The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_malloc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1987, 1991, 1993
    5  *      The Regents of the University of California.
    6  * Copyright (c) 2005-2009 Robert N. M. Watson
    7  * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray)
    8  * All rights reserved.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_malloc.c       8.3 (Berkeley) 1/4/94
   35  */
   36 
   37 /*
   38  * Kernel malloc(9) implementation -- general purpose kernel memory allocator
   39  * based on memory types.  Back end is implemented using the UMA(9) zone
   40  * allocator.  A set of fixed-size buckets are used for smaller allocations,
   41  * and a special UMA allocation interface is used for larger allocations.
   42  * Callers declare memory types, and statistics are maintained independently
   43  * for each memory type.  Statistics are maintained per-CPU for performance
   44  * reasons.  See malloc(9) and comments in malloc.h for a detailed
   45  * description.
   46  */
   47 
   48 #include <sys/cdefs.h>
   49 __FBSDID("$FreeBSD$");
   50 
   51 #include "opt_ddb.h"
   52 #include "opt_vm.h"
   53 
   54 #include <sys/param.h>
   55 #include <sys/systm.h>
   56 #include <sys/asan.h>
   57 #include <sys/kdb.h>
   58 #include <sys/kernel.h>
   59 #include <sys/lock.h>
   60 #include <sys/malloc.h>
   61 #include <sys/msan.h>
   62 #include <sys/mutex.h>
   63 #include <sys/vmmeter.h>
   64 #include <sys/proc.h>
   65 #include <sys/queue.h>
   66 #include <sys/sbuf.h>
   67 #include <sys/smp.h>
   68 #include <sys/sysctl.h>
   69 #include <sys/time.h>
   70 #include <sys/vmem.h>
   71 #ifdef EPOCH_TRACE
   72 #include <sys/epoch.h>
   73 #endif
   74 
   75 #include <vm/vm.h>
   76 #include <vm/pmap.h>
   77 #include <vm/vm_domainset.h>
   78 #include <vm/vm_pageout.h>
   79 #include <vm/vm_param.h>
   80 #include <vm/vm_kern.h>
   81 #include <vm/vm_extern.h>
   82 #include <vm/vm_map.h>
   83 #include <vm/vm_page.h>
   84 #include <vm/vm_phys.h>
   85 #include <vm/vm_pagequeue.h>
   86 #include <vm/uma.h>
   87 #include <vm/uma_int.h>
   88 #include <vm/uma_dbg.h>
   89 
   90 #ifdef DEBUG_MEMGUARD
   91 #include <vm/memguard.h>
   92 #endif
   93 #ifdef DEBUG_REDZONE
   94 #include <vm/redzone.h>
   95 #endif
   96 
   97 #if defined(INVARIANTS) && defined(__i386__)
   98 #include <machine/cpu.h>
   99 #endif
  100 
  101 #include <ddb/ddb.h>
  102 
  103 #ifdef KDTRACE_HOOKS
  104 #include <sys/dtrace_bsd.h>
  105 
  106 bool    __read_frequently                       dtrace_malloc_enabled;
  107 dtrace_malloc_probe_func_t __read_mostly        dtrace_malloc_probe;
  108 #endif
  109 
  110 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) ||             \
  111     defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE)
  112 #define MALLOC_DEBUG    1
  113 #endif
  114 
  115 #if defined(KASAN) || defined(DEBUG_REDZONE)
  116 #define DEBUG_REDZONE_ARG_DEF   , unsigned long osize
  117 #define DEBUG_REDZONE_ARG       , osize
  118 #else
  119 #define DEBUG_REDZONE_ARG_DEF
  120 #define DEBUG_REDZONE_ARG
  121 #endif
  122 
  123 /*
  124  * When realloc() is called, if the new size is sufficiently smaller than
  125  * the old size, realloc() will allocate a new, smaller block to avoid
  126  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
  127  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
  128  */
  129 #ifndef REALLOC_FRACTION
  130 #define REALLOC_FRACTION        1       /* new block if <= half the size */
  131 #endif
  132 
  133 /*
  134  * Centrally define some common malloc types.
  135  */
  136 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
  137 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
  138 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
  139 
  140 static struct malloc_type *kmemstatistics;
  141 static int kmemcount;
  142 
  143 #define KMEM_ZSHIFT     4
  144 #define KMEM_ZBASE      16
  145 #define KMEM_ZMASK      (KMEM_ZBASE - 1)
  146 
  147 #define KMEM_ZMAX       65536
  148 #define KMEM_ZSIZE      (KMEM_ZMAX >> KMEM_ZSHIFT)
  149 static uint8_t kmemsize[KMEM_ZSIZE + 1];
  150 
  151 #ifndef MALLOC_DEBUG_MAXZONES
  152 #define MALLOC_DEBUG_MAXZONES   1
  153 #endif
  154 static int numzones = MALLOC_DEBUG_MAXZONES;
  155 
  156 /*
  157  * Small malloc(9) memory allocations are allocated from a set of UMA buckets
  158  * of various sizes.
  159  *
  160  * Warning: the layout of the struct is duplicated in libmemstat for KVM support.
  161  *
  162  * XXX: The comment here used to read "These won't be powers of two for
  163  * long."  It's possible that a significant amount of wasted memory could be
  164  * recovered by tuning the sizes of these buckets.
  165  */
  166 struct {
  167         int kz_size;
  168         const char *kz_name;
  169         uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
  170 } kmemzones[] = {
  171         {16, "malloc-16", },
  172         {32, "malloc-32", },
  173         {64, "malloc-64", },
  174         {128, "malloc-128", },
  175         {256, "malloc-256", },
  176         {384, "malloc-384", },
  177         {512, "malloc-512", },
  178         {1024, "malloc-1024", },
  179         {2048, "malloc-2048", },
  180         {4096, "malloc-4096", },
  181         {8192, "malloc-8192", },
  182         {16384, "malloc-16384", },
  183         {32768, "malloc-32768", },
  184         {65536, "malloc-65536", },
  185         {0, NULL},
  186 };
  187 
  188 u_long vm_kmem_size;
  189 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
  190     "Size of kernel memory");
  191 
  192 static u_long kmem_zmax = KMEM_ZMAX;
  193 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0,
  194     "Maximum allocation size that malloc(9) would use UMA as backend");
  195 
  196 static u_long vm_kmem_size_min;
  197 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
  198     "Minimum size of kernel memory");
  199 
  200 static u_long vm_kmem_size_max;
  201 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
  202     "Maximum size of kernel memory");
  203 
  204 static u_int vm_kmem_size_scale;
  205 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
  206     "Scale factor for kernel memory size");
  207 
  208 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
  209 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
  210     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
  211     sysctl_kmem_map_size, "LU", "Current kmem allocation size");
  212 
  213 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
  214 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
  215     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
  216     sysctl_kmem_map_free, "LU", "Free space in kmem");
  217 
  218 static SYSCTL_NODE(_vm, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
  219     "Malloc information");
  220 
  221 static u_int vm_malloc_zone_count = nitems(kmemzones);
  222 SYSCTL_UINT(_vm_malloc, OID_AUTO, zone_count,
  223     CTLFLAG_RD, &vm_malloc_zone_count, 0,
  224     "Number of malloc zones");
  225 
  226 static int sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS);
  227 SYSCTL_PROC(_vm_malloc, OID_AUTO, zone_sizes,
  228     CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, NULL, 0,
  229     sysctl_vm_malloc_zone_sizes, "S", "Zone sizes used by malloc");
  230 
  231 /*
  232  * The malloc_mtx protects the kmemstatistics linked list.
  233  */
  234 struct mtx malloc_mtx;
  235 
  236 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
  237 
  238 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
  239 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
  240     "Kernel malloc debugging options");
  241 #endif
  242 
  243 /*
  244  * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
  245  * the caller specifies M_NOWAIT.  If set to 0, no failures are caused.
  246  */
  247 #ifdef MALLOC_MAKE_FAILURES
  248 static int malloc_failure_rate;
  249 static int malloc_nowait_count;
  250 static int malloc_failure_count;
  251 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN,
  252     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
  253 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
  254     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
  255 #endif
  256 
  257 static int
  258 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
  259 {
  260         u_long size;
  261 
  262         size = uma_size();
  263         return (sysctl_handle_long(oidp, &size, 0, req));
  264 }
  265 
  266 static int
  267 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
  268 {
  269         u_long size, limit;
  270 
  271         /* The sysctl is unsigned, implement as a saturation value. */
  272         size = uma_size();
  273         limit = uma_limit();
  274         if (size > limit)
  275                 size = 0;
  276         else
  277                 size = limit - size;
  278         return (sysctl_handle_long(oidp, &size, 0, req));
  279 }
  280 
  281 static int
  282 sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS)
  283 {
  284         int sizes[nitems(kmemzones)];
  285         int i;
  286 
  287         for (i = 0; i < nitems(kmemzones); i++) {
  288                 sizes[i] = kmemzones[i].kz_size;
  289         }
  290 
  291         return (SYSCTL_OUT(req, &sizes, sizeof(sizes)));
  292 }
  293 
  294 /*
  295  * malloc(9) uma zone separation -- sub-page buffer overruns in one
  296  * malloc type will affect only a subset of other malloc types.
  297  */
  298 #if MALLOC_DEBUG_MAXZONES > 1
  299 static void
  300 tunable_set_numzones(void)
  301 {
  302 
  303         TUNABLE_INT_FETCH("debug.malloc.numzones",
  304             &numzones);
  305 
  306         /* Sanity check the number of malloc uma zones. */
  307         if (numzones <= 0)
  308                 numzones = 1;
  309         if (numzones > MALLOC_DEBUG_MAXZONES)
  310                 numzones = MALLOC_DEBUG_MAXZONES;
  311 }
  312 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
  313 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
  314     &numzones, 0, "Number of malloc uma subzones");
  315 
  316 /*
  317  * Any number that changes regularly is an okay choice for the
  318  * offset.  Build numbers are pretty good of you have them.
  319  */
  320 static u_int zone_offset = __FreeBSD_version;
  321 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
  322 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
  323     &zone_offset, 0, "Separate malloc types by examining the "
  324     "Nth character in the malloc type short description.");
  325 
  326 static void
  327 mtp_set_subzone(struct malloc_type *mtp)
  328 {
  329         struct malloc_type_internal *mtip;
  330         const char *desc;
  331         size_t len;
  332         u_int val;
  333 
  334         mtip = &mtp->ks_mti;
  335         desc = mtp->ks_shortdesc;
  336         if (desc == NULL || (len = strlen(desc)) == 0)
  337                 val = 0;
  338         else
  339                 val = desc[zone_offset % len];
  340         mtip->mti_zone = (val % numzones);
  341 }
  342 
  343 static inline u_int
  344 mtp_get_subzone(struct malloc_type *mtp)
  345 {
  346         struct malloc_type_internal *mtip;
  347 
  348         mtip = &mtp->ks_mti;
  349 
  350         KASSERT(mtip->mti_zone < numzones,
  351             ("mti_zone %u out of range %d",
  352             mtip->mti_zone, numzones));
  353         return (mtip->mti_zone);
  354 }
  355 #elif MALLOC_DEBUG_MAXZONES == 0
  356 #error "MALLOC_DEBUG_MAXZONES must be positive."
  357 #else
  358 static void
  359 mtp_set_subzone(struct malloc_type *mtp)
  360 {
  361         struct malloc_type_internal *mtip;
  362 
  363         mtip = &mtp->ks_mti;
  364         mtip->mti_zone = 0;
  365 }
  366 
  367 static inline u_int
  368 mtp_get_subzone(struct malloc_type *mtp)
  369 {
  370 
  371         return (0);
  372 }
  373 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
  374 
  375 /*
  376  * An allocation has succeeded -- update malloc type statistics for the
  377  * amount of bucket size.  Occurs within a critical section so that the
  378  * thread isn't preempted and doesn't migrate while updating per-PCU
  379  * statistics.
  380  */
  381 static void
  382 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
  383     int zindx)
  384 {
  385         struct malloc_type_internal *mtip;
  386         struct malloc_type_stats *mtsp;
  387 
  388         critical_enter();
  389         mtip = &mtp->ks_mti;
  390         mtsp = zpcpu_get(mtip->mti_stats);
  391         if (size > 0) {
  392                 mtsp->mts_memalloced += size;
  393                 mtsp->mts_numallocs++;
  394         }
  395         if (zindx != -1)
  396                 mtsp->mts_size |= 1 << zindx;
  397 
  398 #ifdef KDTRACE_HOOKS
  399         if (__predict_false(dtrace_malloc_enabled)) {
  400                 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
  401                 if (probe_id != 0)
  402                         (dtrace_malloc_probe)(probe_id,
  403                             (uintptr_t) mtp, (uintptr_t) mtip,
  404                             (uintptr_t) mtsp, size, zindx);
  405         }
  406 #endif
  407 
  408         critical_exit();
  409 }
  410 
  411 void
  412 malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
  413 {
  414 
  415         if (size > 0)
  416                 malloc_type_zone_allocated(mtp, size, -1);
  417 }
  418 
  419 /*
  420  * A free operation has occurred -- update malloc type statistics for the
  421  * amount of the bucket size.  Occurs within a critical section so that the
  422  * thread isn't preempted and doesn't migrate while updating per-CPU
  423  * statistics.
  424  */
  425 void
  426 malloc_type_freed(struct malloc_type *mtp, unsigned long size)
  427 {
  428         struct malloc_type_internal *mtip;
  429         struct malloc_type_stats *mtsp;
  430 
  431         critical_enter();
  432         mtip = &mtp->ks_mti;
  433         mtsp = zpcpu_get(mtip->mti_stats);
  434         mtsp->mts_memfreed += size;
  435         mtsp->mts_numfrees++;
  436 
  437 #ifdef KDTRACE_HOOKS
  438         if (__predict_false(dtrace_malloc_enabled)) {
  439                 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
  440                 if (probe_id != 0)
  441                         (dtrace_malloc_probe)(probe_id,
  442                             (uintptr_t) mtp, (uintptr_t) mtip,
  443                             (uintptr_t) mtsp, size, 0);
  444         }
  445 #endif
  446 
  447         critical_exit();
  448 }
  449 
  450 /*
  451  *      contigmalloc:
  452  *
  453  *      Allocate a block of physically contiguous memory.
  454  *
  455  *      If M_NOWAIT is set, this routine will not block and return NULL if
  456  *      the allocation fails.
  457  */
  458 void *
  459 contigmalloc(unsigned long size, struct malloc_type *type, int flags,
  460     vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
  461     vm_paddr_t boundary)
  462 {
  463         void *ret;
  464 
  465         ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment,
  466             boundary, VM_MEMATTR_DEFAULT);
  467         if (ret != NULL)
  468                 malloc_type_allocated(type, round_page(size));
  469         return (ret);
  470 }
  471 
  472 void *
  473 contigmalloc_domainset(unsigned long size, struct malloc_type *type,
  474     struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high,
  475     unsigned long alignment, vm_paddr_t boundary)
  476 {
  477         void *ret;
  478 
  479         ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high,
  480             alignment, boundary, VM_MEMATTR_DEFAULT);
  481         if (ret != NULL)
  482                 malloc_type_allocated(type, round_page(size));
  483         return (ret);
  484 }
  485 
  486 /*
  487  *      contigfree:
  488  *
  489  *      Free a block of memory allocated by contigmalloc.
  490  *
  491  *      This routine may not block.
  492  */
  493 void
  494 contigfree(void *addr, unsigned long size, struct malloc_type *type)
  495 {
  496 
  497         kmem_free(addr, size);
  498         malloc_type_freed(type, round_page(size));
  499 }
  500 
  501 #ifdef MALLOC_DEBUG
  502 static int
  503 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp,
  504     int flags)
  505 {
  506 #ifdef INVARIANTS
  507         int indx;
  508 
  509         KASSERT(mtp->ks_version == M_VERSION, ("malloc: bad malloc type version"));
  510         /*
  511          * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
  512          */
  513         indx = flags & (M_WAITOK | M_NOWAIT);
  514         if (indx != M_NOWAIT && indx != M_WAITOK) {
  515                 static  struct timeval lasterr;
  516                 static  int curerr, once;
  517                 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
  518                         printf("Bad malloc flags: %x\n", indx);
  519                         kdb_backtrace();
  520                         flags |= M_WAITOK;
  521                         once++;
  522                 }
  523         }
  524 #endif
  525 #ifdef MALLOC_MAKE_FAILURES
  526         if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
  527                 atomic_add_int(&malloc_nowait_count, 1);
  528                 if ((malloc_nowait_count % malloc_failure_rate) == 0) {
  529                         atomic_add_int(&malloc_failure_count, 1);
  530                         *vap = NULL;
  531                         return (EJUSTRETURN);
  532                 }
  533         }
  534 #endif
  535         if (flags & M_WAITOK) {
  536                 KASSERT(curthread->td_intr_nesting_level == 0,
  537                    ("malloc(M_WAITOK) in interrupt context"));
  538                 if (__predict_false(!THREAD_CAN_SLEEP())) {
  539 #ifdef EPOCH_TRACE
  540                         epoch_trace_list(curthread);
  541 #endif
  542                         KASSERT(0,
  543                             ("malloc(M_WAITOK) with sleeping prohibited"));
  544                 }
  545         }
  546         KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
  547             ("malloc: called with spinlock or critical section held"));
  548 
  549 #ifdef DEBUG_MEMGUARD
  550         if (memguard_cmp_mtp(mtp, *sizep)) {
  551                 *vap = memguard_alloc(*sizep, flags);
  552                 if (*vap != NULL)
  553                         return (EJUSTRETURN);
  554                 /* This is unfortunate but should not be fatal. */
  555         }
  556 #endif
  557 
  558 #ifdef DEBUG_REDZONE
  559         *sizep = redzone_size_ntor(*sizep);
  560 #endif
  561 
  562         return (0);
  563 }
  564 #endif
  565 
  566 /*
  567  * Handle large allocations and frees by using kmem_malloc directly.
  568  */
  569 static inline bool
  570 malloc_large_slab(uma_slab_t slab)
  571 {
  572         uintptr_t va;
  573 
  574         va = (uintptr_t)slab;
  575         return ((va & 1) != 0);
  576 }
  577 
  578 static inline size_t
  579 malloc_large_size(uma_slab_t slab)
  580 {
  581         uintptr_t va;
  582 
  583         va = (uintptr_t)slab;
  584         return (va >> 1);
  585 }
  586 
  587 static caddr_t __noinline
  588 malloc_large(size_t size, struct malloc_type *mtp, struct domainset *policy,
  589     int flags DEBUG_REDZONE_ARG_DEF)
  590 {
  591         void *va;
  592 
  593         size = roundup(size, PAGE_SIZE);
  594         va = kmem_malloc_domainset(policy, size, flags);
  595         if (va != NULL) {
  596                 /* The low bit is unused for slab pointers. */
  597                 vsetzoneslab((uintptr_t)va, NULL, (void *)((size << 1) | 1));
  598                 uma_total_inc(size);
  599         }
  600         malloc_type_allocated(mtp, va == NULL ? 0 : size);
  601         if (__predict_false(va == NULL)) {
  602                 KASSERT((flags & M_WAITOK) == 0,
  603                     ("malloc(M_WAITOK) returned NULL"));
  604         } else {
  605 #ifdef DEBUG_REDZONE
  606                 va = redzone_setup(va, osize);
  607 #endif
  608                 kasan_mark(va, osize, size, KASAN_MALLOC_REDZONE);
  609         }
  610         return (va);
  611 }
  612 
  613 static void
  614 free_large(void *addr, size_t size)
  615 {
  616 
  617         kmem_free(addr, size);
  618         uma_total_dec(size);
  619 }
  620 
  621 /*
  622  *      malloc:
  623  *
  624  *      Allocate a block of memory.
  625  *
  626  *      If M_NOWAIT is set, this routine will not block and return NULL if
  627  *      the allocation fails.
  628  */
  629 void *
  630 (malloc)(size_t size, struct malloc_type *mtp, int flags)
  631 {
  632         int indx;
  633         caddr_t va;
  634         uma_zone_t zone;
  635 #if defined(DEBUG_REDZONE) || defined(KASAN)
  636         unsigned long osize = size;
  637 #endif
  638 
  639         MPASS((flags & M_EXEC) == 0);
  640 
  641 #ifdef MALLOC_DEBUG
  642         va = NULL;
  643         if (malloc_dbg(&va, &size, mtp, flags) != 0)
  644                 return (va);
  645 #endif
  646 
  647         if (__predict_false(size > kmem_zmax))
  648                 return (malloc_large(size, mtp, DOMAINSET_RR(), flags
  649                     DEBUG_REDZONE_ARG));
  650 
  651         if (size & KMEM_ZMASK)
  652                 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
  653         indx = kmemsize[size >> KMEM_ZSHIFT];
  654         zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)];
  655         va = uma_zalloc(zone, flags);
  656         if (va != NULL) {
  657                 size = zone->uz_size;
  658                 if ((flags & M_ZERO) == 0) {
  659                         kmsan_mark(va, size, KMSAN_STATE_UNINIT);
  660                         kmsan_orig(va, size, KMSAN_TYPE_MALLOC, KMSAN_RET_ADDR);
  661                 }
  662         }
  663         malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
  664         if (__predict_false(va == NULL)) {
  665                 KASSERT((flags & M_WAITOK) == 0,
  666                     ("malloc(M_WAITOK) returned NULL"));
  667         }
  668 #ifdef DEBUG_REDZONE
  669         if (va != NULL)
  670                 va = redzone_setup(va, osize);
  671 #endif
  672 #ifdef KASAN
  673         if (va != NULL)
  674                 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE);
  675 #endif
  676         return ((void *) va);
  677 }
  678 
  679 static void *
  680 malloc_domain(size_t *sizep, int *indxp, struct malloc_type *mtp, int domain,
  681     int flags)
  682 {
  683         uma_zone_t zone;
  684         caddr_t va;
  685         size_t size;
  686         int indx;
  687 
  688         size = *sizep;
  689         KASSERT(size <= kmem_zmax && (flags & M_EXEC) == 0,
  690             ("malloc_domain: Called with bad flag / size combination."));
  691         if (size & KMEM_ZMASK)
  692                 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
  693         indx = kmemsize[size >> KMEM_ZSHIFT];
  694         zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)];
  695         va = uma_zalloc_domain(zone, NULL, domain, flags);
  696         if (va != NULL)
  697                 *sizep = zone->uz_size;
  698         *indxp = indx;
  699         return ((void *)va);
  700 }
  701 
  702 void *
  703 malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds,
  704     int flags)
  705 {
  706         struct vm_domainset_iter di;
  707         caddr_t va;
  708         int domain;
  709         int indx;
  710 #if defined(KASAN) || defined(DEBUG_REDZONE)
  711         unsigned long osize = size;
  712 #endif
  713 
  714         MPASS((flags & M_EXEC) == 0);
  715 
  716 #ifdef MALLOC_DEBUG
  717         va = NULL;
  718         if (malloc_dbg(&va, &size, mtp, flags) != 0)
  719                 return (va);
  720 #endif
  721 
  722         if (__predict_false(size > kmem_zmax))
  723                 return (malloc_large(size, mtp, DOMAINSET_RR(), flags
  724                     DEBUG_REDZONE_ARG));
  725 
  726         vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
  727         do {
  728                 va = malloc_domain(&size, &indx, mtp, domain, flags);
  729         } while (va == NULL && vm_domainset_iter_policy(&di, &domain) == 0);
  730         malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
  731         if (__predict_false(va == NULL)) {
  732                 KASSERT((flags & M_WAITOK) == 0,
  733                     ("malloc(M_WAITOK) returned NULL"));
  734         }
  735 #ifdef DEBUG_REDZONE
  736         if (va != NULL)
  737                 va = redzone_setup(va, osize);
  738 #endif
  739 #ifdef KASAN
  740         if (va != NULL)
  741                 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE);
  742 #endif
  743 #ifdef KMSAN
  744         if ((flags & M_ZERO) == 0) {
  745                 kmsan_mark(va, size, KMSAN_STATE_UNINIT);
  746                 kmsan_orig(va, size, KMSAN_TYPE_MALLOC, KMSAN_RET_ADDR);
  747         }
  748 #endif
  749         return (va);
  750 }
  751 
  752 /*
  753  * Allocate an executable area.
  754  */
  755 void *
  756 malloc_exec(size_t size, struct malloc_type *mtp, int flags)
  757 {
  758 
  759         return (malloc_domainset_exec(size, mtp, DOMAINSET_RR(), flags));
  760 }
  761 
  762 void *
  763 malloc_domainset_exec(size_t size, struct malloc_type *mtp, struct domainset *ds,
  764     int flags)
  765 {
  766 #if defined(DEBUG_REDZONE) || defined(KASAN)
  767         unsigned long osize = size;
  768 #endif
  769 #ifdef MALLOC_DEBUG
  770         caddr_t va;
  771 #endif
  772 
  773         flags |= M_EXEC;
  774 
  775 #ifdef MALLOC_DEBUG
  776         va = NULL;
  777         if (malloc_dbg(&va, &size, mtp, flags) != 0)
  778                 return (va);
  779 #endif
  780 
  781         return (malloc_large(size, mtp, ds, flags DEBUG_REDZONE_ARG));
  782 }
  783 
  784 void *
  785 malloc_aligned(size_t size, size_t align, struct malloc_type *type, int flags)
  786 {
  787         return (malloc_domainset_aligned(size, align, type, DOMAINSET_RR(),
  788             flags));
  789 }
  790 
  791 void *
  792 malloc_domainset_aligned(size_t size, size_t align,
  793     struct malloc_type *mtp, struct domainset *ds, int flags)
  794 {
  795         void *res;
  796         size_t asize;
  797 
  798         KASSERT(powerof2(align),
  799             ("malloc_domainset_aligned: wrong align %#zx size %#zx",
  800             align, size));
  801         KASSERT(align <= PAGE_SIZE,
  802             ("malloc_domainset_aligned: align %#zx (size %#zx) too large",
  803             align, size));
  804 
  805         /*
  806          * Round the allocation size up to the next power of 2,
  807          * because we can only guarantee alignment for
  808          * power-of-2-sized allocations.  Further increase the
  809          * allocation size to align if the rounded size is less than
  810          * align, since malloc zones provide alignment equal to their
  811          * size.
  812          */
  813         if (size == 0)
  814                 size = 1;
  815         asize = size <= align ? align : 1UL << flsl(size - 1);
  816 
  817         res = malloc_domainset(asize, mtp, ds, flags);
  818         KASSERT(res == NULL || ((uintptr_t)res & (align - 1)) == 0,
  819             ("malloc_domainset_aligned: result not aligned %p size %#zx "
  820             "allocsize %#zx align %#zx", res, size, asize, align));
  821         return (res);
  822 }
  823 
  824 void *
  825 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags)
  826 {
  827 
  828         if (WOULD_OVERFLOW(nmemb, size))
  829                 panic("mallocarray: %zu * %zu overflowed", nmemb, size);
  830 
  831         return (malloc(size * nmemb, type, flags));
  832 }
  833 
  834 void *
  835 mallocarray_domainset(size_t nmemb, size_t size, struct malloc_type *type,
  836     struct domainset *ds, int flags)
  837 {
  838 
  839         if (WOULD_OVERFLOW(nmemb, size))
  840                 panic("mallocarray_domainset: %zu * %zu overflowed", nmemb, size);
  841 
  842         return (malloc_domainset(size * nmemb, type, ds, flags));
  843 }
  844 
  845 #if defined(INVARIANTS) && !defined(KASAN)
  846 static void
  847 free_save_type(void *addr, struct malloc_type *mtp, u_long size)
  848 {
  849         struct malloc_type **mtpp = addr;
  850 
  851         /*
  852          * Cache a pointer to the malloc_type that most recently freed
  853          * this memory here.  This way we know who is most likely to
  854          * have stepped on it later.
  855          *
  856          * This code assumes that size is a multiple of 8 bytes for
  857          * 64 bit machines
  858          */
  859         mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
  860         mtpp += (size - sizeof(struct malloc_type *)) /
  861             sizeof(struct malloc_type *);
  862         *mtpp = mtp;
  863 }
  864 #endif
  865 
  866 #ifdef MALLOC_DEBUG
  867 static int
  868 free_dbg(void **addrp, struct malloc_type *mtp)
  869 {
  870         void *addr;
  871 
  872         addr = *addrp;
  873         KASSERT(mtp->ks_version == M_VERSION, ("free: bad malloc type version"));
  874         KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
  875             ("free: called with spinlock or critical section held"));
  876 
  877         /* free(NULL, ...) does nothing */
  878         if (addr == NULL)
  879                 return (EJUSTRETURN);
  880 
  881 #ifdef DEBUG_MEMGUARD
  882         if (is_memguard_addr(addr)) {
  883                 memguard_free(addr);
  884                 return (EJUSTRETURN);
  885         }
  886 #endif
  887 
  888 #ifdef DEBUG_REDZONE
  889         redzone_check(addr);
  890         *addrp = redzone_addr_ntor(addr);
  891 #endif
  892 
  893         return (0);
  894 }
  895 #endif
  896 
  897 /*
  898  *      free:
  899  *
  900  *      Free a block of memory allocated by malloc.
  901  *
  902  *      This routine may not block.
  903  */
  904 void
  905 free(void *addr, struct malloc_type *mtp)
  906 {
  907         uma_zone_t zone;
  908         uma_slab_t slab;
  909         u_long size;
  910 
  911 #ifdef MALLOC_DEBUG
  912         if (free_dbg(&addr, mtp) != 0)
  913                 return;
  914 #endif
  915         /* free(NULL, ...) does nothing */
  916         if (addr == NULL)
  917                 return;
  918 
  919         vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
  920         if (slab == NULL)
  921                 panic("free: address %p(%p) has not been allocated.\n",
  922                     addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
  923 
  924         if (__predict_true(!malloc_large_slab(slab))) {
  925                 size = zone->uz_size;
  926 #if defined(INVARIANTS) && !defined(KASAN)
  927                 free_save_type(addr, mtp, size);
  928 #endif
  929                 uma_zfree_arg(zone, addr, slab);
  930         } else {
  931                 size = malloc_large_size(slab);
  932                 free_large(addr, size);
  933         }
  934         malloc_type_freed(mtp, size);
  935 }
  936 
  937 /*
  938  *      zfree:
  939  *
  940  *      Zero then free a block of memory allocated by malloc.
  941  *
  942  *      This routine may not block.
  943  */
  944 void
  945 zfree(void *addr, struct malloc_type *mtp)
  946 {
  947         uma_zone_t zone;
  948         uma_slab_t slab;
  949         u_long size;
  950 
  951 #ifdef MALLOC_DEBUG
  952         if (free_dbg(&addr, mtp) != 0)
  953                 return;
  954 #endif
  955         /* free(NULL, ...) does nothing */
  956         if (addr == NULL)
  957                 return;
  958 
  959         vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
  960         if (slab == NULL)
  961                 panic("free: address %p(%p) has not been allocated.\n",
  962                     addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
  963 
  964         if (__predict_true(!malloc_large_slab(slab))) {
  965                 size = zone->uz_size;
  966 #if defined(INVARIANTS) && !defined(KASAN)
  967                 free_save_type(addr, mtp, size);
  968 #endif
  969                 kasan_mark(addr, size, size, 0);
  970                 explicit_bzero(addr, size);
  971                 uma_zfree_arg(zone, addr, slab);
  972         } else {
  973                 size = malloc_large_size(slab);
  974                 kasan_mark(addr, size, size, 0);
  975                 explicit_bzero(addr, size);
  976                 free_large(addr, size);
  977         }
  978         malloc_type_freed(mtp, size);
  979 }
  980 
  981 /*
  982  *      realloc: change the size of a memory block
  983  */
  984 void *
  985 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags)
  986 {
  987 #ifndef DEBUG_REDZONE
  988         uma_zone_t zone;
  989         uma_slab_t slab;
  990 #endif
  991         unsigned long alloc;
  992         void *newaddr;
  993 
  994         KASSERT(mtp->ks_version == M_VERSION,
  995             ("realloc: bad malloc type version"));
  996         KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
  997             ("realloc: called with spinlock or critical section held"));
  998 
  999         /* realloc(NULL, ...) is equivalent to malloc(...) */
 1000         if (addr == NULL)
 1001                 return (malloc(size, mtp, flags));
 1002 
 1003         /*
 1004          * XXX: Should report free of old memory and alloc of new memory to
 1005          * per-CPU stats.
 1006          */
 1007 
 1008 #ifdef DEBUG_MEMGUARD
 1009         if (is_memguard_addr(addr))
 1010                 return (memguard_realloc(addr, size, mtp, flags));
 1011 #endif
 1012 
 1013 #ifdef DEBUG_REDZONE
 1014         alloc = redzone_get_size(addr);
 1015 #else
 1016         vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
 1017 
 1018         /* Sanity check */
 1019         KASSERT(slab != NULL,
 1020             ("realloc: address %p out of range", (void *)addr));
 1021 
 1022         /* Get the size of the original block */
 1023         if (!malloc_large_slab(slab))
 1024                 alloc = zone->uz_size;
 1025         else
 1026                 alloc = malloc_large_size(slab);
 1027 
 1028         /* Reuse the original block if appropriate */
 1029         if (size <= alloc &&
 1030             (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) {
 1031                 kasan_mark((void *)addr, size, alloc, KASAN_MALLOC_REDZONE);
 1032                 return (addr);
 1033         }
 1034 #endif /* !DEBUG_REDZONE */
 1035 
 1036         /* Allocate a new, bigger (or smaller) block */
 1037         if ((newaddr = malloc(size, mtp, flags)) == NULL)
 1038                 return (NULL);
 1039 
 1040         /*
 1041          * Copy over original contents.  For KASAN, the redzone must be marked
 1042          * valid before performing the copy.
 1043          */
 1044         kasan_mark(addr, alloc, alloc, 0);
 1045         bcopy(addr, newaddr, min(size, alloc));
 1046         free(addr, mtp);
 1047         return (newaddr);
 1048 }
 1049 
 1050 /*
 1051  *      reallocf: same as realloc() but free memory on failure.
 1052  */
 1053 void *
 1054 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags)
 1055 {
 1056         void *mem;
 1057 
 1058         if ((mem = realloc(addr, size, mtp, flags)) == NULL)
 1059                 free(addr, mtp);
 1060         return (mem);
 1061 }
 1062 
 1063 /*
 1064  *      malloc_size: returns the number of bytes allocated for a request of the
 1065  *                   specified size
 1066  */
 1067 size_t
 1068 malloc_size(size_t size)
 1069 {
 1070         int indx;
 1071 
 1072         if (size > kmem_zmax)
 1073                 return (0);
 1074         if (size & KMEM_ZMASK)
 1075                 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
 1076         indx = kmemsize[size >> KMEM_ZSHIFT];
 1077         return (kmemzones[indx].kz_size);
 1078 }
 1079 
 1080 /*
 1081  *      malloc_usable_size: returns the usable size of the allocation.
 1082  */
 1083 size_t
 1084 malloc_usable_size(const void *addr)
 1085 {
 1086 #ifndef DEBUG_REDZONE
 1087         uma_zone_t zone;
 1088         uma_slab_t slab;
 1089 #endif
 1090         u_long size;
 1091 
 1092         if (addr == NULL)
 1093                 return (0);
 1094 
 1095 #ifdef DEBUG_MEMGUARD
 1096         if (is_memguard_addr(__DECONST(void *, addr)))
 1097                 return (memguard_get_req_size(addr));
 1098 #endif
 1099 
 1100 #ifdef DEBUG_REDZONE
 1101         size = redzone_get_size(__DECONST(void *, addr));
 1102 #else
 1103         vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
 1104         if (slab == NULL)
 1105                 panic("malloc_usable_size: address %p(%p) is not allocated.\n",
 1106                     addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
 1107 
 1108         if (!malloc_large_slab(slab))
 1109                 size = zone->uz_size;
 1110         else
 1111                 size = malloc_large_size(slab);
 1112 #endif
 1113 
 1114         /*
 1115          * Unmark the redzone to avoid reports from consumers who are
 1116          * (presumably) about to use the full allocation size.
 1117          */
 1118         kasan_mark(addr, size, size, 0);
 1119 
 1120         return (size);
 1121 }
 1122 
 1123 CTASSERT(VM_KMEM_SIZE_SCALE >= 1);
 1124 
 1125 /*
 1126  * Initialize the kernel memory (kmem) arena.
 1127  */
 1128 void
 1129 kmeminit(void)
 1130 {
 1131         u_long mem_size;
 1132         u_long tmp;
 1133 
 1134 #ifdef VM_KMEM_SIZE
 1135         if (vm_kmem_size == 0)
 1136                 vm_kmem_size = VM_KMEM_SIZE;
 1137 #endif
 1138 #ifdef VM_KMEM_SIZE_MIN
 1139         if (vm_kmem_size_min == 0)
 1140                 vm_kmem_size_min = VM_KMEM_SIZE_MIN;
 1141 #endif
 1142 #ifdef VM_KMEM_SIZE_MAX
 1143         if (vm_kmem_size_max == 0)
 1144                 vm_kmem_size_max = VM_KMEM_SIZE_MAX;
 1145 #endif
 1146         /*
 1147          * Calculate the amount of kernel virtual address (KVA) space that is
 1148          * preallocated to the kmem arena.  In order to support a wide range
 1149          * of machines, it is a function of the physical memory size,
 1150          * specifically,
 1151          *
 1152          *      min(max(physical memory size / VM_KMEM_SIZE_SCALE,
 1153          *          VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX)
 1154          *
 1155          * Every architecture must define an integral value for
 1156          * VM_KMEM_SIZE_SCALE.  However, the definitions of VM_KMEM_SIZE_MIN
 1157          * and VM_KMEM_SIZE_MAX, which represent respectively the floor and
 1158          * ceiling on this preallocation, are optional.  Typically,
 1159          * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on
 1160          * a given architecture.
 1161          */
 1162         mem_size = vm_cnt.v_page_count;
 1163         if (mem_size <= 32768) /* delphij XXX 128MB */
 1164                 kmem_zmax = PAGE_SIZE;
 1165 
 1166         if (vm_kmem_size_scale < 1)
 1167                 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
 1168 
 1169         /*
 1170          * Check if we should use defaults for the "vm_kmem_size"
 1171          * variable:
 1172          */
 1173         if (vm_kmem_size == 0) {
 1174                 vm_kmem_size = mem_size / vm_kmem_size_scale;
 1175                 vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ?
 1176                     vm_kmem_size_max : vm_kmem_size * PAGE_SIZE;
 1177                 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min)
 1178                         vm_kmem_size = vm_kmem_size_min;
 1179                 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
 1180                         vm_kmem_size = vm_kmem_size_max;
 1181         }
 1182         if (vm_kmem_size == 0)
 1183                 panic("Tune VM_KMEM_SIZE_* for the platform");
 1184 
 1185         /*
 1186          * The amount of KVA space that is preallocated to the
 1187          * kmem arena can be set statically at compile-time or manually
 1188          * through the kernel environment.  However, it is still limited to
 1189          * twice the physical memory size, which has been sufficient to handle
 1190          * the most severe cases of external fragmentation in the kmem arena. 
 1191          */
 1192         if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
 1193                 vm_kmem_size = 2 * mem_size * PAGE_SIZE;
 1194 
 1195         vm_kmem_size = round_page(vm_kmem_size);
 1196 
 1197         /*
 1198          * With KASAN or KMSAN enabled, dynamically allocated kernel memory is
 1199          * shadowed.  Account for this when setting the UMA limit.
 1200          */
 1201 #if defined(KASAN)
 1202         vm_kmem_size = (vm_kmem_size * KASAN_SHADOW_SCALE) /
 1203             (KASAN_SHADOW_SCALE + 1);
 1204 #elif defined(KMSAN)
 1205         vm_kmem_size /= 3;
 1206 #endif
 1207 
 1208 #ifdef DEBUG_MEMGUARD
 1209         tmp = memguard_fudge(vm_kmem_size, kernel_map);
 1210 #else
 1211         tmp = vm_kmem_size;
 1212 #endif
 1213         uma_set_limit(tmp);
 1214 
 1215 #ifdef DEBUG_MEMGUARD
 1216         /*
 1217          * Initialize MemGuard if support compiled in.  MemGuard is a
 1218          * replacement allocator used for detecting tamper-after-free
 1219          * scenarios as they occur.  It is only used for debugging.
 1220          */
 1221         memguard_init(kernel_arena);
 1222 #endif
 1223 }
 1224 
 1225 /*
 1226  * Initialize the kernel memory allocator
 1227  */
 1228 /* ARGSUSED*/
 1229 static void
 1230 mallocinit(void *dummy)
 1231 {
 1232         int i;
 1233         uint8_t indx;
 1234 
 1235         mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
 1236 
 1237         kmeminit();
 1238 
 1239         if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX)
 1240                 kmem_zmax = KMEM_ZMAX;
 1241 
 1242         for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
 1243                 int size = kmemzones[indx].kz_size;
 1244                 const char *name = kmemzones[indx].kz_name;
 1245                 size_t align;
 1246                 int subzone;
 1247 
 1248                 align = UMA_ALIGN_PTR;
 1249                 if (powerof2(size) && size > sizeof(void *))
 1250                         align = MIN(size, PAGE_SIZE) - 1;
 1251                 for (subzone = 0; subzone < numzones; subzone++) {
 1252                         kmemzones[indx].kz_zone[subzone] =
 1253                             uma_zcreate(name, size,
 1254 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN)
 1255                             mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
 1256 #else
 1257                             NULL, NULL, NULL, NULL,
 1258 #endif
 1259                             align, UMA_ZONE_MALLOC);
 1260                 }
 1261                 for (;i <= size; i+= KMEM_ZBASE)
 1262                         kmemsize[i >> KMEM_ZSHIFT] = indx;
 1263         }
 1264 }
 1265 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL);
 1266 
 1267 void
 1268 malloc_init(void *data)
 1269 {
 1270         struct malloc_type_internal *mtip;
 1271         struct malloc_type *mtp;
 1272 
 1273         KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init"));
 1274 
 1275         mtp = data;
 1276         if (mtp->ks_version != M_VERSION)
 1277                 panic("malloc_init: type %s with unsupported version %lu",
 1278                     mtp->ks_shortdesc, mtp->ks_version);
 1279 
 1280         mtip = &mtp->ks_mti;
 1281         mtip->mti_stats = uma_zalloc_pcpu(pcpu_zone_64, M_WAITOK | M_ZERO);
 1282         mtp_set_subzone(mtp);
 1283 
 1284         mtx_lock(&malloc_mtx);
 1285         mtp->ks_next = kmemstatistics;
 1286         kmemstatistics = mtp;
 1287         kmemcount++;
 1288         mtx_unlock(&malloc_mtx);
 1289 }
 1290 
 1291 void
 1292 malloc_uninit(void *data)
 1293 {
 1294         struct malloc_type_internal *mtip;
 1295         struct malloc_type_stats *mtsp;
 1296         struct malloc_type *mtp, *temp;
 1297         long temp_allocs, temp_bytes;
 1298         int i;
 1299 
 1300         mtp = data;
 1301         KASSERT(mtp->ks_version == M_VERSION,
 1302             ("malloc_uninit: bad malloc type version"));
 1303 
 1304         mtx_lock(&malloc_mtx);
 1305         mtip = &mtp->ks_mti;
 1306         if (mtp != kmemstatistics) {
 1307                 for (temp = kmemstatistics; temp != NULL;
 1308                     temp = temp->ks_next) {
 1309                         if (temp->ks_next == mtp) {
 1310                                 temp->ks_next = mtp->ks_next;
 1311                                 break;
 1312                         }
 1313                 }
 1314                 KASSERT(temp,
 1315                     ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
 1316         } else
 1317                 kmemstatistics = mtp->ks_next;
 1318         kmemcount--;
 1319         mtx_unlock(&malloc_mtx);
 1320 
 1321         /*
 1322          * Look for memory leaks.
 1323          */
 1324         temp_allocs = temp_bytes = 0;
 1325         for (i = 0; i <= mp_maxid; i++) {
 1326                 mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
 1327                 temp_allocs += mtsp->mts_numallocs;
 1328                 temp_allocs -= mtsp->mts_numfrees;
 1329                 temp_bytes += mtsp->mts_memalloced;
 1330                 temp_bytes -= mtsp->mts_memfreed;
 1331         }
 1332         if (temp_allocs > 0 || temp_bytes > 0) {
 1333                 printf("Warning: memory type %s leaked memory on destroy "
 1334                     "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
 1335                     temp_allocs, temp_bytes);
 1336         }
 1337 
 1338         uma_zfree_pcpu(pcpu_zone_64, mtip->mti_stats);
 1339 }
 1340 
 1341 struct malloc_type *
 1342 malloc_desc2type(const char *desc)
 1343 {
 1344         struct malloc_type *mtp;
 1345 
 1346         mtx_assert(&malloc_mtx, MA_OWNED);
 1347         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1348                 if (strcmp(mtp->ks_shortdesc, desc) == 0)
 1349                         return (mtp);
 1350         }
 1351         return (NULL);
 1352 }
 1353 
 1354 static int
 1355 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
 1356 {
 1357         struct malloc_type_stream_header mtsh;
 1358         struct malloc_type_internal *mtip;
 1359         struct malloc_type_stats *mtsp, zeromts;
 1360         struct malloc_type_header mth;
 1361         struct malloc_type *mtp;
 1362         int error, i;
 1363         struct sbuf sbuf;
 1364 
 1365         error = sysctl_wire_old_buffer(req, 0);
 1366         if (error != 0)
 1367                 return (error);
 1368         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
 1369         sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
 1370         mtx_lock(&malloc_mtx);
 1371 
 1372         bzero(&zeromts, sizeof(zeromts));
 1373 
 1374         /*
 1375          * Insert stream header.
 1376          */
 1377         bzero(&mtsh, sizeof(mtsh));
 1378         mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
 1379         mtsh.mtsh_maxcpus = MAXCPU;
 1380         mtsh.mtsh_count = kmemcount;
 1381         (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
 1382 
 1383         /*
 1384          * Insert alternating sequence of type headers and type statistics.
 1385          */
 1386         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1387                 mtip = &mtp->ks_mti;
 1388 
 1389                 /*
 1390                  * Insert type header.
 1391                  */
 1392                 bzero(&mth, sizeof(mth));
 1393                 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
 1394                 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
 1395 
 1396                 /*
 1397                  * Insert type statistics for each CPU.
 1398                  */
 1399                 for (i = 0; i <= mp_maxid; i++) {
 1400                         mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
 1401                         (void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp));
 1402                 }
 1403                 /*
 1404                  * Fill in the missing CPUs.
 1405                  */
 1406                 for (; i < MAXCPU; i++) {
 1407                         (void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts));
 1408                 }
 1409         }
 1410         mtx_unlock(&malloc_mtx);
 1411         error = sbuf_finish(&sbuf);
 1412         sbuf_delete(&sbuf);
 1413         return (error);
 1414 }
 1415 
 1416 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats,
 1417     CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_MPSAFE, 0, 0,
 1418     sysctl_kern_malloc_stats, "s,malloc_type_ustats",
 1419     "Return malloc types");
 1420 
 1421 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
 1422     "Count of kernel malloc types");
 1423 
 1424 void
 1425 malloc_type_list(malloc_type_list_func_t *func, void *arg)
 1426 {
 1427         struct malloc_type *mtp, **bufmtp;
 1428         int count, i;
 1429         size_t buflen;
 1430 
 1431         mtx_lock(&malloc_mtx);
 1432 restart:
 1433         mtx_assert(&malloc_mtx, MA_OWNED);
 1434         count = kmemcount;
 1435         mtx_unlock(&malloc_mtx);
 1436 
 1437         buflen = sizeof(struct malloc_type *) * count;
 1438         bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
 1439 
 1440         mtx_lock(&malloc_mtx);
 1441 
 1442         if (count < kmemcount) {
 1443                 free(bufmtp, M_TEMP);
 1444                 goto restart;
 1445         }
 1446 
 1447         for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
 1448                 bufmtp[i] = mtp;
 1449 
 1450         mtx_unlock(&malloc_mtx);
 1451 
 1452         for (i = 0; i < count; i++)
 1453                 (func)(bufmtp[i], arg);
 1454 
 1455         free(bufmtp, M_TEMP);
 1456 }
 1457 
 1458 #ifdef DDB
 1459 static int64_t
 1460 get_malloc_stats(const struct malloc_type_internal *mtip, uint64_t *allocs,
 1461     uint64_t *inuse)
 1462 {
 1463         const struct malloc_type_stats *mtsp;
 1464         uint64_t frees, alloced, freed;
 1465         int i;
 1466 
 1467         *allocs = 0;
 1468         frees = 0;
 1469         alloced = 0;
 1470         freed = 0;
 1471         for (i = 0; i <= mp_maxid; i++) {
 1472                 mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
 1473 
 1474                 *allocs += mtsp->mts_numallocs;
 1475                 frees += mtsp->mts_numfrees;
 1476                 alloced += mtsp->mts_memalloced;
 1477                 freed += mtsp->mts_memfreed;
 1478         }
 1479         *inuse = *allocs - frees;
 1480         return (alloced - freed);
 1481 }
 1482 
 1483 DB_SHOW_COMMAND_FLAGS(malloc, db_show_malloc, DB_CMD_MEMSAFE)
 1484 {
 1485         const char *fmt_hdr, *fmt_entry;
 1486         struct malloc_type *mtp;
 1487         uint64_t allocs, inuse;
 1488         int64_t size;
 1489         /* variables for sorting */
 1490         struct malloc_type *last_mtype, *cur_mtype;
 1491         int64_t cur_size, last_size;
 1492         int ties;
 1493 
 1494         if (modif[0] == 'i') {
 1495                 fmt_hdr = "%s,%s,%s,%s\n";
 1496                 fmt_entry = "\"%s\",%ju,%jdK,%ju\n";
 1497         } else {
 1498                 fmt_hdr = "%18s %12s  %12s %12s\n";
 1499                 fmt_entry = "%18s %12ju %12jdK %12ju\n";
 1500         }
 1501 
 1502         db_printf(fmt_hdr, "Type", "InUse", "MemUse", "Requests");
 1503 
 1504         /* Select sort, largest size first. */
 1505         last_mtype = NULL;
 1506         last_size = INT64_MAX;
 1507         for (;;) {
 1508                 cur_mtype = NULL;
 1509                 cur_size = -1;
 1510                 ties = 0;
 1511 
 1512                 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1513                         /*
 1514                          * In the case of size ties, print out mtypes
 1515                          * in the order they are encountered.  That is,
 1516                          * when we encounter the most recently output
 1517                          * mtype, we have already printed all preceding
 1518                          * ties, and we must print all following ties.
 1519                          */
 1520                         if (mtp == last_mtype) {
 1521                                 ties = 1;
 1522                                 continue;
 1523                         }
 1524                         size = get_malloc_stats(&mtp->ks_mti, &allocs,
 1525                             &inuse);
 1526                         if (size > cur_size && size < last_size + ties) {
 1527                                 cur_size = size;
 1528                                 cur_mtype = mtp;
 1529                         }
 1530                 }
 1531                 if (cur_mtype == NULL)
 1532                         break;
 1533 
 1534                 size = get_malloc_stats(&cur_mtype->ks_mti, &allocs, &inuse);
 1535                 db_printf(fmt_entry, cur_mtype->ks_shortdesc, inuse,
 1536                     howmany(size, 1024), allocs);
 1537 
 1538                 if (db_pager_quit)
 1539                         break;
 1540 
 1541                 last_mtype = cur_mtype;
 1542                 last_size = cur_size;
 1543         }
 1544 }
 1545 
 1546 #if MALLOC_DEBUG_MAXZONES > 1
 1547 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
 1548 {
 1549         struct malloc_type_internal *mtip;
 1550         struct malloc_type *mtp;
 1551         u_int subzone;
 1552 
 1553         if (!have_addr) {
 1554                 db_printf("Usage: show multizone_matches <malloc type/addr>\n");
 1555                 return;
 1556         }
 1557         mtp = (void *)addr;
 1558         if (mtp->ks_version != M_VERSION) {
 1559                 db_printf("Version %lx does not match expected %x\n",
 1560                     mtp->ks_version, M_VERSION);
 1561                 return;
 1562         }
 1563 
 1564         mtip = &mtp->ks_mti;
 1565         subzone = mtip->mti_zone;
 1566 
 1567         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1568                 mtip = &mtp->ks_mti;
 1569                 if (mtip->mti_zone != subzone)
 1570                         continue;
 1571                 db_printf("%s\n", mtp->ks_shortdesc);
 1572                 if (db_pager_quit)
 1573                         break;
 1574         }
 1575 }
 1576 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
 1577 #endif /* DDB */

Cache object: f70ee1b895eed934f03bc0b4e4ac8e5d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.