The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_lockf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
    3  * Authors: Doug Rabson <dfr@rabson.org>
    4  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  */
   27 /*-
   28  * Copyright (c) 1982, 1986, 1989, 1993
   29  *      The Regents of the University of California.  All rights reserved.
   30  *
   31  * This code is derived from software contributed to Berkeley by
   32  * Scooter Morris at Genentech Inc.
   33  *
   34  * Redistribution and use in source and binary forms, with or without
   35  * modification, are permitted provided that the following conditions
   36  * are met:
   37  * 1. Redistributions of source code must retain the above copyright
   38  *    notice, this list of conditions and the following disclaimer.
   39  * 2. Redistributions in binary form must reproduce the above copyright
   40  *    notice, this list of conditions and the following disclaimer in the
   41  *    documentation and/or other materials provided with the distribution.
   42  * 4. Neither the name of the University nor the names of its contributors
   43  *    may be used to endorse or promote products derived from this software
   44  *    without specific prior written permission.
   45  *
   46  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   56  * SUCH DAMAGE.
   57  *
   58  *      @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94
   59  */
   60 
   61 #include <sys/cdefs.h>
   62 __FBSDID("$FreeBSD$");
   63 
   64 #include "opt_debug_lockf.h"
   65 
   66 #include <sys/param.h>
   67 #include <sys/systm.h>
   68 #include <sys/hash.h>
   69 #include <sys/kernel.h>
   70 #include <sys/limits.h>
   71 #include <sys/lock.h>
   72 #include <sys/mount.h>
   73 #include <sys/mutex.h>
   74 #include <sys/proc.h>
   75 #include <sys/sx.h>
   76 #include <sys/unistd.h>
   77 #include <sys/vnode.h>
   78 #include <sys/malloc.h>
   79 #include <sys/fcntl.h>
   80 #include <sys/lockf.h>
   81 #include <sys/taskqueue.h>
   82 
   83 #ifdef LOCKF_DEBUG
   84 #include <sys/sysctl.h>
   85 
   86 #include <ufs/ufs/quota.h>
   87 #include <ufs/ufs/inode.h>
   88 
   89 static int      lockf_debug = 0; /* control debug output */
   90 SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
   91 #endif
   92 
   93 MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
   94 
   95 struct owner_edge;
   96 struct owner_vertex;
   97 struct owner_vertex_list;
   98 struct owner_graph;
   99 
  100 #define NOLOCKF (struct lockf_entry *)0
  101 #define SELF    0x1
  102 #define OTHERS  0x2
  103 static void      lf_init(void *);
  104 static int       lf_hash_owner(caddr_t, struct flock *, int);
  105 static int       lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
  106     int);
  107 static struct lockf_entry *
  108                  lf_alloc_lock(struct lock_owner *);
  109 static void      lf_free_lock(struct lockf_entry *);
  110 static int       lf_clearlock(struct lockf *, struct lockf_entry *);
  111 static int       lf_overlaps(struct lockf_entry *, struct lockf_entry *);
  112 static int       lf_blocks(struct lockf_entry *, struct lockf_entry *);
  113 static void      lf_free_edge(struct lockf_edge *);
  114 static struct lockf_edge *
  115                  lf_alloc_edge(void);
  116 static void      lf_alloc_vertex(struct lockf_entry *);
  117 static int       lf_add_edge(struct lockf_entry *, struct lockf_entry *);
  118 static void      lf_remove_edge(struct lockf_edge *);
  119 static void      lf_remove_outgoing(struct lockf_entry *);
  120 static void      lf_remove_incoming(struct lockf_entry *);
  121 static int       lf_add_outgoing(struct lockf *, struct lockf_entry *);
  122 static int       lf_add_incoming(struct lockf *, struct lockf_entry *);
  123 static int       lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
  124     int);
  125 static struct lockf_entry *
  126                  lf_getblock(struct lockf *, struct lockf_entry *);
  127 static int       lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
  128 static void      lf_insert_lock(struct lockf *, struct lockf_entry *);
  129 static void      lf_wakeup_lock(struct lockf *, struct lockf_entry *);
  130 static void      lf_update_dependancies(struct lockf *, struct lockf_entry *,
  131     int all, struct lockf_entry_list *);
  132 static void      lf_set_start(struct lockf *, struct lockf_entry *, off_t,
  133         struct lockf_entry_list*);
  134 static void      lf_set_end(struct lockf *, struct lockf_entry *, off_t,
  135         struct lockf_entry_list*);
  136 static int       lf_setlock(struct lockf *, struct lockf_entry *,
  137     struct vnode *, void **cookiep);
  138 static int       lf_cancel(struct lockf *, struct lockf_entry *, void *);
  139 static void      lf_split(struct lockf *, struct lockf_entry *,
  140     struct lockf_entry *, struct lockf_entry_list *);
  141 #ifdef LOCKF_DEBUG
  142 static int       graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
  143     struct owner_vertex_list *path);
  144 static void      graph_check(struct owner_graph *g, int checkorder);
  145 static void      graph_print_vertices(struct owner_vertex_list *set);
  146 #endif
  147 static int       graph_delta_forward(struct owner_graph *g,
  148     struct owner_vertex *x, struct owner_vertex *y,
  149     struct owner_vertex_list *delta);
  150 static int       graph_delta_backward(struct owner_graph *g,
  151     struct owner_vertex *x, struct owner_vertex *y,
  152     struct owner_vertex_list *delta);
  153 static int       graph_add_indices(int *indices, int n,
  154     struct owner_vertex_list *set);
  155 static int       graph_assign_indices(struct owner_graph *g, int *indices,
  156     int nextunused, struct owner_vertex_list *set);
  157 static int       graph_add_edge(struct owner_graph *g,
  158     struct owner_vertex *x, struct owner_vertex *y);
  159 static void      graph_remove_edge(struct owner_graph *g,
  160     struct owner_vertex *x, struct owner_vertex *y);
  161 static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
  162     struct lock_owner *lo);
  163 static void      graph_free_vertex(struct owner_graph *g,
  164     struct owner_vertex *v);
  165 static struct owner_graph * graph_init(struct owner_graph *g);
  166 #ifdef LOCKF_DEBUG
  167 static void      lf_print(char *, struct lockf_entry *);
  168 static void      lf_printlist(char *, struct lockf_entry *);
  169 static void      lf_print_owner(struct lock_owner *);
  170 #endif
  171 
  172 /*
  173  * This structure is used to keep track of both local and remote lock
  174  * owners. The lf_owner field of the struct lockf_entry points back at
  175  * the lock owner structure. Each possible lock owner (local proc for
  176  * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
  177  * pair for remote locks) is represented by a unique instance of
  178  * struct lock_owner.
  179  *
  180  * If a lock owner has a lock that blocks some other lock or a lock
  181  * that is waiting for some other lock, it also has a vertex in the
  182  * owner_graph below.
  183  *
  184  * Locks:
  185  * (s)          locked by state->ls_lock
  186  * (S)          locked by lf_lock_states_lock
  187  * (l)          locked by lf_lock_owners_lock
  188  * (g)          locked by lf_owner_graph_lock
  189  * (c)          const until freeing
  190  */
  191 #define LOCK_OWNER_HASH_SIZE    256
  192 
  193 struct lock_owner {
  194         LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
  195         int     lo_refs;            /* (l) Number of locks referring to this */
  196         int     lo_flags;           /* (c) Flags passwd to lf_advlock */
  197         caddr_t lo_id;              /* (c) Id value passed to lf_advlock */
  198         pid_t   lo_pid;             /* (c) Process Id of the lock owner */
  199         int     lo_sysid;           /* (c) System Id of the lock owner */
  200         struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
  201 };
  202 
  203 LIST_HEAD(lock_owner_list, lock_owner);
  204 
  205 static struct sx                lf_lock_states_lock;
  206 static struct lockf_list        lf_lock_states; /* (S) */
  207 static struct sx                lf_lock_owners_lock;
  208 static struct lock_owner_list   lf_lock_owners[LOCK_OWNER_HASH_SIZE]; /* (l) */
  209 
  210 /*
  211  * Structures for deadlock detection.
  212  *
  213  * We have two types of directed graph, the first is the set of locks,
  214  * both active and pending on a vnode. Within this graph, active locks
  215  * are terminal nodes in the graph (i.e. have no out-going
  216  * edges). Pending locks have out-going edges to each blocking active
  217  * lock that prevents the lock from being granted and also to each
  218  * older pending lock that would block them if it was active. The
  219  * graph for each vnode is naturally acyclic; new edges are only ever
  220  * added to or from new nodes (either new pending locks which only add
  221  * out-going edges or new active locks which only add in-coming edges)
  222  * therefore they cannot create loops in the lock graph.
  223  *
  224  * The second graph is a global graph of lock owners. Each lock owner
  225  * is a vertex in that graph and an edge is added to the graph
  226  * whenever an edge is added to a vnode graph, with end points
  227  * corresponding to owner of the new pending lock and the owner of the
  228  * lock upon which it waits. In order to prevent deadlock, we only add
  229  * an edge to this graph if the new edge would not create a cycle.
  230  * 
  231  * The lock owner graph is topologically sorted, i.e. if a node has
  232  * any outgoing edges, then it has an order strictly less than any
  233  * node to which it has an outgoing edge. We preserve this ordering
  234  * (and detect cycles) on edge insertion using Algorithm PK from the
  235  * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
  236  * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
  237  * No. 1.7)
  238  */
  239 struct owner_vertex;
  240 
  241 struct owner_edge {
  242         LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
  243         LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
  244         int             e_refs;           /* (g) number of times added */
  245         struct owner_vertex *e_from;      /* (c) out-going from here */
  246         struct owner_vertex *e_to;        /* (c) in-coming to here */
  247 };
  248 LIST_HEAD(owner_edge_list, owner_edge);
  249 
  250 struct owner_vertex {
  251         TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
  252         uint32_t        v_gen;            /* (g) workspace for edge insertion */
  253         int             v_order;          /* (g) order of vertex in graph */
  254         struct owner_edge_list v_outedges;/* (g) list of out-edges */
  255         struct owner_edge_list v_inedges; /* (g) list of in-edges */
  256         struct lock_owner *v_owner;       /* (c) corresponding lock owner */
  257 };
  258 TAILQ_HEAD(owner_vertex_list, owner_vertex);
  259 
  260 struct owner_graph {
  261         struct owner_vertex** g_vertices; /* (g) pointers to vertices */
  262         int             g_size;           /* (g) number of vertices */
  263         int             g_space;          /* (g) space allocated for vertices */
  264         int             *g_indexbuf;      /* (g) workspace for loop detection */
  265         uint32_t        g_gen;            /* (g) increment when re-ordering */
  266 };
  267 
  268 static struct sx                lf_owner_graph_lock;
  269 static struct owner_graph       lf_owner_graph;
  270 
  271 /*
  272  * Initialise various structures and locks.
  273  */
  274 static void
  275 lf_init(void *dummy)
  276 {
  277         int i;
  278 
  279         sx_init(&lf_lock_states_lock, "lock states lock");
  280         LIST_INIT(&lf_lock_states);
  281 
  282         sx_init(&lf_lock_owners_lock, "lock owners lock");
  283         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
  284                 LIST_INIT(&lf_lock_owners[i]);
  285 
  286         sx_init(&lf_owner_graph_lock, "owner graph lock");
  287         graph_init(&lf_owner_graph);
  288 }
  289 SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);
  290 
  291 /*
  292  * Generate a hash value for a lock owner.
  293  */
  294 static int
  295 lf_hash_owner(caddr_t id, struct flock *fl, int flags)
  296 {
  297         uint32_t h;
  298 
  299         if (flags & F_REMOTE) {
  300                 h = HASHSTEP(0, fl->l_pid);
  301                 h = HASHSTEP(h, fl->l_sysid);
  302         } else if (flags & F_FLOCK) {
  303                 h = ((uintptr_t) id) >> 7;
  304         } else {
  305                 struct proc *p = (struct proc *) id;
  306                 h = HASHSTEP(0, p->p_pid);
  307                 h = HASHSTEP(h, 0);
  308         }
  309 
  310         return (h % LOCK_OWNER_HASH_SIZE);
  311 }
  312 
  313 /*
  314  * Return true if a lock owner matches the details passed to
  315  * lf_advlock.
  316  */
  317 static int
  318 lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
  319     int flags)
  320 {
  321         if (flags & F_REMOTE) {
  322                 return lo->lo_pid == fl->l_pid
  323                         && lo->lo_sysid == fl->l_sysid;
  324         } else {
  325                 return lo->lo_id == id;
  326         }
  327 }
  328 
  329 static struct lockf_entry *
  330 lf_alloc_lock(struct lock_owner *lo)
  331 {
  332         struct lockf_entry *lf;
  333 
  334         lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);
  335 
  336 #ifdef LOCKF_DEBUG
  337         if (lockf_debug & 4)
  338                 printf("Allocated lock %p\n", lf);
  339 #endif
  340         if (lo) {
  341                 sx_xlock(&lf_lock_owners_lock);
  342                 lo->lo_refs++;
  343                 sx_xunlock(&lf_lock_owners_lock);
  344                 lf->lf_owner = lo;
  345         }
  346 
  347         return (lf);
  348 }
  349 
  350 static void
  351 lf_free_lock(struct lockf_entry *lock)
  352 {
  353         /*
  354          * Adjust the lock_owner reference count and
  355          * reclaim the entry if this is the last lock
  356          * for that owner.
  357          */
  358         struct lock_owner *lo = lock->lf_owner;
  359         if (lo) {
  360                 KASSERT(LIST_EMPTY(&lock->lf_outedges),
  361                     ("freeing lock with dependancies"));
  362                 KASSERT(LIST_EMPTY(&lock->lf_inedges),
  363                     ("freeing lock with dependants"));
  364                 sx_xlock(&lf_lock_owners_lock);
  365                 KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
  366                 lo->lo_refs--;
  367                 if (lo->lo_refs == 0) {
  368 #ifdef LOCKF_DEBUG
  369                         if (lockf_debug & 1)
  370                                 printf("lf_free_lock: freeing lock owner %p\n",
  371                                     lo);
  372 #endif
  373                         if (lo->lo_vertex) {
  374                                 sx_xlock(&lf_owner_graph_lock);
  375                                 graph_free_vertex(&lf_owner_graph,
  376                                     lo->lo_vertex);
  377                                 sx_xunlock(&lf_owner_graph_lock);
  378                         }
  379                         LIST_REMOVE(lo, lo_link);
  380                         free(lo, M_LOCKF);
  381 #ifdef LOCKF_DEBUG
  382                         if (lockf_debug & 4)
  383                                 printf("Freed lock owner %p\n", lo);
  384 #endif
  385                 }
  386                 sx_unlock(&lf_lock_owners_lock);
  387         }
  388         if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
  389                 vrele(lock->lf_vnode);
  390                 lock->lf_vnode = NULL;
  391         }
  392 #ifdef LOCKF_DEBUG
  393         if (lockf_debug & 4)
  394                 printf("Freed lock %p\n", lock);
  395 #endif
  396         free(lock, M_LOCKF);
  397 }
  398 
  399 /*
  400  * Advisory record locking support
  401  */
  402 int
  403 lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
  404     u_quad_t size)
  405 {
  406         struct lockf *state, *freestate = NULL;
  407         struct flock *fl = ap->a_fl;
  408         struct lockf_entry *lock;
  409         struct vnode *vp = ap->a_vp;
  410         caddr_t id = ap->a_id;
  411         int flags = ap->a_flags;
  412         int hash;
  413         struct lock_owner *lo;
  414         off_t start, end, oadd;
  415         int error;
  416 
  417         /*
  418          * Handle the F_UNLKSYS case first - no need to mess about
  419          * creating a lock owner for this one.
  420          */
  421         if (ap->a_op == F_UNLCKSYS) {
  422                 lf_clearremotesys(fl->l_sysid);
  423                 return (0);
  424         }
  425 
  426         /*
  427          * Convert the flock structure into a start and end.
  428          */
  429         switch (fl->l_whence) {
  430 
  431         case SEEK_SET:
  432         case SEEK_CUR:
  433                 /*
  434                  * Caller is responsible for adding any necessary offset
  435                  * when SEEK_CUR is used.
  436                  */
  437                 start = fl->l_start;
  438                 break;
  439 
  440         case SEEK_END:
  441                 if (size > OFF_MAX ||
  442                     (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
  443                         return (EOVERFLOW);
  444                 start = size + fl->l_start;
  445                 break;
  446 
  447         default:
  448                 return (EINVAL);
  449         }
  450         if (start < 0)
  451                 return (EINVAL);
  452         if (fl->l_len < 0) {
  453                 if (start == 0)
  454                         return (EINVAL);
  455                 end = start - 1;
  456                 start += fl->l_len;
  457                 if (start < 0)
  458                         return (EINVAL);
  459         } else if (fl->l_len == 0) {
  460                 end = OFF_MAX;
  461         } else {
  462                 oadd = fl->l_len - 1;
  463                 if (oadd > OFF_MAX - start)
  464                         return (EOVERFLOW);
  465                 end = start + oadd;
  466         }
  467         /*
  468          * Avoid the common case of unlocking when inode has no locks.
  469          */
  470         VI_LOCK(vp);
  471         if ((*statep) == NULL) {
  472                 if (ap->a_op != F_SETLK) {
  473                         fl->l_type = F_UNLCK;
  474                         VI_UNLOCK(vp);
  475                         return (0);
  476                 }
  477         }
  478         VI_UNLOCK(vp);
  479 
  480         /*
  481          * Map our arguments to an existing lock owner or create one
  482          * if this is the first time we have seen this owner.
  483          */
  484         hash = lf_hash_owner(id, fl, flags);
  485         sx_xlock(&lf_lock_owners_lock);
  486         LIST_FOREACH(lo, &lf_lock_owners[hash], lo_link)
  487                 if (lf_owner_matches(lo, id, fl, flags))
  488                         break;
  489         if (!lo) {
  490                 /*
  491                  * We initialise the lock with a reference
  492                  * count which matches the new lockf_entry
  493                  * structure created below.
  494                  */
  495                 lo = malloc(sizeof(struct lock_owner), M_LOCKF,
  496                     M_WAITOK|M_ZERO);
  497 #ifdef LOCKF_DEBUG
  498                 if (lockf_debug & 4)
  499                         printf("Allocated lock owner %p\n", lo);
  500 #endif
  501 
  502                 lo->lo_refs = 1;
  503                 lo->lo_flags = flags;
  504                 lo->lo_id = id;
  505                 if (flags & F_REMOTE) {
  506                         lo->lo_pid = fl->l_pid;
  507                         lo->lo_sysid = fl->l_sysid;
  508                 } else if (flags & F_FLOCK) {
  509                         lo->lo_pid = -1;
  510                         lo->lo_sysid = 0;
  511                 } else {
  512                         struct proc *p = (struct proc *) id;
  513                         lo->lo_pid = p->p_pid;
  514                         lo->lo_sysid = 0;
  515                 }
  516                 lo->lo_vertex = NULL;
  517 
  518 #ifdef LOCKF_DEBUG
  519                 if (lockf_debug & 1) {
  520                         printf("lf_advlockasync: new lock owner %p ", lo);
  521                         lf_print_owner(lo);
  522                         printf("\n");
  523                 }
  524 #endif
  525 
  526                 LIST_INSERT_HEAD(&lf_lock_owners[hash], lo, lo_link);
  527         } else {
  528                 /*
  529                  * We have seen this lock owner before, increase its
  530                  * reference count to account for the new lockf_entry
  531                  * structure we create below.
  532                  */
  533                 lo->lo_refs++;
  534         }
  535         sx_xunlock(&lf_lock_owners_lock);
  536 
  537         /*
  538          * Create the lockf structure. We initialise the lf_owner
  539          * field here instead of in lf_alloc_lock() to avoid paying
  540          * the lf_lock_owners_lock tax twice.
  541          */
  542         lock = lf_alloc_lock(NULL);
  543         lock->lf_start = start;
  544         lock->lf_end = end;
  545         lock->lf_owner = lo;
  546         lock->lf_vnode = vp;
  547         if (flags & F_REMOTE) {
  548                 /*
  549                  * For remote locks, the caller may release its ref to
  550                  * the vnode at any time - we have to ref it here to
  551                  * prevent it from being recycled unexpectedly.
  552                  */
  553                 vref(vp);
  554         }
  555 
  556         /*
  557          * XXX The problem is that VTOI is ufs specific, so it will
  558          * break LOCKF_DEBUG for all other FS's other than UFS because
  559          * it casts the vnode->data ptr to struct inode *.
  560          */
  561 /*      lock->lf_inode = VTOI(ap->a_vp); */
  562         lock->lf_inode = (struct inode *)0;
  563         lock->lf_type = fl->l_type;
  564         LIST_INIT(&lock->lf_outedges);
  565         LIST_INIT(&lock->lf_inedges);
  566         lock->lf_async_task = ap->a_task;
  567         lock->lf_flags = ap->a_flags;
  568 
  569         /*
  570          * Do the requested operation. First find our state structure
  571          * and create a new one if necessary - the caller's *statep
  572          * variable and the state's ls_threads count is protected by
  573          * the vnode interlock.
  574          */
  575         VI_LOCK(vp);
  576         if (vp->v_iflag & VI_DOOMED) {
  577                 VI_UNLOCK(vp);
  578                 lf_free_lock(lock);
  579                 return (ENOENT);
  580         }
  581 
  582         /*
  583          * Allocate a state structure if necessary.
  584          */
  585         state = *statep;
  586         if (state == NULL) {
  587                 struct lockf *ls;
  588 
  589                 VI_UNLOCK(vp);
  590 
  591                 ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
  592                 sx_init(&ls->ls_lock, "ls_lock");
  593                 LIST_INIT(&ls->ls_active);
  594                 LIST_INIT(&ls->ls_pending);
  595                 ls->ls_threads = 1;
  596 
  597                 sx_xlock(&lf_lock_states_lock);
  598                 LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
  599                 sx_xunlock(&lf_lock_states_lock);
  600 
  601                 /*
  602                  * Cope if we lost a race with some other thread while
  603                  * trying to allocate memory.
  604                  */
  605                 VI_LOCK(vp);
  606                 if (vp->v_iflag & VI_DOOMED) {
  607                         VI_UNLOCK(vp);
  608                         sx_xlock(&lf_lock_states_lock);
  609                         LIST_REMOVE(ls, ls_link);
  610                         sx_xunlock(&lf_lock_states_lock);
  611                         sx_destroy(&ls->ls_lock);
  612                         free(ls, M_LOCKF);
  613                         lf_free_lock(lock);
  614                         return (ENOENT);
  615                 }
  616                 if ((*statep) == NULL) {
  617                         state = *statep = ls;
  618                         VI_UNLOCK(vp);
  619                 } else {
  620                         state = *statep;
  621                         state->ls_threads++;
  622                         VI_UNLOCK(vp);
  623 
  624                         sx_xlock(&lf_lock_states_lock);
  625                         LIST_REMOVE(ls, ls_link);
  626                         sx_xunlock(&lf_lock_states_lock);
  627                         sx_destroy(&ls->ls_lock);
  628                         free(ls, M_LOCKF);
  629                 }
  630         } else {
  631                 state->ls_threads++;
  632                 VI_UNLOCK(vp);
  633         }
  634 
  635         sx_xlock(&state->ls_lock);
  636         switch(ap->a_op) {
  637         case F_SETLK:
  638                 error = lf_setlock(state, lock, vp, ap->a_cookiep);
  639                 break;
  640 
  641         case F_UNLCK:
  642                 error = lf_clearlock(state, lock);
  643                 lf_free_lock(lock);
  644                 break;
  645 
  646         case F_GETLK:
  647                 error = lf_getlock(state, lock, fl);
  648                 lf_free_lock(lock);
  649                 break;
  650 
  651         case F_CANCEL:
  652                 if (ap->a_cookiep)
  653                         error = lf_cancel(state, lock, *ap->a_cookiep);
  654                 else
  655                         error = EINVAL;
  656                 lf_free_lock(lock);
  657                 break;
  658 
  659         default:
  660                 lf_free_lock(lock);
  661                 error = EINVAL;
  662                 break;
  663         }
  664 
  665 #ifdef INVARIANTS
  666         /*
  667          * Check for some can't happen stuff. In this case, the active
  668          * lock list becoming disordered or containing mutually
  669          * blocking locks. We also check the pending list for locks
  670          * which should be active (i.e. have no out-going edges).
  671          */
  672         LIST_FOREACH(lock, &state->ls_active, lf_link) {
  673                 struct lockf_entry *lf;
  674                 if (LIST_NEXT(lock, lf_link))
  675                         KASSERT((lock->lf_start
  676                                 <= LIST_NEXT(lock, lf_link)->lf_start),
  677                             ("locks disordered"));
  678                 LIST_FOREACH(lf, &state->ls_active, lf_link) {
  679                         if (lock == lf)
  680                                 break;
  681                         KASSERT(!lf_blocks(lock, lf),
  682                             ("two conflicting active locks"));
  683                         if (lock->lf_owner == lf->lf_owner)
  684                                 KASSERT(!lf_overlaps(lock, lf),
  685                                     ("two overlapping locks from same owner"));
  686                 }
  687         }
  688         LIST_FOREACH(lock, &state->ls_pending, lf_link) {
  689                 KASSERT(!LIST_EMPTY(&lock->lf_outedges),
  690                     ("pending lock which should be active"));
  691         }
  692 #endif
  693         sx_xunlock(&state->ls_lock);
  694 
  695         /*
  696          * If we have removed the last active lock on the vnode and
  697          * this is the last thread that was in-progress, we can free
  698          * the state structure. We update the caller's pointer inside
  699          * the vnode interlock but call free outside.
  700          *
  701          * XXX alternatively, keep the state structure around until
  702          * the filesystem recycles - requires a callback from the
  703          * filesystem.
  704          */
  705         VI_LOCK(vp);
  706 
  707         state->ls_threads--;
  708         wakeup(state);
  709         if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
  710                 KASSERT(LIST_EMPTY(&state->ls_pending),
  711                     ("freeing state with pending locks"));
  712                 freestate = state;
  713                 *statep = NULL;
  714         }
  715 
  716         VI_UNLOCK(vp);
  717 
  718         if (freestate) {
  719                 sx_xlock(&lf_lock_states_lock);
  720                 LIST_REMOVE(freestate, ls_link);
  721                 sx_xunlock(&lf_lock_states_lock);
  722                 sx_destroy(&freestate->ls_lock);
  723                 free(freestate, M_LOCKF);
  724         }
  725         return (error);
  726 }
  727 
  728 int
  729 lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
  730 {
  731         struct vop_advlockasync_args a;
  732 
  733         a.a_vp = ap->a_vp;
  734         a.a_id = ap->a_id;
  735         a.a_op = ap->a_op;
  736         a.a_fl = ap->a_fl;
  737         a.a_flags = ap->a_flags;
  738         a.a_task = NULL;
  739         a.a_cookiep = NULL;
  740 
  741         return (lf_advlockasync(&a, statep, size));
  742 }
  743 
  744 void
  745 lf_purgelocks(struct vnode *vp, struct lockf **statep)
  746 {
  747         struct lockf *state;
  748         struct lockf_entry *lock, *nlock;
  749 
  750         /*
  751          * For this to work correctly, the caller must ensure that no
  752          * other threads enter the locking system for this vnode,
  753          * e.g. by checking VI_DOOMED. We wake up any threads that are
  754          * sleeping waiting for locks on this vnode and then free all
  755          * the remaining locks.
  756          */
  757         VI_LOCK(vp);
  758         state = *statep;
  759         if (state) {
  760                 state->ls_threads++;
  761                 VI_UNLOCK(vp);
  762 
  763                 sx_xlock(&state->ls_lock);
  764                 sx_xlock(&lf_owner_graph_lock);
  765                 LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
  766                         LIST_REMOVE(lock, lf_link);
  767                         lf_remove_outgoing(lock);
  768                         lf_remove_incoming(lock);
  769 
  770                         /*
  771                          * If its an async lock, we can just free it
  772                          * here, otherwise we let the sleeping thread
  773                          * free it.
  774                          */
  775                         if (lock->lf_async_task) {
  776                                 lf_free_lock(lock);
  777                         } else {
  778                                 lock->lf_flags |= F_INTR;
  779                                 wakeup(lock);
  780                         }
  781                 }
  782                 sx_xunlock(&lf_owner_graph_lock);
  783                 sx_xunlock(&state->ls_lock);
  784 
  785                 /*
  786                  * Wait for all other threads, sleeping and otherwise
  787                  * to leave.
  788                  */
  789                 VI_LOCK(vp);
  790                 while (state->ls_threads > 1)
  791                         msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
  792                 *statep = 0;
  793                 VI_UNLOCK(vp);
  794 
  795                 /*
  796                  * We can just free all the active locks since they
  797                  * will have no dependancies (we removed them all
  798                  * above). We don't need to bother locking since we
  799                  * are the last thread using this state structure.
  800                  */
  801                 LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
  802                         LIST_REMOVE(lock, lf_link);
  803                         lf_free_lock(lock);
  804                 }
  805                 sx_xlock(&lf_lock_states_lock);
  806                 LIST_REMOVE(state, ls_link);
  807                 sx_xunlock(&lf_lock_states_lock);
  808                 sx_destroy(&state->ls_lock);
  809                 free(state, M_LOCKF);
  810         } else {
  811                 VI_UNLOCK(vp);
  812         }
  813 }
  814 
  815 /*
  816  * Return non-zero if locks 'x' and 'y' overlap.
  817  */
  818 static int
  819 lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
  820 {
  821 
  822         return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
  823 }
  824 
  825 /*
  826  * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
  827  */
  828 static int
  829 lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
  830 {
  831 
  832         return x->lf_owner != y->lf_owner
  833                 && (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
  834                 && lf_overlaps(x, y);
  835 }
  836 
  837 /*
  838  * Allocate a lock edge from the free list
  839  */
  840 static struct lockf_edge *
  841 lf_alloc_edge(void)
  842 {
  843 
  844         return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
  845 }
  846 
  847 /*
  848  * Free a lock edge.
  849  */
  850 static void
  851 lf_free_edge(struct lockf_edge *e)
  852 {
  853 
  854         free(e, M_LOCKF);
  855 }
  856 
  857 
  858 /*
  859  * Ensure that the lock's owner has a corresponding vertex in the
  860  * owner graph.
  861  */
  862 static void
  863 lf_alloc_vertex(struct lockf_entry *lock)
  864 {
  865         struct owner_graph *g = &lf_owner_graph;
  866 
  867         if (!lock->lf_owner->lo_vertex)
  868                 lock->lf_owner->lo_vertex =
  869                         graph_alloc_vertex(g, lock->lf_owner);
  870 }
  871 
  872 /*
  873  * Attempt to record an edge from lock x to lock y. Return EDEADLK if
  874  * the new edge would cause a cycle in the owner graph.
  875  */
  876 static int
  877 lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
  878 {
  879         struct owner_graph *g = &lf_owner_graph;
  880         struct lockf_edge *e;
  881         int error;
  882 
  883 #ifdef INVARIANTS
  884         LIST_FOREACH(e, &x->lf_outedges, le_outlink)
  885                 KASSERT(e->le_to != y, ("adding lock edge twice"));
  886 #endif
  887 
  888         /*
  889          * Make sure the two owners have entries in the owner graph.
  890          */
  891         lf_alloc_vertex(x);
  892         lf_alloc_vertex(y);
  893 
  894         error = graph_add_edge(g, x->lf_owner->lo_vertex,
  895             y->lf_owner->lo_vertex);
  896         if (error)
  897                 return (error);
  898 
  899         e = lf_alloc_edge();
  900         LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
  901         LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
  902         e->le_from = x;
  903         e->le_to = y;
  904 
  905         return (0);
  906 }
  907 
  908 /*
  909  * Remove an edge from the lock graph.
  910  */
  911 static void
  912 lf_remove_edge(struct lockf_edge *e)
  913 {
  914         struct owner_graph *g = &lf_owner_graph;
  915         struct lockf_entry *x = e->le_from;
  916         struct lockf_entry *y = e->le_to;
  917 
  918         graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
  919         LIST_REMOVE(e, le_outlink);
  920         LIST_REMOVE(e, le_inlink);
  921         e->le_from = NULL;
  922         e->le_to = NULL;
  923         lf_free_edge(e);
  924 }
  925 
  926 /*
  927  * Remove all out-going edges from lock x.
  928  */
  929 static void
  930 lf_remove_outgoing(struct lockf_entry *x)
  931 {
  932         struct lockf_edge *e;
  933 
  934         while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
  935                 lf_remove_edge(e);
  936         }
  937 }
  938 
  939 /*
  940  * Remove all in-coming edges from lock x.
  941  */
  942 static void
  943 lf_remove_incoming(struct lockf_entry *x)
  944 {
  945         struct lockf_edge *e;
  946 
  947         while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
  948                 lf_remove_edge(e);
  949         }
  950 }
  951 
  952 /*
  953  * Walk the list of locks for the file and create an out-going edge
  954  * from lock to each blocking lock.
  955  */
  956 static int
  957 lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
  958 {
  959         struct lockf_entry *overlap;
  960         int error;
  961 
  962         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
  963                 /*
  964                  * We may assume that the active list is sorted by
  965                  * lf_start.
  966                  */
  967                 if (overlap->lf_start > lock->lf_end)
  968                         break;
  969                 if (!lf_blocks(lock, overlap))
  970                         continue;
  971 
  972                 /*
  973                  * We've found a blocking lock. Add the corresponding
  974                  * edge to the graphs and see if it would cause a
  975                  * deadlock.
  976                  */
  977                 error = lf_add_edge(lock, overlap);
  978 
  979                 /*
  980                  * The only error that lf_add_edge returns is EDEADLK.
  981                  * Remove any edges we added and return the error.
  982                  */
  983                 if (error) {
  984                         lf_remove_outgoing(lock);
  985                         return (error);
  986                 }
  987         }
  988 
  989         /*
  990          * We also need to add edges to sleeping locks that block
  991          * us. This ensures that lf_wakeup_lock cannot grant two
  992          * mutually blocking locks simultaneously and also enforces a
  993          * 'first come, first served' fairness model. Note that this
  994          * only happens if we are blocked by at least one active lock
  995          * due to the call to lf_getblock in lf_setlock below.
  996          */
  997         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
  998                 if (!lf_blocks(lock, overlap))
  999                         continue;
 1000                 /*
 1001                  * We've found a blocking lock. Add the corresponding
 1002                  * edge to the graphs and see if it would cause a
 1003                  * deadlock.
 1004                  */
 1005                 error = lf_add_edge(lock, overlap);
 1006 
 1007                 /*
 1008                  * The only error that lf_add_edge returns is EDEADLK.
 1009                  * Remove any edges we added and return the error.
 1010                  */
 1011                 if (error) {
 1012                         lf_remove_outgoing(lock);
 1013                         return (error);
 1014                 }
 1015         }
 1016 
 1017         return (0);
 1018 }
 1019 
 1020 /*
 1021  * Walk the list of pending locks for the file and create an in-coming
 1022  * edge from lock to each blocking lock.
 1023  */
 1024 static int
 1025 lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
 1026 {
 1027         struct lockf_entry *overlap;
 1028         int error;
 1029 
 1030         LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
 1031                 if (!lf_blocks(lock, overlap))
 1032                         continue;
 1033 
 1034                 /*
 1035                  * We've found a blocking lock. Add the corresponding
 1036                  * edge to the graphs and see if it would cause a
 1037                  * deadlock.
 1038                  */
 1039                 error = lf_add_edge(overlap, lock);
 1040 
 1041                 /*
 1042                  * The only error that lf_add_edge returns is EDEADLK.
 1043                  * Remove any edges we added and return the error.
 1044                  */
 1045                 if (error) {
 1046                         lf_remove_incoming(lock);
 1047                         return (error);
 1048                 }
 1049         }
 1050         return (0);
 1051 }
 1052 
 1053 /*
 1054  * Insert lock into the active list, keeping list entries ordered by
 1055  * increasing values of lf_start.
 1056  */
 1057 static void
 1058 lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
 1059 {
 1060         struct lockf_entry *lf, *lfprev;
 1061 
 1062         if (LIST_EMPTY(&state->ls_active)) {
 1063                 LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
 1064                 return;
 1065         }
 1066 
 1067         lfprev = NULL;
 1068         LIST_FOREACH(lf, &state->ls_active, lf_link) {
 1069                 if (lf->lf_start > lock->lf_start) {
 1070                         LIST_INSERT_BEFORE(lf, lock, lf_link);
 1071                         return;
 1072                 }
 1073                 lfprev = lf;
 1074         }
 1075         LIST_INSERT_AFTER(lfprev, lock, lf_link);
 1076 }
 1077 
 1078 /*
 1079  * Wake up a sleeping lock and remove it from the pending list now
 1080  * that all its dependancies have been resolved. The caller should
 1081  * arrange for the lock to be added to the active list, adjusting any
 1082  * existing locks for the same owner as needed.
 1083  */
 1084 static void
 1085 lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
 1086 {
 1087 
 1088         /*
 1089          * Remove from ls_pending list and wake up the caller
 1090          * or start the async notification, as appropriate.
 1091          */
 1092         LIST_REMOVE(wakelock, lf_link);
 1093 #ifdef LOCKF_DEBUG
 1094         if (lockf_debug & 1)
 1095                 lf_print("lf_wakeup_lock: awakening", wakelock);
 1096 #endif /* LOCKF_DEBUG */
 1097         if (wakelock->lf_async_task) {
 1098                 taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
 1099         } else {
 1100                 wakeup(wakelock);
 1101         }
 1102 }
 1103 
 1104 /*
 1105  * Re-check all dependant locks and remove edges to locks that we no
 1106  * longer block. If 'all' is non-zero, the lock has been removed and
 1107  * we must remove all the dependancies, otherwise it has simply been
 1108  * reduced but remains active. Any pending locks which have been been
 1109  * unblocked are added to 'granted'
 1110  */
 1111 static void
 1112 lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
 1113         struct lockf_entry_list *granted)
 1114 {
 1115         struct lockf_edge *e, *ne;
 1116         struct lockf_entry *deplock;
 1117 
 1118         LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
 1119                 deplock = e->le_from;
 1120                 if (all || !lf_blocks(lock, deplock)) {
 1121                         sx_xlock(&lf_owner_graph_lock);
 1122                         lf_remove_edge(e);
 1123                         sx_xunlock(&lf_owner_graph_lock);
 1124                         if (LIST_EMPTY(&deplock->lf_outedges)) {
 1125                                 lf_wakeup_lock(state, deplock);
 1126                                 LIST_INSERT_HEAD(granted, deplock, lf_link);
 1127                         }
 1128                 }
 1129         }
 1130 }
 1131 
 1132 /*
 1133  * Set the start of an existing active lock, updating dependancies and
 1134  * adding any newly woken locks to 'granted'.
 1135  */
 1136 static void
 1137 lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
 1138         struct lockf_entry_list *granted)
 1139 {
 1140 
 1141         KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
 1142         lock->lf_start = new_start;
 1143         LIST_REMOVE(lock, lf_link);
 1144         lf_insert_lock(state, lock);
 1145         lf_update_dependancies(state, lock, FALSE, granted);
 1146 }
 1147 
 1148 /*
 1149  * Set the end of an existing active lock, updating dependancies and
 1150  * adding any newly woken locks to 'granted'.
 1151  */
 1152 static void
 1153 lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
 1154         struct lockf_entry_list *granted)
 1155 {
 1156 
 1157         KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
 1158         lock->lf_end = new_end;
 1159         lf_update_dependancies(state, lock, FALSE, granted);
 1160 }
 1161 
 1162 /*
 1163  * Add a lock to the active list, updating or removing any current
 1164  * locks owned by the same owner and processing any pending locks that
 1165  * become unblocked as a result. This code is also used for unlock
 1166  * since the logic for updating existing locks is identical.
 1167  *
 1168  * As a result of processing the new lock, we may unblock existing
 1169  * pending locks as a result of downgrading/unlocking. We simply
 1170  * activate the newly granted locks by looping.
 1171  *
 1172  * Since the new lock already has its dependancies set up, we always
 1173  * add it to the list (unless its an unlock request). This may
 1174  * fragment the lock list in some pathological cases but its probably
 1175  * not a real problem.
 1176  */
 1177 static void
 1178 lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
 1179 {
 1180         struct lockf_entry *overlap, *lf;
 1181         struct lockf_entry_list granted;
 1182         int ovcase;
 1183 
 1184         LIST_INIT(&granted);
 1185         LIST_INSERT_HEAD(&granted, lock, lf_link);
 1186 
 1187         while (!LIST_EMPTY(&granted)) {
 1188                 lock = LIST_FIRST(&granted);
 1189                 LIST_REMOVE(lock, lf_link);
 1190 
 1191                 /*
 1192                  * Skip over locks owned by other processes.  Handle
 1193                  * any locks that overlap and are owned by ourselves.
 1194                  */
 1195                 overlap = LIST_FIRST(&state->ls_active);
 1196                 for (;;) {
 1197                         ovcase = lf_findoverlap(&overlap, lock, SELF);
 1198 
 1199 #ifdef LOCKF_DEBUG
 1200                         if (ovcase && (lockf_debug & 2)) {
 1201                                 printf("lf_setlock: overlap %d", ovcase);
 1202                                 lf_print("", overlap);
 1203                         }
 1204 #endif
 1205                         /*
 1206                          * Six cases:
 1207                          *      0) no overlap
 1208                          *      1) overlap == lock
 1209                          *      2) overlap contains lock
 1210                          *      3) lock contains overlap
 1211                          *      4) overlap starts before lock
 1212                          *      5) overlap ends after lock
 1213                          */
 1214                         switch (ovcase) {
 1215                         case 0: /* no overlap */
 1216                                 break;
 1217 
 1218                         case 1: /* overlap == lock */
 1219                                 /*
 1220                                  * We have already setup the
 1221                                  * dependants for the new lock, taking
 1222                                  * into account a possible downgrade
 1223                                  * or unlock. Remove the old lock.
 1224                                  */
 1225                                 LIST_REMOVE(overlap, lf_link);
 1226                                 lf_update_dependancies(state, overlap, TRUE,
 1227                                         &granted);
 1228                                 lf_free_lock(overlap);
 1229                                 break;
 1230 
 1231                         case 2: /* overlap contains lock */
 1232                                 /*
 1233                                  * Just split the existing lock.
 1234                                  */
 1235                                 lf_split(state, overlap, lock, &granted);
 1236                                 break;
 1237 
 1238                         case 3: /* lock contains overlap */
 1239                                 /*
 1240                                  * Delete the overlap and advance to
 1241                                  * the next entry in the list.
 1242                                  */
 1243                                 lf = LIST_NEXT(overlap, lf_link);
 1244                                 LIST_REMOVE(overlap, lf_link);
 1245                                 lf_update_dependancies(state, overlap, TRUE,
 1246                                         &granted);
 1247                                 lf_free_lock(overlap);
 1248                                 overlap = lf;
 1249                                 continue;
 1250 
 1251                         case 4: /* overlap starts before lock */
 1252                                 /*
 1253                                  * Just update the overlap end and
 1254                                  * move on.
 1255                                  */
 1256                                 lf_set_end(state, overlap, lock->lf_start - 1,
 1257                                     &granted);
 1258                                 overlap = LIST_NEXT(overlap, lf_link);
 1259                                 continue;
 1260 
 1261                         case 5: /* overlap ends after lock */
 1262                                 /*
 1263                                  * Change the start of overlap and
 1264                                  * re-insert.
 1265                                  */
 1266                                 lf_set_start(state, overlap, lock->lf_end + 1,
 1267                                     &granted);
 1268                                 break;
 1269                         }
 1270                         break;
 1271                 }
 1272 #ifdef LOCKF_DEBUG
 1273                 if (lockf_debug & 1) {
 1274                         if (lock->lf_type != F_UNLCK)
 1275                                 lf_print("lf_activate_lock: activated", lock);
 1276                         else
 1277                                 lf_print("lf_activate_lock: unlocked", lock);
 1278                         lf_printlist("lf_activate_lock", lock);
 1279                 }
 1280 #endif /* LOCKF_DEBUG */
 1281                 if (lock->lf_type != F_UNLCK)
 1282                         lf_insert_lock(state, lock);
 1283         }
 1284 }
 1285 
 1286 /*
 1287  * Cancel a pending lock request, either as a result of a signal or a
 1288  * cancel request for an async lock.
 1289  */
 1290 static void
 1291 lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
 1292 {
 1293         struct lockf_entry_list granted;
 1294 
 1295         /*
 1296          * Note it is theoretically possible that cancelling this lock
 1297          * may allow some other pending lock to become
 1298          * active. Consider this case:
 1299          *
 1300          * Owner        Action          Result          Dependancies
 1301          * 
 1302          * A:           lock [0..0]     succeeds        
 1303          * B:           lock [2..2]     succeeds        
 1304          * C:           lock [1..2]     blocked         C->B
 1305          * D:           lock [0..1]     blocked         C->B,D->A,D->C
 1306          * A:           unlock [0..0]                   C->B,D->C
 1307          * C:           cancel [1..2]   
 1308          */
 1309 
 1310         LIST_REMOVE(lock, lf_link);
 1311 
 1312         /*
 1313          * Removing out-going edges is simple.
 1314          */
 1315         sx_xlock(&lf_owner_graph_lock);
 1316         lf_remove_outgoing(lock);
 1317         sx_xunlock(&lf_owner_graph_lock);
 1318 
 1319         /*
 1320          * Removing in-coming edges may allow some other lock to
 1321          * become active - we use lf_update_dependancies to figure
 1322          * this out.
 1323          */
 1324         LIST_INIT(&granted);
 1325         lf_update_dependancies(state, lock, TRUE, &granted);
 1326         lf_free_lock(lock);
 1327 
 1328         /*
 1329          * Feed any newly active locks to lf_activate_lock.
 1330          */
 1331         while (!LIST_EMPTY(&granted)) {
 1332                 lock = LIST_FIRST(&granted);
 1333                 LIST_REMOVE(lock, lf_link);
 1334                 lf_activate_lock(state, lock);
 1335         }
 1336 }
 1337 
 1338 /*
 1339  * Set a byte-range lock.
 1340  */
 1341 static int
 1342 lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
 1343     void **cookiep)
 1344 {
 1345         struct lockf_entry *block;
 1346         static char lockstr[] = "lockf";
 1347         int priority, error;
 1348 
 1349 #ifdef LOCKF_DEBUG
 1350         if (lockf_debug & 1)
 1351                 lf_print("lf_setlock", lock);
 1352 #endif /* LOCKF_DEBUG */
 1353 
 1354         /*
 1355          * Set the priority
 1356          */
 1357         priority = PLOCK;
 1358         if (lock->lf_type == F_WRLCK)
 1359                 priority += 4;
 1360         if (!(lock->lf_flags & F_NOINTR))
 1361                 priority |= PCATCH;
 1362         /*
 1363          * Scan lock list for this file looking for locks that would block us.
 1364          */
 1365         while ((block = lf_getblock(state, lock))) {
 1366                 /*
 1367                  * Free the structure and return if nonblocking.
 1368                  */
 1369                 if ((lock->lf_flags & F_WAIT) == 0
 1370                     && lock->lf_async_task == NULL) {
 1371                         lf_free_lock(lock);
 1372                         error = EAGAIN;
 1373                         goto out;
 1374                 }
 1375 
 1376                 /*
 1377                  * For flock type locks, we must first remove
 1378                  * any shared locks that we hold before we sleep
 1379                  * waiting for an exclusive lock.
 1380                  */
 1381                 if ((lock->lf_flags & F_FLOCK) &&
 1382                     lock->lf_type == F_WRLCK) {
 1383                         lock->lf_type = F_UNLCK;
 1384                         lf_activate_lock(state, lock);
 1385                         lock->lf_type = F_WRLCK;
 1386                 }
 1387 
 1388                 /*
 1389                  * We are blocked. Create edges to each blocking lock,
 1390                  * checking for deadlock using the owner graph. For
 1391                  * simplicity, we run deadlock detection for all
 1392                  * locks, posix and otherwise.
 1393                  */
 1394                 sx_xlock(&lf_owner_graph_lock);
 1395                 error = lf_add_outgoing(state, lock);
 1396                 sx_xunlock(&lf_owner_graph_lock);
 1397 
 1398                 if (error) {
 1399 #ifdef LOCKF_DEBUG
 1400                         if (lockf_debug & 1)
 1401                                 lf_print("lf_setlock: deadlock", lock);
 1402 #endif
 1403                         lf_free_lock(lock);
 1404                         goto out;
 1405                 }
 1406 
 1407                 /*
 1408                  * We have added edges to everything that blocks
 1409                  * us. Sleep until they all go away.
 1410                  */
 1411                 LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
 1412 #ifdef LOCKF_DEBUG
 1413                 if (lockf_debug & 1) {
 1414                         struct lockf_edge *e;
 1415                         LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
 1416                                 lf_print("lf_setlock: blocking on", e->le_to);
 1417                                 lf_printlist("lf_setlock", e->le_to);
 1418                         }
 1419                 }
 1420 #endif /* LOCKF_DEBUG */
 1421 
 1422                 if ((lock->lf_flags & F_WAIT) == 0) {
 1423                         /*
 1424                          * The caller requested async notification -
 1425                          * this callback happens when the blocking
 1426                          * lock is released, allowing the caller to
 1427                          * make another attempt to take the lock.
 1428                          */
 1429                         *cookiep = (void *) lock;
 1430                         error = EINPROGRESS;
 1431                         goto out;
 1432                 }
 1433 
 1434                 error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
 1435                 /*
 1436                  * We may have been awakened by a signal and/or by a
 1437                  * debugger continuing us (in which cases we must
 1438                  * remove our lock graph edges) and/or by another
 1439                  * process releasing a lock (in which case our edges
 1440                  * have already been removed and we have been moved to
 1441                  * the active list). We may also have been woken by
 1442                  * lf_purgelocks which we report to the caller as
 1443                  * EINTR. In that case, lf_purgelocks will have
 1444                  * removed our lock graph edges.
 1445                  *
 1446                  * Note that it is possible to receive a signal after
 1447                  * we were successfully woken (and moved to the active
 1448                  * list) but before we resumed execution. In this
 1449                  * case, our lf_outedges list will be clear. We
 1450                  * pretend there was no error.
 1451                  *
 1452                  * Note also, if we have been sleeping long enough, we
 1453                  * may now have incoming edges from some newer lock
 1454                  * which is waiting behind us in the queue.
 1455                  */
 1456                 if (lock->lf_flags & F_INTR) {
 1457                         error = EINTR;
 1458                         lf_free_lock(lock);
 1459                         goto out;
 1460                 }
 1461                 if (LIST_EMPTY(&lock->lf_outedges)) {
 1462                         error = 0;
 1463                 } else {
 1464                         lf_cancel_lock(state, lock);
 1465                         goto out;
 1466                 }
 1467 #ifdef LOCKF_DEBUG
 1468                 if (lockf_debug & 1) {
 1469                         lf_print("lf_setlock: granted", lock);
 1470                 }
 1471 #endif
 1472                 goto out;
 1473         }
 1474         /*
 1475          * It looks like we are going to grant the lock. First add
 1476          * edges from any currently pending lock that the new lock
 1477          * would block.
 1478          */
 1479         sx_xlock(&lf_owner_graph_lock);
 1480         error = lf_add_incoming(state, lock);
 1481         sx_xunlock(&lf_owner_graph_lock);
 1482         if (error) {
 1483 #ifdef LOCKF_DEBUG
 1484                 if (lockf_debug & 1)
 1485                         lf_print("lf_setlock: deadlock", lock);
 1486 #endif
 1487                 lf_free_lock(lock);
 1488                 goto out;
 1489         }
 1490 
 1491         /*
 1492          * No blocks!!  Add the lock.  Note that we will
 1493          * downgrade or upgrade any overlapping locks this
 1494          * process already owns.
 1495          */
 1496         lf_activate_lock(state, lock);
 1497         error = 0;
 1498 out:
 1499         return (error);
 1500 }
 1501 
 1502 /*
 1503  * Remove a byte-range lock on an inode.
 1504  *
 1505  * Generally, find the lock (or an overlap to that lock)
 1506  * and remove it (or shrink it), then wakeup anyone we can.
 1507  */
 1508 static int
 1509 lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
 1510 {
 1511         struct lockf_entry *overlap;
 1512 
 1513         overlap = LIST_FIRST(&state->ls_active);
 1514 
 1515         if (overlap == NOLOCKF)
 1516                 return (0);
 1517 #ifdef LOCKF_DEBUG
 1518         if (unlock->lf_type != F_UNLCK)
 1519                 panic("lf_clearlock: bad type");
 1520         if (lockf_debug & 1)
 1521                 lf_print("lf_clearlock", unlock);
 1522 #endif /* LOCKF_DEBUG */
 1523 
 1524         lf_activate_lock(state, unlock);
 1525 
 1526         return (0);
 1527 }
 1528 
 1529 /*
 1530  * Check whether there is a blocking lock, and if so return its
 1531  * details in '*fl'.
 1532  */
 1533 static int
 1534 lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
 1535 {
 1536         struct lockf_entry *block;
 1537 
 1538 #ifdef LOCKF_DEBUG
 1539         if (lockf_debug & 1)
 1540                 lf_print("lf_getlock", lock);
 1541 #endif /* LOCKF_DEBUG */
 1542 
 1543         if ((block = lf_getblock(state, lock))) {
 1544                 fl->l_type = block->lf_type;
 1545                 fl->l_whence = SEEK_SET;
 1546                 fl->l_start = block->lf_start;
 1547                 if (block->lf_end == OFF_MAX)
 1548                         fl->l_len = 0;
 1549                 else
 1550                         fl->l_len = block->lf_end - block->lf_start + 1;
 1551                 fl->l_pid = block->lf_owner->lo_pid;
 1552                 fl->l_sysid = block->lf_owner->lo_sysid;
 1553         } else {
 1554                 fl->l_type = F_UNLCK;
 1555         }
 1556         return (0);
 1557 }
 1558 
 1559 /*
 1560  * Cancel an async lock request.
 1561  */
 1562 static int
 1563 lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
 1564 {
 1565         struct lockf_entry *reallock;
 1566 
 1567         /*
 1568          * We need to match this request with an existing lock
 1569          * request.
 1570          */
 1571         LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
 1572                 if ((void *) reallock == cookie) {
 1573                         /*
 1574                          * Double-check that this lock looks right
 1575                          * (maybe use a rolling ID for the cancel
 1576                          * cookie instead?)
 1577                          */
 1578                         if (!(reallock->lf_vnode == lock->lf_vnode
 1579                                 && reallock->lf_start == lock->lf_start
 1580                                 && reallock->lf_end == lock->lf_end)) {
 1581                                 return (ENOENT);
 1582                         }
 1583 
 1584                         /*
 1585                          * Make sure this lock was async and then just
 1586                          * remove it from its wait lists.
 1587                          */
 1588                         if (!reallock->lf_async_task) {
 1589                                 return (ENOENT);
 1590                         }
 1591 
 1592                         /*
 1593                          * Note that since any other thread must take
 1594                          * state->ls_lock before it can possibly
 1595                          * trigger the async callback, we are safe
 1596                          * from a race with lf_wakeup_lock, i.e. we
 1597                          * can free the lock (actually our caller does
 1598                          * this).
 1599                          */
 1600                         lf_cancel_lock(state, reallock);
 1601                         return (0);
 1602                 }
 1603         }
 1604 
 1605         /*
 1606          * We didn't find a matching lock - not much we can do here.
 1607          */
 1608         return (ENOENT);
 1609 }
 1610 
 1611 /*
 1612  * Walk the list of locks for an inode and
 1613  * return the first blocking lock.
 1614  */
 1615 static struct lockf_entry *
 1616 lf_getblock(struct lockf *state, struct lockf_entry *lock)
 1617 {
 1618         struct lockf_entry *overlap;
 1619 
 1620         LIST_FOREACH(overlap, &state->ls_active, lf_link) {
 1621                 /*
 1622                  * We may assume that the active list is sorted by
 1623                  * lf_start.
 1624                  */
 1625                 if (overlap->lf_start > lock->lf_end)
 1626                         break;
 1627                 if (!lf_blocks(lock, overlap))
 1628                         continue;
 1629                 return (overlap);
 1630         }
 1631         return (NOLOCKF);
 1632 }
 1633 
 1634 /*
 1635  * Walk the list of locks for an inode to find an overlapping lock (if
 1636  * any) and return a classification of that overlap.
 1637  *
 1638  * Arguments:
 1639  *      *overlap        The place in the lock list to start looking
 1640  *      lock            The lock which is being tested
 1641  *      type            Pass 'SELF' to test only locks with the same
 1642  *                      owner as lock, or 'OTHER' to test only locks
 1643  *                      with a different owner
 1644  *
 1645  * Returns one of six values:
 1646  *      0) no overlap
 1647  *      1) overlap == lock
 1648  *      2) overlap contains lock
 1649  *      3) lock contains overlap
 1650  *      4) overlap starts before lock
 1651  *      5) overlap ends after lock
 1652  *
 1653  * If there is an overlapping lock, '*overlap' is set to point at the
 1654  * overlapping lock.
 1655  *
 1656  * NOTE: this returns only the FIRST overlapping lock.  There
 1657  *       may be more than one.
 1658  */
 1659 static int
 1660 lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
 1661 {
 1662         struct lockf_entry *lf;
 1663         off_t start, end;
 1664         int res;
 1665 
 1666         if ((*overlap) == NOLOCKF) {
 1667                 return (0);
 1668         }
 1669 #ifdef LOCKF_DEBUG
 1670         if (lockf_debug & 2)
 1671                 lf_print("lf_findoverlap: looking for overlap in", lock);
 1672 #endif /* LOCKF_DEBUG */
 1673         start = lock->lf_start;
 1674         end = lock->lf_end;
 1675         res = 0;
 1676         while (*overlap) {
 1677                 lf = *overlap;
 1678                 if (lf->lf_start > end)
 1679                         break;
 1680                 if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
 1681                     ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
 1682                         *overlap = LIST_NEXT(lf, lf_link);
 1683                         continue;
 1684                 }
 1685 #ifdef LOCKF_DEBUG
 1686                 if (lockf_debug & 2)
 1687                         lf_print("\tchecking", lf);
 1688 #endif /* LOCKF_DEBUG */
 1689                 /*
 1690                  * OK, check for overlap
 1691                  *
 1692                  * Six cases:
 1693                  *      0) no overlap
 1694                  *      1) overlap == lock
 1695                  *      2) overlap contains lock
 1696                  *      3) lock contains overlap
 1697                  *      4) overlap starts before lock
 1698                  *      5) overlap ends after lock
 1699                  */
 1700                 if (start > lf->lf_end) {
 1701                         /* Case 0 */
 1702 #ifdef LOCKF_DEBUG
 1703                         if (lockf_debug & 2)
 1704                                 printf("no overlap\n");
 1705 #endif /* LOCKF_DEBUG */
 1706                         *overlap = LIST_NEXT(lf, lf_link);
 1707                         continue;
 1708                 }
 1709                 if (lf->lf_start == start && lf->lf_end == end) {
 1710                         /* Case 1 */
 1711 #ifdef LOCKF_DEBUG
 1712                         if (lockf_debug & 2)
 1713                                 printf("overlap == lock\n");
 1714 #endif /* LOCKF_DEBUG */
 1715                         res = 1;
 1716                         break;
 1717                 }
 1718                 if (lf->lf_start <= start && lf->lf_end >= end) {
 1719                         /* Case 2 */
 1720 #ifdef LOCKF_DEBUG
 1721                         if (lockf_debug & 2)
 1722                                 printf("overlap contains lock\n");
 1723 #endif /* LOCKF_DEBUG */
 1724                         res = 2;
 1725                         break;
 1726                 }
 1727                 if (start <= lf->lf_start && end >= lf->lf_end) {
 1728                         /* Case 3 */
 1729 #ifdef LOCKF_DEBUG
 1730                         if (lockf_debug & 2)
 1731                                 printf("lock contains overlap\n");
 1732 #endif /* LOCKF_DEBUG */
 1733                         res = 3;
 1734                         break;
 1735                 }
 1736                 if (lf->lf_start < start && lf->lf_end >= start) {
 1737                         /* Case 4 */
 1738 #ifdef LOCKF_DEBUG
 1739                         if (lockf_debug & 2)
 1740                                 printf("overlap starts before lock\n");
 1741 #endif /* LOCKF_DEBUG */
 1742                         res = 4;
 1743                         break;
 1744                 }
 1745                 if (lf->lf_start > start && lf->lf_end > end) {
 1746                         /* Case 5 */
 1747 #ifdef LOCKF_DEBUG
 1748                         if (lockf_debug & 2)
 1749                                 printf("overlap ends after lock\n");
 1750 #endif /* LOCKF_DEBUG */
 1751                         res = 5;
 1752                         break;
 1753                 }
 1754                 panic("lf_findoverlap: default");
 1755         }
 1756         return (res);
 1757 }
 1758 
 1759 /*
 1760  * Split an the existing 'lock1', based on the extent of the lock
 1761  * described by 'lock2'. The existing lock should cover 'lock2'
 1762  * entirely.
 1763  *
 1764  * Any pending locks which have been been unblocked are added to
 1765  * 'granted'
 1766  */
 1767 static void
 1768 lf_split(struct lockf *state, struct lockf_entry *lock1,
 1769     struct lockf_entry *lock2, struct lockf_entry_list *granted)
 1770 {
 1771         struct lockf_entry *splitlock;
 1772 
 1773 #ifdef LOCKF_DEBUG
 1774         if (lockf_debug & 2) {
 1775                 lf_print("lf_split", lock1);
 1776                 lf_print("splitting from", lock2);
 1777         }
 1778 #endif /* LOCKF_DEBUG */
 1779         /*
 1780          * Check to see if we don't need to split at all.
 1781          */
 1782         if (lock1->lf_start == lock2->lf_start) {
 1783                 lf_set_start(state, lock1, lock2->lf_end + 1, granted);
 1784                 return;
 1785         }
 1786         if (lock1->lf_end == lock2->lf_end) {
 1787                 lf_set_end(state, lock1, lock2->lf_start - 1, granted);
 1788                 return;
 1789         }
 1790         /*
 1791          * Make a new lock consisting of the last part of
 1792          * the encompassing lock.
 1793          */
 1794         splitlock = lf_alloc_lock(lock1->lf_owner);
 1795         memcpy(splitlock, lock1, sizeof *splitlock);
 1796         if (splitlock->lf_flags & F_REMOTE)
 1797                 vref(splitlock->lf_vnode);
 1798 
 1799         /*
 1800          * This cannot cause a deadlock since any edges we would add
 1801          * to splitlock already exist in lock1. We must be sure to add
 1802          * necessary dependancies to splitlock before we reduce lock1
 1803          * otherwise we may accidentally grant a pending lock that
 1804          * was blocked by the tail end of lock1.
 1805          */
 1806         splitlock->lf_start = lock2->lf_end + 1;
 1807         LIST_INIT(&splitlock->lf_outedges);
 1808         LIST_INIT(&splitlock->lf_inedges);
 1809         sx_xlock(&lf_owner_graph_lock);
 1810         lf_add_incoming(state, splitlock);
 1811         sx_xunlock(&lf_owner_graph_lock);
 1812 
 1813         lf_set_end(state, lock1, lock2->lf_start - 1, granted);
 1814 
 1815         /*
 1816          * OK, now link it in
 1817          */
 1818         lf_insert_lock(state, splitlock);
 1819 }
 1820 
 1821 struct lockdesc {
 1822         STAILQ_ENTRY(lockdesc) link;
 1823         struct vnode *vp;
 1824         struct flock fl;
 1825 };
 1826 STAILQ_HEAD(lockdesclist, lockdesc);
 1827 
 1828 int
 1829 lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
 1830 {
 1831         struct lockf *ls;
 1832         struct lockf_entry *lf;
 1833         struct lockdesc *ldesc;
 1834         struct lockdesclist locks;
 1835         int error;
 1836 
 1837         /*
 1838          * In order to keep the locking simple, we iterate over the
 1839          * active lock lists to build a list of locks that need
 1840          * releasing. We then call the iterator for each one in turn.
 1841          *
 1842          * We take an extra reference to the vnode for the duration to
 1843          * make sure it doesn't go away before we are finished.
 1844          */
 1845         STAILQ_INIT(&locks);
 1846         sx_xlock(&lf_lock_states_lock);
 1847         LIST_FOREACH(ls, &lf_lock_states, ls_link) {
 1848                 sx_xlock(&ls->ls_lock);
 1849                 LIST_FOREACH(lf, &ls->ls_active, lf_link) {
 1850                         if (lf->lf_owner->lo_sysid != sysid)
 1851                                 continue;
 1852 
 1853                         ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
 1854                             M_WAITOK);
 1855                         ldesc->vp = lf->lf_vnode;
 1856                         vref(ldesc->vp);
 1857                         ldesc->fl.l_start = lf->lf_start;
 1858                         if (lf->lf_end == OFF_MAX)
 1859                                 ldesc->fl.l_len = 0;
 1860                         else
 1861                                 ldesc->fl.l_len =
 1862                                         lf->lf_end - lf->lf_start + 1;
 1863                         ldesc->fl.l_whence = SEEK_SET;
 1864                         ldesc->fl.l_type = F_UNLCK;
 1865                         ldesc->fl.l_pid = lf->lf_owner->lo_pid;
 1866                         ldesc->fl.l_sysid = sysid;
 1867                         STAILQ_INSERT_TAIL(&locks, ldesc, link);
 1868                 }
 1869                 sx_xunlock(&ls->ls_lock);
 1870         }
 1871         sx_xunlock(&lf_lock_states_lock);
 1872 
 1873         /*
 1874          * Call the iterator function for each lock in turn. If the
 1875          * iterator returns an error code, just free the rest of the
 1876          * lockdesc structures.
 1877          */
 1878         error = 0;
 1879         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
 1880                 STAILQ_REMOVE_HEAD(&locks, link);
 1881                 if (!error)
 1882                         error = fn(ldesc->vp, &ldesc->fl, arg);
 1883                 vrele(ldesc->vp);
 1884                 free(ldesc, M_LOCKF);
 1885         }
 1886 
 1887         return (error);
 1888 }
 1889 
 1890 int
 1891 lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
 1892 {
 1893         struct lockf *ls;
 1894         struct lockf_entry *lf;
 1895         struct lockdesc *ldesc;
 1896         struct lockdesclist locks;
 1897         int error;
 1898 
 1899         /*
 1900          * In order to keep the locking simple, we iterate over the
 1901          * active lock lists to build a list of locks that need
 1902          * releasing. We then call the iterator for each one in turn.
 1903          *
 1904          * We take an extra reference to the vnode for the duration to
 1905          * make sure it doesn't go away before we are finished.
 1906          */
 1907         STAILQ_INIT(&locks);
 1908         ls = vp->v_lockf;
 1909         if (!ls)
 1910                 return (0);
 1911 
 1912         sx_xlock(&ls->ls_lock);
 1913         LIST_FOREACH(lf, &ls->ls_active, lf_link) {
 1914                 ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
 1915                     M_WAITOK);
 1916                 ldesc->vp = lf->lf_vnode;
 1917                 vref(ldesc->vp);
 1918                 ldesc->fl.l_start = lf->lf_start;
 1919                 if (lf->lf_end == OFF_MAX)
 1920                         ldesc->fl.l_len = 0;
 1921                 else
 1922                         ldesc->fl.l_len =
 1923                                 lf->lf_end - lf->lf_start + 1;
 1924                 ldesc->fl.l_whence = SEEK_SET;
 1925                 ldesc->fl.l_type = F_UNLCK;
 1926                 ldesc->fl.l_pid = lf->lf_owner->lo_pid;
 1927                 ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
 1928                 STAILQ_INSERT_TAIL(&locks, ldesc, link);
 1929         }
 1930         sx_xunlock(&ls->ls_lock);
 1931 
 1932         /*
 1933          * Call the iterator function for each lock in turn. If the
 1934          * iterator returns an error code, just free the rest of the
 1935          * lockdesc structures.
 1936          */
 1937         error = 0;
 1938         while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
 1939                 STAILQ_REMOVE_HEAD(&locks, link);
 1940                 if (!error)
 1941                         error = fn(ldesc->vp, &ldesc->fl, arg);
 1942                 vrele(ldesc->vp);
 1943                 free(ldesc, M_LOCKF);
 1944         }
 1945 
 1946         return (error);
 1947 }
 1948 
 1949 static int
 1950 lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
 1951 {
 1952 
 1953         VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
 1954         return (0);
 1955 }
 1956 
 1957 void
 1958 lf_clearremotesys(int sysid)
 1959 {
 1960 
 1961         KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
 1962         lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
 1963 }
 1964 
 1965 int
 1966 lf_countlocks(int sysid)
 1967 {
 1968         int i;
 1969         struct lock_owner *lo;
 1970         int count;
 1971 
 1972         count = 0;
 1973         sx_xlock(&lf_lock_owners_lock);
 1974         for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
 1975                 LIST_FOREACH(lo, &lf_lock_owners[i], lo_link)
 1976                         if (lo->lo_sysid == sysid)
 1977                                 count += lo->lo_refs;
 1978         sx_xunlock(&lf_lock_owners_lock);
 1979 
 1980         return (count);
 1981 }
 1982 
 1983 #ifdef LOCKF_DEBUG
 1984 
 1985 /*
 1986  * Return non-zero if y is reachable from x using a brute force
 1987  * search. If reachable and path is non-null, return the route taken
 1988  * in path.
 1989  */
 1990 static int
 1991 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
 1992     struct owner_vertex_list *path)
 1993 {
 1994         struct owner_edge *e;
 1995 
 1996         if (x == y) {
 1997                 if (path)
 1998                         TAILQ_INSERT_HEAD(path, x, v_link);
 1999                 return 1;
 2000         }
 2001 
 2002         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
 2003                 if (graph_reaches(e->e_to, y, path)) {
 2004                         if (path)
 2005                                 TAILQ_INSERT_HEAD(path, x, v_link);
 2006                         return 1;
 2007                 }
 2008         }
 2009         return 0;
 2010 }
 2011 
 2012 /*
 2013  * Perform consistency checks on the graph. Make sure the values of
 2014  * v_order are correct. If checkorder is non-zero, check no vertex can
 2015  * reach any other vertex with a smaller order.
 2016  */
 2017 static void
 2018 graph_check(struct owner_graph *g, int checkorder)
 2019 {
 2020         int i, j;
 2021 
 2022         for (i = 0; i < g->g_size; i++) {
 2023                 if (!g->g_vertices[i]->v_owner)
 2024                         continue;
 2025                 KASSERT(g->g_vertices[i]->v_order == i,
 2026                     ("lock graph vertices disordered"));
 2027                 if (checkorder) {
 2028                         for (j = 0; j < i; j++) {
 2029                                 if (!g->g_vertices[j]->v_owner)
 2030                                         continue;
 2031                                 KASSERT(!graph_reaches(g->g_vertices[i],
 2032                                         g->g_vertices[j], NULL),
 2033                                     ("lock graph vertices disordered"));
 2034                         }
 2035                 }
 2036         }
 2037 }
 2038 
 2039 static void
 2040 graph_print_vertices(struct owner_vertex_list *set)
 2041 {
 2042         struct owner_vertex *v;
 2043 
 2044         printf("{ ");
 2045         TAILQ_FOREACH(v, set, v_link) {
 2046                 printf("%d:", v->v_order);
 2047                 lf_print_owner(v->v_owner);
 2048                 if (TAILQ_NEXT(v, v_link))
 2049                         printf(", ");
 2050         }
 2051         printf(" }\n");
 2052 }
 2053 
 2054 #endif
 2055 
 2056 /*
 2057  * Calculate the sub-set of vertices v from the affected region [y..x]
 2058  * where v is reachable from y. Return -1 if a loop was detected
 2059  * (i.e. x is reachable from y, otherwise the number of vertices in
 2060  * this subset.
 2061  */
 2062 static int
 2063 graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
 2064     struct owner_vertex *y, struct owner_vertex_list *delta)
 2065 {
 2066         uint32_t gen;
 2067         struct owner_vertex *v;
 2068         struct owner_edge *e;
 2069         int n;
 2070 
 2071         /*
 2072          * We start with a set containing just y. Then for each vertex
 2073          * v in the set so far unprocessed, we add each vertex that v
 2074          * has an out-edge to and that is within the affected region
 2075          * [y..x]. If we see the vertex x on our travels, stop
 2076          * immediately.
 2077          */
 2078         TAILQ_INIT(delta);
 2079         TAILQ_INSERT_TAIL(delta, y, v_link);
 2080         v = y;
 2081         n = 1;
 2082         gen = g->g_gen;
 2083         while (v) {
 2084                 LIST_FOREACH(e, &v->v_outedges, e_outlink) {
 2085                         if (e->e_to == x)
 2086                                 return -1;
 2087                         if (e->e_to->v_order < x->v_order
 2088                             && e->e_to->v_gen != gen) {
 2089                                 e->e_to->v_gen = gen;
 2090                                 TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
 2091                                 n++;
 2092                         }
 2093                 }
 2094                 v = TAILQ_NEXT(v, v_link);
 2095         }
 2096 
 2097         return (n);
 2098 }
 2099 
 2100 /*
 2101  * Calculate the sub-set of vertices v from the affected region [y..x]
 2102  * where v reaches x. Return the number of vertices in this subset.
 2103  */
 2104 static int
 2105 graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
 2106     struct owner_vertex *y, struct owner_vertex_list *delta)
 2107 {
 2108         uint32_t gen;
 2109         struct owner_vertex *v;
 2110         struct owner_edge *e;
 2111         int n;
 2112 
 2113         /*
 2114          * We start with a set containing just x. Then for each vertex
 2115          * v in the set so far unprocessed, we add each vertex that v
 2116          * has an in-edge from and that is within the affected region
 2117          * [y..x].
 2118          */
 2119         TAILQ_INIT(delta);
 2120         TAILQ_INSERT_TAIL(delta, x, v_link);
 2121         v = x;
 2122         n = 1;
 2123         gen = g->g_gen;
 2124         while (v) {
 2125                 LIST_FOREACH(e, &v->v_inedges, e_inlink) {
 2126                         if (e->e_from->v_order > y->v_order
 2127                             && e->e_from->v_gen != gen) {
 2128                                 e->e_from->v_gen = gen;
 2129                                 TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
 2130                                 n++;
 2131                         }
 2132                 }
 2133                 v = TAILQ_PREV(v, owner_vertex_list, v_link);
 2134         }
 2135 
 2136         return (n);
 2137 }
 2138 
 2139 static int
 2140 graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
 2141 {
 2142         struct owner_vertex *v;
 2143         int i, j;
 2144 
 2145         TAILQ_FOREACH(v, set, v_link) {
 2146                 for (i = n;
 2147                      i > 0 && indices[i - 1] > v->v_order; i--)
 2148                         ;
 2149                 for (j = n - 1; j >= i; j--)
 2150                         indices[j + 1] = indices[j];
 2151                 indices[i] = v->v_order;
 2152                 n++;
 2153         }
 2154 
 2155         return (n);
 2156 }
 2157 
 2158 static int
 2159 graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
 2160     struct owner_vertex_list *set)
 2161 {
 2162         struct owner_vertex *v, *vlowest;
 2163 
 2164         while (!TAILQ_EMPTY(set)) {
 2165                 vlowest = NULL;
 2166                 TAILQ_FOREACH(v, set, v_link) {
 2167                         if (!vlowest || v->v_order < vlowest->v_order)
 2168                                 vlowest = v;
 2169                 }
 2170                 TAILQ_REMOVE(set, vlowest, v_link);
 2171                 vlowest->v_order = indices[nextunused];
 2172                 g->g_vertices[vlowest->v_order] = vlowest;
 2173                 nextunused++;
 2174         }
 2175 
 2176         return (nextunused);
 2177 }
 2178 
 2179 static int
 2180 graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
 2181     struct owner_vertex *y)
 2182 {
 2183         struct owner_edge *e;
 2184         struct owner_vertex_list deltaF, deltaB;
 2185         int nF, nB, n, vi, i;
 2186         int *indices;
 2187 
 2188         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
 2189 
 2190         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
 2191                 if (e->e_to == y) {
 2192                         e->e_refs++;
 2193                         return (0);
 2194                 }
 2195         }
 2196 
 2197 #ifdef LOCKF_DEBUG
 2198         if (lockf_debug & 8) {
 2199                 printf("adding edge %d:", x->v_order);
 2200                 lf_print_owner(x->v_owner);
 2201                 printf(" -> %d:", y->v_order);
 2202                 lf_print_owner(y->v_owner);
 2203                 printf("\n");
 2204         }
 2205 #endif
 2206         if (y->v_order < x->v_order) {
 2207                 /*
 2208                  * The new edge violates the order. First find the set
 2209                  * of affected vertices reachable from y (deltaF) and
 2210                  * the set of affect vertices affected that reach x
 2211                  * (deltaB), using the graph generation number to
 2212                  * detect whether we have visited a given vertex
 2213                  * already. We re-order the graph so that each vertex
 2214                  * in deltaB appears before each vertex in deltaF.
 2215                  *
 2216                  * If x is a member of deltaF, then the new edge would
 2217                  * create a cycle. Otherwise, we may assume that
 2218                  * deltaF and deltaB are disjoint.
 2219                  */
 2220                 g->g_gen++;
 2221                 if (g->g_gen == 0) {
 2222                         /*
 2223                          * Generation wrap.
 2224                          */
 2225                         for (vi = 0; vi < g->g_size; vi++) {
 2226                                 g->g_vertices[vi]->v_gen = 0;
 2227                         }
 2228                         g->g_gen++;
 2229                 }
 2230                 nF = graph_delta_forward(g, x, y, &deltaF);
 2231                 if (nF < 0) {
 2232 #ifdef LOCKF_DEBUG
 2233                         if (lockf_debug & 8) {
 2234                                 struct owner_vertex_list path;
 2235                                 printf("deadlock: ");
 2236                                 TAILQ_INIT(&path);
 2237                                 graph_reaches(y, x, &path);
 2238                                 graph_print_vertices(&path);
 2239                         }
 2240 #endif
 2241                         return (EDEADLK);
 2242                 }
 2243 
 2244 #ifdef LOCKF_DEBUG
 2245                 if (lockf_debug & 8) {
 2246                         printf("re-ordering graph vertices\n");
 2247                         printf("deltaF = ");
 2248                         graph_print_vertices(&deltaF);
 2249                 }
 2250 #endif
 2251 
 2252                 nB = graph_delta_backward(g, x, y, &deltaB);
 2253 
 2254 #ifdef LOCKF_DEBUG
 2255                 if (lockf_debug & 8) {
 2256                         printf("deltaB = ");
 2257                         graph_print_vertices(&deltaB);
 2258                 }
 2259 #endif
 2260 
 2261                 /*
 2262                  * We first build a set of vertex indices (vertex
 2263                  * order values) that we may use, then we re-assign
 2264                  * orders first to those vertices in deltaB, then to
 2265                  * deltaF. Note that the contents of deltaF and deltaB
 2266                  * may be partially disordered - we perform an
 2267                  * insertion sort while building our index set.
 2268                  */
 2269                 indices = g->g_indexbuf;
 2270                 n = graph_add_indices(indices, 0, &deltaF);
 2271                 graph_add_indices(indices, n, &deltaB);
 2272 
 2273                 /*
 2274                  * We must also be sure to maintain the relative
 2275                  * ordering of deltaF and deltaB when re-assigning
 2276                  * vertices. We do this by iteratively removing the
 2277                  * lowest ordered element from the set and assigning
 2278                  * it the next value from our new ordering.
 2279                  */
 2280                 i = graph_assign_indices(g, indices, 0, &deltaB);
 2281                 graph_assign_indices(g, indices, i, &deltaF);
 2282 
 2283 #ifdef LOCKF_DEBUG
 2284                 if (lockf_debug & 8) {
 2285                         struct owner_vertex_list set;
 2286                         TAILQ_INIT(&set);
 2287                         for (i = 0; i < nB + nF; i++)
 2288                                 TAILQ_INSERT_TAIL(&set,
 2289                                     g->g_vertices[indices[i]], v_link);
 2290                         printf("new ordering = ");
 2291                         graph_print_vertices(&set);
 2292                 }
 2293 #endif
 2294         }
 2295 
 2296         KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));
 2297 
 2298 #ifdef LOCKF_DEBUG
 2299         if (lockf_debug & 8) {
 2300                 graph_check(g, TRUE);
 2301         }
 2302 #endif
 2303 
 2304         e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);
 2305 
 2306         LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
 2307         LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
 2308         e->e_refs = 1;
 2309         e->e_from = x;
 2310         e->e_to = y;
 2311 
 2312         return (0);
 2313 }
 2314 
 2315 /*
 2316  * Remove an edge x->y from the graph.
 2317  */
 2318 static void
 2319 graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
 2320     struct owner_vertex *y)
 2321 {
 2322         struct owner_edge *e;
 2323 
 2324         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
 2325 
 2326         LIST_FOREACH(e, &x->v_outedges, e_outlink) {
 2327                 if (e->e_to == y)
 2328                         break;
 2329         }
 2330         KASSERT(e, ("Removing non-existent edge from deadlock graph"));
 2331 
 2332         e->e_refs--;
 2333         if (e->e_refs == 0) {
 2334 #ifdef LOCKF_DEBUG
 2335                 if (lockf_debug & 8) {
 2336                         printf("removing edge %d:", x->v_order);
 2337                         lf_print_owner(x->v_owner);
 2338                         printf(" -> %d:", y->v_order);
 2339                         lf_print_owner(y->v_owner);
 2340                         printf("\n");
 2341                 }
 2342 #endif
 2343                 LIST_REMOVE(e, e_outlink);
 2344                 LIST_REMOVE(e, e_inlink);
 2345                 free(e, M_LOCKF);
 2346         }
 2347 }
 2348 
 2349 /*
 2350  * Allocate a vertex from the free list. Return ENOMEM if there are
 2351  * none.
 2352  */
 2353 static struct owner_vertex *
 2354 graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
 2355 {
 2356         struct owner_vertex *v;
 2357 
 2358         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
 2359 
 2360         v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
 2361         if (g->g_size == g->g_space) {
 2362                 g->g_vertices = realloc(g->g_vertices,
 2363                     2 * g->g_space * sizeof(struct owner_vertex *),
 2364                     M_LOCKF, M_WAITOK);
 2365                 free(g->g_indexbuf, M_LOCKF);
 2366                 g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
 2367                     M_LOCKF, M_WAITOK);
 2368                 g->g_space = 2 * g->g_space;
 2369         }
 2370         v->v_order = g->g_size;
 2371         v->v_gen = g->g_gen;
 2372         g->g_vertices[g->g_size] = v;
 2373         g->g_size++;
 2374 
 2375         LIST_INIT(&v->v_outedges);
 2376         LIST_INIT(&v->v_inedges);
 2377         v->v_owner = lo;
 2378 
 2379         return (v);
 2380 }
 2381 
 2382 static void
 2383 graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
 2384 {
 2385         struct owner_vertex *w;
 2386         int i;
 2387 
 2388         sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
 2389         
 2390         KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
 2391         KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));
 2392 
 2393         /*
 2394          * Remove from the graph's array and close up the gap,
 2395          * renumbering the other vertices.
 2396          */
 2397         for (i = v->v_order + 1; i < g->g_size; i++) {
 2398                 w = g->g_vertices[i];
 2399                 w->v_order--;
 2400                 g->g_vertices[i - 1] = w;
 2401         }
 2402         g->g_size--;
 2403 
 2404         free(v, M_LOCKF);
 2405 }
 2406 
 2407 static struct owner_graph *
 2408 graph_init(struct owner_graph *g)
 2409 {
 2410 
 2411         g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
 2412             M_LOCKF, M_WAITOK);
 2413         g->g_size = 0;
 2414         g->g_space = 10;
 2415         g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
 2416         g->g_gen = 0;
 2417 
 2418         return (g);
 2419 }
 2420 
 2421 #ifdef LOCKF_DEBUG
 2422 /*
 2423  * Print description of a lock owner
 2424  */
 2425 static void
 2426 lf_print_owner(struct lock_owner *lo)
 2427 {
 2428 
 2429         if (lo->lo_flags & F_REMOTE) {
 2430                 printf("remote pid %d, system %d",
 2431                     lo->lo_pid, lo->lo_sysid);
 2432         } else if (lo->lo_flags & F_FLOCK) {
 2433                 printf("file %p", lo->lo_id);
 2434         } else {
 2435                 printf("local pid %d", lo->lo_pid);
 2436         }
 2437 }
 2438 
 2439 /*
 2440  * Print out a lock.
 2441  */
 2442 static void
 2443 lf_print(char *tag, struct lockf_entry *lock)
 2444 {
 2445 
 2446         printf("%s: lock %p for ", tag, (void *)lock);
 2447         lf_print_owner(lock->lf_owner);
 2448         if (lock->lf_inode != (struct inode *)0)
 2449                 printf(" in ino %ju on dev <%s>,",
 2450                     (uintmax_t)lock->lf_inode->i_number,
 2451                     devtoname(lock->lf_inode->i_dev));
 2452         printf(" %s, start %jd, end ",
 2453             lock->lf_type == F_RDLCK ? "shared" :
 2454             lock->lf_type == F_WRLCK ? "exclusive" :
 2455             lock->lf_type == F_UNLCK ? "unlock" : "unknown",
 2456             (intmax_t)lock->lf_start);
 2457         if (lock->lf_end == OFF_MAX)
 2458                 printf("EOF");
 2459         else
 2460                 printf("%jd", (intmax_t)lock->lf_end);
 2461         if (!LIST_EMPTY(&lock->lf_outedges))
 2462                 printf(" block %p\n",
 2463                     (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
 2464         else
 2465                 printf("\n");
 2466 }
 2467 
 2468 static void
 2469 lf_printlist(char *tag, struct lockf_entry *lock)
 2470 {
 2471         struct lockf_entry *lf, *blk;
 2472         struct lockf_edge *e;
 2473 
 2474         if (lock->lf_inode == (struct inode *)0)
 2475                 return;
 2476 
 2477         printf("%s: Lock list for ino %ju on dev <%s>:\n",
 2478             tag, (uintmax_t)lock->lf_inode->i_number,
 2479             devtoname(lock->lf_inode->i_dev));
 2480         LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
 2481                 printf("\tlock %p for ",(void *)lf);
 2482                 lf_print_owner(lock->lf_owner);
 2483                 printf(", %s, start %jd, end %jd",
 2484                     lf->lf_type == F_RDLCK ? "shared" :
 2485                     lf->lf_type == F_WRLCK ? "exclusive" :
 2486                     lf->lf_type == F_UNLCK ? "unlock" :
 2487                     "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
 2488                 LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
 2489                         blk = e->le_to;
 2490                         printf("\n\t\tlock request %p for ", (void *)blk);
 2491                         lf_print_owner(blk->lf_owner);
 2492                         printf(", %s, start %jd, end %jd",
 2493                             blk->lf_type == F_RDLCK ? "shared" :
 2494                             blk->lf_type == F_WRLCK ? "exclusive" :
 2495                             blk->lf_type == F_UNLCK ? "unlock" :
 2496                             "unknown", (intmax_t)blk->lf_start,
 2497                             (intmax_t)blk->lf_end);
 2498                         if (!LIST_EMPTY(&blk->lf_inedges))
 2499                                 panic("lf_printlist: bad list");
 2500                 }
 2501                 printf("\n");
 2502         }
 2503 }
 2504 #endif /* LOCKF_DEBUG */

Cache object: e60bb3ea483701b0bcf29bdab11c3f71


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.