The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_malloc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1987, 1991, 1993
    3  *      The Regents of the University of California.
    4  * Copyright (c) 2005-2009 Robert N. M. Watson
    5  * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray)
    6  * All rights reserved.
    7  *
    8  * Redistribution and use in source and binary forms, with or without
    9  * modification, are permitted provided that the following conditions
   10  * are met:
   11  * 1. Redistributions of source code must retain the above copyright
   12  *    notice, this list of conditions and the following disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  * 4. Neither the name of the University nor the names of its contributors
   17  *    may be used to endorse or promote products derived from this software
   18  *    without specific prior written permission.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  *
   32  *      @(#)kern_malloc.c       8.3 (Berkeley) 1/4/94
   33  */
   34 
   35 /*
   36  * Kernel malloc(9) implementation -- general purpose kernel memory allocator
   37  * based on memory types.  Back end is implemented using the UMA(9) zone
   38  * allocator.  A set of fixed-size buckets are used for smaller allocations,
   39  * and a special UMA allocation interface is used for larger allocations.
   40  * Callers declare memory types, and statistics are maintained independently
   41  * for each memory type.  Statistics are maintained per-CPU for performance
   42  * reasons.  See malloc(9) and comments in malloc.h for a detailed
   43  * description.
   44  */
   45 
   46 #include <sys/cdefs.h>
   47 __FBSDID("$FreeBSD$");
   48 
   49 #include "opt_ddb.h"
   50 #include "opt_vm.h"
   51 
   52 #include <sys/param.h>
   53 #include <sys/systm.h>
   54 #include <sys/kdb.h>
   55 #include <sys/kernel.h>
   56 #include <sys/lock.h>
   57 #include <sys/malloc.h>
   58 #include <sys/mutex.h>
   59 #include <sys/vmmeter.h>
   60 #include <sys/proc.h>
   61 #include <sys/sbuf.h>
   62 #include <sys/sysctl.h>
   63 #include <sys/time.h>
   64 #include <sys/vmem.h>
   65 
   66 #include <vm/vm.h>
   67 #include <vm/pmap.h>
   68 #include <vm/vm_pageout.h>
   69 #include <vm/vm_param.h>
   70 #include <vm/vm_kern.h>
   71 #include <vm/vm_extern.h>
   72 #include <vm/vm_map.h>
   73 #include <vm/vm_page.h>
   74 #include <vm/uma.h>
   75 #include <vm/uma_int.h>
   76 #include <vm/uma_dbg.h>
   77 
   78 #ifdef DEBUG_MEMGUARD
   79 #include <vm/memguard.h>
   80 #endif
   81 #ifdef DEBUG_REDZONE
   82 #include <vm/redzone.h>
   83 #endif
   84 
   85 #if defined(INVARIANTS) && defined(__i386__)
   86 #include <machine/cpu.h>
   87 #endif
   88 
   89 #include <ddb/ddb.h>
   90 
   91 #ifdef KDTRACE_HOOKS
   92 #include <sys/dtrace_bsd.h>
   93 
   94 dtrace_malloc_probe_func_t      dtrace_malloc_probe;
   95 #endif
   96 
   97 /*
   98  * When realloc() is called, if the new size is sufficiently smaller than
   99  * the old size, realloc() will allocate a new, smaller block to avoid
  100  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
  101  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
  102  */
  103 #ifndef REALLOC_FRACTION
  104 #define REALLOC_FRACTION        1       /* new block if <= half the size */
  105 #endif
  106 
  107 /*
  108  * Centrally define some common malloc types.
  109  */
  110 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
  111 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
  112 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
  113 
  114 static struct malloc_type *kmemstatistics;
  115 static int kmemcount;
  116 
  117 #define KMEM_ZSHIFT     4
  118 #define KMEM_ZBASE      16
  119 #define KMEM_ZMASK      (KMEM_ZBASE - 1)
  120 
  121 #define KMEM_ZMAX       65536
  122 #define KMEM_ZSIZE      (KMEM_ZMAX >> KMEM_ZSHIFT)
  123 static uint8_t kmemsize[KMEM_ZSIZE + 1];
  124 
  125 #ifndef MALLOC_DEBUG_MAXZONES
  126 #define MALLOC_DEBUG_MAXZONES   1
  127 #endif
  128 static int numzones = MALLOC_DEBUG_MAXZONES;
  129 
  130 /*
  131  * Small malloc(9) memory allocations are allocated from a set of UMA buckets
  132  * of various sizes.
  133  *
  134  * XXX: The comment here used to read "These won't be powers of two for
  135  * long."  It's possible that a significant amount of wasted memory could be
  136  * recovered by tuning the sizes of these buckets.
  137  */
  138 struct {
  139         int kz_size;
  140         char *kz_name;
  141         uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
  142 } kmemzones[] = {
  143         {16, "16", },
  144         {32, "32", },
  145         {64, "64", },
  146         {128, "128", },
  147         {256, "256", },
  148         {512, "512", },
  149         {1024, "1024", },
  150         {2048, "2048", },
  151         {4096, "4096", },
  152         {8192, "8192", },
  153         {16384, "16384", },
  154         {32768, "32768", },
  155         {65536, "65536", },
  156         {0, NULL},
  157 };
  158 
  159 /*
  160  * Zone to allocate malloc type descriptions from.  For ABI reasons, memory
  161  * types are described by a data structure passed by the declaring code, but
  162  * the malloc(9) implementation has its own data structure describing the
  163  * type and statistics.  This permits the malloc(9)-internal data structures
  164  * to be modified without breaking binary-compiled kernel modules that
  165  * declare malloc types.
  166  */
  167 static uma_zone_t mt_zone;
  168 
  169 u_long vm_kmem_size;
  170 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
  171     "Size of kernel memory");
  172 
  173 static u_long kmem_zmax = KMEM_ZMAX;
  174 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0,
  175     "Maximum allocation size that malloc(9) would use UMA as backend");
  176 
  177 static u_long vm_kmem_size_min;
  178 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
  179     "Minimum size of kernel memory");
  180 
  181 static u_long vm_kmem_size_max;
  182 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
  183     "Maximum size of kernel memory");
  184 
  185 static u_int vm_kmem_size_scale;
  186 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
  187     "Scale factor for kernel memory size");
  188 
  189 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
  190 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
  191     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
  192     sysctl_kmem_map_size, "LU", "Current kmem allocation size");
  193 
  194 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
  195 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
  196     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
  197     sysctl_kmem_map_free, "LU", "Free space in kmem");
  198 
  199 /*
  200  * The malloc_mtx protects the kmemstatistics linked list.
  201  */
  202 struct mtx malloc_mtx;
  203 
  204 #ifdef MALLOC_PROFILE
  205 uint64_t krequests[KMEM_ZSIZE + 1];
  206 
  207 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
  208 #endif
  209 
  210 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
  211 
  212 /*
  213  * time_uptime of the last malloc(9) failure (induced or real).
  214  */
  215 static time_t t_malloc_fail;
  216 
  217 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
  218 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
  219     "Kernel malloc debugging options");
  220 #endif
  221 
  222 /*
  223  * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
  224  * the caller specifies M_NOWAIT.  If set to 0, no failures are caused.
  225  */
  226 #ifdef MALLOC_MAKE_FAILURES
  227 static int malloc_failure_rate;
  228 static int malloc_nowait_count;
  229 static int malloc_failure_count;
  230 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN,
  231     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
  232 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
  233     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
  234 #endif
  235 
  236 static int
  237 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
  238 {
  239         u_long size;
  240 
  241         size = vmem_size(kmem_arena, VMEM_ALLOC);
  242         return (sysctl_handle_long(oidp, &size, 0, req));
  243 }
  244 
  245 static int
  246 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
  247 {
  248         u_long size;
  249 
  250         size = vmem_size(kmem_arena, VMEM_FREE);
  251         return (sysctl_handle_long(oidp, &size, 0, req));
  252 }
  253 
  254 /*
  255  * malloc(9) uma zone separation -- sub-page buffer overruns in one
  256  * malloc type will affect only a subset of other malloc types.
  257  */
  258 #if MALLOC_DEBUG_MAXZONES > 1
  259 static void
  260 tunable_set_numzones(void)
  261 {
  262 
  263         TUNABLE_INT_FETCH("debug.malloc.numzones",
  264             &numzones);
  265 
  266         /* Sanity check the number of malloc uma zones. */
  267         if (numzones <= 0)
  268                 numzones = 1;
  269         if (numzones > MALLOC_DEBUG_MAXZONES)
  270                 numzones = MALLOC_DEBUG_MAXZONES;
  271 }
  272 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
  273 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
  274     &numzones, 0, "Number of malloc uma subzones");
  275 
  276 /*
  277  * Any number that changes regularly is an okay choice for the
  278  * offset.  Build numbers are pretty good of you have them.
  279  */
  280 static u_int zone_offset = __FreeBSD_version;
  281 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
  282 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
  283     &zone_offset, 0, "Separate malloc types by examining the "
  284     "Nth character in the malloc type short description.");
  285 
  286 static u_int
  287 mtp_get_subzone(const char *desc)
  288 {
  289         size_t len;
  290         u_int val;
  291 
  292         if (desc == NULL || (len = strlen(desc)) == 0)
  293                 return (0);
  294         val = desc[zone_offset % len];
  295         return (val % numzones);
  296 }
  297 #elif MALLOC_DEBUG_MAXZONES == 0
  298 #error "MALLOC_DEBUG_MAXZONES must be positive."
  299 #else
  300 static inline u_int
  301 mtp_get_subzone(const char *desc)
  302 {
  303 
  304         return (0);
  305 }
  306 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
  307 
  308 int
  309 malloc_last_fail(void)
  310 {
  311 
  312         return (time_uptime - t_malloc_fail);
  313 }
  314 
  315 /*
  316  * An allocation has succeeded -- update malloc type statistics for the
  317  * amount of bucket size.  Occurs within a critical section so that the
  318  * thread isn't preempted and doesn't migrate while updating per-PCU
  319  * statistics.
  320  */
  321 static void
  322 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
  323     int zindx)
  324 {
  325         struct malloc_type_internal *mtip;
  326         struct malloc_type_stats *mtsp;
  327 
  328         critical_enter();
  329         mtip = mtp->ks_handle;
  330         mtsp = &mtip->mti_stats[curcpu];
  331         if (size > 0) {
  332                 mtsp->mts_memalloced += size;
  333                 mtsp->mts_numallocs++;
  334         }
  335         if (zindx != -1)
  336                 mtsp->mts_size |= 1 << zindx;
  337 
  338 #ifdef KDTRACE_HOOKS
  339         if (dtrace_malloc_probe != NULL) {
  340                 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
  341                 if (probe_id != 0)
  342                         (dtrace_malloc_probe)(probe_id,
  343                             (uintptr_t) mtp, (uintptr_t) mtip,
  344                             (uintptr_t) mtsp, size, zindx);
  345         }
  346 #endif
  347 
  348         critical_exit();
  349 }
  350 
  351 void
  352 malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
  353 {
  354 
  355         if (size > 0)
  356                 malloc_type_zone_allocated(mtp, size, -1);
  357 }
  358 
  359 /*
  360  * A free operation has occurred -- update malloc type statistics for the
  361  * amount of the bucket size.  Occurs within a critical section so that the
  362  * thread isn't preempted and doesn't migrate while updating per-CPU
  363  * statistics.
  364  */
  365 void
  366 malloc_type_freed(struct malloc_type *mtp, unsigned long size)
  367 {
  368         struct malloc_type_internal *mtip;
  369         struct malloc_type_stats *mtsp;
  370 
  371         critical_enter();
  372         mtip = mtp->ks_handle;
  373         mtsp = &mtip->mti_stats[curcpu];
  374         mtsp->mts_memfreed += size;
  375         mtsp->mts_numfrees++;
  376 
  377 #ifdef KDTRACE_HOOKS
  378         if (dtrace_malloc_probe != NULL) {
  379                 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
  380                 if (probe_id != 0)
  381                         (dtrace_malloc_probe)(probe_id,
  382                             (uintptr_t) mtp, (uintptr_t) mtip,
  383                             (uintptr_t) mtsp, size, 0);
  384         }
  385 #endif
  386 
  387         critical_exit();
  388 }
  389 
  390 /*
  391  *      contigmalloc:
  392  *
  393  *      Allocate a block of physically contiguous memory.
  394  *
  395  *      If M_NOWAIT is set, this routine will not block and return NULL if
  396  *      the allocation fails.
  397  */
  398 void *
  399 contigmalloc(unsigned long size, struct malloc_type *type, int flags,
  400     vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
  401     vm_paddr_t boundary)
  402 {
  403         void *ret;
  404 
  405         ret = (void *)kmem_alloc_contig(kernel_arena, size, flags, low, high,
  406             alignment, boundary, VM_MEMATTR_DEFAULT);
  407         if (ret != NULL)
  408                 malloc_type_allocated(type, round_page(size));
  409         return (ret);
  410 }
  411 
  412 /*
  413  *      contigfree:
  414  *
  415  *      Free a block of memory allocated by contigmalloc.
  416  *
  417  *      This routine may not block.
  418  */
  419 void
  420 contigfree(void *addr, unsigned long size, struct malloc_type *type)
  421 {
  422 
  423         kmem_free(kernel_arena, (vm_offset_t)addr, size);
  424         malloc_type_freed(type, round_page(size));
  425 }
  426 
  427 /*
  428  *      malloc:
  429  *
  430  *      Allocate a block of memory.
  431  *
  432  *      If M_NOWAIT is set, this routine will not block and return NULL if
  433  *      the allocation fails.
  434  */
  435 void *
  436 malloc(unsigned long size, struct malloc_type *mtp, int flags)
  437 {
  438         int indx;
  439         struct malloc_type_internal *mtip;
  440         caddr_t va;
  441         uma_zone_t zone;
  442 #if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE)
  443         unsigned long osize = size;
  444 #endif
  445 
  446 #ifdef INVARIANTS
  447         KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic"));
  448         /*
  449          * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
  450          */
  451         indx = flags & (M_WAITOK | M_NOWAIT);
  452         if (indx != M_NOWAIT && indx != M_WAITOK) {
  453                 static  struct timeval lasterr;
  454                 static  int curerr, once;
  455                 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
  456                         printf("Bad malloc flags: %x\n", indx);
  457                         kdb_backtrace();
  458                         flags |= M_WAITOK;
  459                         once++;
  460                 }
  461         }
  462 #endif
  463 #ifdef MALLOC_MAKE_FAILURES
  464         if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
  465                 atomic_add_int(&malloc_nowait_count, 1);
  466                 if ((malloc_nowait_count % malloc_failure_rate) == 0) {
  467                         atomic_add_int(&malloc_failure_count, 1);
  468                         t_malloc_fail = time_uptime;
  469                         return (NULL);
  470                 }
  471         }
  472 #endif
  473         if (flags & M_WAITOK)
  474                 KASSERT(curthread->td_intr_nesting_level == 0,
  475                    ("malloc(M_WAITOK) in interrupt context"));
  476         KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
  477             ("malloc: called with spinlock or critical section held"));
  478 
  479 #ifdef DEBUG_MEMGUARD
  480         if (memguard_cmp_mtp(mtp, size)) {
  481                 va = memguard_alloc(size, flags);
  482                 if (va != NULL)
  483                         return (va);
  484                 /* This is unfortunate but should not be fatal. */
  485         }
  486 #endif
  487 
  488 #ifdef DEBUG_REDZONE
  489         size = redzone_size_ntor(size);
  490 #endif
  491 
  492         if (size <= kmem_zmax) {
  493                 mtip = mtp->ks_handle;
  494                 if (size & KMEM_ZMASK)
  495                         size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
  496                 indx = kmemsize[size >> KMEM_ZSHIFT];
  497                 KASSERT(mtip->mti_zone < numzones,
  498                     ("mti_zone %u out of range %d",
  499                     mtip->mti_zone, numzones));
  500                 zone = kmemzones[indx].kz_zone[mtip->mti_zone];
  501 #ifdef MALLOC_PROFILE
  502                 krequests[size >> KMEM_ZSHIFT]++;
  503 #endif
  504                 va = uma_zalloc(zone, flags);
  505                 if (va != NULL)
  506                         size = zone->uz_size;
  507                 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
  508         } else {
  509                 size = roundup(size, PAGE_SIZE);
  510                 zone = NULL;
  511                 va = uma_large_malloc(size, flags);
  512                 malloc_type_allocated(mtp, va == NULL ? 0 : size);
  513         }
  514         if (flags & M_WAITOK)
  515                 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
  516         else if (va == NULL)
  517                 t_malloc_fail = time_uptime;
  518 #ifdef DIAGNOSTIC
  519         if (va != NULL && !(flags & M_ZERO)) {
  520                 memset(va, 0x70, osize);
  521         }
  522 #endif
  523 #ifdef DEBUG_REDZONE
  524         if (va != NULL)
  525                 va = redzone_setup(va, osize);
  526 #endif
  527         return ((void *) va);
  528 }
  529 
  530 void *
  531 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags)
  532 {
  533 
  534         if (WOULD_OVERFLOW(nmemb, size))
  535                 panic("mallocarray: %zu * %zu overflowed", nmemb, size);
  536 
  537         return (malloc(size * nmemb, type, flags));
  538 }
  539 
  540 /*
  541  *      free:
  542  *
  543  *      Free a block of memory allocated by malloc.
  544  *
  545  *      This routine may not block.
  546  */
  547 void
  548 free(void *addr, struct malloc_type *mtp)
  549 {
  550         uma_slab_t slab;
  551         u_long size;
  552 
  553         KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic"));
  554         KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
  555             ("free: called with spinlock or critical section held"));
  556 
  557         /* free(NULL, ...) does nothing */
  558         if (addr == NULL)
  559                 return;
  560 
  561 #ifdef DEBUG_MEMGUARD
  562         if (is_memguard_addr(addr)) {
  563                 memguard_free(addr);
  564                 return;
  565         }
  566 #endif
  567 
  568 #ifdef DEBUG_REDZONE
  569         redzone_check(addr);
  570         addr = redzone_addr_ntor(addr);
  571 #endif
  572 
  573         slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
  574 
  575         if (slab == NULL)
  576                 panic("free: address %p(%p) has not been allocated.\n",
  577                     addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
  578 
  579         if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
  580 #ifdef INVARIANTS
  581                 struct malloc_type **mtpp = addr;
  582 #endif
  583                 size = slab->us_keg->uk_size;
  584 #ifdef INVARIANTS
  585                 /*
  586                  * Cache a pointer to the malloc_type that most recently freed
  587                  * this memory here.  This way we know who is most likely to
  588                  * have stepped on it later.
  589                  *
  590                  * This code assumes that size is a multiple of 8 bytes for
  591                  * 64 bit machines
  592                  */
  593                 mtpp = (struct malloc_type **)
  594                     ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
  595                 mtpp += (size - sizeof(struct malloc_type *)) /
  596                     sizeof(struct malloc_type *);
  597                 *mtpp = mtp;
  598 #endif
  599                 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
  600         } else {
  601                 size = slab->us_size;
  602                 uma_large_free(slab);
  603         }
  604         malloc_type_freed(mtp, size);
  605 }
  606 
  607 /*
  608  *      realloc: change the size of a memory block
  609  */
  610 void *
  611 realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
  612 {
  613         uma_slab_t slab;
  614         unsigned long alloc;
  615         void *newaddr;
  616 
  617         KASSERT(mtp->ks_magic == M_MAGIC,
  618             ("realloc: bad malloc type magic"));
  619         KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
  620             ("realloc: called with spinlock or critical section held"));
  621 
  622         /* realloc(NULL, ...) is equivalent to malloc(...) */
  623         if (addr == NULL)
  624                 return (malloc(size, mtp, flags));
  625 
  626         /*
  627          * XXX: Should report free of old memory and alloc of new memory to
  628          * per-CPU stats.
  629          */
  630 
  631 #ifdef DEBUG_MEMGUARD
  632         if (is_memguard_addr(addr))
  633                 return (memguard_realloc(addr, size, mtp, flags));
  634 #endif
  635 
  636 #ifdef DEBUG_REDZONE
  637         slab = NULL;
  638         alloc = redzone_get_size(addr);
  639 #else
  640         slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
  641 
  642         /* Sanity check */
  643         KASSERT(slab != NULL,
  644             ("realloc: address %p out of range", (void *)addr));
  645 
  646         /* Get the size of the original block */
  647         if (!(slab->us_flags & UMA_SLAB_MALLOC))
  648                 alloc = slab->us_keg->uk_size;
  649         else
  650                 alloc = slab->us_size;
  651 
  652         /* Reuse the original block if appropriate */
  653         if (size <= alloc
  654             && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
  655                 return (addr);
  656 #endif /* !DEBUG_REDZONE */
  657 
  658         /* Allocate a new, bigger (or smaller) block */
  659         if ((newaddr = malloc(size, mtp, flags)) == NULL)
  660                 return (NULL);
  661 
  662         /* Copy over original contents */
  663         bcopy(addr, newaddr, min(size, alloc));
  664         free(addr, mtp);
  665         return (newaddr);
  666 }
  667 
  668 /*
  669  *      reallocf: same as realloc() but free memory on failure.
  670  */
  671 void *
  672 reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
  673 {
  674         void *mem;
  675 
  676         if ((mem = realloc(addr, size, mtp, flags)) == NULL)
  677                 free(addr, mtp);
  678         return (mem);
  679 }
  680 
  681 /*
  682  * Wake the uma reclamation pagedaemon thread when we exhaust KVA.  It
  683  * will call the lowmem handler and uma_reclaim() callbacks in a
  684  * context that is safe.
  685  */
  686 static void
  687 kmem_reclaim(vmem_t *vm, int flags)
  688 {
  689 
  690         uma_reclaim_wakeup();
  691         pagedaemon_wakeup();
  692 }
  693 
  694 #ifndef __sparc64__
  695 CTASSERT(VM_KMEM_SIZE_SCALE >= 1);
  696 #endif
  697 
  698 /*
  699  * Initialize the kernel memory (kmem) arena.
  700  */
  701 void
  702 kmeminit(void)
  703 {
  704         u_long mem_size;
  705         u_long tmp;
  706 
  707 #ifdef VM_KMEM_SIZE
  708         if (vm_kmem_size == 0)
  709                 vm_kmem_size = VM_KMEM_SIZE;
  710 #endif
  711 #ifdef VM_KMEM_SIZE_MIN
  712         if (vm_kmem_size_min == 0)
  713                 vm_kmem_size_min = VM_KMEM_SIZE_MIN;
  714 #endif
  715 #ifdef VM_KMEM_SIZE_MAX
  716         if (vm_kmem_size_max == 0)
  717                 vm_kmem_size_max = VM_KMEM_SIZE_MAX;
  718 #endif
  719         /*
  720          * Calculate the amount of kernel virtual address (KVA) space that is
  721          * preallocated to the kmem arena.  In order to support a wide range
  722          * of machines, it is a function of the physical memory size,
  723          * specifically,
  724          *
  725          *      min(max(physical memory size / VM_KMEM_SIZE_SCALE,
  726          *          VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX)
  727          *
  728          * Every architecture must define an integral value for
  729          * VM_KMEM_SIZE_SCALE.  However, the definitions of VM_KMEM_SIZE_MIN
  730          * and VM_KMEM_SIZE_MAX, which represent respectively the floor and
  731          * ceiling on this preallocation, are optional.  Typically,
  732          * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on
  733          * a given architecture.
  734          */
  735         mem_size = vm_cnt.v_page_count;
  736         if (mem_size <= 32768) /* delphij XXX 128MB */
  737                 kmem_zmax = PAGE_SIZE;
  738 
  739         if (vm_kmem_size_scale < 1)
  740                 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
  741 
  742         /*
  743          * Check if we should use defaults for the "vm_kmem_size"
  744          * variable:
  745          */
  746         if (vm_kmem_size == 0) {
  747                 vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
  748 
  749                 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min)
  750                         vm_kmem_size = vm_kmem_size_min;
  751                 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
  752                         vm_kmem_size = vm_kmem_size_max;
  753         }
  754 
  755         /*
  756          * The amount of KVA space that is preallocated to the
  757          * kmem arena can be set statically at compile-time or manually
  758          * through the kernel environment.  However, it is still limited to
  759          * twice the physical memory size, which has been sufficient to handle
  760          * the most severe cases of external fragmentation in the kmem arena. 
  761          */
  762         if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
  763                 vm_kmem_size = 2 * mem_size * PAGE_SIZE;
  764 
  765         vm_kmem_size = round_page(vm_kmem_size);
  766 #ifdef DEBUG_MEMGUARD
  767         tmp = memguard_fudge(vm_kmem_size, kernel_map);
  768 #else
  769         tmp = vm_kmem_size;
  770 #endif
  771         vmem_init(kmem_arena, "kmem arena", kva_alloc(tmp), tmp, PAGE_SIZE,
  772             0, 0);
  773         vmem_set_reclaim(kmem_arena, kmem_reclaim);
  774 
  775 #ifdef DEBUG_MEMGUARD
  776         /*
  777          * Initialize MemGuard if support compiled in.  MemGuard is a
  778          * replacement allocator used for detecting tamper-after-free
  779          * scenarios as they occur.  It is only used for debugging.
  780          */
  781         memguard_init(kmem_arena);
  782 #endif
  783 }
  784 
  785 /*
  786  * Initialize the kernel memory allocator
  787  */
  788 /* ARGSUSED*/
  789 static void
  790 mallocinit(void *dummy)
  791 {
  792         int i;
  793         uint8_t indx;
  794 
  795         mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
  796 
  797         kmeminit();
  798 
  799         uma_startup2();
  800 
  801         if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX)
  802                 kmem_zmax = KMEM_ZMAX;
  803 
  804         mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
  805 #ifdef INVARIANTS
  806             mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
  807 #else
  808             NULL, NULL, NULL, NULL,
  809 #endif
  810             UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
  811         for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
  812                 int size = kmemzones[indx].kz_size;
  813                 char *name = kmemzones[indx].kz_name;
  814                 int subzone;
  815 
  816                 for (subzone = 0; subzone < numzones; subzone++) {
  817                         kmemzones[indx].kz_zone[subzone] =
  818                             uma_zcreate(name, size,
  819 #ifdef INVARIANTS
  820                             mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
  821 #else
  822                             NULL, NULL, NULL, NULL,
  823 #endif
  824                             UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
  825                 }                   
  826                 for (;i <= size; i+= KMEM_ZBASE)
  827                         kmemsize[i >> KMEM_ZSHIFT] = indx;
  828 
  829         }
  830 }
  831 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL);
  832 
  833 void
  834 malloc_init(void *data)
  835 {
  836         struct malloc_type_internal *mtip;
  837         struct malloc_type *mtp;
  838 
  839         KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init"));
  840 
  841         mtp = data;
  842         if (mtp->ks_magic != M_MAGIC)
  843                 panic("malloc_init: bad malloc type magic");
  844 
  845         mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
  846         mtp->ks_handle = mtip;
  847         mtip->mti_zone = mtp_get_subzone(mtp->ks_shortdesc);
  848 
  849         mtx_lock(&malloc_mtx);
  850         mtp->ks_next = kmemstatistics;
  851         kmemstatistics = mtp;
  852         kmemcount++;
  853         mtx_unlock(&malloc_mtx);
  854 }
  855 
  856 void
  857 malloc_uninit(void *data)
  858 {
  859         struct malloc_type_internal *mtip;
  860         struct malloc_type_stats *mtsp;
  861         struct malloc_type *mtp, *temp;
  862         uma_slab_t slab;
  863         long temp_allocs, temp_bytes;
  864         int i;
  865 
  866         mtp = data;
  867         KASSERT(mtp->ks_magic == M_MAGIC,
  868             ("malloc_uninit: bad malloc type magic"));
  869         KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
  870 
  871         mtx_lock(&malloc_mtx);
  872         mtip = mtp->ks_handle;
  873         mtp->ks_handle = NULL;
  874         if (mtp != kmemstatistics) {
  875                 for (temp = kmemstatistics; temp != NULL;
  876                     temp = temp->ks_next) {
  877                         if (temp->ks_next == mtp) {
  878                                 temp->ks_next = mtp->ks_next;
  879                                 break;
  880                         }
  881                 }
  882                 KASSERT(temp,
  883                     ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
  884         } else
  885                 kmemstatistics = mtp->ks_next;
  886         kmemcount--;
  887         mtx_unlock(&malloc_mtx);
  888 
  889         /*
  890          * Look for memory leaks.
  891          */
  892         temp_allocs = temp_bytes = 0;
  893         for (i = 0; i < MAXCPU; i++) {
  894                 mtsp = &mtip->mti_stats[i];
  895                 temp_allocs += mtsp->mts_numallocs;
  896                 temp_allocs -= mtsp->mts_numfrees;
  897                 temp_bytes += mtsp->mts_memalloced;
  898                 temp_bytes -= mtsp->mts_memfreed;
  899         }
  900         if (temp_allocs > 0 || temp_bytes > 0) {
  901                 printf("Warning: memory type %s leaked memory on destroy "
  902                     "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
  903                     temp_allocs, temp_bytes);
  904         }
  905 
  906         slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK));
  907         uma_zfree_arg(mt_zone, mtip, slab);
  908 }
  909 
  910 struct malloc_type *
  911 malloc_desc2type(const char *desc)
  912 {
  913         struct malloc_type *mtp;
  914 
  915         mtx_assert(&malloc_mtx, MA_OWNED);
  916         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
  917                 if (strcmp(mtp->ks_shortdesc, desc) == 0)
  918                         return (mtp);
  919         }
  920         return (NULL);
  921 }
  922 
  923 static int
  924 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
  925 {
  926         struct malloc_type_stream_header mtsh;
  927         struct malloc_type_internal *mtip;
  928         struct malloc_type_header mth;
  929         struct malloc_type *mtp;
  930         int error, i;
  931         struct sbuf sbuf;
  932 
  933         error = sysctl_wire_old_buffer(req, 0);
  934         if (error != 0)
  935                 return (error);
  936         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
  937         sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
  938         mtx_lock(&malloc_mtx);
  939 
  940         /*
  941          * Insert stream header.
  942          */
  943         bzero(&mtsh, sizeof(mtsh));
  944         mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
  945         mtsh.mtsh_maxcpus = MAXCPU;
  946         mtsh.mtsh_count = kmemcount;
  947         (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
  948 
  949         /*
  950          * Insert alternating sequence of type headers and type statistics.
  951          */
  952         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
  953                 mtip = (struct malloc_type_internal *)mtp->ks_handle;
  954 
  955                 /*
  956                  * Insert type header.
  957                  */
  958                 bzero(&mth, sizeof(mth));
  959                 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
  960                 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
  961 
  962                 /*
  963                  * Insert type statistics for each CPU.
  964                  */
  965                 for (i = 0; i < MAXCPU; i++) {
  966                         (void)sbuf_bcat(&sbuf, &mtip->mti_stats[i],
  967                             sizeof(mtip->mti_stats[i]));
  968                 }
  969         }
  970         mtx_unlock(&malloc_mtx);
  971         error = sbuf_finish(&sbuf);
  972         sbuf_delete(&sbuf);
  973         return (error);
  974 }
  975 
  976 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
  977     0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
  978     "Return malloc types");
  979 
  980 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
  981     "Count of kernel malloc types");
  982 
  983 void
  984 malloc_type_list(malloc_type_list_func_t *func, void *arg)
  985 {
  986         struct malloc_type *mtp, **bufmtp;
  987         int count, i;
  988         size_t buflen;
  989 
  990         mtx_lock(&malloc_mtx);
  991 restart:
  992         mtx_assert(&malloc_mtx, MA_OWNED);
  993         count = kmemcount;
  994         mtx_unlock(&malloc_mtx);
  995 
  996         buflen = sizeof(struct malloc_type *) * count;
  997         bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
  998 
  999         mtx_lock(&malloc_mtx);
 1000 
 1001         if (count < kmemcount) {
 1002                 free(bufmtp, M_TEMP);
 1003                 goto restart;
 1004         }
 1005 
 1006         for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
 1007                 bufmtp[i] = mtp;
 1008 
 1009         mtx_unlock(&malloc_mtx);
 1010 
 1011         for (i = 0; i < count; i++)
 1012                 (func)(bufmtp[i], arg);
 1013 
 1014         free(bufmtp, M_TEMP);
 1015 }
 1016 
 1017 #ifdef DDB
 1018 DB_SHOW_COMMAND(malloc, db_show_malloc)
 1019 {
 1020         struct malloc_type_internal *mtip;
 1021         struct malloc_type *mtp;
 1022         uint64_t allocs, frees;
 1023         uint64_t alloced, freed;
 1024         int i;
 1025 
 1026         db_printf("%18s %12s  %12s %12s\n", "Type", "InUse", "MemUse",
 1027             "Requests");
 1028         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1029                 mtip = (struct malloc_type_internal *)mtp->ks_handle;
 1030                 allocs = 0;
 1031                 frees = 0;
 1032                 alloced = 0;
 1033                 freed = 0;
 1034                 for (i = 0; i < MAXCPU; i++) {
 1035                         allocs += mtip->mti_stats[i].mts_numallocs;
 1036                         frees += mtip->mti_stats[i].mts_numfrees;
 1037                         alloced += mtip->mti_stats[i].mts_memalloced;
 1038                         freed += mtip->mti_stats[i].mts_memfreed;
 1039                 }
 1040                 db_printf("%18s %12ju %12juK %12ju\n",
 1041                     mtp->ks_shortdesc, allocs - frees,
 1042                     (alloced - freed + 1023) / 1024, allocs);
 1043                 if (db_pager_quit)
 1044                         break;
 1045         }
 1046 }
 1047 
 1048 #if MALLOC_DEBUG_MAXZONES > 1
 1049 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
 1050 {
 1051         struct malloc_type_internal *mtip;
 1052         struct malloc_type *mtp;
 1053         u_int subzone;
 1054 
 1055         if (!have_addr) {
 1056                 db_printf("Usage: show multizone_matches <malloc type/addr>\n");
 1057                 return;
 1058         }
 1059         mtp = (void *)addr;
 1060         if (mtp->ks_magic != M_MAGIC) {
 1061                 db_printf("Magic %lx does not match expected %x\n",
 1062                     mtp->ks_magic, M_MAGIC);
 1063                 return;
 1064         }
 1065 
 1066         mtip = mtp->ks_handle;
 1067         subzone = mtip->mti_zone;
 1068 
 1069         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1070                 mtip = mtp->ks_handle;
 1071                 if (mtip->mti_zone != subzone)
 1072                         continue;
 1073                 db_printf("%s\n", mtp->ks_shortdesc);
 1074                 if (db_pager_quit)
 1075                         break;
 1076         }
 1077 }
 1078 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
 1079 #endif /* DDB */
 1080 
 1081 #ifdef MALLOC_PROFILE
 1082 
 1083 static int
 1084 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
 1085 {
 1086         struct sbuf sbuf;
 1087         uint64_t count;
 1088         uint64_t waste;
 1089         uint64_t mem;
 1090         int error;
 1091         int rsize;
 1092         int size;
 1093         int i;
 1094 
 1095         waste = 0;
 1096         mem = 0;
 1097 
 1098         error = sysctl_wire_old_buffer(req, 0);
 1099         if (error != 0)
 1100                 return (error);
 1101         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
 1102         sbuf_printf(&sbuf, 
 1103             "\n  Size                    Requests  Real Size\n");
 1104         for (i = 0; i < KMEM_ZSIZE; i++) {
 1105                 size = i << KMEM_ZSHIFT;
 1106                 rsize = kmemzones[kmemsize[i]].kz_size;
 1107                 count = (long long unsigned)krequests[i];
 1108 
 1109                 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
 1110                     (unsigned long long)count, rsize);
 1111 
 1112                 if ((rsize * count) > (size * count))
 1113                         waste += (rsize * count) - (size * count);
 1114                 mem += (rsize * count);
 1115         }
 1116         sbuf_printf(&sbuf,
 1117             "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
 1118             (unsigned long long)mem, (unsigned long long)waste);
 1119         error = sbuf_finish(&sbuf);
 1120         sbuf_delete(&sbuf);
 1121         return (error);
 1122 }
 1123 
 1124 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
 1125     NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
 1126 #endif /* MALLOC_PROFILE */

Cache object: 870fde49cba33b4f7ce6aeb5b856c010


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.