The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_malloc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1987, 1991, 1993
    3  *      The Regents of the University of California.
    4  * Copyright (c) 2005-2009 Robert N. M. Watson
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 4. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)kern_malloc.c       8.3 (Berkeley) 1/4/94
   32  */
   33 
   34 /*
   35  * Kernel malloc(9) implementation -- general purpose kernel memory allocator
   36  * based on memory types.  Back end is implemented using the UMA(9) zone
   37  * allocator.  A set of fixed-size buckets are used for smaller allocations,
   38  * and a special UMA allocation interface is used for larger allocations.
   39  * Callers declare memory types, and statistics are maintained independently
   40  * for each memory type.  Statistics are maintained per-CPU for performance
   41  * reasons.  See malloc(9) and comments in malloc.h for a detailed
   42  * description.
   43  */
   44 
   45 #include <sys/cdefs.h>
   46 __FBSDID("$FreeBSD: releng/10.3/sys/kern/kern_malloc.c 283310 2015-05-23 09:14:29Z kib $");
   47 
   48 #include "opt_ddb.h"
   49 #include "opt_kdtrace.h"
   50 #include "opt_vm.h"
   51 
   52 #include <sys/param.h>
   53 #include <sys/systm.h>
   54 #include <sys/kdb.h>
   55 #include <sys/kernel.h>
   56 #include <sys/lock.h>
   57 #include <sys/malloc.h>
   58 #include <sys/mutex.h>
   59 #include <sys/vmmeter.h>
   60 #include <sys/proc.h>
   61 #include <sys/sbuf.h>
   62 #include <sys/sysctl.h>
   63 #include <sys/time.h>
   64 #include <sys/vmem.h>
   65 
   66 #include <vm/vm.h>
   67 #include <vm/pmap.h>
   68 #include <vm/vm_pageout.h>
   69 #include <vm/vm_param.h>
   70 #include <vm/vm_kern.h>
   71 #include <vm/vm_extern.h>
   72 #include <vm/vm_map.h>
   73 #include <vm/vm_page.h>
   74 #include <vm/uma.h>
   75 #include <vm/uma_int.h>
   76 #include <vm/uma_dbg.h>
   77 
   78 #ifdef DEBUG_MEMGUARD
   79 #include <vm/memguard.h>
   80 #endif
   81 #ifdef DEBUG_REDZONE
   82 #include <vm/redzone.h>
   83 #endif
   84 
   85 #if defined(INVARIANTS) && defined(__i386__)
   86 #include <machine/cpu.h>
   87 #endif
   88 
   89 #include <ddb/ddb.h>
   90 
   91 #ifdef KDTRACE_HOOKS
   92 #include <sys/dtrace_bsd.h>
   93 
   94 dtrace_malloc_probe_func_t      dtrace_malloc_probe;
   95 #endif
   96 
   97 /*
   98  * When realloc() is called, if the new size is sufficiently smaller than
   99  * the old size, realloc() will allocate a new, smaller block to avoid
  100  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
  101  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
  102  */
  103 #ifndef REALLOC_FRACTION
  104 #define REALLOC_FRACTION        1       /* new block if <= half the size */
  105 #endif
  106 
  107 /*
  108  * Centrally define some common malloc types.
  109  */
  110 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
  111 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
  112 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
  113 
  114 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
  115 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
  116 
  117 static struct malloc_type *kmemstatistics;
  118 static int kmemcount;
  119 
  120 #define KMEM_ZSHIFT     4
  121 #define KMEM_ZBASE      16
  122 #define KMEM_ZMASK      (KMEM_ZBASE - 1)
  123 
  124 #define KMEM_ZMAX       65536
  125 #define KMEM_ZSIZE      (KMEM_ZMAX >> KMEM_ZSHIFT)
  126 static uint8_t kmemsize[KMEM_ZSIZE + 1];
  127 
  128 #ifndef MALLOC_DEBUG_MAXZONES
  129 #define MALLOC_DEBUG_MAXZONES   1
  130 #endif
  131 static int numzones = MALLOC_DEBUG_MAXZONES;
  132 
  133 /*
  134  * Small malloc(9) memory allocations are allocated from a set of UMA buckets
  135  * of various sizes.
  136  *
  137  * XXX: The comment here used to read "These won't be powers of two for
  138  * long."  It's possible that a significant amount of wasted memory could be
  139  * recovered by tuning the sizes of these buckets.
  140  */
  141 struct {
  142         int kz_size;
  143         char *kz_name;
  144         uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
  145 } kmemzones[] = {
  146         {16, "16", },
  147         {32, "32", },
  148         {64, "64", },
  149         {128, "128", },
  150         {256, "256", },
  151         {512, "512", },
  152         {1024, "1024", },
  153         {2048, "2048", },
  154         {4096, "4096", },
  155         {8192, "8192", },
  156         {16384, "16384", },
  157         {32768, "32768", },
  158         {65536, "65536", },
  159         {0, NULL},
  160 };
  161 
  162 /*
  163  * Zone to allocate malloc type descriptions from.  For ABI reasons, memory
  164  * types are described by a data structure passed by the declaring code, but
  165  * the malloc(9) implementation has its own data structure describing the
  166  * type and statistics.  This permits the malloc(9)-internal data structures
  167  * to be modified without breaking binary-compiled kernel modules that
  168  * declare malloc types.
  169  */
  170 static uma_zone_t mt_zone;
  171 
  172 u_long vm_kmem_size;
  173 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
  174     "Size of kernel memory");
  175 
  176 static u_long kmem_zmax = KMEM_ZMAX;
  177 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0,
  178     "Maximum allocation size that malloc(9) would use UMA as backend");
  179 
  180 static u_long vm_kmem_size_min;
  181 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
  182     "Minimum size of kernel memory");
  183 
  184 static u_long vm_kmem_size_max;
  185 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
  186     "Maximum size of kernel memory");
  187 
  188 static u_int vm_kmem_size_scale;
  189 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
  190     "Scale factor for kernel memory size");
  191 
  192 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
  193 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
  194     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
  195     sysctl_kmem_map_size, "LU", "Current kmem allocation size");
  196 
  197 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
  198 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
  199     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
  200     sysctl_kmem_map_free, "LU", "Free space in kmem");
  201 
  202 /*
  203  * The malloc_mtx protects the kmemstatistics linked list.
  204  */
  205 struct mtx malloc_mtx;
  206 
  207 #ifdef MALLOC_PROFILE
  208 uint64_t krequests[KMEM_ZSIZE + 1];
  209 
  210 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
  211 #endif
  212 
  213 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
  214 
  215 /*
  216  * time_uptime of the last malloc(9) failure (induced or real).
  217  */
  218 static time_t t_malloc_fail;
  219 
  220 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
  221 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
  222     "Kernel malloc debugging options");
  223 #endif
  224 
  225 /*
  226  * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
  227  * the caller specifies M_NOWAIT.  If set to 0, no failures are caused.
  228  */
  229 #ifdef MALLOC_MAKE_FAILURES
  230 static int malloc_failure_rate;
  231 static int malloc_nowait_count;
  232 static int malloc_failure_count;
  233 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW,
  234     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
  235 TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate);
  236 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
  237     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
  238 #endif
  239 
  240 static int
  241 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
  242 {
  243         u_long size;
  244 
  245         size = vmem_size(kmem_arena, VMEM_ALLOC);
  246         return (sysctl_handle_long(oidp, &size, 0, req));
  247 }
  248 
  249 static int
  250 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
  251 {
  252         u_long size;
  253 
  254         size = vmem_size(kmem_arena, VMEM_FREE);
  255         return (sysctl_handle_long(oidp, &size, 0, req));
  256 }
  257 
  258 /*
  259  * malloc(9) uma zone separation -- sub-page buffer overruns in one
  260  * malloc type will affect only a subset of other malloc types.
  261  */
  262 #if MALLOC_DEBUG_MAXZONES > 1
  263 static void
  264 tunable_set_numzones(void)
  265 {
  266 
  267         TUNABLE_INT_FETCH("debug.malloc.numzones",
  268             &numzones);
  269 
  270         /* Sanity check the number of malloc uma zones. */
  271         if (numzones <= 0)
  272                 numzones = 1;
  273         if (numzones > MALLOC_DEBUG_MAXZONES)
  274                 numzones = MALLOC_DEBUG_MAXZONES;
  275 }
  276 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
  277 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN,
  278     &numzones, 0, "Number of malloc uma subzones");
  279 
  280 /*
  281  * Any number that changes regularly is an okay choice for the
  282  * offset.  Build numbers are pretty good of you have them.
  283  */
  284 static u_int zone_offset = __FreeBSD_version;
  285 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
  286 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
  287     &zone_offset, 0, "Separate malloc types by examining the "
  288     "Nth character in the malloc type short description.");
  289 
  290 static u_int
  291 mtp_get_subzone(const char *desc)
  292 {
  293         size_t len;
  294         u_int val;
  295 
  296         if (desc == NULL || (len = strlen(desc)) == 0)
  297                 return (0);
  298         val = desc[zone_offset % len];
  299         return (val % numzones);
  300 }
  301 #elif MALLOC_DEBUG_MAXZONES == 0
  302 #error "MALLOC_DEBUG_MAXZONES must be positive."
  303 #else
  304 static inline u_int
  305 mtp_get_subzone(const char *desc)
  306 {
  307 
  308         return (0);
  309 }
  310 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
  311 
  312 int
  313 malloc_last_fail(void)
  314 {
  315 
  316         return (time_uptime - t_malloc_fail);
  317 }
  318 
  319 /*
  320  * An allocation has succeeded -- update malloc type statistics for the
  321  * amount of bucket size.  Occurs within a critical section so that the
  322  * thread isn't preempted and doesn't migrate while updating per-PCU
  323  * statistics.
  324  */
  325 static void
  326 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
  327     int zindx)
  328 {
  329         struct malloc_type_internal *mtip;
  330         struct malloc_type_stats *mtsp;
  331 
  332         critical_enter();
  333         mtip = mtp->ks_handle;
  334         mtsp = &mtip->mti_stats[curcpu];
  335         if (size > 0) {
  336                 mtsp->mts_memalloced += size;
  337                 mtsp->mts_numallocs++;
  338         }
  339         if (zindx != -1)
  340                 mtsp->mts_size |= 1 << zindx;
  341 
  342 #ifdef KDTRACE_HOOKS
  343         if (dtrace_malloc_probe != NULL) {
  344                 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
  345                 if (probe_id != 0)
  346                         (dtrace_malloc_probe)(probe_id,
  347                             (uintptr_t) mtp, (uintptr_t) mtip,
  348                             (uintptr_t) mtsp, size, zindx);
  349         }
  350 #endif
  351 
  352         critical_exit();
  353 }
  354 
  355 void
  356 malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
  357 {
  358 
  359         if (size > 0)
  360                 malloc_type_zone_allocated(mtp, size, -1);
  361 }
  362 
  363 /*
  364  * A free operation has occurred -- update malloc type statistics for the
  365  * amount of the bucket size.  Occurs within a critical section so that the
  366  * thread isn't preempted and doesn't migrate while updating per-CPU
  367  * statistics.
  368  */
  369 void
  370 malloc_type_freed(struct malloc_type *mtp, unsigned long size)
  371 {
  372         struct malloc_type_internal *mtip;
  373         struct malloc_type_stats *mtsp;
  374 
  375         critical_enter();
  376         mtip = mtp->ks_handle;
  377         mtsp = &mtip->mti_stats[curcpu];
  378         mtsp->mts_memfreed += size;
  379         mtsp->mts_numfrees++;
  380 
  381 #ifdef KDTRACE_HOOKS
  382         if (dtrace_malloc_probe != NULL) {
  383                 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
  384                 if (probe_id != 0)
  385                         (dtrace_malloc_probe)(probe_id,
  386                             (uintptr_t) mtp, (uintptr_t) mtip,
  387                             (uintptr_t) mtsp, size, 0);
  388         }
  389 #endif
  390 
  391         critical_exit();
  392 }
  393 
  394 /*
  395  *      contigmalloc:
  396  *
  397  *      Allocate a block of physically contiguous memory.
  398  *
  399  *      If M_NOWAIT is set, this routine will not block and return NULL if
  400  *      the allocation fails.
  401  */
  402 void *
  403 contigmalloc(unsigned long size, struct malloc_type *type, int flags,
  404     vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
  405     vm_paddr_t boundary)
  406 {
  407         void *ret;
  408 
  409         ret = (void *)kmem_alloc_contig(kernel_arena, size, flags, low, high,
  410             alignment, boundary, VM_MEMATTR_DEFAULT);
  411         if (ret != NULL)
  412                 malloc_type_allocated(type, round_page(size));
  413         return (ret);
  414 }
  415 
  416 /*
  417  *      contigfree:
  418  *
  419  *      Free a block of memory allocated by contigmalloc.
  420  *
  421  *      This routine may not block.
  422  */
  423 void
  424 contigfree(void *addr, unsigned long size, struct malloc_type *type)
  425 {
  426 
  427         kmem_free(kernel_arena, (vm_offset_t)addr, size);
  428         malloc_type_freed(type, round_page(size));
  429 }
  430 
  431 /*
  432  *      malloc:
  433  *
  434  *      Allocate a block of memory.
  435  *
  436  *      If M_NOWAIT is set, this routine will not block and return NULL if
  437  *      the allocation fails.
  438  */
  439 void *
  440 malloc(unsigned long size, struct malloc_type *mtp, int flags)
  441 {
  442         int indx;
  443         struct malloc_type_internal *mtip;
  444         caddr_t va;
  445         uma_zone_t zone;
  446 #if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE)
  447         unsigned long osize = size;
  448 #endif
  449 
  450 #ifdef INVARIANTS
  451         KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic"));
  452         /*
  453          * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
  454          */
  455         indx = flags & (M_WAITOK | M_NOWAIT);
  456         if (indx != M_NOWAIT && indx != M_WAITOK) {
  457                 static  struct timeval lasterr;
  458                 static  int curerr, once;
  459                 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
  460                         printf("Bad malloc flags: %x\n", indx);
  461                         kdb_backtrace();
  462                         flags |= M_WAITOK;
  463                         once++;
  464                 }
  465         }
  466 #endif
  467 #ifdef MALLOC_MAKE_FAILURES
  468         if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
  469                 atomic_add_int(&malloc_nowait_count, 1);
  470                 if ((malloc_nowait_count % malloc_failure_rate) == 0) {
  471                         atomic_add_int(&malloc_failure_count, 1);
  472                         t_malloc_fail = time_uptime;
  473                         return (NULL);
  474                 }
  475         }
  476 #endif
  477         if (flags & M_WAITOK)
  478                 KASSERT(curthread->td_intr_nesting_level == 0,
  479                    ("malloc(M_WAITOK) in interrupt context"));
  480 
  481 #ifdef DEBUG_MEMGUARD
  482         if (memguard_cmp_mtp(mtp, size)) {
  483                 va = memguard_alloc(size, flags);
  484                 if (va != NULL)
  485                         return (va);
  486                 /* This is unfortunate but should not be fatal. */
  487         }
  488 #endif
  489 
  490 #ifdef DEBUG_REDZONE
  491         size = redzone_size_ntor(size);
  492 #endif
  493 
  494         if (size <= kmem_zmax) {
  495                 mtip = mtp->ks_handle;
  496                 if (size & KMEM_ZMASK)
  497                         size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
  498                 indx = kmemsize[size >> KMEM_ZSHIFT];
  499                 KASSERT(mtip->mti_zone < numzones,
  500                     ("mti_zone %u out of range %d",
  501                     mtip->mti_zone, numzones));
  502                 zone = kmemzones[indx].kz_zone[mtip->mti_zone];
  503 #ifdef MALLOC_PROFILE
  504                 krequests[size >> KMEM_ZSHIFT]++;
  505 #endif
  506                 va = uma_zalloc(zone, flags);
  507                 if (va != NULL)
  508                         size = zone->uz_size;
  509                 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
  510         } else {
  511                 size = roundup(size, PAGE_SIZE);
  512                 zone = NULL;
  513                 va = uma_large_malloc(size, flags);
  514                 malloc_type_allocated(mtp, va == NULL ? 0 : size);
  515         }
  516         if (flags & M_WAITOK)
  517                 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
  518         else if (va == NULL)
  519                 t_malloc_fail = time_uptime;
  520 #ifdef DIAGNOSTIC
  521         if (va != NULL && !(flags & M_ZERO)) {
  522                 memset(va, 0x70, osize);
  523         }
  524 #endif
  525 #ifdef DEBUG_REDZONE
  526         if (va != NULL)
  527                 va = redzone_setup(va, osize);
  528 #endif
  529         return ((void *) va);
  530 }
  531 
  532 /*
  533  *      free:
  534  *
  535  *      Free a block of memory allocated by malloc.
  536  *
  537  *      This routine may not block.
  538  */
  539 void
  540 free(void *addr, struct malloc_type *mtp)
  541 {
  542         uma_slab_t slab;
  543         u_long size;
  544 
  545         KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic"));
  546 
  547         /* free(NULL, ...) does nothing */
  548         if (addr == NULL)
  549                 return;
  550 
  551 #ifdef DEBUG_MEMGUARD
  552         if (is_memguard_addr(addr)) {
  553                 memguard_free(addr);
  554                 return;
  555         }
  556 #endif
  557 
  558 #ifdef DEBUG_REDZONE
  559         redzone_check(addr);
  560         addr = redzone_addr_ntor(addr);
  561 #endif
  562 
  563         slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
  564 
  565         if (slab == NULL)
  566                 panic("free: address %p(%p) has not been allocated.\n",
  567                     addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
  568 
  569         if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
  570 #ifdef INVARIANTS
  571                 struct malloc_type **mtpp = addr;
  572 #endif
  573                 size = slab->us_keg->uk_size;
  574 #ifdef INVARIANTS
  575                 /*
  576                  * Cache a pointer to the malloc_type that most recently freed
  577                  * this memory here.  This way we know who is most likely to
  578                  * have stepped on it later.
  579                  *
  580                  * This code assumes that size is a multiple of 8 bytes for
  581                  * 64 bit machines
  582                  */
  583                 mtpp = (struct malloc_type **)
  584                     ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
  585                 mtpp += (size - sizeof(struct malloc_type *)) /
  586                     sizeof(struct malloc_type *);
  587                 *mtpp = mtp;
  588 #endif
  589                 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
  590         } else {
  591                 size = slab->us_size;
  592                 uma_large_free(slab);
  593         }
  594         malloc_type_freed(mtp, size);
  595 }
  596 
  597 /*
  598  *      realloc: change the size of a memory block
  599  */
  600 void *
  601 realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
  602 {
  603         uma_slab_t slab;
  604         unsigned long alloc;
  605         void *newaddr;
  606 
  607         KASSERT(mtp->ks_magic == M_MAGIC,
  608             ("realloc: bad malloc type magic"));
  609 
  610         /* realloc(NULL, ...) is equivalent to malloc(...) */
  611         if (addr == NULL)
  612                 return (malloc(size, mtp, flags));
  613 
  614         /*
  615          * XXX: Should report free of old memory and alloc of new memory to
  616          * per-CPU stats.
  617          */
  618 
  619 #ifdef DEBUG_MEMGUARD
  620         if (is_memguard_addr(addr))
  621                 return (memguard_realloc(addr, size, mtp, flags));
  622 #endif
  623 
  624 #ifdef DEBUG_REDZONE
  625         slab = NULL;
  626         alloc = redzone_get_size(addr);
  627 #else
  628         slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
  629 
  630         /* Sanity check */
  631         KASSERT(slab != NULL,
  632             ("realloc: address %p out of range", (void *)addr));
  633 
  634         /* Get the size of the original block */
  635         if (!(slab->us_flags & UMA_SLAB_MALLOC))
  636                 alloc = slab->us_keg->uk_size;
  637         else
  638                 alloc = slab->us_size;
  639 
  640         /* Reuse the original block if appropriate */
  641         if (size <= alloc
  642             && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
  643                 return (addr);
  644 #endif /* !DEBUG_REDZONE */
  645 
  646         /* Allocate a new, bigger (or smaller) block */
  647         if ((newaddr = malloc(size, mtp, flags)) == NULL)
  648                 return (NULL);
  649 
  650         /* Copy over original contents */
  651         bcopy(addr, newaddr, min(size, alloc));
  652         free(addr, mtp);
  653         return (newaddr);
  654 }
  655 
  656 /*
  657  *      reallocf: same as realloc() but free memory on failure.
  658  */
  659 void *
  660 reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
  661 {
  662         void *mem;
  663 
  664         if ((mem = realloc(addr, size, mtp, flags)) == NULL)
  665                 free(addr, mtp);
  666         return (mem);
  667 }
  668 
  669 /*
  670  * Wake the uma reclamation pagedaemon thread when we exhaust KVA.  It
  671  * will call the lowmem handler and uma_reclaim() callbacks in a
  672  * context that is safe.
  673  */
  674 static void
  675 kmem_reclaim(vmem_t *vm, int flags)
  676 {
  677 
  678         uma_reclaim_wakeup();
  679         pagedaemon_wakeup();
  680 }
  681 
  682 CTASSERT(VM_KMEM_SIZE_SCALE >= 1);
  683 
  684 /*
  685  * Initialize the kernel memory (kmem) arena.
  686  */
  687 void
  688 kmeminit(void)
  689 {
  690         u_long mem_size, tmp;
  691 
  692         /*
  693          * Calculate the amount of kernel virtual address (KVA) space that is
  694          * preallocated to the kmem arena.  In order to support a wide range
  695          * of machines, it is a function of the physical memory size,
  696          * specifically,
  697          *
  698          *      min(max(physical memory size / VM_KMEM_SIZE_SCALE,
  699          *          VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX)
  700          *
  701          * Every architecture must define an integral value for
  702          * VM_KMEM_SIZE_SCALE.  However, the definitions of VM_KMEM_SIZE_MIN
  703          * and VM_KMEM_SIZE_MAX, which represent respectively the floor and
  704          * ceiling on this preallocation, are optional.  Typically,
  705          * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on
  706          * a given architecture.
  707          */
  708         mem_size = cnt.v_page_count;
  709 
  710         vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
  711         TUNABLE_INT_FETCH("vm.kmem_size_scale", &vm_kmem_size_scale);
  712         if (vm_kmem_size_scale < 1)
  713                 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
  714 
  715         vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
  716 
  717 #if defined(VM_KMEM_SIZE_MIN)
  718         vm_kmem_size_min = VM_KMEM_SIZE_MIN;
  719 #endif
  720         TUNABLE_ULONG_FETCH("vm.kmem_size_min", &vm_kmem_size_min);
  721         if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min)
  722                 vm_kmem_size = vm_kmem_size_min;
  723 
  724 #if defined(VM_KMEM_SIZE_MAX)
  725         vm_kmem_size_max = VM_KMEM_SIZE_MAX;
  726 #endif
  727         TUNABLE_ULONG_FETCH("vm.kmem_size_max", &vm_kmem_size_max);
  728         if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
  729                 vm_kmem_size = vm_kmem_size_max;
  730 
  731         /*
  732          * Alternatively, the amount of KVA space that is preallocated to the
  733          * kmem arena can be set statically at compile-time or manually
  734          * through the kernel environment.  However, it is still limited to
  735          * twice the physical memory size, which has been sufficient to handle
  736          * the most severe cases of external fragmentation in the kmem arena. 
  737          */
  738 #if defined(VM_KMEM_SIZE)
  739         vm_kmem_size = VM_KMEM_SIZE;
  740 #endif
  741         TUNABLE_ULONG_FETCH("vm.kmem_size", &vm_kmem_size);
  742         if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
  743                 vm_kmem_size = 2 * mem_size * PAGE_SIZE;
  744 
  745         vm_kmem_size = round_page(vm_kmem_size);
  746 #ifdef DEBUG_MEMGUARD
  747         tmp = memguard_fudge(vm_kmem_size, kernel_map);
  748 #else
  749         tmp = vm_kmem_size;
  750 #endif
  751         vmem_init(kmem_arena, "kmem arena", kva_alloc(tmp), tmp, PAGE_SIZE,
  752             0, 0);
  753         vmem_set_reclaim(kmem_arena, kmem_reclaim);
  754 
  755 #ifdef DEBUG_MEMGUARD
  756         /*
  757          * Initialize MemGuard if support compiled in.  MemGuard is a
  758          * replacement allocator used for detecting tamper-after-free
  759          * scenarios as they occur.  It is only used for debugging.
  760          */
  761         memguard_init(kmem_arena);
  762 #endif
  763 }
  764 
  765 /*
  766  * Initialize the kernel memory allocator
  767  */
  768 /* ARGSUSED*/
  769 static void
  770 mallocinit(void *dummy)
  771 {
  772         int i;
  773         uint8_t indx;
  774 
  775         mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
  776 
  777         kmeminit();
  778 
  779         uma_startup2();
  780 
  781         if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX)
  782                 kmem_zmax = KMEM_ZMAX;
  783 
  784         mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
  785 #ifdef INVARIANTS
  786             mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
  787 #else
  788             NULL, NULL, NULL, NULL,
  789 #endif
  790             UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
  791         for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
  792                 int size = kmemzones[indx].kz_size;
  793                 char *name = kmemzones[indx].kz_name;
  794                 int subzone;
  795 
  796                 for (subzone = 0; subzone < numzones; subzone++) {
  797                         kmemzones[indx].kz_zone[subzone] =
  798                             uma_zcreate(name, size,
  799 #ifdef INVARIANTS
  800                             mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
  801 #else
  802                             NULL, NULL, NULL, NULL,
  803 #endif
  804                             UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
  805                 }                   
  806                 for (;i <= size; i+= KMEM_ZBASE)
  807                         kmemsize[i >> KMEM_ZSHIFT] = indx;
  808 
  809         }
  810 }
  811 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, mallocinit, NULL);
  812 
  813 void
  814 malloc_init(void *data)
  815 {
  816         struct malloc_type_internal *mtip;
  817         struct malloc_type *mtp;
  818 
  819         KASSERT(cnt.v_page_count != 0, ("malloc_register before vm_init"));
  820 
  821         mtp = data;
  822         if (mtp->ks_magic != M_MAGIC)
  823                 panic("malloc_init: bad malloc type magic");
  824 
  825         mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
  826         mtp->ks_handle = mtip;
  827         mtip->mti_zone = mtp_get_subzone(mtp->ks_shortdesc);
  828 
  829         mtx_lock(&malloc_mtx);
  830         mtp->ks_next = kmemstatistics;
  831         kmemstatistics = mtp;
  832         kmemcount++;
  833         mtx_unlock(&malloc_mtx);
  834 }
  835 
  836 void
  837 malloc_uninit(void *data)
  838 {
  839         struct malloc_type_internal *mtip;
  840         struct malloc_type_stats *mtsp;
  841         struct malloc_type *mtp, *temp;
  842         uma_slab_t slab;
  843         long temp_allocs, temp_bytes;
  844         int i;
  845 
  846         mtp = data;
  847         KASSERT(mtp->ks_magic == M_MAGIC,
  848             ("malloc_uninit: bad malloc type magic"));
  849         KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
  850 
  851         mtx_lock(&malloc_mtx);
  852         mtip = mtp->ks_handle;
  853         mtp->ks_handle = NULL;
  854         if (mtp != kmemstatistics) {
  855                 for (temp = kmemstatistics; temp != NULL;
  856                     temp = temp->ks_next) {
  857                         if (temp->ks_next == mtp) {
  858                                 temp->ks_next = mtp->ks_next;
  859                                 break;
  860                         }
  861                 }
  862                 KASSERT(temp,
  863                     ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
  864         } else
  865                 kmemstatistics = mtp->ks_next;
  866         kmemcount--;
  867         mtx_unlock(&malloc_mtx);
  868 
  869         /*
  870          * Look for memory leaks.
  871          */
  872         temp_allocs = temp_bytes = 0;
  873         for (i = 0; i < MAXCPU; i++) {
  874                 mtsp = &mtip->mti_stats[i];
  875                 temp_allocs += mtsp->mts_numallocs;
  876                 temp_allocs -= mtsp->mts_numfrees;
  877                 temp_bytes += mtsp->mts_memalloced;
  878                 temp_bytes -= mtsp->mts_memfreed;
  879         }
  880         if (temp_allocs > 0 || temp_bytes > 0) {
  881                 printf("Warning: memory type %s leaked memory on destroy "
  882                     "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
  883                     temp_allocs, temp_bytes);
  884         }
  885 
  886         slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK));
  887         uma_zfree_arg(mt_zone, mtip, slab);
  888 }
  889 
  890 struct malloc_type *
  891 malloc_desc2type(const char *desc)
  892 {
  893         struct malloc_type *mtp;
  894 
  895         mtx_assert(&malloc_mtx, MA_OWNED);
  896         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
  897                 if (strcmp(mtp->ks_shortdesc, desc) == 0)
  898                         return (mtp);
  899         }
  900         return (NULL);
  901 }
  902 
  903 static int
  904 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
  905 {
  906         struct malloc_type_stream_header mtsh;
  907         struct malloc_type_internal *mtip;
  908         struct malloc_type_header mth;
  909         struct malloc_type *mtp;
  910         int error, i;
  911         struct sbuf sbuf;
  912 
  913         error = sysctl_wire_old_buffer(req, 0);
  914         if (error != 0)
  915                 return (error);
  916         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
  917         mtx_lock(&malloc_mtx);
  918 
  919         /*
  920          * Insert stream header.
  921          */
  922         bzero(&mtsh, sizeof(mtsh));
  923         mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
  924         mtsh.mtsh_maxcpus = MAXCPU;
  925         mtsh.mtsh_count = kmemcount;
  926         (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
  927 
  928         /*
  929          * Insert alternating sequence of type headers and type statistics.
  930          */
  931         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
  932                 mtip = (struct malloc_type_internal *)mtp->ks_handle;
  933 
  934                 /*
  935                  * Insert type header.
  936                  */
  937                 bzero(&mth, sizeof(mth));
  938                 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
  939                 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
  940 
  941                 /*
  942                  * Insert type statistics for each CPU.
  943                  */
  944                 for (i = 0; i < MAXCPU; i++) {
  945                         (void)sbuf_bcat(&sbuf, &mtip->mti_stats[i],
  946                             sizeof(mtip->mti_stats[i]));
  947                 }
  948         }
  949         mtx_unlock(&malloc_mtx);
  950         error = sbuf_finish(&sbuf);
  951         sbuf_delete(&sbuf);
  952         return (error);
  953 }
  954 
  955 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
  956     0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
  957     "Return malloc types");
  958 
  959 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
  960     "Count of kernel malloc types");
  961 
  962 void
  963 malloc_type_list(malloc_type_list_func_t *func, void *arg)
  964 {
  965         struct malloc_type *mtp, **bufmtp;
  966         int count, i;
  967         size_t buflen;
  968 
  969         mtx_lock(&malloc_mtx);
  970 restart:
  971         mtx_assert(&malloc_mtx, MA_OWNED);
  972         count = kmemcount;
  973         mtx_unlock(&malloc_mtx);
  974 
  975         buflen = sizeof(struct malloc_type *) * count;
  976         bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
  977 
  978         mtx_lock(&malloc_mtx);
  979 
  980         if (count < kmemcount) {
  981                 free(bufmtp, M_TEMP);
  982                 goto restart;
  983         }
  984 
  985         for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
  986                 bufmtp[i] = mtp;
  987 
  988         mtx_unlock(&malloc_mtx);
  989 
  990         for (i = 0; i < count; i++)
  991                 (func)(bufmtp[i], arg);
  992 
  993         free(bufmtp, M_TEMP);
  994 }
  995 
  996 #ifdef DDB
  997 DB_SHOW_COMMAND(malloc, db_show_malloc)
  998 {
  999         struct malloc_type_internal *mtip;
 1000         struct malloc_type *mtp;
 1001         uint64_t allocs, frees;
 1002         uint64_t alloced, freed;
 1003         int i;
 1004 
 1005         db_printf("%18s %12s  %12s %12s\n", "Type", "InUse", "MemUse",
 1006             "Requests");
 1007         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1008                 mtip = (struct malloc_type_internal *)mtp->ks_handle;
 1009                 allocs = 0;
 1010                 frees = 0;
 1011                 alloced = 0;
 1012                 freed = 0;
 1013                 for (i = 0; i < MAXCPU; i++) {
 1014                         allocs += mtip->mti_stats[i].mts_numallocs;
 1015                         frees += mtip->mti_stats[i].mts_numfrees;
 1016                         alloced += mtip->mti_stats[i].mts_memalloced;
 1017                         freed += mtip->mti_stats[i].mts_memfreed;
 1018                 }
 1019                 db_printf("%18s %12ju %12juK %12ju\n",
 1020                     mtp->ks_shortdesc, allocs - frees,
 1021                     (alloced - freed + 1023) / 1024, allocs);
 1022                 if (db_pager_quit)
 1023                         break;
 1024         }
 1025 }
 1026 
 1027 #if MALLOC_DEBUG_MAXZONES > 1
 1028 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
 1029 {
 1030         struct malloc_type_internal *mtip;
 1031         struct malloc_type *mtp;
 1032         u_int subzone;
 1033 
 1034         if (!have_addr) {
 1035                 db_printf("Usage: show multizone_matches <malloc type/addr>\n");
 1036                 return;
 1037         }
 1038         mtp = (void *)addr;
 1039         if (mtp->ks_magic != M_MAGIC) {
 1040                 db_printf("Magic %lx does not match expected %x\n",
 1041                     mtp->ks_magic, M_MAGIC);
 1042                 return;
 1043         }
 1044 
 1045         mtip = mtp->ks_handle;
 1046         subzone = mtip->mti_zone;
 1047 
 1048         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1049                 mtip = mtp->ks_handle;
 1050                 if (mtip->mti_zone != subzone)
 1051                         continue;
 1052                 db_printf("%s\n", mtp->ks_shortdesc);
 1053                 if (db_pager_quit)
 1054                         break;
 1055         }
 1056 }
 1057 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
 1058 #endif /* DDB */
 1059 
 1060 #ifdef MALLOC_PROFILE
 1061 
 1062 static int
 1063 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
 1064 {
 1065         struct sbuf sbuf;
 1066         uint64_t count;
 1067         uint64_t waste;
 1068         uint64_t mem;
 1069         int error;
 1070         int rsize;
 1071         int size;
 1072         int i;
 1073 
 1074         waste = 0;
 1075         mem = 0;
 1076 
 1077         error = sysctl_wire_old_buffer(req, 0);
 1078         if (error != 0)
 1079                 return (error);
 1080         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
 1081         sbuf_printf(&sbuf, 
 1082             "\n  Size                    Requests  Real Size\n");
 1083         for (i = 0; i < KMEM_ZSIZE; i++) {
 1084                 size = i << KMEM_ZSHIFT;
 1085                 rsize = kmemzones[kmemsize[i]].kz_size;
 1086                 count = (long long unsigned)krequests[i];
 1087 
 1088                 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
 1089                     (unsigned long long)count, rsize);
 1090 
 1091                 if ((rsize * count) > (size * count))
 1092                         waste += (rsize * count) - (size * count);
 1093                 mem += (rsize * count);
 1094         }
 1095         sbuf_printf(&sbuf,
 1096             "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
 1097             (unsigned long long)mem, (unsigned long long)waste);
 1098         error = sbuf_finish(&sbuf);
 1099         sbuf_delete(&sbuf);
 1100         return (error);
 1101 }
 1102 
 1103 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
 1104     NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
 1105 #endif /* MALLOC_PROFILE */

Cache object: d5119c20e501e6204e9fc130b300ef4f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.