The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_lwp.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: kern_lwp.c,v 1.126.2.2 2009/03/08 03:15:36 snj Exp $   */
    2 
    3 /*-
    4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to The NetBSD Foundation
    8  * by Nathan J. Williams, and Andrew Doran.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   29  * POSSIBILITY OF SUCH DAMAGE.
   30  */
   31 
   32 /*
   33  * Overview
   34  *
   35  *      Lightweight processes (LWPs) are the basic unit or thread of
   36  *      execution within the kernel.  The core state of an LWP is described
   37  *      by "struct lwp", also known as lwp_t.
   38  *
   39  *      Each LWP is contained within a process (described by "struct proc"),
   40  *      Every process contains at least one LWP, but may contain more.  The
   41  *      process describes attributes shared among all of its LWPs such as a
   42  *      private address space, global execution state (stopped, active,
   43  *      zombie, ...), signal disposition and so on.  On a multiprocessor
   44  *      machine, multiple LWPs be executing concurrently in the kernel.
   45  *
   46  * Execution states
   47  *
   48  *      At any given time, an LWP has overall state that is described by
   49  *      lwp::l_stat.  The states are broken into two sets below.  The first
   50  *      set is guaranteed to represent the absolute, current state of the
   51  *      LWP:
   52  *
   53  *      LSONPROC
   54  *
   55  *              On processor: the LWP is executing on a CPU, either in the
   56  *              kernel or in user space.
   57  *
   58  *      LSRUN
   59  *
   60  *              Runnable: the LWP is parked on a run queue, and may soon be
   61  *              chosen to run by an idle processor, or by a processor that
   62  *              has been asked to preempt a currently runnning but lower
   63  *              priority LWP.  If the LWP is not swapped in (LW_INMEM == 0)
   64  *              then the LWP is not on a run queue, but may be soon.
   65  *
   66  *      LSIDL
   67  *
   68  *              Idle: the LWP has been created but has not yet executed,
   69  *              or it has ceased executing a unit of work and is waiting
   70  *              to be started again.
   71  *
   72  *      LSSUSPENDED:
   73  *
   74  *              Suspended: the LWP has had its execution suspended by
   75  *              another LWP in the same process using the _lwp_suspend()
   76  *              system call.  User-level LWPs also enter the suspended
   77  *              state when the system is shutting down.
   78  *
   79  *      The second set represent a "statement of intent" on behalf of the
   80  *      LWP.  The LWP may in fact be executing on a processor, may be
   81  *      sleeping or idle. It is expected to take the necessary action to
   82  *      stop executing or become "running" again within a short timeframe.
   83  *      The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
   84  *      Importantly, it indicates that its state is tied to a CPU.
   85  *
   86  *      LSZOMB:
   87  *
   88  *              Dead or dying: the LWP has released most of its resources
   89  *              and is: a) about to switch away into oblivion b) has already
   90  *              switched away.  When it switches away, its few remaining
   91  *              resources can be collected.
   92  *
   93  *      LSSLEEP:
   94  *
   95  *              Sleeping: the LWP has entered itself onto a sleep queue, and
   96  *              has switched away or will switch away shortly to allow other
   97  *              LWPs to run on the CPU.
   98  *
   99  *      LSSTOP:
  100  *
  101  *              Stopped: the LWP has been stopped as a result of a job
  102  *              control signal, or as a result of the ptrace() interface. 
  103  *
  104  *              Stopped LWPs may run briefly within the kernel to handle
  105  *              signals that they receive, but will not return to user space
  106  *              until their process' state is changed away from stopped. 
  107  *
  108  *              Single LWPs within a process can not be set stopped
  109  *              selectively: all actions that can stop or continue LWPs
  110  *              occur at the process level.
  111  *
  112  * State transitions
  113  *
  114  *      Note that the LSSTOP state may only be set when returning to
  115  *      user space in userret(), or when sleeping interruptably.  The
  116  *      LSSUSPENDED state may only be set in userret().  Before setting
  117  *      those states, we try to ensure that the LWPs will release all
  118  *      locks that they hold, and at a minimum try to ensure that the
  119  *      LWP can be set runnable again by a signal.
  120  *
  121  *      LWPs may transition states in the following ways:
  122  *
  123  *       RUN -------> ONPROC            ONPROC -----> RUN
  124  *                  > STOPPED                       > SLEEP
  125  *                  > SUSPENDED                     > STOPPED
  126  *                                                  > SUSPENDED
  127  *                                                  > ZOMB
  128  *
  129  *       STOPPED ---> RUN               SUSPENDED --> RUN
  130  *                  > SLEEP                         > SLEEP
  131  *
  132  *       SLEEP -----> ONPROC            IDL --------> RUN
  133  *                  > RUN                           > SUSPENDED
  134  *                  > STOPPED                       > STOPPED
  135  *                  > SUSPENDED
  136  *
  137  *      Other state transitions are possible with kernel threads (eg
  138  *      ONPROC -> IDL), but only happen under tightly controlled
  139  *      circumstances the side effects are understood.
  140  *
  141  * Migration
  142  *
  143  *      Migration of threads from one CPU to another could be performed
  144  *      internally by the scheduler via sched_takecpu() or sched_catchlwp()
  145  *      functions.  The universal lwp_migrate() function should be used for
  146  *      any other cases.  Subsystems in the kernel must be aware that CPU
  147  *      of LWP may change, while it is not locked.
  148  *
  149  * Locking
  150  *
  151  *      The majority of fields in 'struct lwp' are covered by a single,
  152  *      general spin lock pointed to by lwp::l_mutex.  The locks covering
  153  *      each field are documented in sys/lwp.h.
  154  *
  155  *      State transitions must be made with the LWP's general lock held,
  156  *      and may cause the LWP's lock pointer to change. Manipulation of
  157  *      the general lock is not performed directly, but through calls to
  158  *      lwp_lock(), lwp_relock() and similar.
  159  *
  160  *      States and their associated locks:
  161  *
  162  *      LSONPROC, LSZOMB:
  163  *
  164  *              Always covered by spc_lwplock, which protects running LWPs.
  165  *              This is a per-CPU lock.
  166  *
  167  *      LSIDL, LSRUN:
  168  *
  169  *              Always covered by spc_mutex, which protects the run queues.
  170  *              This is a per-CPU lock.
  171  *
  172  *      LSSLEEP:
  173  *
  174  *              Covered by a lock associated with the sleep queue that the
  175  *              LWP resides on.
  176  *
  177  *      LSSTOP, LSSUSPENDED:
  178  *
  179  *              If the LWP was previously sleeping (l_wchan != NULL), then
  180  *              l_mutex references the sleep queue lock.  If the LWP was
  181  *              runnable or on the CPU when halted, or has been removed from
  182  *              the sleep queue since halted, then the lock is spc_lwplock.
  183  *
  184  *      The lock order is as follows:
  185  *
  186  *              spc::spc_lwplock ->
  187  *                  sleeptab::st_mutex ->
  188  *                      tschain_t::tc_mutex ->
  189  *                          spc::spc_mutex
  190  *
  191  *      Each process has an scheduler state lock (proc::p_lock), and a
  192  *      number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
  193  *      so on.  When an LWP is to be entered into or removed from one of the
  194  *      following states, p_lock must be held and the process wide counters
  195  *      adjusted:
  196  *
  197  *              LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
  198  *
  199  *      Note that an LWP is considered running or likely to run soon if in
  200  *      one of the following states.  This affects the value of p_nrlwps:
  201  *
  202  *              LSRUN, LSONPROC, LSSLEEP
  203  *
  204  *      p_lock does not need to be held when transitioning among these
  205  *      three states.
  206  */
  207 
  208 #include <sys/cdefs.h>
  209 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.126.2.2 2009/03/08 03:15:36 snj Exp $");
  210 
  211 #include "opt_ddb.h"
  212 #include "opt_lockdebug.h"
  213 #include "opt_sa.h"
  214 
  215 #define _LWP_API_PRIVATE
  216 
  217 #include <sys/param.h>
  218 #include <sys/systm.h>
  219 #include <sys/cpu.h>
  220 #include <sys/pool.h>
  221 #include <sys/proc.h>
  222 #include <sys/sa.h>
  223 #include <sys/savar.h>
  224 #include <sys/syscallargs.h>
  225 #include <sys/syscall_stats.h>
  226 #include <sys/kauth.h>
  227 #include <sys/sleepq.h>
  228 #include <sys/user.h>
  229 #include <sys/lockdebug.h>
  230 #include <sys/kmem.h>
  231 #include <sys/pset.h>
  232 #include <sys/intr.h>
  233 #include <sys/lwpctl.h>
  234 #include <sys/atomic.h>
  235 
  236 #include <uvm/uvm_extern.h>
  237 #include <uvm/uvm_object.h>
  238 
  239 struct lwplist  alllwp = LIST_HEAD_INITIALIZER(alllwp);
  240 
  241 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
  242     &pool_allocator_nointr, IPL_NONE);
  243 
  244 static pool_cache_t lwp_cache;
  245 static specificdata_domain_t lwp_specificdata_domain;
  246 
  247 void
  248 lwpinit(void)
  249 {
  250 
  251         lwp_specificdata_domain = specificdata_domain_create();
  252         KASSERT(lwp_specificdata_domain != NULL);
  253         lwp_sys_init();
  254         lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
  255             "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
  256 }
  257 
  258 /*
  259  * Set an suspended.
  260  *
  261  * Must be called with p_lock held, and the LWP locked.  Will unlock the
  262  * LWP before return.
  263  */
  264 int
  265 lwp_suspend(struct lwp *curl, struct lwp *t)
  266 {
  267         int error;
  268 
  269         KASSERT(mutex_owned(t->l_proc->p_lock));
  270         KASSERT(lwp_locked(t, NULL));
  271 
  272         KASSERT(curl != t || curl->l_stat == LSONPROC);
  273 
  274         /*
  275          * If the current LWP has been told to exit, we must not suspend anyone
  276          * else or deadlock could occur.  We won't return to userspace.
  277          */
  278         if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
  279                 lwp_unlock(t);
  280                 return (EDEADLK);
  281         }
  282 
  283         error = 0;
  284 
  285         switch (t->l_stat) {
  286         case LSRUN:
  287         case LSONPROC:
  288                 t->l_flag |= LW_WSUSPEND;
  289                 lwp_need_userret(t);
  290                 lwp_unlock(t);
  291                 break;
  292 
  293         case LSSLEEP:
  294                 t->l_flag |= LW_WSUSPEND;
  295 
  296                 /*
  297                  * Kick the LWP and try to get it to the kernel boundary
  298                  * so that it will release any locks that it holds.
  299                  * setrunnable() will release the lock.
  300                  */
  301                 if ((t->l_flag & LW_SINTR) != 0)
  302                         setrunnable(t);
  303                 else
  304                         lwp_unlock(t);
  305                 break;
  306 
  307         case LSSUSPENDED:
  308                 lwp_unlock(t);
  309                 break;
  310 
  311         case LSSTOP:
  312                 t->l_flag |= LW_WSUSPEND;
  313                 setrunnable(t);
  314                 break;
  315 
  316         case LSIDL:
  317         case LSZOMB:
  318                 error = EINTR; /* It's what Solaris does..... */
  319                 lwp_unlock(t);
  320                 break;
  321         }
  322 
  323         return (error);
  324 }
  325 
  326 /*
  327  * Restart a suspended LWP.
  328  *
  329  * Must be called with p_lock held, and the LWP locked.  Will unlock the
  330  * LWP before return.
  331  */
  332 void
  333 lwp_continue(struct lwp *l)
  334 {
  335 
  336         KASSERT(mutex_owned(l->l_proc->p_lock));
  337         KASSERT(lwp_locked(l, NULL));
  338 
  339         /* If rebooting or not suspended, then just bail out. */
  340         if ((l->l_flag & LW_WREBOOT) != 0) {
  341                 lwp_unlock(l);
  342                 return;
  343         }
  344 
  345         l->l_flag &= ~LW_WSUSPEND;
  346 
  347         if (l->l_stat != LSSUSPENDED) {
  348                 lwp_unlock(l);
  349                 return;
  350         }
  351 
  352         /* setrunnable() will release the lock. */
  353         setrunnable(l);
  354 }
  355 
  356 /*
  357  * Wait for an LWP within the current process to exit.  If 'lid' is
  358  * non-zero, we are waiting for a specific LWP.
  359  *
  360  * Must be called with p->p_lock held.
  361  */
  362 int
  363 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
  364 {
  365         struct proc *p = l->l_proc;
  366         struct lwp *l2;
  367         int nfound, error;
  368         lwpid_t curlid;
  369         bool exiting;
  370 
  371         KASSERT(mutex_owned(p->p_lock));
  372 
  373         p->p_nlwpwait++;
  374         l->l_waitingfor = lid;
  375         curlid = l->l_lid;
  376         exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
  377 
  378         for (;;) {
  379                 /*
  380                  * Avoid a race between exit1() and sigexit(): if the
  381                  * process is dumping core, then we need to bail out: call
  382                  * into lwp_userret() where we will be suspended until the
  383                  * deed is done.
  384                  */
  385                 if ((p->p_sflag & PS_WCORE) != 0) {
  386                         mutex_exit(p->p_lock);
  387                         lwp_userret(l);
  388 #ifdef DIAGNOSTIC
  389                         panic("lwp_wait1");
  390 #endif
  391                         /* NOTREACHED */
  392                 }
  393 
  394                 /*
  395                  * First off, drain any detached LWP that is waiting to be
  396                  * reaped.
  397                  */
  398                 while ((l2 = p->p_zomblwp) != NULL) {
  399                         p->p_zomblwp = NULL;
  400                         lwp_free(l2, false, false);/* releases proc mutex */
  401                         mutex_enter(p->p_lock);
  402                 }
  403 
  404                 /*
  405                  * Now look for an LWP to collect.  If the whole process is
  406                  * exiting, count detached LWPs as eligible to be collected,
  407                  * but don't drain them here.
  408                  */
  409                 nfound = 0;
  410                 error = 0;
  411                 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
  412                         /*
  413                          * If a specific wait and the target is waiting on
  414                          * us, then avoid deadlock.  This also traps LWPs
  415                          * that try to wait on themselves.
  416                          *
  417                          * Note that this does not handle more complicated
  418                          * cycles, like: t1 -> t2 -> t3 -> t1.  The process
  419                          * can still be killed so it is not a major problem.
  420                          */
  421                         if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
  422                                 error = EDEADLK;
  423                                 break;
  424                         }
  425                         if (l2 == l)
  426                                 continue;
  427                         if ((l2->l_prflag & LPR_DETACHED) != 0) {
  428                                 nfound += exiting;
  429                                 continue;
  430                         }
  431                         if (lid != 0) {
  432                                 if (l2->l_lid != lid)
  433                                         continue;
  434                                 /*
  435                                  * Mark this LWP as the first waiter, if there
  436                                  * is no other.
  437                                  */
  438                                 if (l2->l_waiter == 0)
  439                                         l2->l_waiter = curlid;
  440                         } else if (l2->l_waiter != 0) {
  441                                 /*
  442                                  * It already has a waiter - so don't
  443                                  * collect it.  If the waiter doesn't
  444                                  * grab it we'll get another chance
  445                                  * later.
  446                                  */
  447                                 nfound++;
  448                                 continue;
  449                         }
  450                         nfound++;
  451 
  452                         /* No need to lock the LWP in order to see LSZOMB. */
  453                         if (l2->l_stat != LSZOMB)
  454                                 continue;
  455 
  456                         /*
  457                          * We're no longer waiting.  Reset the "first waiter"
  458                          * pointer on the target, in case it was us.
  459                          */
  460                         l->l_waitingfor = 0;
  461                         l2->l_waiter = 0;
  462                         p->p_nlwpwait--;
  463                         if (departed)
  464                                 *departed = l2->l_lid;
  465                         sched_lwp_collect(l2);
  466 
  467                         /* lwp_free() releases the proc lock. */
  468                         lwp_free(l2, false, false);
  469                         mutex_enter(p->p_lock);
  470                         return 0;
  471                 }
  472 
  473                 if (error != 0)
  474                         break;
  475                 if (nfound == 0) {
  476                         error = ESRCH;
  477                         break;
  478                 }
  479 
  480                 /*
  481                  * The kernel is careful to ensure that it can not deadlock
  482                  * when exiting - just keep waiting.
  483                  */
  484                 if (exiting) {
  485                         KASSERT(p->p_nlwps > 1);
  486                         cv_wait(&p->p_lwpcv, p->p_lock);
  487                         continue;
  488                 }
  489 
  490                 /*
  491                  * If all other LWPs are waiting for exits or suspends
  492                  * and the supply of zombies and potential zombies is
  493                  * exhausted, then we are about to deadlock.
  494                  *
  495                  * If the process is exiting (and this LWP is not the one
  496                  * that is coordinating the exit) then bail out now.
  497                  */
  498                 if ((p->p_sflag & PS_WEXIT) != 0 ||
  499                     p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
  500                         error = EDEADLK;
  501                         break;
  502                 }
  503 
  504                 /*
  505                  * Sit around and wait for something to happen.  We'll be 
  506                  * awoken if any of the conditions examined change: if an
  507                  * LWP exits, is collected, or is detached.
  508                  */
  509                 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
  510                         break;
  511         }
  512 
  513         /*
  514          * We didn't find any LWPs to collect, we may have received a 
  515          * signal, or some other condition has caused us to bail out.
  516          *
  517          * If waiting on a specific LWP, clear the waiters marker: some
  518          * other LWP may want it.  Then, kick all the remaining waiters
  519          * so that they can re-check for zombies and for deadlock.
  520          */
  521         if (lid != 0) {
  522                 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
  523                         if (l2->l_lid == lid) {
  524                                 if (l2->l_waiter == curlid)
  525                                         l2->l_waiter = 0;
  526                                 break;
  527                         }
  528                 }
  529         }
  530         p->p_nlwpwait--;
  531         l->l_waitingfor = 0;
  532         cv_broadcast(&p->p_lwpcv);
  533 
  534         return error;
  535 }
  536 
  537 /*
  538  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
  539  * The new LWP is created in state LSIDL and must be set running,
  540  * suspended, or stopped by the caller.
  541  */
  542 int
  543 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
  544            void *stack, size_t stacksize, void (*func)(void *), void *arg,
  545            lwp_t **rnewlwpp, int sclass)
  546 {
  547         struct lwp *l2, *isfree;
  548         turnstile_t *ts;
  549 
  550         KASSERT(l1 == curlwp || l1->l_proc == &proc0);
  551 
  552         /*
  553          * First off, reap any detached LWP waiting to be collected.
  554          * We can re-use its LWP structure and turnstile.
  555          */
  556         isfree = NULL;
  557         if (p2->p_zomblwp != NULL) {
  558                 mutex_enter(p2->p_lock);
  559                 if ((isfree = p2->p_zomblwp) != NULL) {
  560                         p2->p_zomblwp = NULL;
  561                         lwp_free(isfree, true, false);/* releases proc mutex */
  562                 } else
  563                         mutex_exit(p2->p_lock);
  564         }
  565         if (isfree == NULL) {
  566                 l2 = pool_cache_get(lwp_cache, PR_WAITOK);
  567                 memset(l2, 0, sizeof(*l2));
  568                 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
  569                 SLIST_INIT(&l2->l_pi_lenders);
  570         } else {
  571                 l2 = isfree;
  572                 ts = l2->l_ts;
  573                 KASSERT(l2->l_inheritedprio == -1);
  574                 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
  575                 memset(l2, 0, sizeof(*l2));
  576                 l2->l_ts = ts;
  577         }
  578 
  579         l2->l_stat = LSIDL;
  580         l2->l_proc = p2;
  581         l2->l_refcnt = 1;
  582         l2->l_class = sclass;
  583 
  584         /*
  585          * If vfork(), we want the LWP to run fast and on the same CPU
  586          * as its parent, so that it can reuse the VM context and cache
  587          * footprint on the local CPU.
  588          */
  589         l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
  590         l2->l_kpribase = PRI_KERNEL;
  591         l2->l_priority = l1->l_priority;
  592         l2->l_inheritedprio = -1;
  593         l2->l_flag = inmem ? LW_INMEM : 0;
  594         l2->l_pflag = LP_MPSAFE;
  595         l2->l_fd = p2->p_fd;
  596         TAILQ_INIT(&l2->l_ld_locks);
  597 
  598         if (p2->p_flag & PK_SYSTEM) {
  599                 /* Mark it as a system LWP and not a candidate for swapping */
  600                 l2->l_flag |= LW_SYSTEM;
  601         }
  602 
  603         kpreempt_disable();
  604         l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
  605         l2->l_cpu = l1->l_cpu;
  606         kpreempt_enable();
  607 
  608         lwp_initspecific(l2);
  609         sched_lwp_fork(l1, l2);
  610         lwp_update_creds(l2);
  611         callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
  612         callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
  613         mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
  614         cv_init(&l2->l_sigcv, "sigwait");
  615         l2->l_syncobj = &sched_syncobj;
  616 
  617         if (rnewlwpp != NULL)
  618                 *rnewlwpp = l2;
  619 
  620         l2->l_addr = UAREA_TO_USER(uaddr);
  621         uvm_lwp_fork(l1, l2, stack, stacksize, func,
  622             (arg != NULL) ? arg : l2);
  623 
  624         mutex_enter(p2->p_lock);
  625 
  626         if ((flags & LWP_DETACHED) != 0) {
  627                 l2->l_prflag = LPR_DETACHED;
  628                 p2->p_ndlwps++;
  629         } else
  630                 l2->l_prflag = 0;
  631 
  632         l2->l_sigmask = l1->l_sigmask;
  633         CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
  634         sigemptyset(&l2->l_sigpend.sp_set);
  635 
  636         p2->p_nlwpid++;
  637         if (p2->p_nlwpid == 0)
  638                 p2->p_nlwpid++;
  639         l2->l_lid = p2->p_nlwpid;
  640         LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
  641         p2->p_nlwps++;
  642 
  643         if ((p2->p_flag & PK_SYSTEM) == 0) {
  644                 /* Inherit an affinity */
  645                 if (l1->l_flag & LW_AFFINITY) {
  646                         /*
  647                          * Note that we hold the state lock while inheriting
  648                          * the affinity to avoid race with sched_setaffinity().
  649                          */
  650                         lwp_lock(l1);
  651                         if (l1->l_flag & LW_AFFINITY) {
  652                                 kcpuset_use(l1->l_affinity);
  653                                 l2->l_affinity = l1->l_affinity;
  654                                 l2->l_flag |= LW_AFFINITY;
  655                         }
  656                         lwp_unlock(l1);
  657                 }
  658                 lwp_lock(l2);
  659                 /* Inherit a processor-set */
  660                 l2->l_psid = l1->l_psid;
  661                 /* Look for a CPU to start */
  662                 l2->l_cpu = sched_takecpu(l2);
  663                 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
  664         }
  665         mutex_exit(p2->p_lock);
  666 
  667         mutex_enter(proc_lock);
  668         LIST_INSERT_HEAD(&alllwp, l2, l_list);
  669         mutex_exit(proc_lock);
  670 
  671         SYSCALL_TIME_LWP_INIT(l2);
  672 
  673         if (p2->p_emul->e_lwp_fork)
  674                 (*p2->p_emul->e_lwp_fork)(l1, l2);
  675 
  676         return (0);
  677 }
  678 
  679 /*
  680  * Called by MD code when a new LWP begins execution.  Must be called
  681  * with the previous LWP locked (so at splsched), or if there is no
  682  * previous LWP, at splsched.
  683  */
  684 void
  685 lwp_startup(struct lwp *prev, struct lwp *new)
  686 {
  687 
  688         KASSERT(kpreempt_disabled());
  689         if (prev != NULL) {
  690                 /*
  691                  * Normalize the count of the spin-mutexes, it was
  692                  * increased in mi_switch().  Unmark the state of
  693                  * context switch - it is finished for previous LWP.
  694                  */
  695                 curcpu()->ci_mtx_count++;
  696                 membar_exit();
  697                 prev->l_ctxswtch = 0;
  698         }
  699         KPREEMPT_DISABLE(new);
  700         spl0();
  701         pmap_activate(new);
  702         LOCKDEBUG_BARRIER(NULL, 0);
  703         KPREEMPT_ENABLE(new);
  704         if ((new->l_pflag & LP_MPSAFE) == 0) {
  705                 KERNEL_LOCK(1, new);
  706         }
  707 }
  708 
  709 /*
  710  * Exit an LWP.
  711  */
  712 void
  713 lwp_exit(struct lwp *l)
  714 {
  715         struct proc *p = l->l_proc;
  716         struct lwp *l2;
  717         bool current;
  718 
  719         current = (l == curlwp);
  720 
  721         KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
  722 
  723         /*
  724          * Verify that we hold no locks other than the kernel lock.
  725          */
  726         LOCKDEBUG_BARRIER(&kernel_lock, 0);
  727 
  728         /*
  729          * If we are the last live LWP in a process, we need to exit the
  730          * entire process.  We do so with an exit status of zero, because
  731          * it's a "controlled" exit, and because that's what Solaris does.
  732          *
  733          * We are not quite a zombie yet, but for accounting purposes we
  734          * must increment the count of zombies here.
  735          *
  736          * Note: the last LWP's specificdata will be deleted here.
  737          */
  738         mutex_enter(p->p_lock);
  739         if (p->p_nlwps - p->p_nzlwps == 1) {
  740                 KASSERT(current == true);
  741                 /* XXXSMP kernel_lock not held */
  742                 exit1(l, 0);
  743                 /* NOTREACHED */
  744         }
  745         p->p_nzlwps++;
  746         mutex_exit(p->p_lock);
  747 
  748         if (p->p_emul->e_lwp_exit)
  749                 (*p->p_emul->e_lwp_exit)(l);
  750 
  751         /* Delete the specificdata while it's still safe to sleep. */
  752         specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
  753 
  754         /*
  755          * Release our cached credentials.
  756          */
  757         kauth_cred_free(l->l_cred);
  758         callout_destroy(&l->l_timeout_ch);
  759 
  760         /*
  761          * While we can still block, mark the LWP as unswappable to
  762          * prevent conflicts with the with the swapper.
  763          */
  764         if (current)
  765                 uvm_lwp_hold(l);
  766 
  767         /*
  768          * Remove the LWP from the global list.
  769          */
  770         mutex_enter(proc_lock);
  771         LIST_REMOVE(l, l_list);
  772         mutex_exit(proc_lock);
  773 
  774         /*
  775          * Get rid of all references to the LWP that others (e.g. procfs)
  776          * may have, and mark the LWP as a zombie.  If the LWP is detached,
  777          * mark it waiting for collection in the proc structure.  Note that
  778          * before we can do that, we need to free any other dead, deatched
  779          * LWP waiting to meet its maker.
  780          */
  781         mutex_enter(p->p_lock);
  782         lwp_drainrefs(l);
  783 
  784         if ((l->l_prflag & LPR_DETACHED) != 0) {
  785                 while ((l2 = p->p_zomblwp) != NULL) {
  786                         p->p_zomblwp = NULL;
  787                         lwp_free(l2, false, false);/* releases proc mutex */
  788                         mutex_enter(p->p_lock);
  789                         l->l_refcnt++;
  790                         lwp_drainrefs(l);
  791                 }
  792                 p->p_zomblwp = l;
  793         }
  794 
  795         /*
  796          * If we find a pending signal for the process and we have been
  797          * asked to check for signals, then we loose: arrange to have
  798          * all other LWPs in the process check for signals.
  799          */
  800         if ((l->l_flag & LW_PENDSIG) != 0 &&
  801             firstsig(&p->p_sigpend.sp_set) != 0) {
  802                 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
  803                         lwp_lock(l2);
  804                         l2->l_flag |= LW_PENDSIG;
  805                         lwp_unlock(l2);
  806                 }
  807         }
  808 
  809         lwp_lock(l);
  810         l->l_stat = LSZOMB;
  811         if (l->l_name != NULL)
  812                 strcpy(l->l_name, "(zombie)");
  813         if (l->l_flag & LW_AFFINITY) {
  814                 l->l_flag &= ~LW_AFFINITY;
  815         } else {
  816                 KASSERT(l->l_affinity == NULL);
  817         }
  818         lwp_unlock(l);
  819         p->p_nrlwps--;
  820         cv_broadcast(&p->p_lwpcv);
  821         if (l->l_lwpctl != NULL)
  822                 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
  823         mutex_exit(p->p_lock);
  824 
  825         /* Safe without lock since LWP is in zombie state */
  826         if (l->l_affinity) {
  827                 kcpuset_unuse(l->l_affinity, NULL);
  828                 l->l_affinity = NULL;
  829         }
  830 
  831         /*
  832          * We can no longer block.  At this point, lwp_free() may already
  833          * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
  834          *
  835          * Free MD LWP resources.
  836          */
  837 #ifndef __NO_CPU_LWP_FREE
  838         cpu_lwp_free(l, 0);
  839 #endif
  840 
  841         if (current) {
  842                 pmap_deactivate(l);
  843 
  844                 /*
  845                  * Release the kernel lock, and switch away into
  846                  * oblivion.
  847                  */
  848 #ifdef notyet
  849                 /* XXXSMP hold in lwp_userret() */
  850                 KERNEL_UNLOCK_LAST(l);
  851 #else
  852                 KERNEL_UNLOCK_ALL(l, NULL);
  853 #endif
  854                 lwp_exit_switchaway(l);
  855         }
  856 }
  857 
  858 /*
  859  * Free a dead LWP's remaining resources.
  860  *
  861  * XXXLWP limits.
  862  */
  863 void
  864 lwp_free(struct lwp *l, bool recycle, bool last)
  865 {
  866         struct proc *p = l->l_proc;
  867         struct rusage *ru;
  868         ksiginfoq_t kq;
  869 
  870         KASSERT(l != curlwp);
  871 
  872         /*
  873          * If this was not the last LWP in the process, then adjust
  874          * counters and unlock.
  875          */
  876         if (!last) {
  877                 /*
  878                  * Add the LWP's run time to the process' base value.
  879                  * This needs to co-incide with coming off p_lwps.
  880                  */
  881                 bintime_add(&p->p_rtime, &l->l_rtime);
  882                 p->p_pctcpu += l->l_pctcpu;
  883                 ru = &p->p_stats->p_ru;
  884                 ruadd(ru, &l->l_ru);
  885                 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
  886                 ru->ru_nivcsw += l->l_nivcsw;
  887                 LIST_REMOVE(l, l_sibling);
  888                 p->p_nlwps--;
  889                 p->p_nzlwps--;
  890                 if ((l->l_prflag & LPR_DETACHED) != 0)
  891                         p->p_ndlwps--;
  892 
  893                 /*
  894                  * Have any LWPs sleeping in lwp_wait() recheck for
  895                  * deadlock.
  896                  */
  897                 cv_broadcast(&p->p_lwpcv);
  898                 mutex_exit(p->p_lock);
  899         }
  900 
  901 #ifdef MULTIPROCESSOR
  902         /*
  903          * In the unlikely event that the LWP is still on the CPU,
  904          * then spin until it has switched away.  We need to release
  905          * all locks to avoid deadlock against interrupt handlers on
  906          * the target CPU.
  907          */
  908         if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
  909                 int count;
  910                 (void)count; /* XXXgcc */
  911                 KERNEL_UNLOCK_ALL(curlwp, &count);
  912                 while ((l->l_pflag & LP_RUNNING) != 0 ||
  913                     l->l_cpu->ci_curlwp == l)
  914                         SPINLOCK_BACKOFF_HOOK;
  915                 KERNEL_LOCK(count, curlwp);
  916         }
  917 #endif
  918 
  919         /*
  920          * Destroy the LWP's remaining signal information.
  921          */
  922         ksiginfo_queue_init(&kq);
  923         sigclear(&l->l_sigpend, NULL, &kq);
  924         ksiginfo_queue_drain(&kq);
  925         cv_destroy(&l->l_sigcv);
  926         mutex_destroy(&l->l_swaplock);
  927 
  928         /*
  929          * Free the LWP's turnstile and the LWP structure itself unless the
  930          * caller wants to recycle them.  Also, free the scheduler specific
  931          * data.
  932          *
  933          * We can't return turnstile0 to the pool (it didn't come from it),
  934          * so if it comes up just drop it quietly and move on.
  935          *
  936          * We don't recycle the VM resources at this time.
  937          */
  938         if (l->l_lwpctl != NULL)
  939                 lwp_ctl_free(l);
  940 
  941         if (!recycle && l->l_ts != &turnstile0)
  942                 pool_cache_put(turnstile_cache, l->l_ts);
  943         if (l->l_name != NULL)
  944                 kmem_free(l->l_name, MAXCOMLEN);
  945 #ifndef __NO_CPU_LWP_FREE
  946         cpu_lwp_free2(l);
  947 #endif
  948         KASSERT((l->l_flag & LW_INMEM) != 0);
  949         uvm_lwp_exit(l);
  950         KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
  951         KASSERT(l->l_inheritedprio == -1);
  952         if (!recycle)
  953                 pool_cache_put(lwp_cache, l);
  954 }
  955 
  956 /*
  957  * Migrate the LWP to the another CPU.  Unlocks the LWP.
  958  */
  959 void
  960 lwp_migrate(lwp_t *l, struct cpu_info *tci)
  961 {
  962         struct schedstate_percpu *tspc;
  963         int lstat = l->l_stat;
  964 
  965         KASSERT(lwp_locked(l, NULL));
  966         KASSERT(tci != NULL);
  967 
  968         /* If LWP is still on the CPU, it must be handled like LSONPROC */
  969         if ((l->l_pflag & LP_RUNNING) != 0) {
  970                 lstat = LSONPROC;
  971         }
  972 
  973         /*
  974          * The destination CPU could be changed while previous migration
  975          * was not finished.
  976          */
  977         if (l->l_target_cpu != NULL) {
  978                 l->l_target_cpu = tci;
  979                 lwp_unlock(l);
  980                 return;
  981         }
  982 
  983         /* Nothing to do if trying to migrate to the same CPU */
  984         if (l->l_cpu == tci) {
  985                 lwp_unlock(l);
  986                 return;
  987         }
  988 
  989         KASSERT(l->l_target_cpu == NULL);
  990         tspc = &tci->ci_schedstate;
  991         switch (lstat) {
  992         case LSRUN:
  993                 if (l->l_flag & LW_INMEM) {
  994                         l->l_target_cpu = tci;
  995                         lwp_unlock(l);
  996                         return;
  997                 }
  998         case LSIDL:
  999                 l->l_cpu = tci;
 1000                 lwp_unlock_to(l, tspc->spc_mutex);
 1001                 return;
 1002         case LSSLEEP:
 1003                 l->l_cpu = tci;
 1004                 break;
 1005         case LSSTOP:
 1006         case LSSUSPENDED:
 1007                 l->l_cpu = tci;
 1008                 if (l->l_wchan == NULL) {
 1009                         lwp_unlock_to(l, tspc->spc_lwplock);
 1010                         return;
 1011                 }
 1012                 break;
 1013         case LSONPROC:
 1014                 l->l_target_cpu = tci;
 1015                 spc_lock(l->l_cpu);
 1016                 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
 1017                 spc_unlock(l->l_cpu);
 1018                 break;
 1019         }
 1020         lwp_unlock(l);
 1021 }
 1022 
 1023 /*
 1024  * Find the LWP in the process.  Arguments may be zero, in such case,
 1025  * the calling process and first LWP in the list will be used.
 1026  * On success - returns proc locked.
 1027  */
 1028 struct lwp *
 1029 lwp_find2(pid_t pid, lwpid_t lid)
 1030 {
 1031         proc_t *p;
 1032         lwp_t *l;
 1033 
 1034         /* Find the process */
 1035         p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
 1036         if (p == NULL)
 1037                 return NULL;
 1038         mutex_enter(p->p_lock);
 1039         if (pid != 0) {
 1040                 /* Case of p_find */
 1041                 mutex_exit(proc_lock);
 1042         }
 1043 
 1044         /* Find the thread */
 1045         l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
 1046         if (l == NULL) {
 1047                 mutex_exit(p->p_lock);
 1048         }
 1049 
 1050         return l;
 1051 }
 1052 
 1053 /*
 1054  * Look up a live LWP within the speicifed process, and return it locked.
 1055  *
 1056  * Must be called with p->p_lock held.
 1057  */
 1058 struct lwp *
 1059 lwp_find(struct proc *p, int id)
 1060 {
 1061         struct lwp *l;
 1062 
 1063         KASSERT(mutex_owned(p->p_lock));
 1064 
 1065         LIST_FOREACH(l, &p->p_lwps, l_sibling) {
 1066                 if (l->l_lid == id)
 1067                         break;
 1068         }
 1069 
 1070         /*
 1071          * No need to lock - all of these conditions will
 1072          * be visible with the process level mutex held.
 1073          */
 1074         if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
 1075                 l = NULL;
 1076 
 1077         return l;
 1078 }
 1079 
 1080 /*
 1081  * Update an LWP's cached credentials to mirror the process' master copy.
 1082  *
 1083  * This happens early in the syscall path, on user trap, and on LWP
 1084  * creation.  A long-running LWP can also voluntarily choose to update
 1085  * it's credentials by calling this routine.  This may be called from
 1086  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
 1087  */
 1088 void
 1089 lwp_update_creds(struct lwp *l)
 1090 {
 1091         kauth_cred_t oc;
 1092         struct proc *p;
 1093 
 1094         p = l->l_proc;
 1095         oc = l->l_cred;
 1096 
 1097         mutex_enter(p->p_lock);
 1098         kauth_cred_hold(p->p_cred);
 1099         l->l_cred = p->p_cred;
 1100         l->l_prflag &= ~LPR_CRMOD;
 1101         mutex_exit(p->p_lock);
 1102         if (oc != NULL)
 1103                 kauth_cred_free(oc);
 1104 }
 1105 
 1106 /*
 1107  * Verify that an LWP is locked, and optionally verify that the lock matches
 1108  * one we specify.
 1109  */
 1110 int
 1111 lwp_locked(struct lwp *l, kmutex_t *mtx)
 1112 {
 1113         kmutex_t *cur = l->l_mutex;
 1114 
 1115         return mutex_owned(cur) && (mtx == cur || mtx == NULL);
 1116 }
 1117 
 1118 /*
 1119  * Lock an LWP.
 1120  */
 1121 kmutex_t *
 1122 lwp_lock_retry(struct lwp *l, kmutex_t *old)
 1123 {
 1124 
 1125         /*
 1126          * XXXgcc ignoring kmutex_t * volatile on i386
 1127          *
 1128          * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
 1129          */
 1130 #if 1
 1131         while (l->l_mutex != old) {
 1132 #else
 1133         for (;;) {
 1134 #endif
 1135                 mutex_spin_exit(old);
 1136                 old = l->l_mutex;
 1137                 mutex_spin_enter(old);
 1138 
 1139                 /*
 1140                  * mutex_enter() will have posted a read barrier.  Re-test
 1141                  * l->l_mutex.  If it has changed, we need to try again.
 1142                  */
 1143 #if 1
 1144         }
 1145 #else
 1146         } while (__predict_false(l->l_mutex != old));
 1147 #endif
 1148 
 1149         return old;
 1150 }
 1151 
 1152 /*
 1153  * Lend a new mutex to an LWP.  The old mutex must be held.
 1154  */
 1155 void
 1156 lwp_setlock(struct lwp *l, kmutex_t *new)
 1157 {
 1158 
 1159         KASSERT(mutex_owned(l->l_mutex));
 1160 
 1161         membar_exit();
 1162         l->l_mutex = new;
 1163 }
 1164 
 1165 /*
 1166  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
 1167  * must be held.
 1168  */
 1169 void
 1170 lwp_unlock_to(struct lwp *l, kmutex_t *new)
 1171 {
 1172         kmutex_t *old;
 1173 
 1174         KASSERT(mutex_owned(l->l_mutex));
 1175 
 1176         old = l->l_mutex;
 1177         membar_exit();
 1178         l->l_mutex = new;
 1179         mutex_spin_exit(old);
 1180 }
 1181 
 1182 /*
 1183  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
 1184  * locked.
 1185  */
 1186 void
 1187 lwp_relock(struct lwp *l, kmutex_t *new)
 1188 {
 1189         kmutex_t *old;
 1190 
 1191         KASSERT(mutex_owned(l->l_mutex));
 1192 
 1193         old = l->l_mutex;
 1194         if (old != new) {
 1195                 mutex_spin_enter(new);
 1196                 l->l_mutex = new;
 1197                 mutex_spin_exit(old);
 1198         }
 1199 }
 1200 
 1201 int
 1202 lwp_trylock(struct lwp *l)
 1203 {
 1204         kmutex_t *old;
 1205 
 1206         for (;;) {
 1207                 if (!mutex_tryenter(old = l->l_mutex))
 1208                         return 0;
 1209                 if (__predict_true(l->l_mutex == old))
 1210                         return 1;
 1211                 mutex_spin_exit(old);
 1212         }
 1213 }
 1214 
 1215 u_int
 1216 lwp_unsleep(lwp_t *l, bool cleanup)
 1217 {
 1218 
 1219         KASSERT(mutex_owned(l->l_mutex));
 1220 
 1221         return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
 1222 }
 1223 
 1224 
 1225 /*
 1226  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
 1227  * set.
 1228  */
 1229 void
 1230 lwp_userret(struct lwp *l)
 1231 {
 1232         struct proc *p;
 1233         void (*hook)(void);
 1234         int sig;
 1235 
 1236         KASSERT(l == curlwp);
 1237         KASSERT(l->l_stat == LSONPROC);
 1238         p = l->l_proc;
 1239 
 1240 #ifndef __HAVE_FAST_SOFTINTS
 1241         /* Run pending soft interrupts. */
 1242         if (l->l_cpu->ci_data.cpu_softints != 0)
 1243                 softint_overlay();
 1244 #endif
 1245 
 1246 #ifdef KERN_SA
 1247         /* Generate UNBLOCKED upcall if needed */
 1248         if (l->l_flag & LW_SA_BLOCKING) {
 1249                 sa_unblock_userret(l);
 1250                 /* NOTREACHED */
 1251         }
 1252 #endif
 1253 
 1254         /*
 1255          * It should be safe to do this read unlocked on a multiprocessor
 1256          * system..
 1257          *
 1258          * LW_SA_UPCALL will be handled after the while() loop, so don't
 1259          * consider it now.
 1260          */
 1261         while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
 1262                 /*
 1263                  * Process pending signals first, unless the process
 1264                  * is dumping core or exiting, where we will instead
 1265                  * enter the LW_WSUSPEND case below.
 1266                  */
 1267                 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
 1268                     LW_PENDSIG) {
 1269                         mutex_enter(p->p_lock);
 1270                         while ((sig = issignal(l)) != 0)
 1271                                 postsig(sig);
 1272                         mutex_exit(p->p_lock);
 1273                 }
 1274 
 1275                 /*
 1276                  * Core-dump or suspend pending.
 1277                  *
 1278                  * In case of core dump, suspend ourselves, so that the
 1279                  * kernel stack and therefore the userland registers saved
 1280                  * in the trapframe are around for coredump() to write them
 1281                  * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
 1282                  * will write the core file out once all other LWPs are
 1283                  * suspended.
 1284                  */
 1285                 if ((l->l_flag & LW_WSUSPEND) != 0) {
 1286                         mutex_enter(p->p_lock);
 1287                         p->p_nrlwps--;
 1288                         cv_broadcast(&p->p_lwpcv);
 1289                         lwp_lock(l);
 1290                         l->l_stat = LSSUSPENDED;
 1291                         lwp_unlock(l);
 1292                         mutex_exit(p->p_lock);
 1293                         lwp_lock(l);
 1294                         mi_switch(l);
 1295                 }
 1296 
 1297                 /* Process is exiting. */
 1298                 if ((l->l_flag & LW_WEXIT) != 0) {
 1299                         lwp_exit(l);
 1300                         KASSERT(0);
 1301                         /* NOTREACHED */
 1302                 }
 1303 
 1304                 /* Call userret hook; used by Linux emulation. */
 1305                 if ((l->l_flag & LW_WUSERRET) != 0) {
 1306                         lwp_lock(l);
 1307                         l->l_flag &= ~LW_WUSERRET;
 1308                         lwp_unlock(l);
 1309                         hook = p->p_userret;
 1310                         p->p_userret = NULL;
 1311                         (*hook)();
 1312                 }
 1313         }
 1314 
 1315 #ifdef KERN_SA
 1316         /*
 1317          * Timer events are handled specially.  We only try once to deliver
 1318          * pending timer upcalls; if if fails, we can try again on the next
 1319          * loop around.  If we need to re-enter lwp_userret(), MD code will
 1320          * bounce us back here through the trap path after we return.
 1321          */
 1322         if (p->p_timerpend)
 1323                 timerupcall(l);
 1324         if (l->l_flag & LW_SA_UPCALL)
 1325                 sa_upcall_userret(l);
 1326 #endif /* KERN_SA */
 1327 }
 1328 
 1329 /*
 1330  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
 1331  */
 1332 void
 1333 lwp_need_userret(struct lwp *l)
 1334 {
 1335         KASSERT(lwp_locked(l, NULL));
 1336 
 1337         /*
 1338          * Since the tests in lwp_userret() are done unlocked, make sure
 1339          * that the condition will be seen before forcing the LWP to enter
 1340          * kernel mode.
 1341          */
 1342         membar_producer();
 1343         cpu_signotify(l);
 1344 }
 1345 
 1346 /*
 1347  * Add one reference to an LWP.  This will prevent the LWP from
 1348  * exiting, thus keep the lwp structure and PCB around to inspect.
 1349  */
 1350 void
 1351 lwp_addref(struct lwp *l)
 1352 {
 1353 
 1354         KASSERT(mutex_owned(l->l_proc->p_lock));
 1355         KASSERT(l->l_stat != LSZOMB);
 1356         KASSERT(l->l_refcnt != 0);
 1357 
 1358         l->l_refcnt++;
 1359 }
 1360 
 1361 /*
 1362  * Remove one reference to an LWP.  If this is the last reference,
 1363  * then we must finalize the LWP's death.
 1364  */
 1365 void
 1366 lwp_delref(struct lwp *l)
 1367 {
 1368         struct proc *p = l->l_proc;
 1369 
 1370         mutex_enter(p->p_lock);
 1371         KASSERT(l->l_stat != LSZOMB);
 1372         KASSERT(l->l_refcnt > 0);
 1373         if (--l->l_refcnt == 0)
 1374                 cv_broadcast(&p->p_lwpcv);
 1375         mutex_exit(p->p_lock);
 1376 }
 1377 
 1378 /*
 1379  * Drain all references to the current LWP.
 1380  */
 1381 void
 1382 lwp_drainrefs(struct lwp *l)
 1383 {
 1384         struct proc *p = l->l_proc;
 1385 
 1386         KASSERT(mutex_owned(p->p_lock));
 1387         KASSERT(l->l_refcnt != 0);
 1388 
 1389         l->l_refcnt--;
 1390         while (l->l_refcnt != 0)
 1391                 cv_wait(&p->p_lwpcv, p->p_lock);
 1392 }
 1393 
 1394 /*
 1395  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
 1396  * be held.
 1397  */
 1398 bool
 1399 lwp_alive(lwp_t *l)
 1400 {
 1401 
 1402         KASSERT(mutex_owned(l->l_proc->p_lock));
 1403 
 1404         switch (l->l_stat) {
 1405         case LSSLEEP:
 1406         case LSRUN:
 1407         case LSONPROC:
 1408         case LSSTOP:
 1409         case LSSUSPENDED:
 1410                 return true;
 1411         default:
 1412                 return false;
 1413         }
 1414 }
 1415 
 1416 /*
 1417  * Return first live LWP in the process.
 1418  */
 1419 lwp_t *
 1420 lwp_find_first(proc_t *p)
 1421 {
 1422         lwp_t *l;
 1423 
 1424         KASSERT(mutex_owned(p->p_lock));
 1425 
 1426         LIST_FOREACH(l, &p->p_lwps, l_sibling) {
 1427                 if (lwp_alive(l)) {
 1428                         return l;
 1429                 }
 1430         }
 1431 
 1432         return NULL;
 1433 }
 1434 
 1435 /*
 1436  * lwp_specific_key_create --
 1437  *      Create a key for subsystem lwp-specific data.
 1438  */
 1439 int
 1440 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
 1441 {
 1442 
 1443         return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
 1444 }
 1445 
 1446 /*
 1447  * lwp_specific_key_delete --
 1448  *      Delete a key for subsystem lwp-specific data.
 1449  */
 1450 void
 1451 lwp_specific_key_delete(specificdata_key_t key)
 1452 {
 1453 
 1454         specificdata_key_delete(lwp_specificdata_domain, key);
 1455 }
 1456 
 1457 /*
 1458  * lwp_initspecific --
 1459  *      Initialize an LWP's specificdata container.
 1460  */
 1461 void
 1462 lwp_initspecific(struct lwp *l)
 1463 {
 1464         int error;
 1465 
 1466         error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
 1467         KASSERT(error == 0);
 1468 }
 1469 
 1470 /*
 1471  * lwp_finispecific --
 1472  *      Finalize an LWP's specificdata container.
 1473  */
 1474 void
 1475 lwp_finispecific(struct lwp *l)
 1476 {
 1477 
 1478         specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
 1479 }
 1480 
 1481 /*
 1482  * lwp_getspecific --
 1483  *      Return lwp-specific data corresponding to the specified key.
 1484  *
 1485  *      Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
 1486  *      only its OWN SPECIFIC DATA.  If it is necessary to access another
 1487  *      LWP's specifc data, care must be taken to ensure that doing so
 1488  *      would not cause internal data structure inconsistency (i.e. caller
 1489  *      can guarantee that the target LWP is not inside an lwp_getspecific()
 1490  *      or lwp_setspecific() call).
 1491  */
 1492 void *
 1493 lwp_getspecific(specificdata_key_t key)
 1494 {
 1495 
 1496         return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
 1497                                                   &curlwp->l_specdataref, key));
 1498 }
 1499 
 1500 void *
 1501 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
 1502 {
 1503 
 1504         return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
 1505                                                   &l->l_specdataref, key));
 1506 }
 1507 
 1508 /*
 1509  * lwp_setspecific --
 1510  *      Set lwp-specific data corresponding to the specified key.
 1511  */
 1512 void
 1513 lwp_setspecific(specificdata_key_t key, void *data)
 1514 {
 1515 
 1516         specificdata_setspecific(lwp_specificdata_domain,
 1517                                  &curlwp->l_specdataref, key, data);
 1518 }
 1519 
 1520 /*
 1521  * Allocate a new lwpctl structure for a user LWP.
 1522  */
 1523 int
 1524 lwp_ctl_alloc(vaddr_t *uaddr)
 1525 {
 1526         lcproc_t *lp;
 1527         u_int bit, i, offset;
 1528         struct uvm_object *uao;
 1529         int error;
 1530         lcpage_t *lcp;
 1531         proc_t *p;
 1532         lwp_t *l;
 1533 
 1534         l = curlwp;
 1535         p = l->l_proc;
 1536 
 1537         if (l->l_lcpage != NULL) {
 1538                 lcp = l->l_lcpage;
 1539                 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
 1540                 return (EINVAL);
 1541         }
 1542 
 1543         /* First time around, allocate header structure for the process. */
 1544         if ((lp = p->p_lwpctl) == NULL) {
 1545                 lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
 1546                 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
 1547                 lp->lp_uao = NULL;
 1548                 TAILQ_INIT(&lp->lp_pages);
 1549                 mutex_enter(p->p_lock);
 1550                 if (p->p_lwpctl == NULL) {
 1551                         p->p_lwpctl = lp;
 1552                         mutex_exit(p->p_lock);
 1553                 } else {
 1554                         mutex_exit(p->p_lock);
 1555                         mutex_destroy(&lp->lp_lock);
 1556                         kmem_free(lp, sizeof(*lp));
 1557                         lp = p->p_lwpctl;
 1558                 }
 1559         }
 1560 
 1561         /*
 1562          * Set up an anonymous memory region to hold the shared pages.
 1563          * Map them into the process' address space.  The user vmspace
 1564          * gets the first reference on the UAO.
 1565          */
 1566         mutex_enter(&lp->lp_lock);
 1567         if (lp->lp_uao == NULL) {
 1568                 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
 1569                 lp->lp_cur = 0;
 1570                 lp->lp_max = LWPCTL_UAREA_SZ;
 1571                 lp->lp_uva = p->p_emul->e_vm_default_addr(p,
 1572                      (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
 1573                 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
 1574                     LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
 1575                     UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
 1576                 if (error != 0) {
 1577                         uao_detach(lp->lp_uao);
 1578                         lp->lp_uao = NULL;
 1579                         mutex_exit(&lp->lp_lock);
 1580                         return error;
 1581                 }
 1582         }
 1583 
 1584         /* Get a free block and allocate for this LWP. */
 1585         TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
 1586                 if (lcp->lcp_nfree != 0)
 1587                         break;
 1588         }
 1589         if (lcp == NULL) {
 1590                 /* Nothing available - try to set up a free page. */
 1591                 if (lp->lp_cur == lp->lp_max) {
 1592                         mutex_exit(&lp->lp_lock);
 1593                         return ENOMEM;
 1594                 }
 1595                 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
 1596                 if (lcp == NULL) {
 1597                         mutex_exit(&lp->lp_lock);
 1598                         return ENOMEM;
 1599                 }
 1600                 /*
 1601                  * Wire the next page down in kernel space.  Since this
 1602                  * is a new mapping, we must add a reference.
 1603                  */
 1604                 uao = lp->lp_uao;
 1605                 (*uao->pgops->pgo_reference)(uao);
 1606                 lcp->lcp_kaddr = vm_map_min(kernel_map);
 1607                 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
 1608                     uao, lp->lp_cur, PAGE_SIZE,
 1609                     UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
 1610                     UVM_INH_NONE, UVM_ADV_RANDOM, 0));
 1611                 if (error != 0) {
 1612                         mutex_exit(&lp->lp_lock);
 1613                         kmem_free(lcp, LWPCTL_LCPAGE_SZ);
 1614                         (*uao->pgops->pgo_detach)(uao);
 1615                         return error;
 1616                 }
 1617                 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
 1618                     lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
 1619                 if (error != 0) {
 1620                         mutex_exit(&lp->lp_lock);
 1621                         uvm_unmap(kernel_map, lcp->lcp_kaddr,
 1622                             lcp->lcp_kaddr + PAGE_SIZE);
 1623                         kmem_free(lcp, LWPCTL_LCPAGE_SZ);
 1624                         return error;
 1625                 }
 1626                 /* Prepare the page descriptor and link into the list. */
 1627                 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
 1628                 lp->lp_cur += PAGE_SIZE;
 1629                 lcp->lcp_nfree = LWPCTL_PER_PAGE;
 1630                 lcp->lcp_rotor = 0;
 1631                 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
 1632                 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
 1633         }
 1634         for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
 1635                 if (++i >= LWPCTL_BITMAP_ENTRIES)
 1636                         i = 0;
 1637         }
 1638         bit = ffs(lcp->lcp_bitmap[i]) - 1;
 1639         lcp->lcp_bitmap[i] ^= (1 << bit);
 1640         lcp->lcp_rotor = i;
 1641         lcp->lcp_nfree--;
 1642         l->l_lcpage = lcp;
 1643         offset = (i << 5) + bit;
 1644         l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
 1645         *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
 1646         mutex_exit(&lp->lp_lock);
 1647 
 1648         KPREEMPT_DISABLE(l);
 1649         l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
 1650         KPREEMPT_ENABLE(l);
 1651 
 1652         return 0;
 1653 }
 1654 
 1655 /*
 1656  * Free an lwpctl structure back to the per-process list.
 1657  */
 1658 void
 1659 lwp_ctl_free(lwp_t *l)
 1660 {
 1661         lcproc_t *lp;
 1662         lcpage_t *lcp;
 1663         u_int map, offset;
 1664 
 1665         lp = l->l_proc->p_lwpctl;
 1666         KASSERT(lp != NULL);
 1667 
 1668         lcp = l->l_lcpage;
 1669         offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
 1670         KASSERT(offset < LWPCTL_PER_PAGE);
 1671 
 1672         mutex_enter(&lp->lp_lock);
 1673         lcp->lcp_nfree++;
 1674         map = offset >> 5;
 1675         lcp->lcp_bitmap[map] |= (1 << (offset & 31));
 1676         if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
 1677                 lcp->lcp_rotor = map;
 1678         if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
 1679                 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
 1680                 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
 1681         }
 1682         mutex_exit(&lp->lp_lock);
 1683 }
 1684 
 1685 /*
 1686  * Process is exiting; tear down lwpctl state.  This can only be safely
 1687  * called by the last LWP in the process.
 1688  */
 1689 void
 1690 lwp_ctl_exit(void)
 1691 {
 1692         lcpage_t *lcp, *next;
 1693         lcproc_t *lp;
 1694         proc_t *p;
 1695         lwp_t *l;
 1696 
 1697         l = curlwp;
 1698         l->l_lwpctl = NULL;
 1699         l->l_lcpage = NULL;
 1700         p = l->l_proc;
 1701         lp = p->p_lwpctl;
 1702 
 1703         KASSERT(lp != NULL);
 1704         KASSERT(p->p_nlwps == 1);
 1705 
 1706         for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
 1707                 next = TAILQ_NEXT(lcp, lcp_chain);
 1708                 uvm_unmap(kernel_map, lcp->lcp_kaddr,
 1709                     lcp->lcp_kaddr + PAGE_SIZE);
 1710                 kmem_free(lcp, LWPCTL_LCPAGE_SZ);
 1711         }
 1712 
 1713         if (lp->lp_uao != NULL) {
 1714                 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
 1715                     lp->lp_uva + LWPCTL_UAREA_SZ);
 1716         }
 1717 
 1718         mutex_destroy(&lp->lp_lock);
 1719         kmem_free(lp, sizeof(*lp));
 1720         p->p_lwpctl = NULL;
 1721 }
 1722 
 1723 #if defined(DDB)
 1724 void
 1725 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
 1726 {
 1727         lwp_t *l;
 1728 
 1729         LIST_FOREACH(l, &alllwp, l_list) {
 1730                 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
 1731 
 1732                 if (addr < stack || stack + KSTACK_SIZE <= addr) {
 1733                         continue;
 1734                 }
 1735                 (*pr)("%p is %p+%zu, LWP %p's stack\n",
 1736                     (void *)addr, (void *)stack,
 1737                     (size_t)(addr - stack), l);
 1738         }
 1739 }
 1740 #endif /* defined(DDB) */

Cache object: 27166eb3c283aabea29bfb02603fb1c9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.