK(vp);
  600 
  601                 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
  602                 sx_init(&ls->ls_lock, "ls_lock");
  603                 LIST_INIT(&ls->ls_active);
  604                 LIST_INIT(&ls->ls_pending);
  605                 ls->ls_threads = 1;
  606 
  607                 sx_xlock(&lf_lock_states_lock);
  608                 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
  609                 sx_xunlock(&lf_lock_states_lock);
  610 
  611                 /*
  612                  * Cope if we lost a race with some other thread while
  613                  * trying to allocate memory.
  614                  */
  615                 VI_LOCK(vp);
  616                 if (VN_IS_DOOMED(vp)) {
  617                         VI_UNLOCK(vp);
  618                         sx_xlock(&lf_lock_states_lock);
  619                         LIST_REMOVE(ls, ls_link);
  620                         sx_xunlock(&lf_lock_states_lock);
  621                         sx_destroy(&ls->ls_lock);
  622                         free(ls, M_LOCKF);
  623                         lf_free_lock(lock);
  624                         return (ENOENT);
  625                 }
  626                 if ((*statep) == NULL) {
  627                         state = *statep = ls;
  628                         VI_UNLOCK(vp);
  629                 } else {
  630                         state = *statep;
  631                         MPASS(state->ls_threads >= 0);
  632                         state->ls_threads++;
  633                         VI_UNLOCK(vp);
  634 
  635                         sx_xlock(&lf_lock_states_lock);
  636                         LIST_REMOVE(ls, ls_link);
  637                         sx_xunlock(&lf_lock_states_lock);
  638                         sx_destroy(&ls->ls_lock);
  639                         free(ls, M_LOCKF);
  640                 }
  641         } else {
  642                 MPASS(state->ls_threads >= 0);
  643                 state->ls_threads++;
  644                 VI_UNLOCK(vp);
  645         }
  646 
  647         sx_xlock(&state->ls_lock);
  648         /*
  649          * Recheck the doomed vnode after state->ls_lock is
  650          * locked. lf_purgelocks() requires that no new threads add
  651          * pending locks when vnode is marked by VIRF_DOOMED flag.
  652          */
  653         if (VN_IS_DOOMED(vp)) {
  654                 VI_LOCK(vp);
  655                 MPASS(state->ls_threads > 0);
  656                 state->ls_threads--;
  657                 wakeup(state);
  658                 VI_UNLOCK(vp);
  659                 sx_xunlock(&state->ls_lock);
  660                 lf_free_lock(lock);
  661                 return (ENOENT);
  662         }
  663 
  664         switch (ap->a_op) {
  665         case F_SETLK:
  666                 error = lf_setlock(state, lock, vp, ap->a_cookiep);
  667                 break;
  668 
  669         case F_UNLCK:
  670                 error = lf_clearlock(state, lock);
  671                 lf_free_lock(lock);
  672                 break;
  673 
  674         case F_GETLK:
  675                 error = lf_getlock(state, lock, fl);
  676                 lf_free_lock(lock);
  677                 break;
  678 
  679         case F_CANCEL:
  680                 if (ap->a_cookiep)
  681                         error = lf_cancel(state, lock, *ap->a_cookiep);
  682                 else
  683                         error = EINVAL;
  684                 lf_free_lock(lock);
  685                 break;
  686 
  687         default:
  688                 lf_free_lock(lock);
  689                 error = EINVAL;
  690                 break;
  691         }
  692 
  693 #ifdef DIAGNOSTIC
  694         /*
  695          * Check for some can't happen stuff. In this case, the active
  696          * lock list becoming disordered or containing mutually
  697          * blocking locks. We also check the pending list for locks
  698          * which should be active (i.e. have no out-going edges).
  699          */
  700         LIST_FOREACH(lock, &state->ls_active, lf_link) {
  701                 struct lockf_entry *lf;
  702                 if (LIST_NEXT(lock, lf_link))
  703                         KASSERT((lock->lf_start
  704                                 <= LIST_NEXT(lock, lf_link)->lf_start),
  705                             ("locks disordered"));
  706                 LIST_FOREACH(lf, &state->ls_active, lf_link) {
  707                         if (lock == lf)
  708                                 break;
  709                         KASSERT(!lf_blocks(lock, lf),
  710                             ("two conflicting active locks"));
  711                         if (lock->lf_owner == lf->lf_owner)
  712                                 KASSERT(!lf_overlaps(lock, lf),
  713                                     ("two overlapping locks from same owner"));
  714                 }
  715         }
  716         LIST_FOREACH(lock, &state->ls_pending, lf_link) {
  717                 KASSERT(!LIST_EMPTY(&lock->lf_outedges),
  718                     ("pending lock which should be active"));
  719         }
  720 #endif
  721         sx_xunlock(&state->ls_lock);
  722 
  723         VI_LOCK(vp);
  724         MPASS(state->ls_threads > 0);
  725         state->ls_threads--;
  726         if (state->ls_threads != 0) {
  727                 wakeup(state);
  728         }
  729         VI_UNLOCK(vp);
  730 
  731         if (error == EDOOFUS) {
  732                 KASSERT(ap->a_op == F_SETLK, ("EDOOFUS"));
  733                 goto retry_setlock;
  734         }
  735         return (error);
  736 }
  737 
  738 int
  739 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
  740 {
  741         struct vop_advlockasync_args a;
  742 
  743         a.a_vp = ap->a_vp;
  744         a.a_id = ap->a_id;
  745         a.a_op = ap->a_op;
  746         a.a_fl = ap->a_fl;
  747         a.a_flags = ap->a_flags;
  748         a.a_task = NULL;
  749         a.a_cookiep = NULL;
  750 
  751         return (lf_advlockasync(&a, statep, size));
  752 }
  753 
  754 void
  755 lf_purgelocks(struct vnode *vp, struct lockf **statep)
  756 {
  757         struct lockf *state;
  758         struct lockf_entry *lock, *nlock;
  759 
  760         /*
  761          * For this to work correctly, the caller must ensure that no
  762          * other threads enter the locking system for this vnode,
  763          * e.g. by checking VIRF_DOOMED. We wake up any threads that are
  764          * sleeping waiting for locks on this vnode and then free all
  765          * the remaining locks.
  766          */
  767         VI_LOCK(vp);
  768         KASSERT(VN_IS_DOOMED(vp),
  769             ("lf_purgelocks: vp %p has not vgone yet", vp));
  770         state = *statep;
  771         if (state == NULL) {
  772                 VI_UNLOCK(vp);
  773                 return;
  774         }
  775         *statep = NULL;
  776         if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
  777                 KASSERT(LIST_EMPTY(&state->ls_pending),
  778                     ("freeing state with pending locks"));
  779                 VI_UNLOCK(vp);
  780                 goto out_free;
  781         }
  782         MPASS(state->ls_threads >= 0);
  783         state->ls_threads++;
  784         VI_UNLOCK(vp);
  785 
  786         sx_xlock(&state->ls_lock);
  787         sx_xlock(&lf_owner_graph_lock);
  788         LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
  789                 LIST_REMOVE(lock, lf_link);
  790                 lf_remove_outgoing(lock);
  791                 lf_remove_incoming(lock);
  792 
  793                 /*
  794                  * If its an async lock, we can just free it
  795                  * here, otherwise we let the sleeping thread
  796                  * free it.
  797                  */
  798                 if (lock->lf_async_task) {
  799                         lf_free_lock(lock);
  800                 } else {
  801                         lock->lf_flags |= F_INTR;
  802                         wakeup(lock);
  803                 }
  804         }
  805         sx_xunlock(&lf_owner_graph_lock);
  806         sx_xunlock(&state->ls_lock);
  807 
  808         /*
  809          * Wait for all other threads, sleeping and otherwise
  810          * to leave.
  811          */
  812         VI_LOCK(vp);
  813         while (state->ls_threads > 1)
  814                 msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
  815         VI_UNLOCK(vp);
  816 
  817         /*
  818          * We can just free all the active locks since they
  819          * will have no dependencies (we removed them all
  820          * above). We don't need to bother locking since we
  821          * are the last thread using this state structure.
  822          */
  823         KASSERT(LIST_EMPTY(&state->ls_pending),
  824             ("lock pending for %p", state));
  825         LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
  826                 LIST_REMOVE(lock, lf_link);
  827                 lf_free_lock(lock);
  828         }
  829 out_free:
  830         sx_xlock(&lf_lock_states_lock);
  831         LIST_REMOVE(state, ls_link);
  832         sx_xunlock(&lf_lock_states_lock);
  833         sx_destroy(&state->ls_lock);
  834         free(state, M_LOCKF);
  835 }
  836 
  837 /*
  838  * Return non-zero if locks 'x' and 'y' overlap.
  839  */
  840 static int
  841 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
  842 {
  843 
  844         return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
  845 }
  846 
  847 /*
  848  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
  849  */
  850 static int
  851 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
  852 {
  853 
  854         return x->lf_owner != y->lf_owner
  855                 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
  856                 && lf_overlaps(x, y);
  857 }
  858 
  859 /*
  860  * Allocate a lock edge from the free list
  861  */
  862 static struct lockf_edge *
  863 lf_alloc_edge(void)
  864 {
  865 
  866         return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
  867 }
  868 
  869 /*
  870  * Free a lock edge.
  871  */
  872 static void
  873 lf_free_edge(struct lockf_edge *e)
  874 {
  875 
  876         free(e, M_LOCKF);
  877 }
  878 
  879 /*
  880  * Ensure that the lock's owner has a corresponding vertex in the
  881  * owner graph.
  882  */
  883 static void
  884 lf_alloc_vertex(struct lockf_entry *lock)
  885 {
  886         struct owner_graph *g = &lf_owner_graph;
  887 
  888         if (!lock->lf_owner->lo_vertex)
  889                 lock->lf_owner->lo_vertex =
  890                         graph_alloc_vertex(g, lock->lf_owner);
  891 }
  892 
  893 /*
  894  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
  895  * the new edge would cause a cycle in the owner graph.
  896  */
  897 static int
  898 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
  899 {
  900         struct owner_graph *g = &lf_owner_graph;
  901         struct lockf_edge *e;
  902         int error;
  903 
  904 #ifdef DIAGNOSTIC
  905         LIST_FOREACH(e, &x->lf_outedges, le_outlink)
  906                 KASSERT(e->le_to != y, ("adding lock edge twice"));
  907 #endif
  908 
  909         /*
  910          * Make sure the two owners have entries in the owner graph.
  911          */
  912         lf_alloc_vertex(x);
  913         lf_alloc_vertex(y);
  914 
  915         error = graph_add_edge(g, x->lf_owner->lo_vertex,
  916             y->lf_owner->lo_vertex);
  917         if (error)
  918                 return (error);
  919 
  920         e = lf_alloc_edge();
  921         LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
  922         LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
  923         e->le_from = x;
  924         e->le_to = y;
  925 
  926         return (0);
  927 }
  928 
  929 /*
  930  * Remove an edge from the lock graph.
  931  */
  932 static void
  933 lf_remove_edge(struct lockf_edge *e)
  934 {
  935         struct owner_graph *g = &lf_owner_graph;
  936         struct lockf_entry *x = e->le_from;
  937         struct lockf_entry *y = e->le_to;
  938 
  939         graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
  940         LIST_REMOVE(e, le_outlink);
  941         LIST_REMOVE(e, le_inlink);
  942         e->le_from = NULL;
  943         e->le_to = NULL;
  944         lf_free_edge(e);
  945 }
  946 
  947 /*
  948  * Remove all out-going edges from lock x.
  949  */
  950 static void
  951 lf_remove_outgoing(struct lockf_entry *x)
  952 {
  953         struct lockf_edge *e;
  954 
  955         while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
  956                 lf_remove_edge(e);
  957         }
  958 }
  959 
  960 /*
  961  * Remove all in-coming edges from lock x.
  962  */
  963 static void
  964 lf_remove_incoming(struct lockf_entry *x)
  965 {
  966         struct lockf_edge *e;
  967 
  968         while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
  969                 lf_remove_edge(e);
  970         }
  971 }
  972 
  973 /*
  974  * Walk the list of locks for the file and create an out-going edge
  975  * from lock to each blocking lock.
  976  */
  977 static int
  978 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
  979 {
  980         struct lockf_entry *overlap;
  981         int error;
  982 
  983         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
  984                 /*
  985                  * We may assume that the active list is sorted by
  986                  * lf_start.
  987                  */
  988                 if (overlap->lf_start > lock->lf_end)
  989                         break;
  990                 if (!lf_blocks(lock, overlap))
  991                         continue;
  992 
  993                 /*
  994                  * We've found a blocking lock. Add the corresponding
  995                  * edge to the graphs and see if it would cause a
  996                  * deadlock.
  997                  */
  998                 error = lf_add_edge(lock, overlap);
  999 
 1000                 /*
 1001                  * The only error that lf_add_edge returns is EDEADLK.
 1002                  * Remove any edges we added and return the error.
 1003                  */
 1004                 if (error) {
 1005                         lf_remove_outgoing(lock);
 1006                         return (error);
 1007                 }
 1008         }
 1009 
 1010         /*
 1011          * We also need to add edges to sleeping locks that block
 1012          * us. This ensures that lf_wakeup_lock cannot grant two
 1013          * mutually blocking locks simultaneously and also enforces a
 1014          * 'first come, first served' fairness model. Note that this
 1015          * only happens if we are blocked by at least one active lock
 1016          * due to the call to lf_getblock in lf_setlock below.
 1017          */
 1018         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
 1019                 if (!lf_blocks(lock, overlap))
 1020                         continue;
 1021                 /*
 1022                  * We've found a blocking lock. Add the corresponding
 1023                  * edge to the graphs and see if it would cause a
 1024                  * deadlock.
 1025                  */
 1026                 error = lf_add_edge(lock, overlap);
 1027 
 1028                 /*
 1029                  * The only error that lf_add_edge returns is EDEADLK.
 1030                  * Remove any edges we added and return the error.
 1031                  */
 1032                 if (error) {
 1033                         lf_remove_outgoing(lock);
 1034                         return (error);
 1035                 }
 1036         }
 1037 
 1038         return (0);
 1039 }
 1040 
 1041 /*
 1042  * Walk the list of pending locks for the file and create an in-coming
 1043  * edge from lock to each blocking lock.
 1044  */
 1045 static int
 1046 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
 1047 {
 1048         struct lockf_entry *overlap;
 1049         int error;
 1050 
 1051         sx_assert(&state->ls_lock, SX_XLOCKED);
 1052         if (LIST_EMPTY(&state->ls_pending))
 1053                 return (0);
 1054 
 1055         error = 0;
 1056         sx_xlock(&lf_owner_graph_lock);
 1057         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
 1058                 if (!lf_blocks(lock, overlap))
 1059                         continue;
 1060 
 1061                 /*
 1062                  * We've found a blocking lock. Add the corresponding
 1063                  * edge to the graphs and see if it would cause a
 1064                  * deadlock.
 1065                  */
 1066                 error = lf_add_edge(overlap, lock);
 1067 
 1068                 /*
 1069                  * The only error that lf_add_edge returns is EDEADLK.
 1070                  * Remove any edges we added and return the error.
 1071                  */
 1072                 if (error) {
 1073                         lf_remove_incoming(lock);
 1074                         break;
 1075                 }
 1076         }
 1077         sx_xunlock(&lf_owner_graph_lock);
 1078         return (error);
 1079 }
 1080 
 1081 /*
 1082  * Insert lock into the active list, keeping list entries ordered by
 1083  * increasing values of lf_start.
 1084  */
 1085 static void
 1086 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
 1087 {
 1088         struct lockf_entry *lf, *lfprev;
 1089 
 1090         if (LIST_EMPTY(&state->ls_active)) {
 1091                 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
 1092                 return;
 1093         }
 1094 
 1095         lfprev = NULL;
 1096         LIST_FOREACH(lf, &state->ls_active, lf_link) {
 1097                 if (lf->lf_start > lock->lf_start) {
 1098                         LIST_INSERT_BEFORE(lf, lock, lf_link);
 1099                         return;
 1100                 }
 1101                 lfprev = lf;
 1102         }
 1103         LIST_INSERT_AFTER(lfprev, lock, lf_link);
 1104 }
 1105 
 1106 /*
 1107  * Wake up a sleeping lock and remove it from the pending list now
 1108  * that all its dependencies have been resolved. The caller should
 1109  * arrange for the lock to be added to the active list, adjusting any
 1110  * existing locks for the same owner as needed.
 1111  */
 1112 static void
 1113 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
 1114 {
 1115 
 1116         /*
 1117          * Remove from ls_pending list and wake up the caller
 1118          * or start the async notification, as appropriate.
 1119          */
 1120         LIST_REMOVE(wakelock, lf_link);
 1121 #ifdef LOCKF_DEBUG
 1122         if (lockf_debug & 1)
 1123                 lf_print("lf_wakeup_lock: awakening", wakelock);
 1124 #endif /* LOCKF_DEBUG */
 1125         if (wakelock->lf_async_task) {
 1126                 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
 1127         } else {
 1128                 wakeup(wakelock);
 1129         }
 1130 }
 1131 
 1132 /*
 1133  * Re-check all dependent locks and remove edges to locks that we no
 1134  * longer block. If 'all' is non-zero, the lock has been removed and
 1135  * we must remove all the dependencies, otherwise it has simply been
 1136  * reduced but remains active. Any pending locks which have been been
 1137  * unblocked are added to 'granted'
 1138  */
 1139 static void
 1140 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
 1141         struct lockf_entry_list *granted)
 1142 {
 1143         struct lockf_edge *e, *ne;
 1144         struct lockf_entry *deplock;
 1145 
 1146         LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
 1147                 deplock = e->le_from;
 1148                 if (all || !lf_blocks(lock, deplock)) {
 1149                         sx_xlock(&lf_owner_graph_lock);
 1150                         lf_remove_edge(e);
 1151                         sx_xunlock(&lf_owner_graph_lock);
 1152                         if (LIST_EMPTY(&deplock->lf_outedges)) {
 1153                                 lf_wakeup_lock(state, deplock);
 1154                                 LIST_INSERT_HEAD(granted, deplock, lf_link);
 1155                         }
 1156                 }
 1157         }
 1158 }
 1159 
 1160 /*
 1161  * Set the start of an existing active lock, updating dependencies and
 1162  * adding any newly woken locks to 'granted'.
 1163  */
 1164 static void
 1165 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
 1166         struct lockf_entry_list *granted)
 1167 {
 1168 
 1169         KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
 1170         lock->lf_start = new_start;
 1171         LIST_REMOVE(lock, lf_link);
 1172         lf_insert_lock(state, lock);
 1173         lf_update_dependancies(state, lock, FALSE, granted);
 1174 }
 1175 
 1176 /*
 1177  * Set the end of an existing active lock, updating dependencies and
 1178  * adding any newly woken locks to 'granted'.
 1179  */
 1180 static void
 1181 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
 1182         struct lockf_entry_list *granted)
 1183 {
 1184 
 1185         KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
 1186         lock->lf_end = new_end;
 1187         lf_update_dependancies(state, lock, FALSE, granted);
 1188 }
 1189 
 1190 /*
 1191  * Add a lock to the active list, updating or removing any current
 1192  * locks owned by the same owner and processing any pending locks that
 1193  * become unblocked as a result. This code is also used for unlock
 1194  * since the logic for updating existing locks is identical.
 1195  *
 1196  * As a result of processing the new lock, we may unblock existing
 1197  * pending locks as a result of downgrading/unlocking. We simply
 1198  * activate the newly granted locks by looping.
 1199  *
 1200  * Since the new lock already has its dependencies set up, we always
 1201  * add it to the list (unless its an unlock request). This may
 1202  * fragment the lock list in some pathological cases but its probably
 1203  * not a real problem.
 1204  */
 1205 static void
 1206 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
 1207 {
 1208         struct lockf_entry *overlap, *lf;
 1209         struct lockf_entry_list granted;
 1210         int ovcase;
 1211 
 1212         LIST_INIT(&granted);
 1213         LIST_INSERT_HEAD(&granted, lock, lf_link);
 1214 
 1215         while (!LIST_EMPTY(&granted)) {
 1216                 lock = LIST_FIRST(&granted);
 1217                 LIST_REMOVE(lock, lf_link);
 1218 
 1219                 /*
 1220                  * Skip over locks owned by other processes.  Handle
 1221                  * any locks that overlap and are owned by ourselves.
 1222                  */
 1223                 overlap = LIST_FIRST(&state->ls_active);
 1224                 for (;;) {
 1225                         ovcase = lf_findoverlap(&overlap, lock, SELF);
 1226 
 1227 #ifdef LOCKF_DEBUG
 1228                         if (ovcase && (lockf_debug & 2)) {
 1229                                 printf("lf_setlock: overlap %d", ovcase);
 1230                                 lf_print("", overlap);
 1231                         }
 1232 #endif
 1233                         /*
 1234                          * Six cases:
 1235                          *      0) no overlap
 1236                          *      1) overlap == lock
 1237                          *      2) overlap contains lock
 1238                          *      3) lock contains overlap
 1239                          *      4) overlap starts before lock
 1240                          *      5) overlap ends after lock
 1241                          */
 1242                         switch (ovcase) {
 1243                         case 0: /* no overlap */
 1244                                 break;
 1245 
 1246                         case 1: /* overlap == lock */
 1247                                 /*
 1248                                  * We have already setup the
 1249                                  * dependants for the new lock, taking
 1250                                  * into account a possible downgrade
 1251                                  * or unlock. Remove the old lock.
 1252                                  */
 1253                                 LIST_REMOVE(overlap, lf_link);
 1254                                 lf_update_dependancies(state, overlap, TRUE,
 1255                                         &granted);
 1256                                 lf_free_lock(overlap);
 1257                                 break;
 1258 
 1259                         case 2: /* overlap contains lock */
 1260                                 /*
 1261                                  * Just split the existing lock.
 1262                                  */
 1263                                 lf_split(state, overlap, lock, &granted);
 1264                                 break;
 1265 
 1266                         case 3: /* lock contains overlap */
 1267                                 /*
 1268                                  * Delete the overlap and advance to
 1269                                  * the next entry in the list.
 1270                                  */
 1271                                 lf = LIST_NEXT(overlap, lf_link);
 1272                                 LIST_REMOVE(overlap, lf_link);
 1273                                 lf_update_dependancies(state, overlap, TRUE,
 1274                                         &granted);
 1275                                 lf_free_lock(overlap);
 1276                                 overlap = lf;
 1277                                 continue;
 1278 
 1279                         case 4: /* overlap starts before lock */
 1280                                 /*
 1281                                  * Just update the overlap end and
 1282                                  * move on.
 1283                                  */
 1284                                 lf_set_end(state, overlap, lock->lf_start - 1,
 1285                                     &granted);
 1286                                 overlap = LIST_NEXT(overlap, lf_link);
 1287                                 continue;
 1288 
 1289                         case 5: /* overlap ends after lock */
 1290                                 /*
 1291                                  * Change the start of overlap and
 1292                                  * re-insert.
 1293                                  */
 1294                                 lf_set_start(state, overlap, lock->lf_end + 1,
 1295                                     &granted);
 1296                                 break;
 1297                         }
 1298                         break;
 1299                 }
 1300 #ifdef LOCKF_DEBUG
 1301                 if (lockf_debug & 1) {
 1302                         if (lock->lf_type != F_UNLCK)
 1303                                 lf_print("lf_activate_lock: activated", lock);
 1304                         else
 1305                                 lf_print("lf_activate_lock: unlocked", lock);
 1306                         lf_printlist("lf_activate_lock", lock);
 1307                 }
 1308 #endif /* LOCKF_DEBUG */
 1309                 if (lock->lf_type != F_UNLCK)
 1310                         lf_insert_lock(state, lock);
 1311         }
 1312 }
 1313 
 1314 /*
 1315  * Cancel a pending lock request, either as a result of a signal or a
 1316  * cancel request for an async lock.
 1317  */
 1318 static void
 1319 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
 1320 {
 1321         struct lockf_entry_list granted;
 1322 
 1323         /*
 1324          * Note it is theoretically possible that cancelling this lock
 1325          * may allow some other pending lock to become
 1326          * active. Consider this case:
 1327          *
 1328          * Owner        Action          Result          Dependencies
 1329          * 
 1330          * A:           lock [0..0]     succeeds        
 1331          * B:           lock [2..2]     succeeds        
 1332          * C:           lock [1..2]     blocked         C->B
 1333          * D:           lock [0..1]     blocked         C->B,D->A,D->C
 1334          * A:           unlock [0..0]                   C->B,D->C
 1335          * C:           cancel [1..2]   
 1336          */
 1337 
 1338         LIST_REMOVE(lock, lf_link);
 1339 
 1340         /*
 1341          * Removing out-going edges is simple.
 1342          */
 1343         sx_xlock(&lf_owner_graph_lock);
 1344         lf_remove_outgoing(lock);
 1345         sx_xunlock(&lf_owner_graph_lock);
 1346 
 1347         /*
 1348          * Removing in-coming edges may allow some other lock to
 1349          * become active - we use lf_update_dependancies to figure
 1350          * this out.
 1351          */
 1352         LIST_INIT(&granted);
 1353         lf_update_dependancies(state, lock, TRUE, &granted);
 1354         lf_free_lock(lock);
 1355 
 1356         /*
 1357          * Feed any newly active locks to lf_activate_lock.
 1358          */
 1359         while (!LIST_EMPTY(&granted)) {
 1360                 lock = LIST_FIRST(&granted);
 1361                 LIST_REMOVE(lock, lf_link);
 1362                 lf_activate_lock(state, lock);
 1363         }
 1364 }
 1365 
 1366 /*
 1367  * Set a byte-range lock.
 1368  */
 1369 static int
 1370 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
 1371     void **cookiep)
 1372 {
 1373         static char lockstr[] = "lockf";
 1374         int error, priority, stops_deferred;
 1375 
 1376 #ifdef LOCKF_DEBUG
 1377         if (lockf_debug & 1)
 1378                 lf_print("lf_setlock", lock);
 1379 #endif /* LOCKF_DEBUG */
 1380 
 1381         /*
 1382          * Set the priority
 1383          */
 1384         priority = PLOCK;
 1385         if (lock->lf_type == F_WRLCK)
 1386                 priority += 4;
 1387         if (!(lock->lf_flags & F_NOINTR))
 1388                 priority |= PCATCH;
 1389         /*
 1390          * Scan lock list for this file looking for locks that would block us.
 1391          */
 1392         if (lf_getblock(state, lock)) {
 1393                 /*
 1394                  * Free the structure and return if nonblocking.
 1395                  */
 1396                 if ((lock->lf_flags & F_WAIT) == 0
 1397                     && lock->lf_async_task == NULL) {
 1398                         lf_free_lock(lock);
 1399                         error = EAGAIN;
 1400                         goto out;
 1401                 }
 1402 
 1403                 /*
 1404                  * For flock type locks, we must first remove
 1405                  * any shared locks that we hold before we sleep
 1406                  * waiting for an exclusive lock.
 1407                  */
 1408                 if ((lock->lf_flags & F_FLOCK) &&
 1409                     lock->lf_type == F_WRLCK) {
 1410                         lock->lf_type = F_UNLCK;
 1411                         lf_activate_lock(state, lock);
 1412                         lock->lf_type = F_WRLCK;
 1413                 }
 1414 
 1415                 /*
 1416                  * We are blocked. Create edges to each blocking lock,
 1417                  * checking for deadlock using the owner graph. For
 1418                  * simplicity, we run deadlock detection for all
 1419                  * locks, posix and otherwise.
 1420                  */
 1421                 sx_xlock(&lf_owner_graph_lock);
 1422                 error = lf_add_outgoing(state, lock);
 1423                 sx_xunlock(&lf_owner_graph_lock);
 1424 
 1425                 if (error) {
 1426 #ifdef LOCKF_DEBUG
 1427                         if (lockf_debug & 1)
 1428                                 lf_print("lf_setlock: deadlock", lock);
 1429 #endif
 1430                         lf_free_lock(lock);
 1431                         goto out;
 1432                 }
 1433 
 1434                 /*
 1435                  * We have added edges to everything that blocks
 1436                  * us. Sleep until they all go away.
 1437                  */
 1438                 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
 1439 #ifdef LOCKF_DEBUG
 1440                 if (lockf_debug & 1) {
 1441                         struct lockf_edge *e;
 1442                         LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
 1443                                 lf_print("lf_setlock: blocking on", e->le_to);
 1444                                 lf_printlist("lf_setlock", e->le_to);
 1445                         }
 1446                 }
 1447 #endif /* LOCKF_DEBUG */
 1448 
 1449                 if ((lock->lf_flags & F_WAIT) == 0) {
 1450                         /*
 1451                          * The caller requested async notification -
 1452                          * this callback happens when the blocking
 1453                          * lock is released, allowing the caller to
 1454                          * make another attempt to take the lock.
 1455                          */
 1456                         *cookiep = (void *) lock;
 1457                         error = EINPROGRESS;
 1458                         goto out;
 1459                 }
 1460 
 1461                 lock->lf_refs++;
 1462                 stops_deferred = sigdeferstop(SIGDEFERSTOP_ERESTART);
 1463                 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
 1464                 sigallowstop(stops_deferred);
 1465                 if (lf_free_lock(lock)) {
 1466                         error = EDOOFUS;
 1467                         goto out;
 1468                 }
 1469 
 1470                 /*
 1471                  * We may have been awakened by a signal and/or by a
 1472                  * debugger continuing us (in which cases we must
 1473                  * remove our lock graph edges) and/or by another
 1474                  * process releasing a lock (in which case our edges
 1475                  * have already been removed and we have been moved to
 1476                  * the active list). We may also have been woken by
 1477                  * lf_purgelocks which we report to the caller as
 1478                  * EINTR. In that case, lf_purgelocks will have
 1479                  * removed our lock graph edges.
 1480                  *
 1481                  * Note that it is possible to receive a signal after
 1482                  * we were successfully woken (and moved to the active
 1483                  * list) but before we resumed execution. In this
 1484                  * case, our lf_outedges list will be clear. We
 1485                  * pretend there was no error.
 1486                  *
 1487                  * Note also, if we have been sleeping long enough, we
 1488                  * may now have incoming edges from some newer lock
 1489                  * which is waiting behind us in the queue.
 1490                  */
 1491                 if (lock->lf_flags & F_INTR) {
 1492                         error = EINTR;
 1493                         lf_free_lock(lock);
 1494                         goto out;
 1495                 }
 1496                 if (LIST_EMPTY(&lock->lf_outedges)) {
 1497                         error = 0;
 1498                 } else {
 1499                         lf_cancel_lock(state, lock);
 1500                         goto out;
 1501                 }
 1502 #ifdef LOCKF_DEBUG
 1503                 if (lockf_debug & 1) {
 1504                         lf_print("lf_setlock: granted", lock);
 1505                 }
 1506 #endif
 1507                 goto out;
 1508         }
 1509         /*
 1510          * It looks like we are going to grant the lock. First add
 1511          * edges from any currently pending lock that the new lock
 1512          * would block.
 1513          */
 1514         error = lf_add_incoming(state, lock);
 1515         if (error) {
 1516 #ifdef LOCKF_DEBUG
 1517                 if (lockf_debug & 1)
 1518                         lf_print("lf_setlock: deadlock", lock);
 1519 #endif
 1520                 lf_free_lock(lock);
 1521                 goto out;
 1522         }
 1523 
 1524         /*
 1525          * No blocks!!  Add the lock.  Note that we will
 1526          * downgrade or upgrade any overlapping locks this
 1527          * process already owns.
 1528          */
 1529         lf_activate_lock(state, lock);
 1530         error = 0;
 1531 out:
 1532         return (error);
 1533 }
 1534 
 1535 /*
 1536  * Remove a byte-range lock on an inode.
 1537  *
 1538  * Generally, find the lock (or an overlap to that lock)
 1539  * and remove it (or shrink it), then wakeup anyone we can.
 1540  */
 1541 static int
 1542 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
 1543 {
 1544         struct lockf_entry *overlap;
 1545 
 1546         overlap = LIST_FIRST(&state->ls_active);
 1547 
 1548         if (overlap == NOLOCKF)
 1549                 return (0);
 1550 #ifdef LOCKF_DEBUG
 1551         if (unlock->lf_type != F_UNLCK)
 1552                 panic("lf_clearlock: bad type");
 1553         if (lockf_debug & 1)
 1554                 lf_print("lf_clearlock", unlock);
 1555 #endif /* LOCKF_DEBUG */
 1556 
 1557         lf_activate_lock(state, unlock);
 1558 
 1559         return (0);
 1560 }
 1561 
 1562 /*
 1563  * Check whether there is a blocking lock, and if so return its
 1564  * details in '*fl'.
 1565  */
 1566 static int
 1567 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
 1568 {
 1569         struct lockf_entry *block;
 1570 
 1571 #ifdef LOCKF_DEBUG
 1572         if (lockf_debug & 1)
 1573                 lf_print("lf_getlock", lock);
 1574 #endif /* LOCKF_DEBUG */
 1575 
 1576         if ((block = lf_getblock(state, lock))) {
 1577                 fl->l_type = block->lf_type;
 1578                 fl->l_whence = SEEK_SET;
 1579                 fl->l_start = block->lf_start;
 1580                 if (block->lf_end == OFF_MAX)
 1581                         fl->l_len = 0;
 1582                 else
 1583                         fl->l_len = block->lf_end - block->lf_start + 1;
 1584                 fl->l_pid = block->lf_owner->lo_pid;
 1585                 fl->l_sysid = block->lf_owner->lo_sysid;
 1586         } else {
 1587                 fl->l_type = F_UNLCK;
 1588         }
 1589         return (0);
 1590 }
 1591 
 1592 /*
 1593  * Cancel an async lock request.
 1594  */
 1595 static int
 1596 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
 1597 {
 1598         struct lockf_entry *reallock;
 1599 
 1600         /*
 1601          * We need to match this request with an existing lock
 1602          * request.
 1603          */
 1604         LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
 1605                 if ((void *) reallock == cookie) {
 1606                         /*
 1607                          * Double-check that this lock looks right
 1608                          * (maybe use a rolling ID for the cancel
 1609                          * cookie instead?)
 1610                          */
 1611                         if (!(reallock->lf_vnode == lock->lf_vnode
 1612                                 && reallock->lf_start == lock->lf_start
 1613                                 && reallock->lf_end == lock->lf_end)) {
 1614                                 return (ENOENT);
 1615                         }
 1616 
 1617                         /*
 1618                          * Make sure this lock was async and then just
 1619                          * remove it from its wait lists.
 1620                          */
 1621                         if (!reallock->lf_async_task) {
 1622                                 return (ENOENT);
 1623                         }
 1624 
 1625                         /*
 1626                          * Note that since any other thread must take
 1627                          * state->ls_lock before it can possibly
 1628                          * trigger the async callback, we are safe
 1629                          * from a race with lf_wakeup_lock, i.e. we
 1630                          * can free the lock (actually our caller does
 1631                          * this).
 1632                          */
 1633                         lf_cancel_lock(state, reallock);
 1634                         return (0);
 1635                 }
 1636         }
 1637 
 1638         /*
 1639          * We didn't find a matching lock - not much we can do here.
 1640          */
 1641         return (ENOENT);
 1642 }
 1643 
 1644 /*
 1645  * Walk the list of locks for an inode and
 1646  * return the first blocking lock.
 1647  */
 1648 static struct lockf_entry *
 1649 lf_getblock(struct lockf *state, struct lockf_entry *lock)
 1650 {
 1651         struct lockf_entry *overlap;
 1652 
 1653         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
 1654                 /*
 1655                  * We may assume that the active list is sorted by
 1656                  * lf_start.
 1657                  */
 1658                 if (overlap->lf_start > lock->lf_end)
 1659                         break;
 1660                 if (!lf_blocks(lock, overlap))
 1661                         continue;
 1662                 return (overlap);
 1663         }
 1664         return (NOLOCKF);
 1665 }
 1666 
 1667 /*
 1668  * Walk the list of locks for an inode to find an overlapping lock (if
 1669  * any) and return a classification of that overlap.
 1670  *
 1671  * Arguments:
 1672  *      *overlap        The place in the lock list to start looking
 1673  *      lock            The lock which is being tested
 1674  *      type            Pass 'SELF' to test only locks with the same
 1675  *                      owner as lock, or 'OTHER' to test only locks
 1676  *                      with a different owner
 1677  *
 1678  * Returns one of six values:
 1679  *      0) no overlap
 1680  *      1) overlap == lock
 1681  *      2) overlap contains lock
 1682  *      3) lock contains overlap
 1683  *      4) overlap starts before lock
 1684  *      5) overlap ends after lock
 1685  *
 1686  * If there is an overlapping lock, '*overlap' is set to point at the
 1687  * overlapping lock.
 1688  *
 1689  * NOTE: this returns only the FIRST overlapping lock.  There
 1690  *       may be more than one.
 1691  */
 1692 static int
 1693 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
 1694 {
 1695         struct lockf_entry *lf;
 1696         off_t start, end;
 1697         int res;
 1698 
 1699         if ((*overlap) == NOLOCKF) {
 1700                 return (0);
 1701         }
 1702 #ifdef LOCKF_DEBUG
 1703         if (lockf_debug & 2)
 1704                 lf_print("lf_findoverlap: looking for overlap in", lock);
 1705 #endif /* LOCKF_DEBUG */
 1706         start = lock->lf_start;
 1707         end = lock->lf_end;
 1708         res = 0;
 1709         while (*overlap) {
 1710                 lf = *overlap;
 1711                 if (lf->lf_start > end)
 1712                         break;
 1713                 if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
 1714                     ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
 1715                         *overlap = LIST_NEXT(lf, lf_link);
 1716                         continue;
 1717                 }
 1718 #ifdef LOCKF_DEBUG
 1719                 if (lockf_debug & 2)
 1720                         lf_print("\tchecking", lf);
 1721 #endif /* LOCKF_DEBUG */
 1722                 /*
 1723                  * OK, check for overlap
 1724                  *
 1725                  * Six cases:
 1726                  *      0) no overlap
 1727                  *      1) overlap == lock
 1728                  *      2) overlap contains lock
 1729                  *      3) lock contains overlap
 1730                  *      4) overlap starts before lock
 1731                  *      5) overlap ends after lock
 1732                  */
 1733                 if (start > lf->lf_end) {
 1734                         /* Case 0 */
 1735 #ifdef LOCKF_DEBUG
 1736                         if (lockf_debug & 2)
 1737                                 printf("no overlap\n");
 1738 #endif /* LOCKF_DEBUG */
 1739                         *overlap = LIST_NEXT(lf, lf_link);
 1740                         continue;
 1741                 }
 1742                 if (lf->lf_start == start && lf->lf_end == end) {
 1743                         /* Case 1 */
 1744 #ifdef LOCKF_DEBUG
 1745                         if (lockf_debug & 2)
 1746                                 printf("overlap == lock\n");
 1747 #endif /* LOCKF_DEBUG */
 1748                         res = 1;
 1749                         break;
 1750                 }
 1751                 if (lf->lf_start <= start && lf->lf_end >= end) {
 1752                         /* Case 2 */
 1753 #ifdef LOCKF_DEBUG
 1754                         if (lockf_debug & 2)
 1755                                 printf("overlap contains lock\n");
 1756 #endif /* LOCKF_DEBUG */
 1757                         res = 2;
 1758                         break;
 1759                 }
 1760                 if (start <= lf->lf_start && end >= lf->lf_end) {
 1761                         /* Case 3 */
 1762 #ifdef LOCKF_DEBUG
 1763                         if (lockf_debug & 2)
 1764                                 printf("lock contains overlap\n");
 1765 #endif /* LOCKF_DEBUG */
 1766                         res = 3;
 1767                         break;
 1768                 }
 1769                 if (lf->lf_start < start && lf->lf_end >= start) {
 1770                         /* Case 4 */
 1771 #ifdef LOCKF_DEBUG
 1772                         if (lockf_debug & 2)
 1773                                 printf("overlap starts before lock\n");
 1774 #endif /* LOCKF_DEBUG */
 1775                         res = 4;
 1776                         break;
 1777                 }
 1778                 if (lf->lf_start > start && lf->lf_end > end) {
 1779                         /* Case 5 */
 1780 #ifdef LOCKF_DEBUG
 1781                         if (lockf_debug & 2)
 1782                                 printf("overlap ends after lock\n");
 1783 #endif /* LOCKF_DEBUG */
 1784                         res = 5;
 1785                         break;
 1786                 }
 1787                 panic("lf_findoverlap: default");
 1788         }
 1789         return (res);
 1790 }
 1791 
 1792 /*
 1793  * Split an the existing 'lock1', based on the extent of the lock
 1794  * described by 'lock2'. The existing lock should cover 'lock2'
 1795  * entirely.
 1796  *
 1797  * Any pending locks which have been been unblocked are added to
 1798  * 'granted'
 1799  */
 1800 static void
 1801 lf_split(struct lockf *state, struct lockf_entry *lock1,
 1802     struct lockf_entry *lock2, struct lockf_entry_list *granted)
 1803 {
 1804         struct lockf_entry *splitlock;
 1805 
 1806 #ifdef LOCKF_DEBUG
 1807         if (lockf_debug & 2) {
 1808                 lf_print("lf_split", lock1);
 1809                 lf_print("splitting from", lock2);
 1810         }
 1811 #endif /* LOCKF_DEBUG */
 1812         /*
 1813          * Check to see if we don't need to split at all.
 1814          */
 1815         if (lock1->lf_start == lock2->lf_start) {
 1816                 lf_set_start(state, lock1, lock2->lf_end + 1, granted);
 1817                 return;
 1818         }
 1819         if (lock1->lf_end == lock2->lf_end) {
 1820                 lf_set_end(state, lock1, lock2->lf_start - 1, granted);
 1821                 return;
 1822         }
 1823         /*
 1824          * Make a new lock consisting of the last part of
 1825          * the encompassing lock.
 1826          */
 1827         splitlock = lf_alloc_lock(lock1->lf_owner);
 1828         memcpy(splitlock, lock1, sizeof *splitlock);
 1829         splitlock->lf_refs = 1;
 1830         if (splitlock->lf_flags & F_REMOTE)
 1831                 vref(splitlock->lf_vnode);
 1832 
 1833         /*
 1834          * This cannot cause a deadlock since any edges we would add
 1835          * to splitlock already exist in lock1. We must be sure to add
 1836          * necessary dependencies to splitlock before we reduce lock1
 1837          * otherwise we may accidentally grant a pending lock that
 1838          * was blocked by the tail end of lock1.
 1839          */
 1840         splitlock->lf_start = lock2->lf_end + 1;
 1841         LIST_INIT(&splitlock->lf_outedges);
 1842         LIST_INIT(&splitlock->lf_inedges);
 1843         lf_add_incoming(state, splitlock);
 1844 
 1845         lf_set_end(state, lock1, lock2->lf_start - 1, granted);
 1846 
 1847         /*
 1848          * OK, now link it in
 1849          */
 1850         lf_insert_lock(state, splitlock);
 1851 }
 1852 
 1853 struct lockdesc {
 1854         STAILQ_ENTRY(lockdesc) link;
 1855         struct vnode *vp;
 1856         struct flock fl;
 1857 };
 1858 STAILQ_HEAD(lockdesclist, lockdesc);
 1859 
 1860 int
 1861 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
 1862 {
 1863         struct lockf *ls;
 1864         struct lockf_entry *lf;
 1865         struct lockdesc *ldesc;
 1866         struct lockdesclist locks;
 1867         int error;
 1868 
 1869         /*
 1870          * In order to keep the locking simple, we iterate over the
 1871          * active lock lists to build a list of locks that need
 1872          * releasing. We then call the iterator for each one in turn.
 1873          *
 1874          * We take an extra reference to the vnode for the duration to
 1875          * make sure it doesn't go away before we are finished.
 1876          */
 1877         STAILQ_INIT(&locks);
 1878         sx_xlock(&lf_lock_states_lock);
 1879         LIST_FOREACH(ls, &lf_lock_states, ls_link) {
 1880                 sx_xlock(&ls->ls_lock);
 1881                 LIST_FOREACH(lf, &ls->ls_active, lf_link) {
 1882                         if (lf->lf_owner->lo_sysid != sysid)
 1883                                 continue;
 1884 
 1885                         ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
 1886                             M_WAITOK);
 1887                         ldesc->vp = lf->lf_vnode;
 1888                         vref(ldesc->vp);
 1889                         ldesc->fl.l_start = lf->lf_start;
 1890                         if (lf->lf_end == OFF_MAX)
 1891                                 ldesc->fl.l_len = 0;
 1892                         else
 1893                                 ldesc->fl.l_len =
 1894                                         lf->lf_end - lf->lf_start + 1;
 1895                         ldesc->fl.l_whence = SEEK_SET;
 1896                         ldesc->fl.l_type = F_UNLCK;
 1897                         ldesc->fl.l_pid = lf->lf_owner->lo_pid;
 1898                         ldesc->fl.l_sysid = sysid;
 1899                         STAILQ_INSERT_TAIL(&locks, ldesc, link);
 1900                 }
 1901                 sx_xunlock(&ls->ls_lock);
 1902         }
 1903         sx_xunlock(&lf_lock_states_lock);
 1904 
 1905         /*
 1906          * Call the iterator function for each lock in turn. If the
 1907          * iterator returns an error code, just free the rest of the
 1908          * lockdesc structures.
 1909          */
 1910         error = 0;
 1911         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
 1912                 STAILQ_REMOVE_HEAD(&locks, link);
 1913                 if (!error)
 1914                         error = fn(ldesc->vp, &ldesc->fl, arg);
 1915                 vrele(ldesc->vp);
 1916                 free(ldesc, M_LOCKF);
 1917         }
 1918 
 1919         return (error);
 1920 }
 1921 
 1922 int
 1923 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
 1924 {
 1925         struct lockf *ls;
 1926         struct lockf_entry *lf;
 1927         struct lockdesc *ldesc;
 1928         struct lockdesclist locks;
 1929         int error;
 1930 
 1931         /*
 1932          * In order to keep the locking simple, we iterate over the
 1933          * active lock lists to build a list of locks that need
 1934          * releasing. We then call the iterator for each one in turn.
 1935          *
 1936          * We take an extra reference to the vnode for the duration to
 1937          * make sure it doesn't go away before we are finished.
 1938          */
 1939         STAILQ_INIT(&locks);
 1940         VI_LOCK(vp);
 1941         ls = vp->v_lockf;
 1942         if (!ls) {
 1943                 VI_UNLOCK(vp);
 1944                 return (0);
 1945         }
 1946         MPASS(ls->ls_threads >= 0);
 1947         ls->ls_threads++;
 1948         VI_UNLOCK(vp);
 1949 
 1950         sx_xlock(&ls->ls_lock);
 1951         LIST_FOREACH(lf, &ls->ls_active, lf_link) {
 1952                 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
 1953                     M_WAITOK);
 1954                 ldesc->vp = lf->lf_vnode;
 1955                 vref(ldesc->vp);
 1956                 ldesc->fl.l_start = lf->lf_start;
 1957                 if (lf->lf_end == OFF_MAX)
 1958                         ldesc->fl.l_len = 0;
 1959                 else
 1960                         ldesc->fl.l_len =
 1961                                 lf->lf_end - lf->lf_start + 1;
 1962                 ldesc->fl.l_whence = SEEK_SET;
 1963                 ldesc->fl.l_type = F_UNLCK;
 1964                 ldesc->fl.l_pid = lf->lf_owner->lo_pid;
 1965                 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
 1966                 STAILQ_INSERT_TAIL(&locks, ldesc, link);
 1967         }
 1968         sx_xunlock(&ls->ls_lock);
 1969         VI_LOCK(vp);
 1970         MPASS(ls->ls_threads > 0);
 1971         ls->ls_threads--;
 1972         wakeup(ls);
 1973         VI_UNLOCK(vp);
 1974 
 1975         /*
 1976          * Call the iterator function for each lock in turn. If the
 1977          * iterator returns an error code, just free the rest of the
 1978          * lockdesc structures.
 1979          */
 1980         error = 0;
 1981         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
 1982                 STAILQ_REMOVE_HEAD(&locks, link);
 1983                 if (!error)
 1984                         error = fn(ldesc->vp, &ldesc->fl, arg);
 1985                 vrele(ldesc->vp);
 1986                 free(ldesc, M_LOCKF);
 1987         }
 1988 
 1989         return (error);
 1990 }
 1991 
 1992 static int
 1993 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
 1994 {
 1995 
 1996         VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
 1997         return (0);
 1998 }
 1999 
 2000 void
 2001 lf_clearremotesys(int sysid)
 2002 {
 2003 
 2004         KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
 2005         lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
 2006 }
 2007 
 2008 int
 2009 lf_countlocks(int sysid)
 2010 {
 2011         int i;
 2012         struct lock_owner *lo;
 2013         int count;
 2014 
 2015         count = 0;
 2016         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++) {
 2017                 sx_xlock(&lf_lock_owners[i].lock);
 2018                 LIST_FOREACH(lo, &lf_lock_owners[i].list, lo_link)
 2019                         if (lo->lo_sysid == sysid)
 2020                                 count += lo->lo_refs;
 2021                 sx_xunlock(&lf_lock_owners[i].lock);
 2022         }
 2023 
 2024         return (count);
 2025 }
 2026 
 2027 #ifdef LOCKF_DEBUG
 2028 
 2029 /*
 2030  * Return non-zero if y is reachable from x using a brute force
 2031  * search. If reachable and path is non-null, return the route taken
 2032  * in path.
 2033  */
 2034 static int
 2035 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
 2036     struct owner_vertex_list *path)
 2037 {
 2038         struct owner_edge *e;
 2039 
 2040         if (x == y) {
 2041                 if (path)
 2042                         TAILQ_INSERT_HEAD(path, x, v_link);
 2043                 return 1;
 2044         }
 2045 
 2046         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
 2047                 if (graph_reaches(e->e_to, y, path)) {
 2048                         if (path)
 2049                                 TAILQ_INSERT_HEAD(path, x, v_link);
 2050                         return 1;
 2051                 }
 2052         }
 2053         return 0;
 2054 }
 2055 
 2056 /*
 2057  * Perform consistency checks on the graph. Make sure the values of
 2058  * v_order are correct. If checkorder is non-zero, check no vertex can
 2059  * reach any other vertex with a smaller order.
 2060  */
 2061 static void
 2062 graph_check(struct owner_graph *g, int checkorder)
 2063 {
 2064         int i, j;
 2065 
 2066         for (i = 0; i < g->g_size; i++) {
 2067                 if (!g->g_vertices[i]->v_owner)
 2068                         continue;
 2069                 KASSERT(g->g_vertices[i]->v_order == i,
 2070                     ("lock graph vertices disordered"));
 2071                 if (checkorder) {
 2072                         for (j = 0; j < i; j++) {
 2073                                 if (!g->g_vertices[j]->v_owner)
 2074                                         continue;
 2075                                 KASSERT(!graph_reaches(g->g_vertices[i],
 2076                                         g->g_vertices[j], NULL),
 2077                                     ("lock graph vertices disordered"));
 2078                         }
 2079                 }
 2080         }
 2081 }
 2082 
 2083 static void
 2084 graph_print_vertices(struct owner_vertex_list *set)
 2085 {
 2086         struct owner_vertex *v;
 2087 
 2088         printf("{ ");
 2089         TAILQ_FOREACH(v, set, v_link) {
 2090                 printf("%d:", v->v_order);
 2091                 lf_print_owner(v->v_owner);
 2092                 if (TAILQ_NEXT(v, v_link))
 2093                         printf(", ");
 2094         }
 2095         printf(" }\n");
 2096 }
 2097 
 2098 #endif
 2099 
 2100 /*
 2101  * Calculate the sub-set of vertices v from the affected region [y..x]
 2102  * where v is reachable from y. Return -1 if a loop was detected
 2103  * (i.e. x is reachable from y, otherwise the number of vertices in
 2104  * this subset.
 2105  */
 2106 static int
 2107 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
 2108     struct owner_vertex *y, struct owner_vertex_list *delta)
 2109 {
 2110         uint32_t gen;
 2111         struct owner_vertex *v;
 2112         struct owner_edge *e;
 2113         int n;
 2114 
 2115         /*
 2116          * We start with a set containing just y. Then for each vertex
 2117          * v in the set so far unprocessed, we add each vertex that v
 2118          * has an out-edge to and that is within the affected region
 2119          * [y..x]. If we see the vertex x on our travels, stop
 2120          * immediately.
 2121          */
 2122         TAILQ_INIT(delta);
 2123         TAILQ_INSERT_TAIL(delta, y, v_link);
 2124         v = y;
 2125         n = 1;
 2126         gen = g->g_gen;
 2127         while (v) {
 2128                 LIST_FOREACH(e, &v->v_outedges, e_outlink) {
 2129                         if (e->e_to == x)
 2130                                 return -1;
 2131                         if (e->e_to->v_order < x->v_order
 2132                             && e->e_to->v_gen != gen) {
 2133                                 e->e_to->v_gen = gen;
 2134                                 TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
 2135                                 n++;
 2136                         }
 2137                 }
 2138                 v = TAILQ_NEXT(v, v_link);
 2139         }
 2140 
 2141         return (n);
 2142 }
 2143 
 2144 /*
 2145  * Calculate the sub-set of vertices v from the affected region [y..x]
 2146  * where v reaches x. Return the number of vertices in this subset.
 2147  */
 2148 static int
 2149 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
 2150     struct owner_vertex *y, struct owner_vertex_list *delta)
 2151 {
 2152         uint32_t gen;
 2153         struct owner_vertex *v;
 2154         struct owner_edge *e;
 2155         int n;
 2156 
 2157         /*
 2158          * We start with a set containing just x. Then for each vertex
 2159          * v in the set so far unprocessed, we add each vertex that v
 2160          * has an in-edge from and that is within the affected region
 2161          * [y..x].
 2162          */
 2163         TAILQ_INIT(delta);
 2164         TAILQ_INSERT_TAIL(delta, x, v_link);
 2165         v = x;
 2166         n = 1;
 2167         gen = g->g_gen;
 2168         while (v) {
 2169                 LIST_FOREACH(e, &v->v_inedges, e_inlink) {
 2170                         if (e->e_from->v_order > y->v_order
 2171                             && e->e_from->v_gen != gen) {
 2172                                 e->e_from->v_gen = gen;
 2173                                 TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
 2174                                 n++;
 2175                         }
 2176                 }
 2177                 v = TAILQ_PREV(v, owner_vertex_list, v_link);
 2178         }
 2179 
 2180         return (n);
 2181 }
 2182 
 2183 static int
 2184 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
 2185 {
 2186         struct owner_vertex *v;
 2187         int i, j;
 2188 
 2189         TAILQ_FOREACH(v, set, v_link) {
 2190                 for (i = n;
 2191                      i > 0 && indices[i - 1] > v->v_order; i--)
 2192                         ;
 2193                 for (j = n - 1; j >= i; j--)
 2194                         indices[j + 1] = indices[j];
 2195                 indices[i] = v->v_order;
 2196                 n++;
 2197         }
 2198 
 2199         return (n);
 2200 }
 2201 
 2202 static int
 2203 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
 2204     struct owner_vertex_list *set)
 2205 {
 2206         struct owner_vertex *v, *vlowest;
 2207 
 2208         while (!TAILQ_EMPTY(set)) {
 2209                 vlowest = NULL;
 2210                 TAILQ_FOREACH(v, set, v_link) {
 2211                         if (!vlowest || v->v_order < vlowest->v_order)
 2212                                 vlowest = v;
 2213                 }
 2214                 TAILQ_REMOVE(set, vlowest, v_link);
 2215                 vlowest->v_order = indices[nextunused];
 2216                 g->g_vertices[vlowest->v_order] = vlowest;
 2217                 nextunused++;
 2218         }
 2219 
 2220         return (nextunused);
 2221 }
 2222 
 2223 static int
 2224 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
 2225     struct owner_vertex *y)
 2226 {
 2227         struct owner_edge *e;
 2228         struct owner_vertex_list deltaF, deltaB;
 2229         int nF, n, vi, i;
 2230         int *indices;
 2231         int nB __unused;
 2232 
 2233         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
 2234 
 2235         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
 2236                 if (e->e_to == y) {
 2237                         e->e_refs++;
 2238                         return (0);
 2239                 }
 2240         }
 2241 
 2242 #ifdef LOCKF_DEBUG
 2243         if (lockf_debug & 8) {
 2244                 printf("adding edge %d:", x->v_order);
 2245                 lf_print_owner(x->v_owner);
 2246                 printf(" -> %d:", y->v_order);
 2247                 lf_print_owner(y->v_owner);
 2248                 printf("\n");
 2249         }
 2250 #endif
 2251         if (y->v_order < x->v_order) {
 2252                 /*
 2253                  * The new edge violates the order. First find the set
 2254                  * of affected vertices reachable from y (deltaF) and
 2255                  * the set of affect vertices affected that reach x
 2256                  * (deltaB), using the graph generation number to
 2257                  * detect whether we have visited a given vertex
 2258                  * already. We re-order the graph so that each vertex
 2259                  * in deltaB appears before each vertex in deltaF.
 2260                  *
 2261                  * If x is a member of deltaF, then the new edge would
 2262                  * create a cycle. Otherwise, we may assume that
 2263                  * deltaF and deltaB are disjoint.
 2264                  */
 2265                 g->g_gen++;
 2266                 if (g->g_gen == 0) {
 2267                         /*
 2268                          * Generation wrap.
 2269                          */
 2270                         for (vi = 0; vi < g->g_size; vi++) {
 2271                                 g->g_vertices[vi]->v_gen = 0;
 2272                         }
 2273                         g->g_gen++;
 2274                 }
 2275                 nF = graph_delta_forward(g, x, y, &deltaF);
 2276                 if (nF < 0) {
 2277 #ifdef LOCKF_DEBUG
 2278                         if (lockf_debug & 8) {
 2279                                 struct owner_vertex_list path;
 2280                                 printf("deadlock: ");
 2281                                 TAILQ_INIT(&path);
 2282                                 graph_reaches(y, x, &path);
 2283                                 graph_print_vertices(&path);
 2284                         }
 2285 #endif
 2286                         return (EDEADLK);
 2287                 }
 2288 
 2289 #ifdef LOCKF_DEBUG
 2290                 if (lockf_debug & 8) {
 2291                         printf("re-ordering graph vertices\n");
 2292                         printf("deltaF = ");
 2293                         graph_print_vertices(&deltaF);
 2294                 }
 2295 #endif
 2296 
 2297                 nB = graph_delta_backward(g, x, y, &deltaB);
 2298 
 2299 #ifdef LOCKF_DEBUG
 2300                 if (lockf_debug & 8) {
 2301                         printf("deltaB = ");
 2302                         graph_print_vertices(&deltaB);
 2303                 }
 2304 #endif
 2305 
 2306                 /*
 2307                  * We first build a set of vertex indices (vertex
 2308                  * order values) that we may use, then we re-assign
 2309                  * orders first to those vertices in deltaB, then to
 2310                  * deltaF. Note that the contents of deltaF and deltaB
 2311                  * may be partially disordered - we perform an
 2312                  * insertion sort while building our index set.
 2313                  */
 2314                 indices = g->g_indexbuf;
 2315                 n = graph_add_indices(indices, 0, &deltaF);
 2316                 graph_add_indices(indices, n, &deltaB);
 2317 
 2318                 /*
 2319                  * We must also be sure to maintain the relative
 2320                  * ordering of deltaF and deltaB when re-assigning
 2321                  * vertices. We do this by iteratively removing the
 2322                  * lowest ordered element from the set and assigning
 2323                  * it the next value from our new ordering.
 2324                  */
 2325                 i = graph_assign_indices(g, indices, 0, &deltaB);
 2326                 graph_assign_indices(g, indices, i, &deltaF);
 2327 
 2328 #ifdef LOCKF_DEBUG
 2329                 if (lockf_debug & 8) {
 2330                         struct owner_vertex_list set;
 2331                         TAILQ_INIT(&set);
 2332                         for (i = 0; i < nB + nF; i++)
 2333                                 TAILQ_INSERT_TAIL(&set,
 2334                                     g->g_vertices[indices[i]], v_link);
 2335                         printf("new ordering = ");
 2336                         graph_print_vertices(&set);
 2337                 }
 2338 #endif
 2339         }
 2340 
 2341         KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
 2342 
 2343 #ifdef LOCKF_DEBUG
 2344         if (lockf_debug & 8) {
 2345                 graph_check(g, TRUE);
 2346         }
 2347 #endif
 2348 
 2349         e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
 2350 
 2351         LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
 2352         LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
 2353         e->e_refs = 1;
 2354         e->e_from = x;
 2355         e->e_to = y;
 2356 
 2357         return (0);
 2358 }
 2359 
 2360 /*
 2361  * Remove an edge x->y from the graph.
 2362  */
 2363 static void
 2364 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
 2365     struct owner_vertex *y)
 2366 {
 2367         struct owner_edge *e;
 2368 
 2369         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
 2370 
 2371         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
 2372                 if (e->e_to == y)
 2373                         break;
 2374         }
 2375         KASSERT(e, ("Removing non-existent edge from deadlock graph"));
 2376 
 2377         e->e_refs--;
 2378         if (e->e_refs == 0) {
 2379 #ifdef LOCKF_DEBUG
 2380                 if (lockf_debug & 8) {
 2381                         printf("removing edge %d:", x->v_order);
 2382                         lf_print_owner(x->v_owner);
 2383                         printf(" -> %d:", y->v_order);
 2384                         lf_print_owner(y->v_owner);
 2385                         printf("\n");
 2386                 }
 2387 #endif
 2388                 LIST_REMOVE(e, e_outlink);
 2389                 LIST_REMOVE(e, e_inlink);
 2390                 free(e, M_LOCKF);
 2391         }
 2392 }
 2393 
 2394 /*
 2395  * Allocate a vertex from the free list. Return ENOMEM if there are
 2396  * none.
 2397  */
 2398 static struct owner_vertex *
 2399 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
 2400 {
 2401         struct owner_vertex *v;
 2402 
 2403         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
 2404 
 2405         v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
 2406         if (g->g_size == g->g_space) {
 2407                 g->g_vertices = realloc(g->g_vertices,
 2408                     2 * g->g_space * sizeof(struct owner_vertex *),
 2409                     M_LOCKF, M_WAITOK);
 2410                 free(g->g_indexbuf, M_LOCKF);
 2411                 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
 2412                     M_LOCKF, M_WAITOK);
 2413                 g->g_space = 2 * g->g_space;
 2414         }
 2415         v->v_order = g->g_size;
 2416         v->v_gen = g->g_gen;
 2417         g->g_vertices[g->g_size] = v;
 2418         g->g_size++;
 2419 
 2420         LIST_INIT(&v->v_outedges);
 2421         LIST_INIT(&v->v_inedges);
 2422         v->v_owner = lo;
 2423 
 2424         return (v);
 2425 }
 2426 
 2427 static void
 2428 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
 2429 {
 2430         struct owner_vertex *w;
 2431         int i;
 2432 
 2433         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
 2434 
 2435         KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
 2436         KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
 2437 
 2438         /*
 2439          * Remove from the graph's array and close up the gap,
 2440          * renumbering the other vertices.
 2441          */
 2442         for (i = v->v_order + 1; i < g->g_size; i++) {
 2443                 w = g->g_vertices[i];
 2444                 w->v_order--;
 2445                 g->g_vertices[i - 1] = w;
 2446         }
 2447         g->g_size--;
 2448 
 2449         free(v, M_LOCKF);
 2450 }
 2451 
 2452 static struct owner_graph *
 2453 graph_init(struct owner_graph *g)
 2454 {
 2455 
 2456         g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
 2457             M_LOCKF, M_WAITOK);
 2458         g->g_size = 0;
 2459         g->g_space = 10;
 2460         g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
 2461         g->g_gen = 0;
 2462 
 2463         return (g);
 2464 }
 2465 
 2466 struct kinfo_lockf_linked {
 2467         struct kinfo_lockf kl;
 2468         struct vnode *vp;
 2469         STAILQ_ENTRY(kinfo_lockf_linked) link;
 2470 };
 2471 
 2472 int
 2473 vfs_report_lockf(struct mount *mp, struct sbuf *sb)
 2474 {
 2475         struct lockf *ls;
 2476         struct lockf_entry *lf;
 2477         struct kinfo_lockf_linked *klf;
 2478         struct vnode *vp;
 2479         struct ucred *ucred;
 2480         char *fullpath, *freepath;
 2481         struct stat stt;
 2482         STAILQ_HEAD(, kinfo_lockf_linked) locks;
 2483         int error, gerror;
 2484 
 2485         STAILQ_INIT(&locks);
 2486         sx_slock(&lf_lock_states_lock);
 2487         LIST_FOREACH(ls, &lf_lock_states, ls_link) {
 2488                 sx_slock(&ls->ls_lock);
 2489                 LIST_FOREACH(lf, &ls->ls_active, lf_link) {
 2490                         vp = lf->lf_vnode;
 2491                         if (VN_IS_DOOMED(vp) || vp->v_mount != mp)
 2492                                 continue;
 2493                         vhold(vp);
 2494                         klf = malloc(sizeof(struct kinfo_lockf_linked),
 2495                             M_LOCKF, M_WAITOK | M_ZERO);
 2496                         klf->vp = vp;
 2497                         klf->kl.kl_structsize = sizeof(struct kinfo_lockf);
 2498                         klf->kl.kl_start = lf->lf_start;
 2499                         klf->kl.kl_len = lf->lf_end == OFF_MAX ? 0 :
 2500                             lf->lf_end - lf->lf_start + 1;
 2501                         klf->kl.kl_rw = lf->lf_type == F_RDLCK ?
 2502                             KLOCKF_RW_READ : KLOCKF_RW_WRITE;
 2503                         if (lf->lf_owner->lo_sysid != 0) {
 2504                                 klf->kl.kl_pid = lf->lf_owner->lo_pid;
 2505                                 klf->kl.kl_sysid = lf->lf_owner->lo_sysid;
 2506                                 klf->kl.kl_type = KLOCKF_TYPE_REMOTE;
 2507                         } else if (lf->lf_owner->lo_pid == -1) {
 2508                                 klf->kl.kl_pid = -1;
 2509                                 klf->kl.kl_sysid = 0;
 2510                                 klf->kl.kl_type = KLOCKF_TYPE_FLOCK;
 2511                         } else {
 2512                                 klf->kl.kl_pid = lf->lf_owner->lo_pid;
 2513                                 klf->kl.kl_sysid = 0;
 2514                                 klf->kl.kl_type = KLOCKF_TYPE_PID;
 2515                         }
 2516                         STAILQ_INSERT_TAIL(&locks, klf, link);
 2517                 }
 2518                 sx_sunlock(&ls->ls_lock);
 2519         }
 2520         sx_sunlock(&lf_lock_states_lock);
 2521 
 2522         gerror = 0;
 2523         ucred = curthread->td_ucred;
 2524         while ((klf = STAILQ_FIRST(&locks)) != NULL) {
 2525                 STAILQ_REMOVE_HEAD(&locks, link);
 2526                 vp = klf->vp;
 2527                 if (gerror == 0 && vn_lock(vp, LK_SHARED) == 0) {
 2528                         error = prison_canseemount(ucred, vp->v_mount);
 2529                         if (error == 0)
 2530                                 error = VOP_STAT(vp, &stt, ucred, NOCRED,
 2531                                     curthread);
 2532                         VOP_UNLOCK(vp);
 2533                         if (error == 0) {
 2534                                 klf->kl.kl_file_fsid = stt.st_dev;
 2535                                 klf->kl.kl_file_rdev = stt.st_rdev;
 2536                                 klf->kl.kl_file_fileid = stt.st_ino;
 2537                                 freepath = NULL;
 2538                                 fullpath = "-";
 2539                                 error = vn_fullpath(vp, &fullpath, &freepath);
 2540                                 if (error == 0)
 2541                                         strlcpy(klf->kl.kl_path, fullpath,
 2542                                             sizeof(klf->kl.kl_path));
 2543                                 free(freepath, M_TEMP);
 2544                                 if (sbuf_bcat(sb, &klf->kl,
 2545                                     klf->kl.kl_structsize) != 0) {
 2546                                         gerror = sbuf_error(sb);
 2547                                 }
 2548                         }
 2549                 }
 2550                 vdrop(vp);
 2551                 free(klf, M_LOCKF);
 2552         }
 2553 
 2554         return (gerror);
 2555 }
 2556 
 2557 static int
 2558 sysctl_kern_lockf_run(struct sbuf *sb)
 2559 {
 2560         struct mount *mp;
 2561         int error;
 2562 
 2563         error = 0;
 2564         mtx_lock(&mountlist_mtx);
 2565         TAILQ_FOREACH(mp, &mountlist, mnt_list) {
 2566                 error = vfs_busy(mp, MBF_MNTLSTLOCK);
 2567                 if (error != 0)
 2568                         continue;
 2569                 error = mp->mnt_op->vfs_report_lockf(mp, sb);
 2570                 mtx_lock(&mountlist_mtx);
 2571                 vfs_unbusy(mp);
 2572                 if (error != 0)
 2573                         break;
 2574         }
 2575         mtx_unlock(&mountlist_mtx);
 2576         return (error);
 2577 }
 2578 
 2579 static int
 2580 sysctl_kern_lockf(SYSCTL_HANDLER_ARGS)
 2581 {
 2582         struct sbuf sb;
 2583         int error, error2;
 2584 
 2585         sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_lockf) * 5, req);
 2586         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 2587         error = sysctl_kern_lockf_run(&sb);
 2588         error2 = sbuf_finish(&sb);
 2589         sbuf_delete(&sb);
 2590         return (error != 0 ? error : error2);
 2591 }
 2592 SYSCTL_PROC(_kern, KERN_LOCKF, lockf,
 2593     CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
 2594     0, 0, sysctl_kern_lockf, "S,lockf",
 2595     "Advisory locks table");
 2596 
 2597 #ifdef LOCKF_DEBUG
 2598 /*
 2599  * Print description of a lock owner
 2600  */
 2601 static void
 2602 lf_print_owner(struct lock_owner *lo)
 2603 {
 2604 
 2605         if (lo->lo_flags & F_REMOTE) {
 2606                 printf("remote pid %d, system %d",
 2607                     lo->lo_pid, lo->lo_sysid);
 2608         } else if (lo->lo_flags & F_FLOCK) {
 2609                 printf("file %p", lo->lo_id);
 2610         } else {
 2611                 printf("local pid %d", lo->lo_pid);
 2612         }
 2613 }
 2614 
 2615 /*
 2616  * Print out a lock.
 2617  */
 2618 static void
 2619 lf_print(char *tag, struct lockf_entry *lock)
 2620 {
 2621 
 2622         printf("%s: lock %p for ", tag, (void *)lock);
 2623         lf_print_owner(lock->lf_owner);
 2624         printf("\nvnode %p", lock->lf_vnode);
 2625         VOP_PRINT(lock->lf_vnode);
 2626         printf(" %s, start %jd, end ",
 2627             lock->lf_type == F_RDLCK ? "shared" :
 2628             lock->lf_type == F_WRLCK ? "exclusive" :
 2629             lock->lf_type == F_UNLCK ? "unlock" : "unknown",
 2630             (intmax_t)lock->lf_start);
 2631         if (lock->lf_end == OFF_MAX)
 2632                 printf("EOF");
 2633         else
 2634                 printf("%jd", (intmax_t)lock->lf_end);
 2635         if (!LIST_EMPTY(&lock->lf_outedges))
 2636                 printf(" block %p\n",
 2637                     (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
 2638         else
 2639                 printf("\n");
 2640 }
 2641 
 2642 static void
 2643 lf_printlist(char *tag, struct lockf_entry *lock)
 2644 {
 2645         struct lockf_entry *lf, *blk;
 2646         struct lockf_edge *e;
 2647 
 2648         printf("%s: Lock list for vnode %p:\n", tag, lock->lf_vnode);
 2649         LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
 2650                 printf("\tlock %p for ",(void *)lf);
 2651                 lf_print_owner(lock->lf_owner);
 2652                 printf(", %s, start %jd, end %jd",
 2653                     lf->lf_type == F_RDLCK ? "shared" :
 2654                     lf->lf_type == F_WRLCK ? "exclusive" :
 2655                     lf->lf_type == F_UNLCK ? "unlock" :
 2656                     "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
 2657                 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
 2658                         blk = e->le_to;
 2659                         printf("\n\t\tlock request %p for ", (void *)blk);
 2660                         lf_print_owner(blk->lf_owner);
 2661                         printf(", %s, start %jd, end %jd",
 2662                             blk->lf_type == F_RDLCK ? "shared" :
 2663                             blk->lf_type == F_WRLCK ? "exclusive" :
 2664                             blk->lf_type == F_UNLCK ? "unlock" :
 2665                             "unknown", (intmax_t)blk->lf_start,
 2666                             (intmax_t)blk->lf_end);
 2667                         if (!LIST_EMPTY(&blk->lf_inedges))
 2668                                 panic("lf_printlist: bad list");
 2669                 }
 2670                 printf("\n");
 2671         }
 2672 }
 2673 #endif /* LOCKF_DEBUG */

Cache object: 1378e1b7540a2cdb444f90bd0f2366c0


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.