The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_malloc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1987, 1991, 1993
    3  *      The Regents of the University of California.
    4  * Copyright (c) 2005-2009 Robert N. M. Watson
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 4. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)kern_malloc.c       8.3 (Berkeley) 1/4/94
   32  */
   33 
   34 /*
   35  * Kernel malloc(9) implementation -- general purpose kernel memory allocator
   36  * based on memory types.  Back end is implemented using the UMA(9) zone
   37  * allocator.  A set of fixed-size buckets are used for smaller allocations,
   38  * and a special UMA allocation interface is used for larger allocations.
   39  * Callers declare memory types, and statistics are maintained independently
   40  * for each memory type.  Statistics are maintained per-CPU for performance
   41  * reasons.  See malloc(9) and comments in malloc.h for a detailed
   42  * description.
   43  */
   44 
   45 #include <sys/cdefs.h>
   46 __FBSDID("$FreeBSD: releng/11.0/sys/kern/kern_malloc.c 300262 2016-05-20 04:45:08Z markj $");
   47 
   48 #include "opt_ddb.h"
   49 #include "opt_vm.h"
   50 
   51 #include <sys/param.h>
   52 #include <sys/systm.h>
   53 #include <sys/kdb.h>
   54 #include <sys/kernel.h>
   55 #include <sys/lock.h>
   56 #include <sys/malloc.h>
   57 #include <sys/mutex.h>
   58 #include <sys/vmmeter.h>
   59 #include <sys/proc.h>
   60 #include <sys/sbuf.h>
   61 #include <sys/sysctl.h>
   62 #include <sys/time.h>
   63 #include <sys/vmem.h>
   64 
   65 #include <vm/vm.h>
   66 #include <vm/pmap.h>
   67 #include <vm/vm_pageout.h>
   68 #include <vm/vm_param.h>
   69 #include <vm/vm_kern.h>
   70 #include <vm/vm_extern.h>
   71 #include <vm/vm_map.h>
   72 #include <vm/vm_page.h>
   73 #include <vm/uma.h>
   74 #include <vm/uma_int.h>
   75 #include <vm/uma_dbg.h>
   76 
   77 #ifdef DEBUG_MEMGUARD
   78 #include <vm/memguard.h>
   79 #endif
   80 #ifdef DEBUG_REDZONE
   81 #include <vm/redzone.h>
   82 #endif
   83 
   84 #if defined(INVARIANTS) && defined(__i386__)
   85 #include <machine/cpu.h>
   86 #endif
   87 
   88 #include <ddb/ddb.h>
   89 
   90 #ifdef KDTRACE_HOOKS
   91 #include <sys/dtrace_bsd.h>
   92 
   93 dtrace_malloc_probe_func_t      dtrace_malloc_probe;
   94 #endif
   95 
   96 /*
   97  * When realloc() is called, if the new size is sufficiently smaller than
   98  * the old size, realloc() will allocate a new, smaller block to avoid
   99  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
  100  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
  101  */
  102 #ifndef REALLOC_FRACTION
  103 #define REALLOC_FRACTION        1       /* new block if <= half the size */
  104 #endif
  105 
  106 /*
  107  * Centrally define some common malloc types.
  108  */
  109 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
  110 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
  111 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
  112 
  113 static struct malloc_type *kmemstatistics;
  114 static int kmemcount;
  115 
  116 #define KMEM_ZSHIFT     4
  117 #define KMEM_ZBASE      16
  118 #define KMEM_ZMASK      (KMEM_ZBASE - 1)
  119 
  120 #define KMEM_ZMAX       65536
  121 #define KMEM_ZSIZE      (KMEM_ZMAX >> KMEM_ZSHIFT)
  122 static uint8_t kmemsize[KMEM_ZSIZE + 1];
  123 
  124 #ifndef MALLOC_DEBUG_MAXZONES
  125 #define MALLOC_DEBUG_MAXZONES   1
  126 #endif
  127 static int numzones = MALLOC_DEBUG_MAXZONES;
  128 
  129 /*
  130  * Small malloc(9) memory allocations are allocated from a set of UMA buckets
  131  * of various sizes.
  132  *
  133  * XXX: The comment here used to read "These won't be powers of two for
  134  * long."  It's possible that a significant amount of wasted memory could be
  135  * recovered by tuning the sizes of these buckets.
  136  */
  137 struct {
  138         int kz_size;
  139         char *kz_name;
  140         uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
  141 } kmemzones[] = {
  142         {16, "16", },
  143         {32, "32", },
  144         {64, "64", },
  145         {128, "128", },
  146         {256, "256", },
  147         {512, "512", },
  148         {1024, "1024", },
  149         {2048, "2048", },
  150         {4096, "4096", },
  151         {8192, "8192", },
  152         {16384, "16384", },
  153         {32768, "32768", },
  154         {65536, "65536", },
  155         {0, NULL},
  156 };
  157 
  158 /*
  159  * Zone to allocate malloc type descriptions from.  For ABI reasons, memory
  160  * types are described by a data structure passed by the declaring code, but
  161  * the malloc(9) implementation has its own data structure describing the
  162  * type and statistics.  This permits the malloc(9)-internal data structures
  163  * to be modified without breaking binary-compiled kernel modules that
  164  * declare malloc types.
  165  */
  166 static uma_zone_t mt_zone;
  167 
  168 u_long vm_kmem_size;
  169 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
  170     "Size of kernel memory");
  171 
  172 static u_long kmem_zmax = KMEM_ZMAX;
  173 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0,
  174     "Maximum allocation size that malloc(9) would use UMA as backend");
  175 
  176 static u_long vm_kmem_size_min;
  177 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
  178     "Minimum size of kernel memory");
  179 
  180 static u_long vm_kmem_size_max;
  181 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
  182     "Maximum size of kernel memory");
  183 
  184 static u_int vm_kmem_size_scale;
  185 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
  186     "Scale factor for kernel memory size");
  187 
  188 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
  189 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
  190     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
  191     sysctl_kmem_map_size, "LU", "Current kmem allocation size");
  192 
  193 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
  194 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
  195     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
  196     sysctl_kmem_map_free, "LU", "Free space in kmem");
  197 
  198 /*
  199  * The malloc_mtx protects the kmemstatistics linked list.
  200  */
  201 struct mtx malloc_mtx;
  202 
  203 #ifdef MALLOC_PROFILE
  204 uint64_t krequests[KMEM_ZSIZE + 1];
  205 
  206 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
  207 #endif
  208 
  209 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
  210 
  211 /*
  212  * time_uptime of the last malloc(9) failure (induced or real).
  213  */
  214 static time_t t_malloc_fail;
  215 
  216 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
  217 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
  218     "Kernel malloc debugging options");
  219 #endif
  220 
  221 /*
  222  * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
  223  * the caller specifies M_NOWAIT.  If set to 0, no failures are caused.
  224  */
  225 #ifdef MALLOC_MAKE_FAILURES
  226 static int malloc_failure_rate;
  227 static int malloc_nowait_count;
  228 static int malloc_failure_count;
  229 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN,
  230     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
  231 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
  232     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
  233 #endif
  234 
  235 static int
  236 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
  237 {
  238         u_long size;
  239 
  240         size = vmem_size(kmem_arena, VMEM_ALLOC);
  241         return (sysctl_handle_long(oidp, &size, 0, req));
  242 }
  243 
  244 static int
  245 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
  246 {
  247         u_long size;
  248 
  249         size = vmem_size(kmem_arena, VMEM_FREE);
  250         return (sysctl_handle_long(oidp, &size, 0, req));
  251 }
  252 
  253 /*
  254  * malloc(9) uma zone separation -- sub-page buffer overruns in one
  255  * malloc type will affect only a subset of other malloc types.
  256  */
  257 #if MALLOC_DEBUG_MAXZONES > 1
  258 static void
  259 tunable_set_numzones(void)
  260 {
  261 
  262         TUNABLE_INT_FETCH("debug.malloc.numzones",
  263             &numzones);
  264 
  265         /* Sanity check the number of malloc uma zones. */
  266         if (numzones <= 0)
  267                 numzones = 1;
  268         if (numzones > MALLOC_DEBUG_MAXZONES)
  269                 numzones = MALLOC_DEBUG_MAXZONES;
  270 }
  271 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
  272 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
  273     &numzones, 0, "Number of malloc uma subzones");
  274 
  275 /*
  276  * Any number that changes regularly is an okay choice for the
  277  * offset.  Build numbers are pretty good of you have them.
  278  */
  279 static u_int zone_offset = __FreeBSD_version;
  280 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
  281 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
  282     &zone_offset, 0, "Separate malloc types by examining the "
  283     "Nth character in the malloc type short description.");
  284 
  285 static u_int
  286 mtp_get_subzone(const char *desc)
  287 {
  288         size_t len;
  289         u_int val;
  290 
  291         if (desc == NULL || (len = strlen(desc)) == 0)
  292                 return (0);
  293         val = desc[zone_offset % len];
  294         return (val % numzones);
  295 }
  296 #elif MALLOC_DEBUG_MAXZONES == 0
  297 #error "MALLOC_DEBUG_MAXZONES must be positive."
  298 #else
  299 static inline u_int
  300 mtp_get_subzone(const char *desc)
  301 {
  302 
  303         return (0);
  304 }
  305 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
  306 
  307 int
  308 malloc_last_fail(void)
  309 {
  310 
  311         return (time_uptime - t_malloc_fail);
  312 }
  313 
  314 /*
  315  * An allocation has succeeded -- update malloc type statistics for the
  316  * amount of bucket size.  Occurs within a critical section so that the
  317  * thread isn't preempted and doesn't migrate while updating per-PCU
  318  * statistics.
  319  */
  320 static void
  321 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
  322     int zindx)
  323 {
  324         struct malloc_type_internal *mtip;
  325         struct malloc_type_stats *mtsp;
  326 
  327         critical_enter();
  328         mtip = mtp->ks_handle;
  329         mtsp = &mtip->mti_stats[curcpu];
  330         if (size > 0) {
  331                 mtsp->mts_memalloced += size;
  332                 mtsp->mts_numallocs++;
  333         }
  334         if (zindx != -1)
  335                 mtsp->mts_size |= 1 << zindx;
  336 
  337 #ifdef KDTRACE_HOOKS
  338         if (dtrace_malloc_probe != NULL) {
  339                 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
  340                 if (probe_id != 0)
  341                         (dtrace_malloc_probe)(probe_id,
  342                             (uintptr_t) mtp, (uintptr_t) mtip,
  343                             (uintptr_t) mtsp, size, zindx);
  344         }
  345 #endif
  346 
  347         critical_exit();
  348 }
  349 
  350 void
  351 malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
  352 {
  353 
  354         if (size > 0)
  355                 malloc_type_zone_allocated(mtp, size, -1);
  356 }
  357 
  358 /*
  359  * A free operation has occurred -- update malloc type statistics for the
  360  * amount of the bucket size.  Occurs within a critical section so that the
  361  * thread isn't preempted and doesn't migrate while updating per-CPU
  362  * statistics.
  363  */
  364 void
  365 malloc_type_freed(struct malloc_type *mtp, unsigned long size)
  366 {
  367         struct malloc_type_internal *mtip;
  368         struct malloc_type_stats *mtsp;
  369 
  370         critical_enter();
  371         mtip = mtp->ks_handle;
  372         mtsp = &mtip->mti_stats[curcpu];
  373         mtsp->mts_memfreed += size;
  374         mtsp->mts_numfrees++;
  375 
  376 #ifdef KDTRACE_HOOKS
  377         if (dtrace_malloc_probe != NULL) {
  378                 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
  379                 if (probe_id != 0)
  380                         (dtrace_malloc_probe)(probe_id,
  381                             (uintptr_t) mtp, (uintptr_t) mtip,
  382                             (uintptr_t) mtsp, size, 0);
  383         }
  384 #endif
  385 
  386         critical_exit();
  387 }
  388 
  389 /*
  390  *      contigmalloc:
  391  *
  392  *      Allocate a block of physically contiguous memory.
  393  *
  394  *      If M_NOWAIT is set, this routine will not block and return NULL if
  395  *      the allocation fails.
  396  */
  397 void *
  398 contigmalloc(unsigned long size, struct malloc_type *type, int flags,
  399     vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
  400     vm_paddr_t boundary)
  401 {
  402         void *ret;
  403 
  404         ret = (void *)kmem_alloc_contig(kernel_arena, size, flags, low, high,
  405             alignment, boundary, VM_MEMATTR_DEFAULT);
  406         if (ret != NULL)
  407                 malloc_type_allocated(type, round_page(size));
  408         return (ret);
  409 }
  410 
  411 /*
  412  *      contigfree:
  413  *
  414  *      Free a block of memory allocated by contigmalloc.
  415  *
  416  *      This routine may not block.
  417  */
  418 void
  419 contigfree(void *addr, unsigned long size, struct malloc_type *type)
  420 {
  421 
  422         kmem_free(kernel_arena, (vm_offset_t)addr, size);
  423         malloc_type_freed(type, round_page(size));
  424 }
  425 
  426 /*
  427  *      malloc:
  428  *
  429  *      Allocate a block of memory.
  430  *
  431  *      If M_NOWAIT is set, this routine will not block and return NULL if
  432  *      the allocation fails.
  433  */
  434 void *
  435 malloc(unsigned long size, struct malloc_type *mtp, int flags)
  436 {
  437         int indx;
  438         struct malloc_type_internal *mtip;
  439         caddr_t va;
  440         uma_zone_t zone;
  441 #if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE)
  442         unsigned long osize = size;
  443 #endif
  444 
  445 #ifdef INVARIANTS
  446         KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic"));
  447         /*
  448          * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
  449          */
  450         indx = flags & (M_WAITOK | M_NOWAIT);
  451         if (indx != M_NOWAIT && indx != M_WAITOK) {
  452                 static  struct timeval lasterr;
  453                 static  int curerr, once;
  454                 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
  455                         printf("Bad malloc flags: %x\n", indx);
  456                         kdb_backtrace();
  457                         flags |= M_WAITOK;
  458                         once++;
  459                 }
  460         }
  461 #endif
  462 #ifdef MALLOC_MAKE_FAILURES
  463         if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
  464                 atomic_add_int(&malloc_nowait_count, 1);
  465                 if ((malloc_nowait_count % malloc_failure_rate) == 0) {
  466                         atomic_add_int(&malloc_failure_count, 1);
  467                         t_malloc_fail = time_uptime;
  468                         return (NULL);
  469                 }
  470         }
  471 #endif
  472         if (flags & M_WAITOK)
  473                 KASSERT(curthread->td_intr_nesting_level == 0,
  474                    ("malloc(M_WAITOK) in interrupt context"));
  475         KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
  476             ("malloc: called with spinlock or critical section held"));
  477 
  478 #ifdef DEBUG_MEMGUARD
  479         if (memguard_cmp_mtp(mtp, size)) {
  480                 va = memguard_alloc(size, flags);
  481                 if (va != NULL)
  482                         return (va);
  483                 /* This is unfortunate but should not be fatal. */
  484         }
  485 #endif
  486 
  487 #ifdef DEBUG_REDZONE
  488         size = redzone_size_ntor(size);
  489 #endif
  490 
  491         if (size <= kmem_zmax) {
  492                 mtip = mtp->ks_handle;
  493                 if (size & KMEM_ZMASK)
  494                         size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
  495                 indx = kmemsize[size >> KMEM_ZSHIFT];
  496                 KASSERT(mtip->mti_zone < numzones,
  497                     ("mti_zone %u out of range %d",
  498                     mtip->mti_zone, numzones));
  499                 zone = kmemzones[indx].kz_zone[mtip->mti_zone];
  500 #ifdef MALLOC_PROFILE
  501                 krequests[size >> KMEM_ZSHIFT]++;
  502 #endif
  503                 va = uma_zalloc(zone, flags);
  504                 if (va != NULL)
  505                         size = zone->uz_size;
  506                 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
  507         } else {
  508                 size = roundup(size, PAGE_SIZE);
  509                 zone = NULL;
  510                 va = uma_large_malloc(size, flags);
  511                 malloc_type_allocated(mtp, va == NULL ? 0 : size);
  512         }
  513         if (flags & M_WAITOK)
  514                 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
  515         else if (va == NULL)
  516                 t_malloc_fail = time_uptime;
  517 #ifdef DIAGNOSTIC
  518         if (va != NULL && !(flags & M_ZERO)) {
  519                 memset(va, 0x70, osize);
  520         }
  521 #endif
  522 #ifdef DEBUG_REDZONE
  523         if (va != NULL)
  524                 va = redzone_setup(va, osize);
  525 #endif
  526         return ((void *) va);
  527 }
  528 
  529 /*
  530  *      free:
  531  *
  532  *      Free a block of memory allocated by malloc.
  533  *
  534  *      This routine may not block.
  535  */
  536 void
  537 free(void *addr, struct malloc_type *mtp)
  538 {
  539         uma_slab_t slab;
  540         u_long size;
  541 
  542         KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic"));
  543         KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
  544             ("free: called with spinlock or critical section held"));
  545 
  546         /* free(NULL, ...) does nothing */
  547         if (addr == NULL)
  548                 return;
  549 
  550 #ifdef DEBUG_MEMGUARD
  551         if (is_memguard_addr(addr)) {
  552                 memguard_free(addr);
  553                 return;
  554         }
  555 #endif
  556 
  557 #ifdef DEBUG_REDZONE
  558         redzone_check(addr);
  559         addr = redzone_addr_ntor(addr);
  560 #endif
  561 
  562         slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
  563 
  564         if (slab == NULL)
  565                 panic("free: address %p(%p) has not been allocated.\n",
  566                     addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
  567 
  568         if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
  569 #ifdef INVARIANTS
  570                 struct malloc_type **mtpp = addr;
  571 #endif
  572                 size = slab->us_keg->uk_size;
  573 #ifdef INVARIANTS
  574                 /*
  575                  * Cache a pointer to the malloc_type that most recently freed
  576                  * this memory here.  This way we know who is most likely to
  577                  * have stepped on it later.
  578                  *
  579                  * This code assumes that size is a multiple of 8 bytes for
  580                  * 64 bit machines
  581                  */
  582                 mtpp = (struct malloc_type **)
  583                     ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
  584                 mtpp += (size - sizeof(struct malloc_type *)) /
  585                     sizeof(struct malloc_type *);
  586                 *mtpp = mtp;
  587 #endif
  588                 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
  589         } else {
  590                 size = slab->us_size;
  591                 uma_large_free(slab);
  592         }
  593         malloc_type_freed(mtp, size);
  594 }
  595 
  596 /*
  597  *      realloc: change the size of a memory block
  598  */
  599 void *
  600 realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
  601 {
  602         uma_slab_t slab;
  603         unsigned long alloc;
  604         void *newaddr;
  605 
  606         KASSERT(mtp->ks_magic == M_MAGIC,
  607             ("realloc: bad malloc type magic"));
  608         KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
  609             ("realloc: called with spinlock or critical section held"));
  610 
  611         /* realloc(NULL, ...) is equivalent to malloc(...) */
  612         if (addr == NULL)
  613                 return (malloc(size, mtp, flags));
  614 
  615         /*
  616          * XXX: Should report free of old memory and alloc of new memory to
  617          * per-CPU stats.
  618          */
  619 
  620 #ifdef DEBUG_MEMGUARD
  621         if (is_memguard_addr(addr))
  622                 return (memguard_realloc(addr, size, mtp, flags));
  623 #endif
  624 
  625 #ifdef DEBUG_REDZONE
  626         slab = NULL;
  627         alloc = redzone_get_size(addr);
  628 #else
  629         slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
  630 
  631         /* Sanity check */
  632         KASSERT(slab != NULL,
  633             ("realloc: address %p out of range", (void *)addr));
  634 
  635         /* Get the size of the original block */
  636         if (!(slab->us_flags & UMA_SLAB_MALLOC))
  637                 alloc = slab->us_keg->uk_size;
  638         else
  639                 alloc = slab->us_size;
  640 
  641         /* Reuse the original block if appropriate */
  642         if (size <= alloc
  643             && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
  644                 return (addr);
  645 #endif /* !DEBUG_REDZONE */
  646 
  647         /* Allocate a new, bigger (or smaller) block */
  648         if ((newaddr = malloc(size, mtp, flags)) == NULL)
  649                 return (NULL);
  650 
  651         /* Copy over original contents */
  652         bcopy(addr, newaddr, min(size, alloc));
  653         free(addr, mtp);
  654         return (newaddr);
  655 }
  656 
  657 /*
  658  *      reallocf: same as realloc() but free memory on failure.
  659  */
  660 void *
  661 reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
  662 {
  663         void *mem;
  664 
  665         if ((mem = realloc(addr, size, mtp, flags)) == NULL)
  666                 free(addr, mtp);
  667         return (mem);
  668 }
  669 
  670 /*
  671  * Wake the uma reclamation pagedaemon thread when we exhaust KVA.  It
  672  * will call the lowmem handler and uma_reclaim() callbacks in a
  673  * context that is safe.
  674  */
  675 static void
  676 kmem_reclaim(vmem_t *vm, int flags)
  677 {
  678 
  679         uma_reclaim_wakeup();
  680         pagedaemon_wakeup();
  681 }
  682 
  683 #ifndef __sparc64__
  684 CTASSERT(VM_KMEM_SIZE_SCALE >= 1);
  685 #endif
  686 
  687 /*
  688  * Initialize the kernel memory (kmem) arena.
  689  */
  690 void
  691 kmeminit(void)
  692 {
  693         u_long mem_size;
  694         u_long tmp;
  695 
  696 #ifdef VM_KMEM_SIZE
  697         if (vm_kmem_size == 0)
  698                 vm_kmem_size = VM_KMEM_SIZE;
  699 #endif
  700 #ifdef VM_KMEM_SIZE_MIN
  701         if (vm_kmem_size_min == 0)
  702                 vm_kmem_size_min = VM_KMEM_SIZE_MIN;
  703 #endif
  704 #ifdef VM_KMEM_SIZE_MAX
  705         if (vm_kmem_size_max == 0)
  706                 vm_kmem_size_max = VM_KMEM_SIZE_MAX;
  707 #endif
  708         /*
  709          * Calculate the amount of kernel virtual address (KVA) space that is
  710          * preallocated to the kmem arena.  In order to support a wide range
  711          * of machines, it is a function of the physical memory size,
  712          * specifically,
  713          *
  714          *      min(max(physical memory size / VM_KMEM_SIZE_SCALE,
  715          *          VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX)
  716          *
  717          * Every architecture must define an integral value for
  718          * VM_KMEM_SIZE_SCALE.  However, the definitions of VM_KMEM_SIZE_MIN
  719          * and VM_KMEM_SIZE_MAX, which represent respectively the floor and
  720          * ceiling on this preallocation, are optional.  Typically,
  721          * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on
  722          * a given architecture.
  723          */
  724         mem_size = vm_cnt.v_page_count;
  725         if (mem_size <= 32768) /* delphij XXX 128MB */
  726                 kmem_zmax = PAGE_SIZE;
  727 
  728         if (vm_kmem_size_scale < 1)
  729                 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
  730 
  731         /*
  732          * Check if we should use defaults for the "vm_kmem_size"
  733          * variable:
  734          */
  735         if (vm_kmem_size == 0) {
  736                 vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
  737 
  738                 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min)
  739                         vm_kmem_size = vm_kmem_size_min;
  740                 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
  741                         vm_kmem_size = vm_kmem_size_max;
  742         }
  743 
  744         /*
  745          * The amount of KVA space that is preallocated to the
  746          * kmem arena can be set statically at compile-time or manually
  747          * through the kernel environment.  However, it is still limited to
  748          * twice the physical memory size, which has been sufficient to handle
  749          * the most severe cases of external fragmentation in the kmem arena. 
  750          */
  751         if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
  752                 vm_kmem_size = 2 * mem_size * PAGE_SIZE;
  753 
  754         vm_kmem_size = round_page(vm_kmem_size);
  755 #ifdef DEBUG_MEMGUARD
  756         tmp = memguard_fudge(vm_kmem_size, kernel_map);
  757 #else
  758         tmp = vm_kmem_size;
  759 #endif
  760         vmem_init(kmem_arena, "kmem arena", kva_alloc(tmp), tmp, PAGE_SIZE,
  761             0, 0);
  762         vmem_set_reclaim(kmem_arena, kmem_reclaim);
  763 
  764 #ifdef DEBUG_MEMGUARD
  765         /*
  766          * Initialize MemGuard if support compiled in.  MemGuard is a
  767          * replacement allocator used for detecting tamper-after-free
  768          * scenarios as they occur.  It is only used for debugging.
  769          */
  770         memguard_init(kmem_arena);
  771 #endif
  772 }
  773 
  774 /*
  775  * Initialize the kernel memory allocator
  776  */
  777 /* ARGSUSED*/
  778 static void
  779 mallocinit(void *dummy)
  780 {
  781         int i;
  782         uint8_t indx;
  783 
  784         mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
  785 
  786         kmeminit();
  787 
  788         uma_startup2();
  789 
  790         if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX)
  791                 kmem_zmax = KMEM_ZMAX;
  792 
  793         mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
  794 #ifdef INVARIANTS
  795             mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
  796 #else
  797             NULL, NULL, NULL, NULL,
  798 #endif
  799             UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
  800         for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
  801                 int size = kmemzones[indx].kz_size;
  802                 char *name = kmemzones[indx].kz_name;
  803                 int subzone;
  804 
  805                 for (subzone = 0; subzone < numzones; subzone++) {
  806                         kmemzones[indx].kz_zone[subzone] =
  807                             uma_zcreate(name, size,
  808 #ifdef INVARIANTS
  809                             mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
  810 #else
  811                             NULL, NULL, NULL, NULL,
  812 #endif
  813                             UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
  814                 }                   
  815                 for (;i <= size; i+= KMEM_ZBASE)
  816                         kmemsize[i >> KMEM_ZSHIFT] = indx;
  817 
  818         }
  819 }
  820 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL);
  821 
  822 void
  823 malloc_init(void *data)
  824 {
  825         struct malloc_type_internal *mtip;
  826         struct malloc_type *mtp;
  827 
  828         KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init"));
  829 
  830         mtp = data;
  831         if (mtp->ks_magic != M_MAGIC)
  832                 panic("malloc_init: bad malloc type magic");
  833 
  834         mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
  835         mtp->ks_handle = mtip;
  836         mtip->mti_zone = mtp_get_subzone(mtp->ks_shortdesc);
  837 
  838         mtx_lock(&malloc_mtx);
  839         mtp->ks_next = kmemstatistics;
  840         kmemstatistics = mtp;
  841         kmemcount++;
  842         mtx_unlock(&malloc_mtx);
  843 }
  844 
  845 void
  846 malloc_uninit(void *data)
  847 {
  848         struct malloc_type_internal *mtip;
  849         struct malloc_type_stats *mtsp;
  850         struct malloc_type *mtp, *temp;
  851         uma_slab_t slab;
  852         long temp_allocs, temp_bytes;
  853         int i;
  854 
  855         mtp = data;
  856         KASSERT(mtp->ks_magic == M_MAGIC,
  857             ("malloc_uninit: bad malloc type magic"));
  858         KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
  859 
  860         mtx_lock(&malloc_mtx);
  861         mtip = mtp->ks_handle;
  862         mtp->ks_handle = NULL;
  863         if (mtp != kmemstatistics) {
  864                 for (temp = kmemstatistics; temp != NULL;
  865                     temp = temp->ks_next) {
  866                         if (temp->ks_next == mtp) {
  867                                 temp->ks_next = mtp->ks_next;
  868                                 break;
  869                         }
  870                 }
  871                 KASSERT(temp,
  872                     ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
  873         } else
  874                 kmemstatistics = mtp->ks_next;
  875         kmemcount--;
  876         mtx_unlock(&malloc_mtx);
  877 
  878         /*
  879          * Look for memory leaks.
  880          */
  881         temp_allocs = temp_bytes = 0;
  882         for (i = 0; i < MAXCPU; i++) {
  883                 mtsp = &mtip->mti_stats[i];
  884                 temp_allocs += mtsp->mts_numallocs;
  885                 temp_allocs -= mtsp->mts_numfrees;
  886                 temp_bytes += mtsp->mts_memalloced;
  887                 temp_bytes -= mtsp->mts_memfreed;
  888         }
  889         if (temp_allocs > 0 || temp_bytes > 0) {
  890                 printf("Warning: memory type %s leaked memory on destroy "
  891                     "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
  892                     temp_allocs, temp_bytes);
  893         }
  894 
  895         slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK));
  896         uma_zfree_arg(mt_zone, mtip, slab);
  897 }
  898 
  899 struct malloc_type *
  900 malloc_desc2type(const char *desc)
  901 {
  902         struct malloc_type *mtp;
  903 
  904         mtx_assert(&malloc_mtx, MA_OWNED);
  905         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
  906                 if (strcmp(mtp->ks_shortdesc, desc) == 0)
  907                         return (mtp);
  908         }
  909         return (NULL);
  910 }
  911 
  912 static int
  913 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
  914 {
  915         struct malloc_type_stream_header mtsh;
  916         struct malloc_type_internal *mtip;
  917         struct malloc_type_header mth;
  918         struct malloc_type *mtp;
  919         int error, i;
  920         struct sbuf sbuf;
  921 
  922         error = sysctl_wire_old_buffer(req, 0);
  923         if (error != 0)
  924                 return (error);
  925         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
  926         sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
  927         mtx_lock(&malloc_mtx);
  928 
  929         /*
  930          * Insert stream header.
  931          */
  932         bzero(&mtsh, sizeof(mtsh));
  933         mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
  934         mtsh.mtsh_maxcpus = MAXCPU;
  935         mtsh.mtsh_count = kmemcount;
  936         (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
  937 
  938         /*
  939          * Insert alternating sequence of type headers and type statistics.
  940          */
  941         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
  942                 mtip = (struct malloc_type_internal *)mtp->ks_handle;
  943 
  944                 /*
  945                  * Insert type header.
  946                  */
  947                 bzero(&mth, sizeof(mth));
  948                 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
  949                 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
  950 
  951                 /*
  952                  * Insert type statistics for each CPU.
  953                  */
  954                 for (i = 0; i < MAXCPU; i++) {
  955                         (void)sbuf_bcat(&sbuf, &mtip->mti_stats[i],
  956                             sizeof(mtip->mti_stats[i]));
  957                 }
  958         }
  959         mtx_unlock(&malloc_mtx);
  960         error = sbuf_finish(&sbuf);
  961         sbuf_delete(&sbuf);
  962         return (error);
  963 }
  964 
  965 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
  966     0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
  967     "Return malloc types");
  968 
  969 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
  970     "Count of kernel malloc types");
  971 
  972 void
  973 malloc_type_list(malloc_type_list_func_t *func, void *arg)
  974 {
  975         struct malloc_type *mtp, **bufmtp;
  976         int count, i;
  977         size_t buflen;
  978 
  979         mtx_lock(&malloc_mtx);
  980 restart:
  981         mtx_assert(&malloc_mtx, MA_OWNED);
  982         count = kmemcount;
  983         mtx_unlock(&malloc_mtx);
  984 
  985         buflen = sizeof(struct malloc_type *) * count;
  986         bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
  987 
  988         mtx_lock(&malloc_mtx);
  989 
  990         if (count < kmemcount) {
  991                 free(bufmtp, M_TEMP);
  992                 goto restart;
  993         }
  994 
  995         for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
  996                 bufmtp[i] = mtp;
  997 
  998         mtx_unlock(&malloc_mtx);
  999 
 1000         for (i = 0; i < count; i++)
 1001                 (func)(bufmtp[i], arg);
 1002 
 1003         free(bufmtp, M_TEMP);
 1004 }
 1005 
 1006 #ifdef DDB
 1007 DB_SHOW_COMMAND(malloc, db_show_malloc)
 1008 {
 1009         struct malloc_type_internal *mtip;
 1010         struct malloc_type *mtp;
 1011         uint64_t allocs, frees;
 1012         uint64_t alloced, freed;
 1013         int i;
 1014 
 1015         db_printf("%18s %12s  %12s %12s\n", "Type", "InUse", "MemUse",
 1016             "Requests");
 1017         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1018                 mtip = (struct malloc_type_internal *)mtp->ks_handle;
 1019                 allocs = 0;
 1020                 frees = 0;
 1021                 alloced = 0;
 1022                 freed = 0;
 1023                 for (i = 0; i < MAXCPU; i++) {
 1024                         allocs += mtip->mti_stats[i].mts_numallocs;
 1025                         frees += mtip->mti_stats[i].mts_numfrees;
 1026                         alloced += mtip->mti_stats[i].mts_memalloced;
 1027                         freed += mtip->mti_stats[i].mts_memfreed;
 1028                 }
 1029                 db_printf("%18s %12ju %12juK %12ju\n",
 1030                     mtp->ks_shortdesc, allocs - frees,
 1031                     (alloced - freed + 1023) / 1024, allocs);
 1032                 if (db_pager_quit)
 1033                         break;
 1034         }
 1035 }
 1036 
 1037 #if MALLOC_DEBUG_MAXZONES > 1
 1038 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
 1039 {
 1040         struct malloc_type_internal *mtip;
 1041         struct malloc_type *mtp;
 1042         u_int subzone;
 1043 
 1044         if (!have_addr) {
 1045                 db_printf("Usage: show multizone_matches <malloc type/addr>\n");
 1046                 return;
 1047         }
 1048         mtp = (void *)addr;
 1049         if (mtp->ks_magic != M_MAGIC) {
 1050                 db_printf("Magic %lx does not match expected %x\n",
 1051                     mtp->ks_magic, M_MAGIC);
 1052                 return;
 1053         }
 1054 
 1055         mtip = mtp->ks_handle;
 1056         subzone = mtip->mti_zone;
 1057 
 1058         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1059                 mtip = mtp->ks_handle;
 1060                 if (mtip->mti_zone != subzone)
 1061                         continue;
 1062                 db_printf("%s\n", mtp->ks_shortdesc);
 1063                 if (db_pager_quit)
 1064                         break;
 1065         }
 1066 }
 1067 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
 1068 #endif /* DDB */
 1069 
 1070 #ifdef MALLOC_PROFILE
 1071 
 1072 static int
 1073 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
 1074 {
 1075         struct sbuf sbuf;
 1076         uint64_t count;
 1077         uint64_t waste;
 1078         uint64_t mem;
 1079         int error;
 1080         int rsize;
 1081         int size;
 1082         int i;
 1083 
 1084         waste = 0;
 1085         mem = 0;
 1086 
 1087         error = sysctl_wire_old_buffer(req, 0);
 1088         if (error != 0)
 1089                 return (error);
 1090         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
 1091         sbuf_printf(&sbuf, 
 1092             "\n  Size                    Requests  Real Size\n");
 1093         for (i = 0; i < KMEM_ZSIZE; i++) {
 1094                 size = i << KMEM_ZSHIFT;
 1095                 rsize = kmemzones[kmemsize[i]].kz_size;
 1096                 count = (long long unsigned)krequests[i];
 1097 
 1098                 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
 1099                     (unsigned long long)count, rsize);
 1100 
 1101                 if ((rsize * count) > (size * count))
 1102                         waste += (rsize * count) - (size * count);
 1103                 mem += (rsize * count);
 1104         }
 1105         sbuf_printf(&sbuf,
 1106             "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
 1107             (unsigned long long)mem, (unsigned long long)waste);
 1108         error = sbuf_finish(&sbuf);
 1109         sbuf_delete(&sbuf);
 1110         return (error);
 1111 }
 1112 
 1113 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
 1114     NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
 1115 #endif /* MALLOC_PROFILE */

Cache object: cc5606555b720072136a8b72dbb4c3ed


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.