The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_lwp.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: kern_lwp.c,v 1.251 2022/07/01 01:06:04 riastradh Exp $ */
    2 
    3 /*-
    4  * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020
    5  *     The NetBSD Foundation, Inc.
    6  * All rights reserved.
    7  *
    8  * This code is derived from software contributed to The NetBSD Foundation
    9  * by Nathan J. Williams, and Andrew Doran.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   30  * POSSIBILITY OF SUCH DAMAGE.
   31  */
   32 
   33 /*
   34  * Overview
   35  *
   36  *      Lightweight processes (LWPs) are the basic unit or thread of
   37  *      execution within the kernel.  The core state of an LWP is described
   38  *      by "struct lwp", also known as lwp_t.
   39  *
   40  *      Each LWP is contained within a process (described by "struct proc"),
   41  *      Every process contains at least one LWP, but may contain more.  The
   42  *      process describes attributes shared among all of its LWPs such as a
   43  *      private address space, global execution state (stopped, active,
   44  *      zombie, ...), signal disposition and so on.  On a multiprocessor
   45  *      machine, multiple LWPs be executing concurrently in the kernel.
   46  *
   47  * Execution states
   48  *
   49  *      At any given time, an LWP has overall state that is described by
   50  *      lwp::l_stat.  The states are broken into two sets below.  The first
   51  *      set is guaranteed to represent the absolute, current state of the
   52  *      LWP:
   53  *
   54  *      LSONPROC
   55  *
   56  *              On processor: the LWP is executing on a CPU, either in the
   57  *              kernel or in user space.
   58  *
   59  *      LSRUN
   60  *
   61  *              Runnable: the LWP is parked on a run queue, and may soon be
   62  *              chosen to run by an idle processor, or by a processor that
   63  *              has been asked to preempt a currently runnning but lower
   64  *              priority LWP.
   65  *
   66  *      LSIDL
   67  *
   68  *              Idle: the LWP has been created but has not yet executed, or
   69  *              it has ceased executing a unit of work and is waiting to be
   70  *              started again.  This state exists so that the LWP can occupy
   71  *              a slot in the process & PID table, but without having to
   72  *              worry about being touched; lookups of the LWP by ID will
   73  *              fail while in this state.  The LWP will become visible for
   74  *              lookup once its state transitions further.  Some special
   75  *              kernel threads also (ab)use this state to indicate that they
   76  *              are idle (soft interrupts and idle LWPs).
   77  *
   78  *      LSSUSPENDED:
   79  *
   80  *              Suspended: the LWP has had its execution suspended by
   81  *              another LWP in the same process using the _lwp_suspend()
   82  *              system call.  User-level LWPs also enter the suspended
   83  *              state when the system is shutting down.
   84  *
   85  *      The second set represent a "statement of intent" on behalf of the
   86  *      LWP.  The LWP may in fact be executing on a processor, may be
   87  *      sleeping or idle. It is expected to take the necessary action to
   88  *      stop executing or become "running" again within a short timeframe.
   89  *      The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
   90  *      Importantly, it indicates that its state is tied to a CPU.
   91  *
   92  *      LSZOMB:
   93  *
   94  *              Dead or dying: the LWP has released most of its resources
   95  *              and is about to switch away into oblivion, or has already
   96  *              switched away.  When it switches away, its few remaining
   97  *              resources can be collected.
   98  *
   99  *      LSSLEEP:
  100  *
  101  *              Sleeping: the LWP has entered itself onto a sleep queue, and
  102  *              has switched away or will switch away shortly to allow other
  103  *              LWPs to run on the CPU.
  104  *
  105  *      LSSTOP:
  106  *
  107  *              Stopped: the LWP has been stopped as a result of a job
  108  *              control signal, or as a result of the ptrace() interface. 
  109  *
  110  *              Stopped LWPs may run briefly within the kernel to handle
  111  *              signals that they receive, but will not return to user space
  112  *              until their process' state is changed away from stopped. 
  113  *
  114  *              Single LWPs within a process can not be set stopped
  115  *              selectively: all actions that can stop or continue LWPs
  116  *              occur at the process level.
  117  *
  118  * State transitions
  119  *
  120  *      Note that the LSSTOP state may only be set when returning to
  121  *      user space in userret(), or when sleeping interruptably.  The
  122  *      LSSUSPENDED state may only be set in userret().  Before setting
  123  *      those states, we try to ensure that the LWPs will release all
  124  *      locks that they hold, and at a minimum try to ensure that the
  125  *      LWP can be set runnable again by a signal.
  126  *
  127  *      LWPs may transition states in the following ways:
  128  *
  129  *       RUN -------> ONPROC            ONPROC -----> RUN
  130  *                                                  > SLEEP
  131  *                                                  > STOPPED
  132  *                                                  > SUSPENDED
  133  *                                                  > ZOMB
  134  *                                                  > IDL (special cases)
  135  *
  136  *       STOPPED ---> RUN               SUSPENDED --> RUN
  137  *                  > SLEEP
  138  *
  139  *       SLEEP -----> ONPROC            IDL --------> RUN
  140  *                  > RUN                           > SUSPENDED
  141  *                  > STOPPED                       > STOPPED
  142  *                                                  > ONPROC (special cases)
  143  *
  144  *      Some state transitions are only possible with kernel threads (eg
  145  *      ONPROC -> IDL) and happen under tightly controlled circumstances
  146  *      free of unwanted side effects.
  147  *
  148  * Migration
  149  *
  150  *      Migration of threads from one CPU to another could be performed
  151  *      internally by the scheduler via sched_takecpu() or sched_catchlwp()
  152  *      functions.  The universal lwp_migrate() function should be used for
  153  *      any other cases.  Subsystems in the kernel must be aware that CPU
  154  *      of LWP may change, while it is not locked.
  155  *
  156  * Locking
  157  *
  158  *      The majority of fields in 'struct lwp' are covered by a single,
  159  *      general spin lock pointed to by lwp::l_mutex.  The locks covering
  160  *      each field are documented in sys/lwp.h.
  161  *
  162  *      State transitions must be made with the LWP's general lock held,
  163  *      and may cause the LWP's lock pointer to change.  Manipulation of
  164  *      the general lock is not performed directly, but through calls to
  165  *      lwp_lock(), lwp_unlock() and others.  It should be noted that the
  166  *      adaptive locks are not allowed to be released while the LWP's lock
  167  *      is being held (unlike for other spin-locks).
  168  *
  169  *      States and their associated locks:
  170  *
  171  *      LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
  172  *
  173  *              Always covered by spc_lwplock, which protects LWPs not
  174  *              associated with any other sync object.  This is a per-CPU
  175  *              lock and matches lwp::l_cpu.
  176  *
  177  *      LSRUN:
  178  *
  179  *              Always covered by spc_mutex, which protects the run queues.
  180  *              This is a per-CPU lock and matches lwp::l_cpu.
  181  *
  182  *      LSSLEEP:
  183  *
  184  *              Covered by a lock associated with the sleep queue (sometimes
  185  *              a turnstile sleep queue) that the LWP resides on.  This can
  186  *              be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep).
  187  *
  188  *      LSSTOP:
  189  *
  190  *              If the LWP was previously sleeping (l_wchan != NULL), then
  191  *              l_mutex references the sleep queue lock.  If the LWP was
  192  *              runnable or on the CPU when halted, or has been removed from
  193  *              the sleep queue since halted, then the lock is spc_lwplock.
  194  *
  195  *      The lock order is as follows:
  196  *
  197  *              sleepq -> turnstile -> spc_lwplock -> spc_mutex
  198  *
  199  *      Each process has a scheduler state lock (proc::p_lock), and a
  200  *      number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
  201  *      so on.  When an LWP is to be entered into or removed from one of the
  202  *      following states, p_lock must be held and the process wide counters
  203  *      adjusted:
  204  *
  205  *              LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
  206  *
  207  *      (But not always for kernel threads.  There are some special cases
  208  *      as mentioned above: soft interrupts, and the idle loops.)
  209  *
  210  *      Note that an LWP is considered running or likely to run soon if in
  211  *      one of the following states.  This affects the value of p_nrlwps:
  212  *
  213  *              LSRUN, LSONPROC, LSSLEEP
  214  *
  215  *      p_lock does not need to be held when transitioning among these
  216  *      three states, hence p_lock is rarely taken for state transitions.
  217  */
  218 
  219 #include <sys/cdefs.h>
  220 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.251 2022/07/01 01:06:04 riastradh Exp $");
  221 
  222 #include "opt_ddb.h"
  223 #include "opt_lockdebug.h"
  224 #include "opt_dtrace.h"
  225 
  226 #define _LWP_API_PRIVATE
  227 
  228 #include <sys/param.h>
  229 #include <sys/systm.h>
  230 #include <sys/cpu.h>
  231 #include <sys/pool.h>
  232 #include <sys/proc.h>
  233 #include <sys/syscallargs.h>
  234 #include <sys/syscall_stats.h>
  235 #include <sys/kauth.h>
  236 #include <sys/sleepq.h>
  237 #include <sys/lockdebug.h>
  238 #include <sys/kmem.h>
  239 #include <sys/pset.h>
  240 #include <sys/intr.h>
  241 #include <sys/lwpctl.h>
  242 #include <sys/atomic.h>
  243 #include <sys/filedesc.h>
  244 #include <sys/fstrans.h>
  245 #include <sys/dtrace_bsd.h>
  246 #include <sys/sdt.h>
  247 #include <sys/ptrace.h>
  248 #include <sys/xcall.h>
  249 #include <sys/uidinfo.h>
  250 #include <sys/sysctl.h>
  251 #include <sys/psref.h>
  252 #include <sys/msan.h>
  253 #include <sys/kcov.h>
  254 #include <sys/cprng.h>
  255 #include <sys/futex.h>
  256 
  257 #include <uvm/uvm_extern.h>
  258 #include <uvm/uvm_object.h>
  259 
  260 static pool_cache_t     lwp_cache       __read_mostly;
  261 struct lwplist          alllwp          __cacheline_aligned;
  262 
  263 static int              lwp_ctor(void *, void *, int);
  264 static void             lwp_dtor(void *, void *);
  265 
  266 /* DTrace proc provider probes */
  267 SDT_PROVIDER_DEFINE(proc);
  268 
  269 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
  270 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
  271 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
  272 
  273 struct turnstile turnstile0 __cacheline_aligned;
  274 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
  275 #ifdef LWP0_CPU_INFO
  276         .l_cpu = LWP0_CPU_INFO,
  277 #endif
  278 #ifdef LWP0_MD_INITIALIZER
  279         .l_md = LWP0_MD_INITIALIZER,
  280 #endif
  281         .l_proc = &proc0,
  282         .l_lid = 0,             /* we own proc0's slot in the pid table */
  283         .l_flag = LW_SYSTEM,
  284         .l_stat = LSONPROC,
  285         .l_ts = &turnstile0,
  286         .l_syncobj = &sched_syncobj,
  287         .l_refcnt = 0,
  288         .l_priority = PRI_USER + NPRI_USER - 1,
  289         .l_inheritedprio = -1,
  290         .l_class = SCHED_OTHER,
  291         .l_psid = PS_NONE,
  292         .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
  293         .l_name = __UNCONST("swapper"),
  294         .l_fd = &filedesc0,
  295 };
  296 
  297 static int
  298 lwp_maxlwp(void)
  299 {
  300         /* Assume 1 LWP per 1MiB. */
  301         uint64_t lwps_per = ctob(physmem) / (1024 * 1024);
  302 
  303         return MAX(MIN(MAXMAXLWP, lwps_per), MAXLWP);
  304 }
  305 
  306 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
  307 
  308 /*
  309  * sysctl helper routine for kern.maxlwp. Ensures that the new
  310  * values are not too low or too high.
  311  */
  312 static int
  313 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
  314 {
  315         int error, nmaxlwp;
  316         struct sysctlnode node;
  317 
  318         nmaxlwp = maxlwp;
  319         node = *rnode;
  320         node.sysctl_data = &nmaxlwp;
  321         error = sysctl_lookup(SYSCTLFN_CALL(&node));
  322         if (error || newp == NULL)
  323                 return error;
  324 
  325         if (nmaxlwp < 0 || nmaxlwp >= MAXMAXLWP)
  326                 return EINVAL;
  327         if (nmaxlwp > lwp_maxlwp())
  328                 return EINVAL;
  329         maxlwp = nmaxlwp;
  330 
  331         return 0;
  332 }
  333 
  334 static void
  335 sysctl_kern_lwp_setup(void)
  336 {
  337         sysctl_createv(NULL, 0, NULL, NULL,
  338                        CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
  339                        CTLTYPE_INT, "maxlwp",
  340                        SYSCTL_DESCR("Maximum number of simultaneous threads"),
  341                        sysctl_kern_maxlwp, 0, NULL, 0,
  342                        CTL_KERN, CTL_CREATE, CTL_EOL);
  343 }
  344 
  345 void
  346 lwpinit(void)
  347 {
  348 
  349         LIST_INIT(&alllwp);
  350         lwpinit_specificdata();
  351         /*
  352          * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
  353          * calls will exit before memory of LWPs is returned to the pool, where
  354          * KVA of LWP structure might be freed and re-used for other purposes.
  355          * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
  356          * callers, therefore a regular passive serialization barrier will
  357          * do the job.
  358          */
  359         lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0,
  360             PR_PSERIALIZE, "lwppl", NULL, IPL_NONE, lwp_ctor, lwp_dtor, NULL);
  361 
  362         maxlwp = lwp_maxlwp();
  363         sysctl_kern_lwp_setup();
  364 }
  365 
  366 void
  367 lwp0_init(void)
  368 {
  369         struct lwp *l = &lwp0;
  370 
  371         KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
  372 
  373         LIST_INSERT_HEAD(&alllwp, l, l_list);
  374 
  375         callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
  376         callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
  377         cv_init(&l->l_sigcv, "sigwait");
  378         cv_init(&l->l_waitcv, "vfork");
  379 
  380         kauth_cred_hold(proc0.p_cred);
  381         l->l_cred = proc0.p_cred;
  382 
  383         kdtrace_thread_ctor(NULL, l);
  384         lwp_initspecific(l);
  385 
  386         SYSCALL_TIME_LWP_INIT(l);
  387 }
  388 
  389 /*
  390  * Initialize the non-zeroed portion of an lwp_t.
  391  */
  392 static int
  393 lwp_ctor(void *arg, void *obj, int flags)
  394 {
  395         lwp_t *l = obj;
  396 
  397         l->l_stat = LSIDL;
  398         l->l_cpu = curcpu();
  399         l->l_mutex = l->l_cpu->ci_schedstate.spc_lwplock;
  400         l->l_ts = pool_get(&turnstile_pool, flags);
  401 
  402         if (l->l_ts == NULL) {
  403                 return ENOMEM;
  404         } else {
  405                 turnstile_ctor(l->l_ts);
  406                 return 0;
  407         }
  408 }
  409 
  410 static void
  411 lwp_dtor(void *arg, void *obj)
  412 {
  413         lwp_t *l = obj;
  414 
  415         /*
  416          * The value of l->l_cpu must still be valid at this point.
  417          */
  418         KASSERT(l->l_cpu != NULL);
  419 
  420         /*
  421          * We can't return turnstile0 to the pool (it didn't come from it),
  422          * so if it comes up just drop it quietly and move on.
  423          */
  424         if (l->l_ts != &turnstile0)
  425                 pool_put(&turnstile_pool, l->l_ts);
  426 }
  427 
  428 /*
  429  * Set an LWP suspended.
  430  *
  431  * Must be called with p_lock held, and the LWP locked.  Will unlock the
  432  * LWP before return.
  433  */
  434 int
  435 lwp_suspend(struct lwp *curl, struct lwp *t)
  436 {
  437         int error;
  438 
  439         KASSERT(mutex_owned(t->l_proc->p_lock));
  440         KASSERT(lwp_locked(t, NULL));
  441 
  442         KASSERT(curl != t || curl->l_stat == LSONPROC);
  443 
  444         /*
  445          * If the current LWP has been told to exit, we must not suspend anyone
  446          * else or deadlock could occur.  We won't return to userspace.
  447          */
  448         if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
  449                 lwp_unlock(t);
  450                 return (EDEADLK);
  451         }
  452 
  453         if ((t->l_flag & LW_DBGSUSPEND) != 0) {
  454                 lwp_unlock(t);
  455                 return 0;
  456         }
  457 
  458         error = 0;
  459 
  460         switch (t->l_stat) {
  461         case LSRUN:
  462         case LSONPROC:
  463                 t->l_flag |= LW_WSUSPEND;
  464                 lwp_need_userret(t);
  465                 lwp_unlock(t);
  466                 break;
  467 
  468         case LSSLEEP:
  469                 t->l_flag |= LW_WSUSPEND;
  470 
  471                 /*
  472                  * Kick the LWP and try to get it to the kernel boundary
  473                  * so that it will release any locks that it holds.
  474                  * setrunnable() will release the lock.
  475                  */
  476                 if ((t->l_flag & LW_SINTR) != 0)
  477                         setrunnable(t);
  478                 else
  479                         lwp_unlock(t);
  480                 break;
  481 
  482         case LSSUSPENDED:
  483                 lwp_unlock(t);
  484                 break;
  485 
  486         case LSSTOP:
  487                 t->l_flag |= LW_WSUSPEND;
  488                 setrunnable(t);
  489                 break;
  490 
  491         case LSIDL:
  492         case LSZOMB:
  493                 error = EINTR; /* It's what Solaris does..... */
  494                 lwp_unlock(t);
  495                 break;
  496         }
  497 
  498         return (error);
  499 }
  500 
  501 /*
  502  * Restart a suspended LWP.
  503  *
  504  * Must be called with p_lock held, and the LWP locked.  Will unlock the
  505  * LWP before return.
  506  */
  507 void
  508 lwp_continue(struct lwp *l)
  509 {
  510 
  511         KASSERT(mutex_owned(l->l_proc->p_lock));
  512         KASSERT(lwp_locked(l, NULL));
  513 
  514         /* If rebooting or not suspended, then just bail out. */
  515         if ((l->l_flag & LW_WREBOOT) != 0) {
  516                 lwp_unlock(l);
  517                 return;
  518         }
  519 
  520         l->l_flag &= ~LW_WSUSPEND;
  521 
  522         if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
  523                 lwp_unlock(l);
  524                 return;
  525         }
  526 
  527         /* setrunnable() will release the lock. */
  528         setrunnable(l);
  529 }
  530 
  531 /*
  532  * Restart a stopped LWP.
  533  *
  534  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
  535  * LWP before return.
  536  */
  537 void
  538 lwp_unstop(struct lwp *l)
  539 {
  540         struct proc *p = l->l_proc;
  541 
  542         KASSERT(mutex_owned(&proc_lock));
  543         KASSERT(mutex_owned(p->p_lock));
  544 
  545         lwp_lock(l);
  546 
  547         KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
  548 
  549         /* If not stopped, then just bail out. */
  550         if (l->l_stat != LSSTOP) {
  551                 lwp_unlock(l);
  552                 return;
  553         }
  554 
  555         p->p_stat = SACTIVE;
  556         p->p_sflag &= ~PS_STOPPING;
  557 
  558         if (!p->p_waited)
  559                 p->p_pptr->p_nstopchild--;
  560 
  561         if (l->l_wchan == NULL) {
  562                 /* setrunnable() will release the lock. */
  563                 setrunnable(l);
  564         } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
  565                 /* setrunnable() so we can receive the signal */
  566                 setrunnable(l);
  567         } else {
  568                 l->l_stat = LSSLEEP;
  569                 p->p_nrlwps++;
  570                 lwp_unlock(l);
  571         }
  572 }
  573 
  574 /*
  575  * Wait for an LWP within the current process to exit.  If 'lid' is
  576  * non-zero, we are waiting for a specific LWP.
  577  *
  578  * Must be called with p->p_lock held.
  579  */
  580 int
  581 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
  582 {
  583         const lwpid_t curlid = l->l_lid;
  584         proc_t *p = l->l_proc;
  585         lwp_t *l2, *next;
  586         int error;
  587 
  588         KASSERT(mutex_owned(p->p_lock));
  589 
  590         p->p_nlwpwait++;
  591         l->l_waitingfor = lid;
  592 
  593         for (;;) {
  594                 int nfound;
  595 
  596                 /*
  597                  * Avoid a race between exit1() and sigexit(): if the
  598                  * process is dumping core, then we need to bail out: call
  599                  * into lwp_userret() where we will be suspended until the
  600                  * deed is done.
  601                  */
  602                 if ((p->p_sflag & PS_WCORE) != 0) {
  603                         mutex_exit(p->p_lock);
  604                         lwp_userret(l);
  605                         KASSERT(false);
  606                 }
  607 
  608                 /*
  609                  * First off, drain any detached LWP that is waiting to be
  610                  * reaped.
  611                  */
  612                 while ((l2 = p->p_zomblwp) != NULL) {
  613                         p->p_zomblwp = NULL;
  614                         lwp_free(l2, false, false);/* releases proc mutex */
  615                         mutex_enter(p->p_lock);
  616                 }
  617 
  618                 /*
  619                  * Now look for an LWP to collect.  If the whole process is
  620                  * exiting, count detached LWPs as eligible to be collected,
  621                  * but don't drain them here.
  622                  */
  623                 nfound = 0;
  624                 error = 0;
  625 
  626                 /*
  627                  * If given a specific LID, go via pid_table and make sure
  628                  * it's not detached.
  629                  */
  630                 if (lid != 0) {
  631                         l2 = proc_find_lwp(p, lid);
  632                         if (l2 == NULL) {
  633                                 error = ESRCH;
  634                                 break;
  635                         }
  636                         KASSERT(l2->l_lid == lid);
  637                         if ((l2->l_prflag & LPR_DETACHED) != 0) {
  638                                 error = EINVAL;
  639                                 break;
  640                         }
  641                 } else {
  642                         l2 = LIST_FIRST(&p->p_lwps);
  643                 }
  644                 for (; l2 != NULL; l2 = next) {
  645                         next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling));
  646 
  647                         /*
  648                          * If a specific wait and the target is waiting on
  649                          * us, then avoid deadlock.  This also traps LWPs
  650                          * that try to wait on themselves.
  651                          *
  652                          * Note that this does not handle more complicated
  653                          * cycles, like: t1 -> t2 -> t3 -> t1.  The process
  654                          * can still be killed so it is not a major problem.
  655                          */
  656                         if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
  657                                 error = EDEADLK;
  658                                 break;
  659                         }
  660                         if (l2 == l)
  661                                 continue;
  662                         if ((l2->l_prflag & LPR_DETACHED) != 0) {
  663                                 nfound += exiting;
  664                                 continue;
  665                         }
  666                         if (lid != 0) {
  667                                 /*
  668                                  * Mark this LWP as the first waiter, if there
  669                                  * is no other.
  670                                  */
  671                                 if (l2->l_waiter == 0)
  672                                         l2->l_waiter = curlid;
  673                         } else if (l2->l_waiter != 0) {
  674                                 /*
  675                                  * It already has a waiter - so don't
  676                                  * collect it.  If the waiter doesn't
  677                                  * grab it we'll get another chance
  678                                  * later.
  679                                  */
  680                                 nfound++;
  681                                 continue;
  682                         }
  683                         nfound++;
  684 
  685                         /* No need to lock the LWP in order to see LSZOMB. */
  686                         if (l2->l_stat != LSZOMB)
  687                                 continue;
  688 
  689                         /*
  690                          * We're no longer waiting.  Reset the "first waiter"
  691                          * pointer on the target, in case it was us.
  692                          */
  693                         l->l_waitingfor = 0;
  694                         l2->l_waiter = 0;
  695                         p->p_nlwpwait--;
  696                         if (departed)
  697                                 *departed = l2->l_lid;
  698                         sched_lwp_collect(l2);
  699 
  700                         /* lwp_free() releases the proc lock. */
  701                         lwp_free(l2, false, false);
  702                         mutex_enter(p->p_lock);
  703                         return 0;
  704                 }
  705 
  706                 if (error != 0)
  707                         break;
  708                 if (nfound == 0) {
  709                         error = ESRCH;
  710                         break;
  711                 }
  712 
  713                 /*
  714                  * Note: since the lock will be dropped, need to restart on
  715                  * wakeup to run all LWPs again, e.g. there may be new LWPs.
  716                  */
  717                 if (exiting) {
  718                         KASSERT(p->p_nlwps > 1);
  719                         error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1);
  720                         break;
  721                 }
  722 
  723                 /*
  724                  * Break out if all LWPs are in _lwp_wait().  There are
  725                  * other ways to hang the process with _lwp_wait(), but the
  726                  * sleep is interruptable so little point checking for them.
  727                  */
  728                 if (p->p_nlwpwait == p->p_nlwps) {
  729                         error = EDEADLK;
  730                         break;
  731                 }
  732 
  733                 /*
  734                  * Sit around and wait for something to happen.  We'll be 
  735                  * awoken if any of the conditions examined change: if an
  736                  * LWP exits, is collected, or is detached.
  737                  */
  738                 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
  739                         break;
  740         }
  741 
  742         /*
  743          * We didn't find any LWPs to collect, we may have received a 
  744          * signal, or some other condition has caused us to bail out.
  745          *
  746          * If waiting on a specific LWP, clear the waiters marker: some
  747          * other LWP may want it.  Then, kick all the remaining waiters
  748          * so that they can re-check for zombies and for deadlock.
  749          */
  750         if (lid != 0) {
  751                 l2 = proc_find_lwp(p, lid);
  752                 KASSERT(l2 == NULL || l2->l_lid == lid);
  753 
  754                 if (l2 != NULL && l2->l_waiter == curlid)
  755                         l2->l_waiter = 0;
  756         }
  757         p->p_nlwpwait--;
  758         l->l_waitingfor = 0;
  759         cv_broadcast(&p->p_lwpcv);
  760 
  761         return error;
  762 }
  763 
  764 /*
  765  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
  766  * The new LWP is created in state LSIDL and must be set running,
  767  * suspended, or stopped by the caller.
  768  */
  769 int
  770 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
  771     void *stack, size_t stacksize, void (*func)(void *), void *arg,
  772     lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
  773     const stack_t *sigstk)
  774 {
  775         struct lwp *l2;
  776 
  777         KASSERT(l1 == curlwp || l1->l_proc == &proc0);
  778 
  779         /*
  780          * Enforce limits, excluding the first lwp and kthreads.  We must
  781          * use the process credentials here when adjusting the limit, as
  782          * they are what's tied to the accounting entity.  However for
  783          * authorizing the action, we'll use the LWP's credentials.
  784          */
  785         mutex_enter(p2->p_lock);
  786         if (p2->p_nlwps != 0 && p2 != &proc0) {
  787                 uid_t uid = kauth_cred_getuid(p2->p_cred);
  788                 int count = chglwpcnt(uid, 1);
  789                 if (__predict_false(count >
  790                     p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
  791                         if (kauth_authorize_process(l1->l_cred,
  792                             KAUTH_PROCESS_RLIMIT, p2,
  793                             KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
  794                             &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
  795                             != 0) {
  796                                 (void)chglwpcnt(uid, -1);
  797                                 mutex_exit(p2->p_lock);
  798                                 return EAGAIN;
  799                         }
  800                 }
  801         }
  802 
  803         /*
  804          * First off, reap any detached LWP waiting to be collected.
  805          * We can re-use its LWP structure and turnstile.
  806          */
  807         if ((l2 = p2->p_zomblwp) != NULL) {
  808                 p2->p_zomblwp = NULL;
  809                 lwp_free(l2, true, false);
  810                 /* p2 now unlocked by lwp_free() */
  811                 KASSERT(l2->l_ts != NULL);
  812                 KASSERT(l2->l_inheritedprio == -1);
  813                 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
  814                 memset(&l2->l_startzero, 0, sizeof(*l2) -
  815                     offsetof(lwp_t, l_startzero));
  816         } else {
  817                 mutex_exit(p2->p_lock);
  818                 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
  819                 memset(&l2->l_startzero, 0, sizeof(*l2) -
  820                     offsetof(lwp_t, l_startzero));
  821                 SLIST_INIT(&l2->l_pi_lenders);
  822         }
  823 
  824         /*
  825          * Because of lockless lookup via pid_table, the LWP can be locked
  826          * and inspected briefly even after it's freed, so a few fields are
  827          * kept stable.
  828          */
  829         KASSERT(l2->l_stat == LSIDL);
  830         KASSERT(l2->l_cpu != NULL);
  831         KASSERT(l2->l_ts != NULL);
  832         KASSERT(l2->l_mutex == l2->l_cpu->ci_schedstate.spc_lwplock);
  833 
  834         l2->l_proc = p2;
  835         l2->l_refcnt = 0;
  836         l2->l_class = sclass;
  837 
  838         /*
  839          * Allocate a process ID for this LWP.  We need to do this now
  840          * while we can still unwind if it fails.  Because we're marked
  841          * as LSIDL, no lookups by the ID will succeed.
  842          *
  843          * N.B. this will always succeed for the first LWP in a process,
  844          * because proc_alloc_lwpid() will usurp the slot.  Also note
  845          * that l2->l_proc MUST be valid so that lookups of the proc
  846          * will succeed, even if the LWP itself is not visible.
  847          */
  848         if (__predict_false(proc_alloc_lwpid(p2, l2) == -1)) {
  849                 pool_cache_put(lwp_cache, l2);
  850                 return EAGAIN;
  851         }
  852 
  853         /*
  854          * If vfork(), we want the LWP to run fast and on the same CPU
  855          * as its parent, so that it can reuse the VM context and cache
  856          * footprint on the local CPU.
  857          */
  858         l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
  859         l2->l_kpribase = PRI_KERNEL;
  860         l2->l_priority = l1->l_priority;
  861         l2->l_inheritedprio = -1;
  862         l2->l_protectprio = -1;
  863         l2->l_auxprio = -1;
  864         l2->l_flag = 0;
  865         l2->l_pflag = LP_MPSAFE;
  866         TAILQ_INIT(&l2->l_ld_locks);
  867         l2->l_psrefs = 0;
  868         kmsan_lwp_alloc(l2);
  869 
  870         /*
  871          * For vfork, borrow parent's lwpctl context if it exists.
  872          * This also causes us to return via lwp_userret.
  873          */
  874         if (flags & LWP_VFORK && l1->l_lwpctl) {
  875                 l2->l_lwpctl = l1->l_lwpctl;
  876                 l2->l_flag |= LW_LWPCTL;
  877         }
  878 
  879         /*
  880          * If not the first LWP in the process, grab a reference to the
  881          * descriptor table.
  882          */
  883         l2->l_fd = p2->p_fd;
  884         if (p2->p_nlwps != 0) {
  885                 KASSERT(l1->l_proc == p2);
  886                 fd_hold(l2);
  887         } else {
  888                 KASSERT(l1->l_proc != p2);
  889         }
  890 
  891         if (p2->p_flag & PK_SYSTEM) {
  892                 /* Mark it as a system LWP. */
  893                 l2->l_flag |= LW_SYSTEM;
  894         }
  895 
  896         kdtrace_thread_ctor(NULL, l2);
  897         lwp_initspecific(l2);
  898         sched_lwp_fork(l1, l2);
  899         lwp_update_creds(l2);
  900         callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
  901         callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
  902         cv_init(&l2->l_sigcv, "sigwait");
  903         cv_init(&l2->l_waitcv, "vfork");
  904         l2->l_syncobj = &sched_syncobj;
  905         PSREF_DEBUG_INIT_LWP(l2);
  906 
  907         if (rnewlwpp != NULL)
  908                 *rnewlwpp = l2;
  909 
  910         /*
  911          * PCU state needs to be saved before calling uvm_lwp_fork() so that
  912          * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
  913          */
  914         pcu_save_all(l1);
  915 #if PCU_UNIT_COUNT > 0
  916         l2->l_pcu_valid = l1->l_pcu_valid;
  917 #endif
  918 
  919         uvm_lwp_setuarea(l2, uaddr);
  920         uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
  921 
  922         mutex_enter(p2->p_lock);
  923         if ((flags & LWP_DETACHED) != 0) {
  924                 l2->l_prflag = LPR_DETACHED;
  925                 p2->p_ndlwps++;
  926         } else
  927                 l2->l_prflag = 0;
  928 
  929         if (l1->l_proc == p2) {
  930                 /*
  931                  * These flags are set while p_lock is held.  Copy with
  932                  * p_lock held too, so the LWP doesn't sneak into the
  933                  * process without them being set.
  934                  */
  935                 l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
  936         } else {
  937                 /* fork(): pending core/exit doesn't apply to child. */
  938                 l2->l_flag |= (l1->l_flag & LW_WREBOOT);
  939         }
  940 
  941         l2->l_sigstk = *sigstk;
  942         l2->l_sigmask = *sigmask;
  943         TAILQ_INIT(&l2->l_sigpend.sp_info);
  944         sigemptyset(&l2->l_sigpend.sp_set);
  945         LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
  946         p2->p_nlwps++;
  947         p2->p_nrlwps++;
  948 
  949         KASSERT(l2->l_affinity == NULL);
  950 
  951         /* Inherit the affinity mask. */
  952         if (l1->l_affinity) {
  953                 /*
  954                  * Note that we hold the state lock while inheriting
  955                  * the affinity to avoid race with sched_setaffinity().
  956                  */
  957                 lwp_lock(l1);
  958                 if (l1->l_affinity) {
  959                         kcpuset_use(l1->l_affinity);
  960                         l2->l_affinity = l1->l_affinity;
  961                 }
  962                 lwp_unlock(l1);
  963         }
  964 
  965         /* This marks the end of the "must be atomic" section. */
  966         mutex_exit(p2->p_lock);
  967 
  968         SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
  969 
  970         mutex_enter(&proc_lock);
  971         LIST_INSERT_HEAD(&alllwp, l2, l_list);
  972         /* Inherit a processor-set */
  973         l2->l_psid = l1->l_psid;
  974         mutex_exit(&proc_lock);
  975 
  976         SYSCALL_TIME_LWP_INIT(l2);
  977 
  978         if (p2->p_emul->e_lwp_fork)
  979                 (*p2->p_emul->e_lwp_fork)(l1, l2);
  980 
  981         return (0);
  982 }
  983 
  984 /*
  985  * Set a new LWP running.  If the process is stopping, then the LWP is
  986  * created stopped.
  987  */
  988 void
  989 lwp_start(lwp_t *l, int flags)
  990 {
  991         proc_t *p = l->l_proc;
  992 
  993         mutex_enter(p->p_lock);
  994         lwp_lock(l);
  995         KASSERT(l->l_stat == LSIDL);
  996         if ((flags & LWP_SUSPENDED) != 0) {
  997                 /* It'll suspend itself in lwp_userret(). */
  998                 l->l_flag |= LW_WSUSPEND;
  999         }
 1000         if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
 1001                 KASSERT(l->l_wchan == NULL);
 1002                 l->l_stat = LSSTOP;
 1003                 p->p_nrlwps--;
 1004                 lwp_unlock(l);
 1005         } else {
 1006                 setrunnable(l);
 1007                 /* LWP now unlocked */
 1008         }
 1009         mutex_exit(p->p_lock);
 1010 }
 1011 
 1012 /*
 1013  * Called by MD code when a new LWP begins execution.  Must be called
 1014  * with the previous LWP locked (so at splsched), or if there is no
 1015  * previous LWP, at splsched.
 1016  */
 1017 void
 1018 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
 1019 {
 1020         kmutex_t *lock;
 1021 
 1022         KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
 1023         KASSERT(kpreempt_disabled());
 1024         KASSERT(prev != NULL);
 1025         KASSERT((prev->l_pflag & LP_RUNNING) != 0);
 1026         KASSERT(curcpu()->ci_mtx_count == -2);
 1027 
 1028         /*
 1029          * Immediately mark the previous LWP as no longer running and
 1030          * unlock (to keep lock wait times short as possible).  If a
 1031          * zombie, don't touch after clearing LP_RUNNING as it could be
 1032          * reaped by another CPU.  Use atomic_store_release to ensure
 1033          * this -- matches atomic_load_acquire in lwp_free.
 1034          */
 1035         lock = prev->l_mutex;
 1036         if (__predict_false(prev->l_stat == LSZOMB)) {
 1037                 atomic_store_release(&prev->l_pflag,
 1038                     prev->l_pflag & ~LP_RUNNING);
 1039         } else {
 1040                 prev->l_pflag &= ~LP_RUNNING;
 1041         }
 1042         mutex_spin_exit(lock);
 1043 
 1044         /* Correct spin mutex count after mi_switch(). */
 1045         curcpu()->ci_mtx_count = 0;
 1046 
 1047         /* Install new VM context. */
 1048         if (__predict_true(new_lwp->l_proc->p_vmspace)) {
 1049                 pmap_activate(new_lwp);
 1050         }
 1051 
 1052         /* We remain at IPL_SCHED from mi_switch() - reset it. */
 1053         spl0();
 1054 
 1055         LOCKDEBUG_BARRIER(NULL, 0);
 1056         SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
 1057 
 1058         /* For kthreads, acquire kernel lock if not MPSAFE. */
 1059         if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
 1060                 KERNEL_LOCK(1, new_lwp);
 1061         }
 1062 }
 1063 
 1064 /*
 1065  * Exit an LWP.
 1066  *
 1067  * *** WARNING *** This can be called with (l != curlwp) in error paths.
 1068  */
 1069 void
 1070 lwp_exit(struct lwp *l)
 1071 {
 1072         struct proc *p = l->l_proc;
 1073         struct lwp *l2;
 1074         bool current;
 1075 
 1076         current = (l == curlwp);
 1077 
 1078         KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
 1079         KASSERT(p == curproc);
 1080 
 1081         SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
 1082 
 1083         /* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */
 1084         LOCKDEBUG_BARRIER(NULL, 0);
 1085         KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked");
 1086 
 1087         /*
 1088          * If we are the last live LWP in a process, we need to exit the
 1089          * entire process.  We do so with an exit status of zero, because
 1090          * it's a "controlled" exit, and because that's what Solaris does.
 1091          *
 1092          * We are not quite a zombie yet, but for accounting purposes we
 1093          * must increment the count of zombies here.
 1094          *
 1095          * Note: the last LWP's specificdata will be deleted here.
 1096          */
 1097         mutex_enter(p->p_lock);
 1098         if (p->p_nlwps - p->p_nzlwps == 1) {
 1099                 KASSERT(current == true);
 1100                 KASSERT(p != &proc0);
 1101                 exit1(l, 0, 0);
 1102                 /* NOTREACHED */
 1103         }
 1104         p->p_nzlwps++;
 1105 
 1106         /*
 1107          * Perform any required thread cleanup.  Do this early so
 1108          * anyone wanting to look us up with lwp_getref_lwpid() will
 1109          * fail to find us before we become a zombie.
 1110          *
 1111          * N.B. this will unlock p->p_lock on our behalf.
 1112          */
 1113         lwp_thread_cleanup(l);
 1114 
 1115         if (p->p_emul->e_lwp_exit)
 1116                 (*p->p_emul->e_lwp_exit)(l);
 1117 
 1118         /* Drop filedesc reference. */
 1119         fd_free();
 1120 
 1121         /* Release fstrans private data. */
 1122         fstrans_lwp_dtor(l);
 1123 
 1124         /* Delete the specificdata while it's still safe to sleep. */
 1125         lwp_finispecific(l);
 1126 
 1127         /*
 1128          * Release our cached credentials.
 1129          */
 1130         kauth_cred_free(l->l_cred);
 1131         callout_destroy(&l->l_timeout_ch);
 1132 
 1133         /*
 1134          * If traced, report LWP exit event to the debugger.
 1135          *
 1136          * Remove the LWP from the global list.
 1137          * Free its LID from the PID namespace if needed.
 1138          */
 1139         mutex_enter(&proc_lock);
 1140 
 1141         if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
 1142             (PSL_TRACED|PSL_TRACELWP_EXIT)) {
 1143                 mutex_enter(p->p_lock);
 1144                 if (ISSET(p->p_sflag, PS_WEXIT)) {
 1145                         mutex_exit(p->p_lock);
 1146                         /*
 1147                          * We are exiting, bail out without informing parent
 1148                          * about a terminating LWP as it would deadlock.
 1149                          */
 1150                 } else {
 1151                         eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
 1152                         mutex_enter(&proc_lock);
 1153                 }
 1154         }
 1155 
 1156         LIST_REMOVE(l, l_list);
 1157         mutex_exit(&proc_lock);
 1158 
 1159         /*
 1160          * Get rid of all references to the LWP that others (e.g. procfs)
 1161          * may have, and mark the LWP as a zombie.  If the LWP is detached,
 1162          * mark it waiting for collection in the proc structure.  Note that
 1163          * before we can do that, we need to free any other dead, deatched
 1164          * LWP waiting to meet its maker.
 1165          *
 1166          * All conditions need to be observed upon under the same hold of
 1167          * p_lock, because if the lock is dropped any of them can change.
 1168          */
 1169         mutex_enter(p->p_lock);
 1170         for (;;) {
 1171                 if (lwp_drainrefs(l))
 1172                         continue;
 1173                 if ((l->l_prflag & LPR_DETACHED) != 0) {
 1174                         if ((l2 = p->p_zomblwp) != NULL) {
 1175                                 p->p_zomblwp = NULL;
 1176                                 lwp_free(l2, false, false);
 1177                                 /* proc now unlocked */
 1178                                 mutex_enter(p->p_lock);
 1179                                 continue;
 1180                         }
 1181                         p->p_zomblwp = l;
 1182                 }
 1183                 break;
 1184         }
 1185 
 1186         /*
 1187          * If we find a pending signal for the process and we have been
 1188          * asked to check for signals, then we lose: arrange to have
 1189          * all other LWPs in the process check for signals.
 1190          */
 1191         if ((l->l_flag & LW_PENDSIG) != 0 &&
 1192             firstsig(&p->p_sigpend.sp_set) != 0) {
 1193                 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
 1194                         lwp_lock(l2);
 1195                         signotify(l2);
 1196                         lwp_unlock(l2);
 1197                 }
 1198         }
 1199 
 1200         /*
 1201          * Release any PCU resources before becoming a zombie.
 1202          */
 1203         pcu_discard_all(l);
 1204 
 1205         lwp_lock(l);
 1206         l->l_stat = LSZOMB;
 1207         if (l->l_name != NULL) {
 1208                 strcpy(l->l_name, "(zombie)");
 1209         }
 1210         lwp_unlock(l);
 1211         p->p_nrlwps--;
 1212         cv_broadcast(&p->p_lwpcv);
 1213         if (l->l_lwpctl != NULL)
 1214                 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
 1215         mutex_exit(p->p_lock);
 1216 
 1217         /*
 1218          * We can no longer block.  At this point, lwp_free() may already
 1219          * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
 1220          *
 1221          * Free MD LWP resources.
 1222          */
 1223         cpu_lwp_free(l, 0);
 1224 
 1225         if (current) {
 1226                 /* Switch away into oblivion. */
 1227                 lwp_lock(l);
 1228                 spc_lock(l->l_cpu);
 1229                 mi_switch(l);
 1230                 panic("lwp_exit");
 1231         }
 1232 }
 1233 
 1234 /*
 1235  * Free a dead LWP's remaining resources.
 1236  *
 1237  * XXXLWP limits.
 1238  */
 1239 void
 1240 lwp_free(struct lwp *l, bool recycle, bool last)
 1241 {
 1242         struct proc *p = l->l_proc;
 1243         struct rusage *ru;
 1244         ksiginfoq_t kq;
 1245 
 1246         KASSERT(l != curlwp);
 1247         KASSERT(last || mutex_owned(p->p_lock));
 1248 
 1249         /*
 1250          * We use the process credentials instead of the lwp credentials here
 1251          * because the lwp credentials maybe cached (just after a setuid call)
 1252          * and we don't want pay for syncing, since the lwp is going away
 1253          * anyway
 1254          */
 1255         if (p != &proc0 && p->p_nlwps != 1)
 1256                 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
 1257 
 1258         /*
 1259          * In the unlikely event that the LWP is still on the CPU,
 1260          * then spin until it has switched away.
 1261          *
 1262          * atomic_load_acquire matches atomic_store_release in
 1263          * lwp_startup and mi_switch.
 1264          */
 1265         while (__predict_false((atomic_load_acquire(&l->l_pflag) & LP_RUNNING)
 1266                 != 0)) {
 1267                 SPINLOCK_BACKOFF_HOOK;
 1268         }
 1269 
 1270         /*
 1271          * Now that the LWP's known off the CPU, reset its state back to
 1272          * LSIDL, which defeats anything that might have gotten a hold on
 1273          * the LWP via pid_table before the ID was freed.  It's important
 1274          * to do this with both the LWP locked and p_lock held.
 1275          *
 1276          * Also reset the CPU and lock pointer back to curcpu(), since the
 1277          * LWP will in all likelyhood be cached with the current CPU in
 1278          * lwp_cache when we free it and later allocated from there again
 1279          * (avoid incidental lock contention).
 1280          */
 1281         lwp_lock(l);
 1282         l->l_stat = LSIDL;
 1283         l->l_cpu = curcpu();
 1284         lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_lwplock);
 1285 
 1286         /*
 1287          * If this was not the last LWP in the process, then adjust counters
 1288          * and unlock.  This is done differently for the last LWP in exit1().
 1289          */
 1290         if (!last) {
 1291                 /*
 1292                  * Add the LWP's run time to the process' base value.
 1293                  * This needs to co-incide with coming off p_lwps.
 1294                  */
 1295                 bintime_add(&p->p_rtime, &l->l_rtime);
 1296                 p->p_pctcpu += l->l_pctcpu;
 1297                 ru = &p->p_stats->p_ru;
 1298                 ruadd(ru, &l->l_ru);
 1299                 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
 1300                 ru->ru_nivcsw += l->l_nivcsw;
 1301                 LIST_REMOVE(l, l_sibling);
 1302                 p->p_nlwps--;
 1303                 p->p_nzlwps--;
 1304                 if ((l->l_prflag & LPR_DETACHED) != 0)
 1305                         p->p_ndlwps--;
 1306 
 1307                 /*
 1308                  * Have any LWPs sleeping in lwp_wait() recheck for
 1309                  * deadlock.
 1310                  */
 1311                 cv_broadcast(&p->p_lwpcv);
 1312                 mutex_exit(p->p_lock);
 1313 
 1314                 /* Free the LWP ID. */
 1315                 mutex_enter(&proc_lock);
 1316                 proc_free_lwpid(p, l->l_lid);
 1317                 mutex_exit(&proc_lock);
 1318         }
 1319 
 1320         /*
 1321          * Destroy the LWP's remaining signal information.
 1322          */
 1323         ksiginfo_queue_init(&kq);
 1324         sigclear(&l->l_sigpend, NULL, &kq);
 1325         ksiginfo_queue_drain(&kq);
 1326         cv_destroy(&l->l_sigcv);
 1327         cv_destroy(&l->l_waitcv);
 1328 
 1329         /*
 1330          * Free lwpctl structure and affinity.
 1331          */
 1332         if (l->l_lwpctl) {
 1333                 lwp_ctl_free(l);
 1334         }
 1335         if (l->l_affinity) {
 1336                 kcpuset_unuse(l->l_affinity, NULL);
 1337                 l->l_affinity = NULL;
 1338         }
 1339 
 1340         /*
 1341          * Free remaining data structures and the LWP itself unless the
 1342          * caller wants to recycle.
 1343          */
 1344         if (l->l_name != NULL)
 1345                 kmem_free(l->l_name, MAXCOMLEN);
 1346 
 1347         kmsan_lwp_free(l);
 1348         kcov_lwp_free(l);
 1349         cpu_lwp_free2(l);
 1350         uvm_lwp_exit(l);
 1351 
 1352         KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
 1353         KASSERT(l->l_inheritedprio == -1);
 1354         KASSERT(l->l_blcnt == 0);
 1355         kdtrace_thread_dtor(NULL, l);
 1356         if (!recycle)
 1357                 pool_cache_put(lwp_cache, l);
 1358 }
 1359 
 1360 /*
 1361  * Migrate the LWP to the another CPU.  Unlocks the LWP.
 1362  */
 1363 void
 1364 lwp_migrate(lwp_t *l, struct cpu_info *tci)
 1365 {
 1366         struct schedstate_percpu *tspc;
 1367         int lstat = l->l_stat;
 1368 
 1369         KASSERT(lwp_locked(l, NULL));
 1370         KASSERT(tci != NULL);
 1371 
 1372         /* If LWP is still on the CPU, it must be handled like LSONPROC */
 1373         if ((l->l_pflag & LP_RUNNING) != 0) {
 1374                 lstat = LSONPROC;
 1375         }
 1376 
 1377         /*
 1378          * The destination CPU could be changed while previous migration
 1379          * was not finished.
 1380          */
 1381         if (l->l_target_cpu != NULL) {
 1382                 l->l_target_cpu = tci;
 1383                 lwp_unlock(l);
 1384                 return;
 1385         }
 1386 
 1387         /* Nothing to do if trying to migrate to the same CPU */
 1388         if (l->l_cpu == tci) {
 1389                 lwp_unlock(l);
 1390                 return;
 1391         }
 1392 
 1393         KASSERT(l->l_target_cpu == NULL);
 1394         tspc = &tci->ci_schedstate;
 1395         switch (lstat) {
 1396         case LSRUN:
 1397                 l->l_target_cpu = tci;
 1398                 break;
 1399         case LSSLEEP:
 1400                 l->l_cpu = tci;
 1401                 break;
 1402         case LSIDL:
 1403         case LSSTOP:
 1404         case LSSUSPENDED:
 1405                 l->l_cpu = tci;
 1406                 if (l->l_wchan == NULL) {
 1407                         lwp_unlock_to(l, tspc->spc_lwplock);
 1408                         return;
 1409                 }
 1410                 break;
 1411         case LSONPROC:
 1412                 l->l_target_cpu = tci;
 1413                 spc_lock(l->l_cpu);
 1414                 sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
 1415                 /* spc now unlocked */
 1416                 break;
 1417         }
 1418         lwp_unlock(l);
 1419 }
 1420 
 1421 #define lwp_find_exclude(l)                                     \
 1422         ((l)->l_stat == LSIDL || (l)->l_stat == LSZOMB)
 1423 
 1424 /*
 1425  * Find the LWP in the process.  Arguments may be zero, in such case,
 1426  * the calling process and first LWP in the list will be used.
 1427  * On success - returns proc locked.
 1428  *
 1429  * => pid == 0 -> look in curproc.
 1430  * => pid == -1 -> match any proc.
 1431  * => otherwise look up the proc.
 1432  *
 1433  * => lid == 0 -> first LWP in the proc
 1434  * => otherwise specific LWP
 1435  */
 1436 struct lwp *
 1437 lwp_find2(pid_t pid, lwpid_t lid)
 1438 {
 1439         proc_t *p;
 1440         lwp_t *l;
 1441 
 1442         /* First LWP of specified proc. */
 1443         if (lid == 0) {
 1444                 switch (pid) {
 1445                 case -1:
 1446                         /* No lookup keys. */
 1447                         return NULL;
 1448                 case 0:
 1449                         p = curproc;
 1450                         mutex_enter(p->p_lock);
 1451                         break;
 1452                 default:
 1453                         mutex_enter(&proc_lock);
 1454                         p = proc_find(pid);
 1455                         if (__predict_false(p == NULL)) {
 1456                                 mutex_exit(&proc_lock);
 1457                                 return NULL;
 1458                         }
 1459                         mutex_enter(p->p_lock);
 1460                         mutex_exit(&proc_lock);
 1461                         break;
 1462                 }
 1463                 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
 1464                         if (__predict_true(!lwp_find_exclude(l)))
 1465                                 break;
 1466                 }
 1467                 goto out;
 1468         }
 1469 
 1470         l = proc_find_lwp_acquire_proc(lid, &p);
 1471         if (l == NULL)
 1472                 return NULL;
 1473         KASSERT(p != NULL);
 1474         KASSERT(mutex_owned(p->p_lock));
 1475 
 1476         if (__predict_false(lwp_find_exclude(l))) {
 1477                 l = NULL;
 1478                 goto out;
 1479         }
 1480 
 1481         /* Apply proc filter, if applicable. */
 1482         switch (pid) {
 1483         case -1:
 1484                 /* Match anything. */
 1485                 break;
 1486         case 0:
 1487                 if (p != curproc)
 1488                         l = NULL;
 1489                 break;
 1490         default:
 1491                 if (p->p_pid != pid)
 1492                         l = NULL;
 1493                 break;
 1494         }
 1495 
 1496  out:
 1497         if (__predict_false(l == NULL)) {
 1498                 mutex_exit(p->p_lock);
 1499         }
 1500         return l;
 1501 }
 1502 
 1503 /*
 1504  * Look up a live LWP within the specified process.
 1505  *
 1506  * Must be called with p->p_lock held (as it looks at the radix tree,
 1507  * and also wants to exclude idle and zombie LWPs).
 1508  */
 1509 struct lwp *
 1510 lwp_find(struct proc *p, lwpid_t id)
 1511 {
 1512         struct lwp *l;
 1513 
 1514         KASSERT(mutex_owned(p->p_lock));
 1515 
 1516         l = proc_find_lwp(p, id);
 1517         KASSERT(l == NULL || l->l_lid == id);
 1518 
 1519         /*
 1520          * No need to lock - all of these conditions will
 1521          * be visible with the process level mutex held.
 1522          */
 1523         if (__predict_false(l != NULL && lwp_find_exclude(l)))
 1524                 l = NULL;
 1525 
 1526         return l;
 1527 }
 1528 
 1529 /*
 1530  * Update an LWP's cached credentials to mirror the process' master copy.
 1531  *
 1532  * This happens early in the syscall path, on user trap, and on LWP
 1533  * creation.  A long-running LWP can also voluntarily choose to update
 1534  * its credentials by calling this routine.  This may be called from
 1535  * LWP_CACHE_CREDS(), which checks l->l_prflag & LPR_CRMOD beforehand.
 1536  */
 1537 void
 1538 lwp_update_creds(struct lwp *l)
 1539 {
 1540         kauth_cred_t oc;
 1541         struct proc *p;
 1542 
 1543         p = l->l_proc;
 1544         oc = l->l_cred;
 1545 
 1546         mutex_enter(p->p_lock);
 1547         kauth_cred_hold(p->p_cred);
 1548         l->l_cred = p->p_cred;
 1549         l->l_prflag &= ~LPR_CRMOD;
 1550         mutex_exit(p->p_lock);
 1551         if (oc != NULL)
 1552                 kauth_cred_free(oc);
 1553 }
 1554 
 1555 /*
 1556  * Verify that an LWP is locked, and optionally verify that the lock matches
 1557  * one we specify.
 1558  */
 1559 int
 1560 lwp_locked(struct lwp *l, kmutex_t *mtx)
 1561 {
 1562         kmutex_t *cur = l->l_mutex;
 1563 
 1564         return mutex_owned(cur) && (mtx == cur || mtx == NULL);
 1565 }
 1566 
 1567 /*
 1568  * Lend a new mutex to an LWP.  The old mutex must be held.
 1569  */
 1570 kmutex_t *
 1571 lwp_setlock(struct lwp *l, kmutex_t *mtx)
 1572 {
 1573         kmutex_t *oldmtx = l->l_mutex;
 1574 
 1575         KASSERT(mutex_owned(oldmtx));
 1576 
 1577         atomic_store_release(&l->l_mutex, mtx);
 1578         return oldmtx;
 1579 }
 1580 
 1581 /*
 1582  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
 1583  * must be held.
 1584  */
 1585 void
 1586 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
 1587 {
 1588         kmutex_t *old;
 1589 
 1590         KASSERT(lwp_locked(l, NULL));
 1591 
 1592         old = l->l_mutex;
 1593         atomic_store_release(&l->l_mutex, mtx);
 1594         mutex_spin_exit(old);
 1595 }
 1596 
 1597 int
 1598 lwp_trylock(struct lwp *l)
 1599 {
 1600         kmutex_t *old;
 1601 
 1602         for (;;) {
 1603                 if (!mutex_tryenter(old = atomic_load_consume(&l->l_mutex)))
 1604                         return 0;
 1605                 if (__predict_true(atomic_load_relaxed(&l->l_mutex) == old))
 1606                         return 1;
 1607                 mutex_spin_exit(old);
 1608         }
 1609 }
 1610 
 1611 void
 1612 lwp_unsleep(lwp_t *l, bool unlock)
 1613 {
 1614 
 1615         KASSERT(mutex_owned(l->l_mutex));
 1616         (*l->l_syncobj->sobj_unsleep)(l, unlock);
 1617 }
 1618 
 1619 /*
 1620  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
 1621  * set.
 1622  */
 1623 void
 1624 lwp_userret(struct lwp *l)
 1625 {
 1626         struct proc *p;
 1627         int sig;
 1628 
 1629         KASSERT(l == curlwp);
 1630         KASSERT(l->l_stat == LSONPROC);
 1631         p = l->l_proc;
 1632 
 1633         /*
 1634          * It is safe to do this read unlocked on a MP system..
 1635          */
 1636         while ((l->l_flag & LW_USERRET) != 0) {
 1637                 /*
 1638                  * Process pending signals first, unless the process
 1639                  * is dumping core or exiting, where we will instead
 1640                  * enter the LW_WSUSPEND case below.
 1641                  */
 1642                 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
 1643                     LW_PENDSIG) {
 1644                         mutex_enter(p->p_lock);
 1645                         while ((sig = issignal(l)) != 0)
 1646                                 postsig(sig);
 1647                         mutex_exit(p->p_lock);
 1648                 }
 1649 
 1650                 /*
 1651                  * Core-dump or suspend pending.
 1652                  *
 1653                  * In case of core dump, suspend ourselves, so that the kernel
 1654                  * stack and therefore the userland registers saved in the
 1655                  * trapframe are around for coredump() to write them out.
 1656                  * We also need to save any PCU resources that we have so that
 1657                  * they accessible for coredump().  We issue a wakeup on
 1658                  * p->p_lwpcv so that sigexit() will write the core file out
 1659                  * once all other LWPs are suspended.  
 1660                  */
 1661                 if ((l->l_flag & LW_WSUSPEND) != 0) {
 1662                         pcu_save_all(l);
 1663                         mutex_enter(p->p_lock);
 1664                         p->p_nrlwps--;
 1665                         cv_broadcast(&p->p_lwpcv);
 1666                         lwp_lock(l);
 1667                         l->l_stat = LSSUSPENDED;
 1668                         lwp_unlock(l);
 1669                         mutex_exit(p->p_lock);
 1670                         lwp_lock(l);
 1671                         spc_lock(l->l_cpu);
 1672                         mi_switch(l);
 1673                 }
 1674 
 1675                 /* Process is exiting. */
 1676                 if ((l->l_flag & LW_WEXIT) != 0) {
 1677                         lwp_exit(l);
 1678                         KASSERT(0);
 1679                         /* NOTREACHED */
 1680                 }
 1681 
 1682                 /* update lwpctl processor (for vfork child_return) */
 1683                 if (l->l_flag & LW_LWPCTL) {
 1684                         lwp_lock(l);
 1685                         KASSERT(kpreempt_disabled());
 1686                         l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
 1687                         l->l_lwpctl->lc_pctr++;
 1688                         l->l_flag &= ~LW_LWPCTL;
 1689                         lwp_unlock(l);
 1690                 }
 1691         }
 1692 }
 1693 
 1694 /*
 1695  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
 1696  */
 1697 void
 1698 lwp_need_userret(struct lwp *l)
 1699 {
 1700 
 1701         KASSERT(!cpu_intr_p());
 1702         KASSERT(lwp_locked(l, NULL));
 1703 
 1704         /*
 1705          * If the LWP is in any state other than LSONPROC, we know that it
 1706          * is executing in-kernel and will hit userret() on the way out. 
 1707          *
 1708          * If the LWP is curlwp, then we know we'll be back out to userspace
 1709          * soon (can't be called from a hardware interrupt here).
 1710          *
 1711          * Otherwise, we can't be sure what the LWP is doing, so first make
 1712          * sure the update to l_flag will be globally visible, and then
 1713          * force the LWP to take a trip through trap() where it will do
 1714          * userret().
 1715          */
 1716         if (l->l_stat == LSONPROC && l != curlwp) {
 1717                 membar_producer();
 1718                 cpu_signotify(l);
 1719         }
 1720 }
 1721 
 1722 /*
 1723  * Add one reference to an LWP.  This will prevent the LWP from
 1724  * exiting, thus keep the lwp structure and PCB around to inspect.
 1725  */
 1726 void
 1727 lwp_addref(struct lwp *l)
 1728 {
 1729         KASSERT(mutex_owned(l->l_proc->p_lock));
 1730         KASSERT(l->l_stat != LSZOMB);
 1731         l->l_refcnt++;
 1732 }
 1733 
 1734 /*
 1735  * Remove one reference to an LWP.  If this is the last reference,
 1736  * then we must finalize the LWP's death.
 1737  */
 1738 void
 1739 lwp_delref(struct lwp *l)
 1740 {
 1741         struct proc *p = l->l_proc;
 1742 
 1743         mutex_enter(p->p_lock);
 1744         lwp_delref2(l);
 1745         mutex_exit(p->p_lock);
 1746 }
 1747 
 1748 /*
 1749  * Remove one reference to an LWP.  If this is the last reference,
 1750  * then we must finalize the LWP's death.  The proc mutex is held
 1751  * on entry.
 1752  */
 1753 void
 1754 lwp_delref2(struct lwp *l)
 1755 {
 1756         struct proc *p = l->l_proc;
 1757 
 1758         KASSERT(mutex_owned(p->p_lock));
 1759         KASSERT(l->l_stat != LSZOMB);
 1760         KASSERT(l->l_refcnt > 0);
 1761 
 1762         if (--l->l_refcnt == 0)
 1763                 cv_broadcast(&p->p_lwpcv);
 1764 }
 1765 
 1766 /*
 1767  * Drain all references to the current LWP.  Returns true if
 1768  * we blocked.
 1769  */
 1770 bool
 1771 lwp_drainrefs(struct lwp *l)
 1772 {
 1773         struct proc *p = l->l_proc;
 1774         bool rv = false;
 1775 
 1776         KASSERT(mutex_owned(p->p_lock));
 1777 
 1778         l->l_prflag |= LPR_DRAINING;
 1779 
 1780         while (l->l_refcnt > 0) {
 1781                 rv = true;
 1782                 cv_wait(&p->p_lwpcv, p->p_lock);
 1783         }
 1784         return rv;
 1785 }
 1786 
 1787 /*
 1788  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
 1789  * be held.
 1790  */
 1791 bool
 1792 lwp_alive(lwp_t *l)
 1793 {
 1794 
 1795         KASSERT(mutex_owned(l->l_proc->p_lock));
 1796 
 1797         switch (l->l_stat) {
 1798         case LSSLEEP:
 1799         case LSRUN:
 1800         case LSONPROC:
 1801         case LSSTOP:
 1802         case LSSUSPENDED:
 1803                 return true;
 1804         default:
 1805                 return false;
 1806         }
 1807 }
 1808 
 1809 /*
 1810  * Return first live LWP in the process.
 1811  */
 1812 lwp_t *
 1813 lwp_find_first(proc_t *p)
 1814 {
 1815         lwp_t *l;
 1816 
 1817         KASSERT(mutex_owned(p->p_lock));
 1818 
 1819         LIST_FOREACH(l, &p->p_lwps, l_sibling) {
 1820                 if (lwp_alive(l)) {
 1821                         return l;
 1822                 }
 1823         }
 1824 
 1825         return NULL;
 1826 }
 1827 
 1828 /*
 1829  * Allocate a new lwpctl structure for a user LWP.
 1830  */
 1831 int
 1832 lwp_ctl_alloc(vaddr_t *uaddr)
 1833 {
 1834         lcproc_t *lp;
 1835         u_int bit, i, offset;
 1836         struct uvm_object *uao;
 1837         int error;
 1838         lcpage_t *lcp;
 1839         proc_t *p;
 1840         lwp_t *l;
 1841 
 1842         l = curlwp;
 1843         p = l->l_proc;
 1844 
 1845         /* don't allow a vforked process to create lwp ctls */
 1846         if (p->p_lflag & PL_PPWAIT)
 1847                 return EBUSY;
 1848 
 1849         if (l->l_lcpage != NULL) {
 1850                 lcp = l->l_lcpage;
 1851                 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
 1852                 return 0;
 1853         }
 1854 
 1855         /* First time around, allocate header structure for the process. */
 1856         if ((lp = p->p_lwpctl) == NULL) {
 1857                 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
 1858                 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
 1859                 lp->lp_uao = NULL;
 1860                 TAILQ_INIT(&lp->lp_pages);
 1861                 mutex_enter(p->p_lock);
 1862                 if (p->p_lwpctl == NULL) {
 1863                         p->p_lwpctl = lp;
 1864                         mutex_exit(p->p_lock);
 1865                 } else {
 1866                         mutex_exit(p->p_lock);
 1867                         mutex_destroy(&lp->lp_lock);
 1868                         kmem_free(lp, sizeof(*lp));
 1869                         lp = p->p_lwpctl;
 1870                 }
 1871         }
 1872 
 1873         /*
 1874          * Set up an anonymous memory region to hold the shared pages.
 1875          * Map them into the process' address space.  The user vmspace
 1876          * gets the first reference on the UAO.
 1877          */
 1878         mutex_enter(&lp->lp_lock);
 1879         if (lp->lp_uao == NULL) {
 1880                 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
 1881                 lp->lp_cur = 0;
 1882                 lp->lp_max = LWPCTL_UAREA_SZ;
 1883                 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
 1884                      (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
 1885                      p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
 1886                 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
 1887                     LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
 1888                     UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
 1889                 if (error != 0) {
 1890                         uao_detach(lp->lp_uao);
 1891                         lp->lp_uao = NULL;
 1892                         mutex_exit(&lp->lp_lock);
 1893                         return error;
 1894                 }
 1895         }
 1896 
 1897         /* Get a free block and allocate for this LWP. */
 1898         TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
 1899                 if (lcp->lcp_nfree != 0)
 1900                         break;
 1901         }
 1902         if (lcp == NULL) {
 1903                 /* Nothing available - try to set up a free page. */
 1904                 if (lp->lp_cur == lp->lp_max) {
 1905                         mutex_exit(&lp->lp_lock);
 1906                         return ENOMEM;
 1907                 }
 1908                 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
 1909 
 1910                 /*
 1911                  * Wire the next page down in kernel space.  Since this
 1912                  * is a new mapping, we must add a reference.
 1913                  */
 1914                 uao = lp->lp_uao;
 1915                 (*uao->pgops->pgo_reference)(uao);
 1916                 lcp->lcp_kaddr = vm_map_min(kernel_map);
 1917                 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
 1918                     uao, lp->lp_cur, PAGE_SIZE,
 1919                     UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
 1920                     UVM_INH_NONE, UVM_ADV_RANDOM, 0));
 1921                 if (error != 0) {
 1922                         mutex_exit(&lp->lp_lock);
 1923                         kmem_free(lcp, LWPCTL_LCPAGE_SZ);
 1924                         (*uao->pgops->pgo_detach)(uao);
 1925                         return error;
 1926                 }
 1927                 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
 1928                     lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
 1929                 if (error != 0) {
 1930                         mutex_exit(&lp->lp_lock);
 1931                         uvm_unmap(kernel_map, lcp->lcp_kaddr,
 1932                             lcp->lcp_kaddr + PAGE_SIZE);
 1933                         kmem_free(lcp, LWPCTL_LCPAGE_SZ);
 1934                         return error;
 1935                 }
 1936                 /* Prepare the page descriptor and link into the list. */
 1937                 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
 1938                 lp->lp_cur += PAGE_SIZE;
 1939                 lcp->lcp_nfree = LWPCTL_PER_PAGE;
 1940                 lcp->lcp_rotor = 0;
 1941                 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
 1942                 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
 1943         }
 1944         for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
 1945                 if (++i >= LWPCTL_BITMAP_ENTRIES)
 1946                         i = 0;
 1947         }
 1948         bit = ffs(lcp->lcp_bitmap[i]) - 1;
 1949         lcp->lcp_bitmap[i] ^= (1U << bit);
 1950         lcp->lcp_rotor = i;
 1951         lcp->lcp_nfree--;
 1952         l->l_lcpage = lcp;
 1953         offset = (i << 5) + bit;
 1954         l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
 1955         *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
 1956         mutex_exit(&lp->lp_lock);
 1957 
 1958         KPREEMPT_DISABLE(l);
 1959         l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
 1960         KPREEMPT_ENABLE(l);
 1961 
 1962         return 0;
 1963 }
 1964 
 1965 /*
 1966  * Free an lwpctl structure back to the per-process list.
 1967  */
 1968 void
 1969 lwp_ctl_free(lwp_t *l)
 1970 {
 1971         struct proc *p = l->l_proc;
 1972         lcproc_t *lp;
 1973         lcpage_t *lcp;
 1974         u_int map, offset;
 1975 
 1976         /* don't free a lwp context we borrowed for vfork */
 1977         if (p->p_lflag & PL_PPWAIT) {
 1978                 l->l_lwpctl = NULL;
 1979                 return;
 1980         }
 1981 
 1982         lp = p->p_lwpctl;
 1983         KASSERT(lp != NULL);
 1984 
 1985         lcp = l->l_lcpage;
 1986         offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
 1987         KASSERT(offset < LWPCTL_PER_PAGE);
 1988 
 1989         mutex_enter(&lp->lp_lock);
 1990         lcp->lcp_nfree++;
 1991         map = offset >> 5;
 1992         lcp->lcp_bitmap[map] |= (1U << (offset & 31));
 1993         if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
 1994                 lcp->lcp_rotor = map;
 1995         if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
 1996                 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
 1997                 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
 1998         }
 1999         mutex_exit(&lp->lp_lock);
 2000 }
 2001 
 2002 /*
 2003  * Process is exiting; tear down lwpctl state.  This can only be safely
 2004  * called by the last LWP in the process.
 2005  */
 2006 void
 2007 lwp_ctl_exit(void)
 2008 {
 2009         lcpage_t *lcp, *next;
 2010         lcproc_t *lp;
 2011         proc_t *p;
 2012         lwp_t *l;
 2013 
 2014         l = curlwp;
 2015         l->l_lwpctl = NULL;
 2016         l->l_lcpage = NULL;
 2017         p = l->l_proc;
 2018         lp = p->p_lwpctl;
 2019 
 2020         KASSERT(lp != NULL);
 2021         KASSERT(p->p_nlwps == 1);
 2022 
 2023         for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
 2024                 next = TAILQ_NEXT(lcp, lcp_chain);
 2025                 uvm_unmap(kernel_map, lcp->lcp_kaddr,
 2026                     lcp->lcp_kaddr + PAGE_SIZE);
 2027                 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
 2028         }
 2029 
 2030         if (lp->lp_uao != NULL) {
 2031                 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
 2032                     lp->lp_uva + LWPCTL_UAREA_SZ);
 2033         }
 2034 
 2035         mutex_destroy(&lp->lp_lock);
 2036         kmem_free(lp, sizeof(*lp));
 2037         p->p_lwpctl = NULL;
 2038 }
 2039 
 2040 /*
 2041  * Return the current LWP's "preemption counter".  Used to detect
 2042  * preemption across operations that can tolerate preemption without
 2043  * crashing, but which may generate incorrect results if preempted.
 2044  */
 2045 uint64_t
 2046 lwp_pctr(void)
 2047 {
 2048 
 2049         return curlwp->l_ncsw;
 2050 }
 2051 
 2052 /*
 2053  * Set an LWP's private data pointer.
 2054  */
 2055 int
 2056 lwp_setprivate(struct lwp *l, void *ptr)
 2057 {
 2058         int error = 0;
 2059 
 2060         l->l_private = ptr;
 2061 #ifdef __HAVE_CPU_LWP_SETPRIVATE
 2062         error = cpu_lwp_setprivate(l, ptr);
 2063 #endif
 2064         return error;
 2065 }
 2066 
 2067 /*
 2068  * Perform any thread-related cleanup on LWP exit.
 2069  * N.B. l->l_proc->p_lock must be HELD on entry but will
 2070  * be released before returning!
 2071  */
 2072 void
 2073 lwp_thread_cleanup(struct lwp *l)
 2074 {
 2075 
 2076         KASSERT(mutex_owned(l->l_proc->p_lock));
 2077         mutex_exit(l->l_proc->p_lock);
 2078 
 2079         /*
 2080          * If the LWP has robust futexes, release them all
 2081          * now.
 2082          */
 2083         if (__predict_false(l->l_robust_head != 0)) {
 2084                 futex_release_all_lwp(l);
 2085         }
 2086 }
 2087 
 2088 #if defined(DDB)
 2089 #include <machine/pcb.h>
 2090 
 2091 void
 2092 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
 2093 {
 2094         lwp_t *l;
 2095 
 2096         LIST_FOREACH(l, &alllwp, l_list) {
 2097                 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
 2098 
 2099                 if (addr < stack || stack + KSTACK_SIZE <= addr) {
 2100                         continue;
 2101                 }
 2102                 (*pr)("%p is %p+%zu, LWP %p's stack\n",
 2103                     (void *)addr, (void *)stack,
 2104                     (size_t)(addr - stack), l);
 2105         }
 2106 }
 2107 #endif /* defined(DDB) */

Cache object: d1ffc46ef1cf22424f45f6472aceadaf


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.