The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_malloc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1987, 1991, 1993
    5  *      The Regents of the University of California.
    6  * Copyright (c) 2005-2009 Robert N. M. Watson
    7  * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray)
    8  * All rights reserved.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_malloc.c       8.3 (Berkeley) 1/4/94
   35  */
   36 
   37 /*
   38  * Kernel malloc(9) implementation -- general purpose kernel memory allocator
   39  * based on memory types.  Back end is implemented using the UMA(9) zone
   40  * allocator.  A set of fixed-size buckets are used for smaller allocations,
   41  * and a special UMA allocation interface is used for larger allocations.
   42  * Callers declare memory types, and statistics are maintained independently
   43  * for each memory type.  Statistics are maintained per-CPU for performance
   44  * reasons.  See malloc(9) and comments in malloc.h for a detailed
   45  * description.
   46  */
   47 
   48 #include <sys/cdefs.h>
   49 __FBSDID("$FreeBSD: releng/12.0/sys/kern/kern_malloc.c 340401 2018-11-13 18:21:47Z markj $");
   50 
   51 #include "opt_ddb.h"
   52 #include "opt_vm.h"
   53 
   54 #include <sys/param.h>
   55 #include <sys/systm.h>
   56 #include <sys/kdb.h>
   57 #include <sys/kernel.h>
   58 #include <sys/lock.h>
   59 #include <sys/malloc.h>
   60 #include <sys/mutex.h>
   61 #include <sys/vmmeter.h>
   62 #include <sys/proc.h>
   63 #include <sys/sbuf.h>
   64 #include <sys/smp.h>
   65 #include <sys/sysctl.h>
   66 #include <sys/time.h>
   67 #include <sys/vmem.h>
   68 
   69 #include <vm/vm.h>
   70 #include <vm/pmap.h>
   71 #include <vm/vm_domainset.h>
   72 #include <vm/vm_pageout.h>
   73 #include <vm/vm_param.h>
   74 #include <vm/vm_kern.h>
   75 #include <vm/vm_extern.h>
   76 #include <vm/vm_map.h>
   77 #include <vm/vm_page.h>
   78 #include <vm/uma.h>
   79 #include <vm/uma_int.h>
   80 #include <vm/uma_dbg.h>
   81 
   82 #ifdef DEBUG_MEMGUARD
   83 #include <vm/memguard.h>
   84 #endif
   85 #ifdef DEBUG_REDZONE
   86 #include <vm/redzone.h>
   87 #endif
   88 
   89 #if defined(INVARIANTS) && defined(__i386__)
   90 #include <machine/cpu.h>
   91 #endif
   92 
   93 #include <ddb/ddb.h>
   94 
   95 #ifdef KDTRACE_HOOKS
   96 #include <sys/dtrace_bsd.h>
   97 
   98 bool    __read_frequently                       dtrace_malloc_enabled;
   99 dtrace_malloc_probe_func_t __read_mostly        dtrace_malloc_probe;
  100 #endif
  101 
  102 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) ||             \
  103     defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE)
  104 #define MALLOC_DEBUG    1
  105 #endif
  106 
  107 /*
  108  * When realloc() is called, if the new size is sufficiently smaller than
  109  * the old size, realloc() will allocate a new, smaller block to avoid
  110  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
  111  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
  112  */
  113 #ifndef REALLOC_FRACTION
  114 #define REALLOC_FRACTION        1       /* new block if <= half the size */
  115 #endif
  116 
  117 /*
  118  * Centrally define some common malloc types.
  119  */
  120 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
  121 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
  122 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
  123 
  124 static struct malloc_type *kmemstatistics;
  125 static int kmemcount;
  126 
  127 #define KMEM_ZSHIFT     4
  128 #define KMEM_ZBASE      16
  129 #define KMEM_ZMASK      (KMEM_ZBASE - 1)
  130 
  131 #define KMEM_ZMAX       65536
  132 #define KMEM_ZSIZE      (KMEM_ZMAX >> KMEM_ZSHIFT)
  133 static uint8_t kmemsize[KMEM_ZSIZE + 1];
  134 
  135 #ifndef MALLOC_DEBUG_MAXZONES
  136 #define MALLOC_DEBUG_MAXZONES   1
  137 #endif
  138 static int numzones = MALLOC_DEBUG_MAXZONES;
  139 
  140 /*
  141  * Small malloc(9) memory allocations are allocated from a set of UMA buckets
  142  * of various sizes.
  143  *
  144  * XXX: The comment here used to read "These won't be powers of two for
  145  * long."  It's possible that a significant amount of wasted memory could be
  146  * recovered by tuning the sizes of these buckets.
  147  */
  148 struct {
  149         int kz_size;
  150         char *kz_name;
  151         uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
  152 } kmemzones[] = {
  153         {16, "16", },
  154         {32, "32", },
  155         {64, "64", },
  156         {128, "128", },
  157         {256, "256", },
  158         {512, "512", },
  159         {1024, "1024", },
  160         {2048, "2048", },
  161         {4096, "4096", },
  162         {8192, "8192", },
  163         {16384, "16384", },
  164         {32768, "32768", },
  165         {65536, "65536", },
  166         {0, NULL},
  167 };
  168 
  169 /*
  170  * Zone to allocate malloc type descriptions from.  For ABI reasons, memory
  171  * types are described by a data structure passed by the declaring code, but
  172  * the malloc(9) implementation has its own data structure describing the
  173  * type and statistics.  This permits the malloc(9)-internal data structures
  174  * to be modified without breaking binary-compiled kernel modules that
  175  * declare malloc types.
  176  */
  177 static uma_zone_t mt_zone;
  178 static uma_zone_t mt_stats_zone;
  179 
  180 u_long vm_kmem_size;
  181 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
  182     "Size of kernel memory");
  183 
  184 static u_long kmem_zmax = KMEM_ZMAX;
  185 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0,
  186     "Maximum allocation size that malloc(9) would use UMA as backend");
  187 
  188 static u_long vm_kmem_size_min;
  189 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
  190     "Minimum size of kernel memory");
  191 
  192 static u_long vm_kmem_size_max;
  193 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
  194     "Maximum size of kernel memory");
  195 
  196 static u_int vm_kmem_size_scale;
  197 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
  198     "Scale factor for kernel memory size");
  199 
  200 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
  201 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
  202     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
  203     sysctl_kmem_map_size, "LU", "Current kmem allocation size");
  204 
  205 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
  206 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
  207     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
  208     sysctl_kmem_map_free, "LU", "Free space in kmem");
  209 
  210 /*
  211  * The malloc_mtx protects the kmemstatistics linked list.
  212  */
  213 struct mtx malloc_mtx;
  214 
  215 #ifdef MALLOC_PROFILE
  216 uint64_t krequests[KMEM_ZSIZE + 1];
  217 
  218 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
  219 #endif
  220 
  221 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
  222 
  223 /*
  224  * time_uptime of the last malloc(9) failure (induced or real).
  225  */
  226 static time_t t_malloc_fail;
  227 
  228 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
  229 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
  230     "Kernel malloc debugging options");
  231 #endif
  232 
  233 /*
  234  * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
  235  * the caller specifies M_NOWAIT.  If set to 0, no failures are caused.
  236  */
  237 #ifdef MALLOC_MAKE_FAILURES
  238 static int malloc_failure_rate;
  239 static int malloc_nowait_count;
  240 static int malloc_failure_count;
  241 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN,
  242     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
  243 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
  244     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
  245 #endif
  246 
  247 static int
  248 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
  249 {
  250         u_long size;
  251 
  252         size = uma_size();
  253         return (sysctl_handle_long(oidp, &size, 0, req));
  254 }
  255 
  256 static int
  257 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
  258 {
  259         u_long size, limit;
  260 
  261         /* The sysctl is unsigned, implement as a saturation value. */
  262         size = uma_size();
  263         limit = uma_limit();
  264         if (size > limit)
  265                 size = 0;
  266         else
  267                 size = limit - size;
  268         return (sysctl_handle_long(oidp, &size, 0, req));
  269 }
  270 
  271 /*
  272  * malloc(9) uma zone separation -- sub-page buffer overruns in one
  273  * malloc type will affect only a subset of other malloc types.
  274  */
  275 #if MALLOC_DEBUG_MAXZONES > 1
  276 static void
  277 tunable_set_numzones(void)
  278 {
  279 
  280         TUNABLE_INT_FETCH("debug.malloc.numzones",
  281             &numzones);
  282 
  283         /* Sanity check the number of malloc uma zones. */
  284         if (numzones <= 0)
  285                 numzones = 1;
  286         if (numzones > MALLOC_DEBUG_MAXZONES)
  287                 numzones = MALLOC_DEBUG_MAXZONES;
  288 }
  289 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
  290 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
  291     &numzones, 0, "Number of malloc uma subzones");
  292 
  293 /*
  294  * Any number that changes regularly is an okay choice for the
  295  * offset.  Build numbers are pretty good of you have them.
  296  */
  297 static u_int zone_offset = __FreeBSD_version;
  298 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
  299 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
  300     &zone_offset, 0, "Separate malloc types by examining the "
  301     "Nth character in the malloc type short description.");
  302 
  303 static void
  304 mtp_set_subzone(struct malloc_type *mtp)
  305 {
  306         struct malloc_type_internal *mtip;
  307         const char *desc;
  308         size_t len;
  309         u_int val;
  310 
  311         mtip = mtp->ks_handle;
  312         desc = mtp->ks_shortdesc;
  313         if (desc == NULL || (len = strlen(desc)) == 0)
  314                 val = 0;
  315         else
  316                 val = desc[zone_offset % len];
  317         mtip->mti_zone = (val % numzones);
  318 }
  319 
  320 static inline u_int
  321 mtp_get_subzone(struct malloc_type *mtp)
  322 {
  323         struct malloc_type_internal *mtip;
  324 
  325         mtip = mtp->ks_handle;
  326 
  327         KASSERT(mtip->mti_zone < numzones,
  328             ("mti_zone %u out of range %d",
  329             mtip->mti_zone, numzones));
  330         return (mtip->mti_zone);
  331 }
  332 #elif MALLOC_DEBUG_MAXZONES == 0
  333 #error "MALLOC_DEBUG_MAXZONES must be positive."
  334 #else
  335 static void
  336 mtp_set_subzone(struct malloc_type *mtp)
  337 {
  338         struct malloc_type_internal *mtip;
  339 
  340         mtip = mtp->ks_handle;
  341         mtip->mti_zone = 0;
  342 }
  343 
  344 static inline u_int
  345 mtp_get_subzone(struct malloc_type *mtp)
  346 {
  347 
  348         return (0);
  349 }
  350 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
  351 
  352 int
  353 malloc_last_fail(void)
  354 {
  355 
  356         return (time_uptime - t_malloc_fail);
  357 }
  358 
  359 /*
  360  * An allocation has succeeded -- update malloc type statistics for the
  361  * amount of bucket size.  Occurs within a critical section so that the
  362  * thread isn't preempted and doesn't migrate while updating per-PCU
  363  * statistics.
  364  */
  365 static void
  366 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
  367     int zindx)
  368 {
  369         struct malloc_type_internal *mtip;
  370         struct malloc_type_stats *mtsp;
  371 
  372         critical_enter();
  373         mtip = mtp->ks_handle;
  374         mtsp = zpcpu_get(mtip->mti_stats);
  375         if (size > 0) {
  376                 mtsp->mts_memalloced += size;
  377                 mtsp->mts_numallocs++;
  378         }
  379         if (zindx != -1)
  380                 mtsp->mts_size |= 1 << zindx;
  381 
  382 #ifdef KDTRACE_HOOKS
  383         if (__predict_false(dtrace_malloc_enabled)) {
  384                 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
  385                 if (probe_id != 0)
  386                         (dtrace_malloc_probe)(probe_id,
  387                             (uintptr_t) mtp, (uintptr_t) mtip,
  388                             (uintptr_t) mtsp, size, zindx);
  389         }
  390 #endif
  391 
  392         critical_exit();
  393 }
  394 
  395 void
  396 malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
  397 {
  398 
  399         if (size > 0)
  400                 malloc_type_zone_allocated(mtp, size, -1);
  401 }
  402 
  403 /*
  404  * A free operation has occurred -- update malloc type statistics for the
  405  * amount of the bucket size.  Occurs within a critical section so that the
  406  * thread isn't preempted and doesn't migrate while updating per-CPU
  407  * statistics.
  408  */
  409 void
  410 malloc_type_freed(struct malloc_type *mtp, unsigned long size)
  411 {
  412         struct malloc_type_internal *mtip;
  413         struct malloc_type_stats *mtsp;
  414 
  415         critical_enter();
  416         mtip = mtp->ks_handle;
  417         mtsp = zpcpu_get(mtip->mti_stats);
  418         mtsp->mts_memfreed += size;
  419         mtsp->mts_numfrees++;
  420 
  421 #ifdef KDTRACE_HOOKS
  422         if (__predict_false(dtrace_malloc_enabled)) {
  423                 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
  424                 if (probe_id != 0)
  425                         (dtrace_malloc_probe)(probe_id,
  426                             (uintptr_t) mtp, (uintptr_t) mtip,
  427                             (uintptr_t) mtsp, size, 0);
  428         }
  429 #endif
  430 
  431         critical_exit();
  432 }
  433 
  434 /*
  435  *      contigmalloc:
  436  *
  437  *      Allocate a block of physically contiguous memory.
  438  *
  439  *      If M_NOWAIT is set, this routine will not block and return NULL if
  440  *      the allocation fails.
  441  */
  442 void *
  443 contigmalloc(unsigned long size, struct malloc_type *type, int flags,
  444     vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
  445     vm_paddr_t boundary)
  446 {
  447         void *ret;
  448 
  449         ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment,
  450             boundary, VM_MEMATTR_DEFAULT);
  451         if (ret != NULL)
  452                 malloc_type_allocated(type, round_page(size));
  453         return (ret);
  454 }
  455 
  456 void *
  457 contigmalloc_domainset(unsigned long size, struct malloc_type *type,
  458     struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high,
  459     unsigned long alignment, vm_paddr_t boundary)
  460 {
  461         void *ret;
  462 
  463         ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high,
  464             alignment, boundary, VM_MEMATTR_DEFAULT);
  465         if (ret != NULL)
  466                 malloc_type_allocated(type, round_page(size));
  467         return (ret);
  468 }
  469 
  470 /*
  471  *      contigfree:
  472  *
  473  *      Free a block of memory allocated by contigmalloc.
  474  *
  475  *      This routine may not block.
  476  */
  477 void
  478 contigfree(void *addr, unsigned long size, struct malloc_type *type)
  479 {
  480 
  481         kmem_free((vm_offset_t)addr, size);
  482         malloc_type_freed(type, round_page(size));
  483 }
  484 
  485 #ifdef MALLOC_DEBUG
  486 static int
  487 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp,
  488     int flags)
  489 {
  490 #ifdef INVARIANTS
  491         int indx;
  492 
  493         KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic"));
  494         /*
  495          * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
  496          */
  497         indx = flags & (M_WAITOK | M_NOWAIT);
  498         if (indx != M_NOWAIT && indx != M_WAITOK) {
  499                 static  struct timeval lasterr;
  500                 static  int curerr, once;
  501                 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
  502                         printf("Bad malloc flags: %x\n", indx);
  503                         kdb_backtrace();
  504                         flags |= M_WAITOK;
  505                         once++;
  506                 }
  507         }
  508 #endif
  509 #ifdef MALLOC_MAKE_FAILURES
  510         if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
  511                 atomic_add_int(&malloc_nowait_count, 1);
  512                 if ((malloc_nowait_count % malloc_failure_rate) == 0) {
  513                         atomic_add_int(&malloc_failure_count, 1);
  514                         t_malloc_fail = time_uptime;
  515                         *vap = NULL;
  516                         return (EJUSTRETURN);
  517                 }
  518         }
  519 #endif
  520         if (flags & M_WAITOK) {
  521                 KASSERT(curthread->td_intr_nesting_level == 0,
  522                    ("malloc(M_WAITOK) in interrupt context"));
  523                 KASSERT(curthread->td_epochnest == 0,
  524                         ("malloc(M_WAITOK) in epoch context"));         
  525         }
  526         KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
  527             ("malloc: called with spinlock or critical section held"));
  528 
  529 #ifdef DEBUG_MEMGUARD
  530         if (memguard_cmp_mtp(mtp, *sizep)) {
  531                 *vap = memguard_alloc(*sizep, flags);
  532                 if (*vap != NULL)
  533                         return (EJUSTRETURN);
  534                 /* This is unfortunate but should not be fatal. */
  535         }
  536 #endif
  537 
  538 #ifdef DEBUG_REDZONE
  539         *sizep = redzone_size_ntor(*sizep);
  540 #endif
  541 
  542         return (0);
  543 }
  544 #endif
  545 
  546 /*
  547  *      malloc:
  548  *
  549  *      Allocate a block of memory.
  550  *
  551  *      If M_NOWAIT is set, this routine will not block and return NULL if
  552  *      the allocation fails.
  553  */
  554 void *
  555 (malloc)(size_t size, struct malloc_type *mtp, int flags)
  556 {
  557         int indx;
  558         caddr_t va;
  559         uma_zone_t zone;
  560 #if defined(DEBUG_REDZONE)
  561         unsigned long osize = size;
  562 #endif
  563 
  564 #ifdef MALLOC_DEBUG
  565         va = NULL;
  566         if (malloc_dbg(&va, &size, mtp, flags) != 0)
  567                 return (va);
  568 #endif
  569 
  570         if (size <= kmem_zmax && (flags & M_EXEC) == 0) {
  571                 if (size & KMEM_ZMASK)
  572                         size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
  573                 indx = kmemsize[size >> KMEM_ZSHIFT];
  574                 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)];
  575 #ifdef MALLOC_PROFILE
  576                 krequests[size >> KMEM_ZSHIFT]++;
  577 #endif
  578                 va = uma_zalloc(zone, flags);
  579                 if (va != NULL)
  580                         size = zone->uz_size;
  581                 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
  582         } else {
  583                 size = roundup(size, PAGE_SIZE);
  584                 zone = NULL;
  585                 va = uma_large_malloc(size, flags);
  586                 malloc_type_allocated(mtp, va == NULL ? 0 : size);
  587         }
  588         if (flags & M_WAITOK)
  589                 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
  590         else if (va == NULL)
  591                 t_malloc_fail = time_uptime;
  592 #ifdef DEBUG_REDZONE
  593         if (va != NULL)
  594                 va = redzone_setup(va, osize);
  595 #endif
  596         return ((void *) va);
  597 }
  598 
  599 static void *
  600 malloc_domain(size_t size, struct malloc_type *mtp, int domain, int flags)
  601 {
  602         int indx;
  603         caddr_t va;
  604         uma_zone_t zone;
  605 #if defined(DEBUG_REDZONE)
  606         unsigned long osize = size;
  607 #endif
  608 
  609 #ifdef MALLOC_DEBUG
  610         va = NULL;
  611         if (malloc_dbg(&va, &size, mtp, flags) != 0)
  612                 return (va);
  613 #endif
  614         if (size <= kmem_zmax && (flags & M_EXEC) == 0) {
  615                 if (size & KMEM_ZMASK)
  616                         size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
  617                 indx = kmemsize[size >> KMEM_ZSHIFT];
  618                 zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)];
  619 #ifdef MALLOC_PROFILE
  620                 krequests[size >> KMEM_ZSHIFT]++;
  621 #endif
  622                 va = uma_zalloc_domain(zone, NULL, domain, flags);
  623                 if (va != NULL)
  624                         size = zone->uz_size;
  625                 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
  626         } else {
  627                 size = roundup(size, PAGE_SIZE);
  628                 zone = NULL;
  629                 va = uma_large_malloc_domain(size, domain, flags);
  630                 malloc_type_allocated(mtp, va == NULL ? 0 : size);
  631         }
  632         if (flags & M_WAITOK)
  633                 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
  634         else if (va == NULL)
  635                 t_malloc_fail = time_uptime;
  636 #ifdef DEBUG_REDZONE
  637         if (va != NULL)
  638                 va = redzone_setup(va, osize);
  639 #endif
  640         return ((void *) va);
  641 }
  642 
  643 void *
  644 malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds,
  645     int flags)
  646 {
  647         struct vm_domainset_iter di;
  648         void *ret;
  649         int domain;
  650 
  651         vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
  652         do {
  653                 ret = malloc_domain(size, mtp, domain, flags);
  654                 if (ret != NULL)
  655                         break;
  656         } while (vm_domainset_iter_policy(&di, &domain) == 0);
  657 
  658         return (ret);
  659 }
  660 
  661 void *
  662 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags)
  663 {
  664 
  665         if (WOULD_OVERFLOW(nmemb, size))
  666                 panic("mallocarray: %zu * %zu overflowed", nmemb, size);
  667 
  668         return (malloc(size * nmemb, type, flags));
  669 }
  670 
  671 #ifdef INVARIANTS
  672 static void
  673 free_save_type(void *addr, struct malloc_type *mtp, u_long size)
  674 {
  675         struct malloc_type **mtpp = addr;
  676 
  677         /*
  678          * Cache a pointer to the malloc_type that most recently freed
  679          * this memory here.  This way we know who is most likely to
  680          * have stepped on it later.
  681          *
  682          * This code assumes that size is a multiple of 8 bytes for
  683          * 64 bit machines
  684          */
  685         mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
  686         mtpp += (size - sizeof(struct malloc_type *)) /
  687             sizeof(struct malloc_type *);
  688         *mtpp = mtp;
  689 }
  690 #endif
  691 
  692 #ifdef MALLOC_DEBUG
  693 static int
  694 free_dbg(void **addrp, struct malloc_type *mtp)
  695 {
  696         void *addr;
  697 
  698         addr = *addrp;
  699         KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic"));
  700         KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
  701             ("free: called with spinlock or critical section held"));
  702 
  703         /* free(NULL, ...) does nothing */
  704         if (addr == NULL)
  705                 return (EJUSTRETURN);
  706 
  707 #ifdef DEBUG_MEMGUARD
  708         if (is_memguard_addr(addr)) {
  709                 memguard_free(addr);
  710                 return (EJUSTRETURN);
  711         }
  712 #endif
  713 
  714 #ifdef DEBUG_REDZONE
  715         redzone_check(addr);
  716         *addrp = redzone_addr_ntor(addr);
  717 #endif
  718 
  719         return (0);
  720 }
  721 #endif
  722 
  723 /*
  724  *      free:
  725  *
  726  *      Free a block of memory allocated by malloc.
  727  *
  728  *      This routine may not block.
  729  */
  730 void
  731 free(void *addr, struct malloc_type *mtp)
  732 {
  733         uma_slab_t slab;
  734         u_long size;
  735 
  736 #ifdef MALLOC_DEBUG
  737         if (free_dbg(&addr, mtp) != 0)
  738                 return;
  739 #endif
  740         /* free(NULL, ...) does nothing */
  741         if (addr == NULL)
  742                 return;
  743 
  744         slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
  745         if (slab == NULL)
  746                 panic("free: address %p(%p) has not been allocated.\n",
  747                     addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
  748 
  749         if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
  750                 size = slab->us_keg->uk_size;
  751 #ifdef INVARIANTS
  752                 free_save_type(addr, mtp, size);
  753 #endif
  754                 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
  755         } else {
  756                 size = slab->us_size;
  757                 uma_large_free(slab);
  758         }
  759         malloc_type_freed(mtp, size);
  760 }
  761 
  762 void
  763 free_domain(void *addr, struct malloc_type *mtp)
  764 {
  765         uma_slab_t slab;
  766         u_long size;
  767 
  768 #ifdef MALLOC_DEBUG
  769         if (free_dbg(&addr, mtp) != 0)
  770                 return;
  771 #endif
  772 
  773         /* free(NULL, ...) does nothing */
  774         if (addr == NULL)
  775                 return;
  776 
  777         slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
  778         if (slab == NULL)
  779                 panic("free_domain: address %p(%p) has not been allocated.\n",
  780                     addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
  781 
  782         if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
  783                 size = slab->us_keg->uk_size;
  784 #ifdef INVARIANTS
  785                 free_save_type(addr, mtp, size);
  786 #endif
  787                 uma_zfree_domain(LIST_FIRST(&slab->us_keg->uk_zones),
  788                     addr, slab);
  789         } else {
  790                 size = slab->us_size;
  791                 uma_large_free(slab);
  792         }
  793         malloc_type_freed(mtp, size);
  794 }
  795 
  796 /*
  797  *      realloc: change the size of a memory block
  798  */
  799 void *
  800 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags)
  801 {
  802         uma_slab_t slab;
  803         unsigned long alloc;
  804         void *newaddr;
  805 
  806         KASSERT(mtp->ks_magic == M_MAGIC,
  807             ("realloc: bad malloc type magic"));
  808         KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
  809             ("realloc: called with spinlock or critical section held"));
  810 
  811         /* realloc(NULL, ...) is equivalent to malloc(...) */
  812         if (addr == NULL)
  813                 return (malloc(size, mtp, flags));
  814 
  815         /*
  816          * XXX: Should report free of old memory and alloc of new memory to
  817          * per-CPU stats.
  818          */
  819 
  820 #ifdef DEBUG_MEMGUARD
  821         if (is_memguard_addr(addr))
  822                 return (memguard_realloc(addr, size, mtp, flags));
  823 #endif
  824 
  825 #ifdef DEBUG_REDZONE
  826         slab = NULL;
  827         alloc = redzone_get_size(addr);
  828 #else
  829         slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
  830 
  831         /* Sanity check */
  832         KASSERT(slab != NULL,
  833             ("realloc: address %p out of range", (void *)addr));
  834 
  835         /* Get the size of the original block */
  836         if (!(slab->us_flags & UMA_SLAB_MALLOC))
  837                 alloc = slab->us_keg->uk_size;
  838         else
  839                 alloc = slab->us_size;
  840 
  841         /* Reuse the original block if appropriate */
  842         if (size <= alloc
  843             && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
  844                 return (addr);
  845 #endif /* !DEBUG_REDZONE */
  846 
  847         /* Allocate a new, bigger (or smaller) block */
  848         if ((newaddr = malloc(size, mtp, flags)) == NULL)
  849                 return (NULL);
  850 
  851         /* Copy over original contents */
  852         bcopy(addr, newaddr, min(size, alloc));
  853         free(addr, mtp);
  854         return (newaddr);
  855 }
  856 
  857 /*
  858  *      reallocf: same as realloc() but free memory on failure.
  859  */
  860 void *
  861 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags)
  862 {
  863         void *mem;
  864 
  865         if ((mem = realloc(addr, size, mtp, flags)) == NULL)
  866                 free(addr, mtp);
  867         return (mem);
  868 }
  869 
  870 #ifndef __sparc64__
  871 CTASSERT(VM_KMEM_SIZE_SCALE >= 1);
  872 #endif
  873 
  874 /*
  875  * Initialize the kernel memory (kmem) arena.
  876  */
  877 void
  878 kmeminit(void)
  879 {
  880         u_long mem_size;
  881         u_long tmp;
  882 
  883 #ifdef VM_KMEM_SIZE
  884         if (vm_kmem_size == 0)
  885                 vm_kmem_size = VM_KMEM_SIZE;
  886 #endif
  887 #ifdef VM_KMEM_SIZE_MIN
  888         if (vm_kmem_size_min == 0)
  889                 vm_kmem_size_min = VM_KMEM_SIZE_MIN;
  890 #endif
  891 #ifdef VM_KMEM_SIZE_MAX
  892         if (vm_kmem_size_max == 0)
  893                 vm_kmem_size_max = VM_KMEM_SIZE_MAX;
  894 #endif
  895         /*
  896          * Calculate the amount of kernel virtual address (KVA) space that is
  897          * preallocated to the kmem arena.  In order to support a wide range
  898          * of machines, it is a function of the physical memory size,
  899          * specifically,
  900          *
  901          *      min(max(physical memory size / VM_KMEM_SIZE_SCALE,
  902          *          VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX)
  903          *
  904          * Every architecture must define an integral value for
  905          * VM_KMEM_SIZE_SCALE.  However, the definitions of VM_KMEM_SIZE_MIN
  906          * and VM_KMEM_SIZE_MAX, which represent respectively the floor and
  907          * ceiling on this preallocation, are optional.  Typically,
  908          * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on
  909          * a given architecture.
  910          */
  911         mem_size = vm_cnt.v_page_count;
  912         if (mem_size <= 32768) /* delphij XXX 128MB */
  913                 kmem_zmax = PAGE_SIZE;
  914 
  915         if (vm_kmem_size_scale < 1)
  916                 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
  917 
  918         /*
  919          * Check if we should use defaults for the "vm_kmem_size"
  920          * variable:
  921          */
  922         if (vm_kmem_size == 0) {
  923                 vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
  924 
  925                 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min)
  926                         vm_kmem_size = vm_kmem_size_min;
  927                 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
  928                         vm_kmem_size = vm_kmem_size_max;
  929         }
  930 
  931         /*
  932          * The amount of KVA space that is preallocated to the
  933          * kmem arena can be set statically at compile-time or manually
  934          * through the kernel environment.  However, it is still limited to
  935          * twice the physical memory size, which has been sufficient to handle
  936          * the most severe cases of external fragmentation in the kmem arena. 
  937          */
  938         if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
  939                 vm_kmem_size = 2 * mem_size * PAGE_SIZE;
  940 
  941         vm_kmem_size = round_page(vm_kmem_size);
  942 #ifdef DEBUG_MEMGUARD
  943         tmp = memguard_fudge(vm_kmem_size, kernel_map);
  944 #else
  945         tmp = vm_kmem_size;
  946 #endif
  947         uma_set_limit(tmp);
  948 
  949 #ifdef DEBUG_MEMGUARD
  950         /*
  951          * Initialize MemGuard if support compiled in.  MemGuard is a
  952          * replacement allocator used for detecting tamper-after-free
  953          * scenarios as they occur.  It is only used for debugging.
  954          */
  955         memguard_init(kernel_arena);
  956 #endif
  957 }
  958 
  959 /*
  960  * Initialize the kernel memory allocator
  961  */
  962 /* ARGSUSED*/
  963 static void
  964 mallocinit(void *dummy)
  965 {
  966         int i;
  967         uint8_t indx;
  968 
  969         mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
  970 
  971         kmeminit();
  972 
  973         if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX)
  974                 kmem_zmax = KMEM_ZMAX;
  975 
  976         mt_stats_zone = uma_zcreate("mt_stats_zone",
  977             sizeof(struct malloc_type_stats), NULL, NULL, NULL, NULL,
  978             UMA_ALIGN_PTR, UMA_ZONE_PCPU);
  979         mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
  980 #ifdef INVARIANTS
  981             mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
  982 #else
  983             NULL, NULL, NULL, NULL,
  984 #endif
  985             UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
  986         for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
  987                 int size = kmemzones[indx].kz_size;
  988                 char *name = kmemzones[indx].kz_name;
  989                 int subzone;
  990 
  991                 for (subzone = 0; subzone < numzones; subzone++) {
  992                         kmemzones[indx].kz_zone[subzone] =
  993                             uma_zcreate(name, size,
  994 #ifdef INVARIANTS
  995                             mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
  996 #else
  997                             NULL, NULL, NULL, NULL,
  998 #endif
  999                             UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
 1000                 }                   
 1001                 for (;i <= size; i+= KMEM_ZBASE)
 1002                         kmemsize[i >> KMEM_ZSHIFT] = indx;
 1003 
 1004         }
 1005 }
 1006 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL);
 1007 
 1008 void
 1009 malloc_init(void *data)
 1010 {
 1011         struct malloc_type_internal *mtip;
 1012         struct malloc_type *mtp;
 1013 
 1014         KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init"));
 1015 
 1016         mtp = data;
 1017         if (mtp->ks_magic != M_MAGIC)
 1018                 panic("malloc_init: bad malloc type magic");
 1019 
 1020         mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
 1021         mtip->mti_stats = uma_zalloc_pcpu(mt_stats_zone, M_WAITOK | M_ZERO);
 1022         mtp->ks_handle = mtip;
 1023         mtp_set_subzone(mtp);
 1024 
 1025         mtx_lock(&malloc_mtx);
 1026         mtp->ks_next = kmemstatistics;
 1027         kmemstatistics = mtp;
 1028         kmemcount++;
 1029         mtx_unlock(&malloc_mtx);
 1030 }
 1031 
 1032 void
 1033 malloc_uninit(void *data)
 1034 {
 1035         struct malloc_type_internal *mtip;
 1036         struct malloc_type_stats *mtsp;
 1037         struct malloc_type *mtp, *temp;
 1038         uma_slab_t slab;
 1039         long temp_allocs, temp_bytes;
 1040         int i;
 1041 
 1042         mtp = data;
 1043         KASSERT(mtp->ks_magic == M_MAGIC,
 1044             ("malloc_uninit: bad malloc type magic"));
 1045         KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
 1046 
 1047         mtx_lock(&malloc_mtx);
 1048         mtip = mtp->ks_handle;
 1049         mtp->ks_handle = NULL;
 1050         if (mtp != kmemstatistics) {
 1051                 for (temp = kmemstatistics; temp != NULL;
 1052                     temp = temp->ks_next) {
 1053                         if (temp->ks_next == mtp) {
 1054                                 temp->ks_next = mtp->ks_next;
 1055                                 break;
 1056                         }
 1057                 }
 1058                 KASSERT(temp,
 1059                     ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
 1060         } else
 1061                 kmemstatistics = mtp->ks_next;
 1062         kmemcount--;
 1063         mtx_unlock(&malloc_mtx);
 1064 
 1065         /*
 1066          * Look for memory leaks.
 1067          */
 1068         temp_allocs = temp_bytes = 0;
 1069         for (i = 0; i <= mp_maxid; i++) {
 1070                 mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
 1071                 temp_allocs += mtsp->mts_numallocs;
 1072                 temp_allocs -= mtsp->mts_numfrees;
 1073                 temp_bytes += mtsp->mts_memalloced;
 1074                 temp_bytes -= mtsp->mts_memfreed;
 1075         }
 1076         if (temp_allocs > 0 || temp_bytes > 0) {
 1077                 printf("Warning: memory type %s leaked memory on destroy "
 1078                     "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
 1079                     temp_allocs, temp_bytes);
 1080         }
 1081 
 1082         slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK));
 1083         uma_zfree_pcpu(mt_stats_zone, mtip->mti_stats);
 1084         uma_zfree_arg(mt_zone, mtip, slab);
 1085 }
 1086 
 1087 struct malloc_type *
 1088 malloc_desc2type(const char *desc)
 1089 {
 1090         struct malloc_type *mtp;
 1091 
 1092         mtx_assert(&malloc_mtx, MA_OWNED);
 1093         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1094                 if (strcmp(mtp->ks_shortdesc, desc) == 0)
 1095                         return (mtp);
 1096         }
 1097         return (NULL);
 1098 }
 1099 
 1100 static int
 1101 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
 1102 {
 1103         struct malloc_type_stream_header mtsh;
 1104         struct malloc_type_internal *mtip;
 1105         struct malloc_type_stats *mtsp, zeromts;
 1106         struct malloc_type_header mth;
 1107         struct malloc_type *mtp;
 1108         int error, i;
 1109         struct sbuf sbuf;
 1110 
 1111         error = sysctl_wire_old_buffer(req, 0);
 1112         if (error != 0)
 1113                 return (error);
 1114         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
 1115         sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
 1116         mtx_lock(&malloc_mtx);
 1117 
 1118         bzero(&zeromts, sizeof(zeromts));
 1119 
 1120         /*
 1121          * Insert stream header.
 1122          */
 1123         bzero(&mtsh, sizeof(mtsh));
 1124         mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
 1125         mtsh.mtsh_maxcpus = MAXCPU;
 1126         mtsh.mtsh_count = kmemcount;
 1127         (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
 1128 
 1129         /*
 1130          * Insert alternating sequence of type headers and type statistics.
 1131          */
 1132         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1133                 mtip = (struct malloc_type_internal *)mtp->ks_handle;
 1134 
 1135                 /*
 1136                  * Insert type header.
 1137                  */
 1138                 bzero(&mth, sizeof(mth));
 1139                 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
 1140                 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
 1141 
 1142                 /*
 1143                  * Insert type statistics for each CPU.
 1144                  */
 1145                 for (i = 0; i <= mp_maxid; i++) {
 1146                         mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
 1147                         (void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp));
 1148                 }
 1149                 /*
 1150                  * Fill in the missing CPUs.
 1151                  */
 1152                 for (; i < MAXCPU; i++) {
 1153                         (void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts));
 1154                 }
 1155 
 1156         }
 1157         mtx_unlock(&malloc_mtx);
 1158         error = sbuf_finish(&sbuf);
 1159         sbuf_delete(&sbuf);
 1160         return (error);
 1161 }
 1162 
 1163 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
 1164     0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
 1165     "Return malloc types");
 1166 
 1167 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
 1168     "Count of kernel malloc types");
 1169 
 1170 void
 1171 malloc_type_list(malloc_type_list_func_t *func, void *arg)
 1172 {
 1173         struct malloc_type *mtp, **bufmtp;
 1174         int count, i;
 1175         size_t buflen;
 1176 
 1177         mtx_lock(&malloc_mtx);
 1178 restart:
 1179         mtx_assert(&malloc_mtx, MA_OWNED);
 1180         count = kmemcount;
 1181         mtx_unlock(&malloc_mtx);
 1182 
 1183         buflen = sizeof(struct malloc_type *) * count;
 1184         bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
 1185 
 1186         mtx_lock(&malloc_mtx);
 1187 
 1188         if (count < kmemcount) {
 1189                 free(bufmtp, M_TEMP);
 1190                 goto restart;
 1191         }
 1192 
 1193         for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
 1194                 bufmtp[i] = mtp;
 1195 
 1196         mtx_unlock(&malloc_mtx);
 1197 
 1198         for (i = 0; i < count; i++)
 1199                 (func)(bufmtp[i], arg);
 1200 
 1201         free(bufmtp, M_TEMP);
 1202 }
 1203 
 1204 #ifdef DDB
 1205 DB_SHOW_COMMAND(malloc, db_show_malloc)
 1206 {
 1207         struct malloc_type_internal *mtip;
 1208         struct malloc_type_internal *mtsp;
 1209         struct malloc_type *mtp;
 1210         uint64_t allocs, frees;
 1211         uint64_t alloced, freed;
 1212         int i;
 1213 
 1214         db_printf("%18s %12s  %12s %12s\n", "Type", "InUse", "MemUse",
 1215             "Requests");
 1216         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1217                 mtip = (struct malloc_type_internal *)mtp->ks_handle;
 1218                 allocs = 0;
 1219                 frees = 0;
 1220                 alloced = 0;
 1221                 freed = 0;
 1222                 for (i = 0; i <= mp_maxid; i++) {
 1223                         mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
 1224                         allocs += mtip->mti_stats[i].mts_numallocs;
 1225                         frees += mtip->mti_stats[i].mts_numfrees;
 1226                         alloced += mtip->mti_stats[i].mts_memalloced;
 1227                         freed += mtip->mti_stats[i].mts_memfreed;
 1228                 }
 1229                 db_printf("%18s %12ju %12juK %12ju\n",
 1230                     mtp->ks_shortdesc, allocs - frees,
 1231                     (alloced - freed + 1023) / 1024, allocs);
 1232                 if (db_pager_quit)
 1233                         break;
 1234         }
 1235 }
 1236 
 1237 #if MALLOC_DEBUG_MAXZONES > 1
 1238 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
 1239 {
 1240         struct malloc_type_internal *mtip;
 1241         struct malloc_type *mtp;
 1242         u_int subzone;
 1243 
 1244         if (!have_addr) {
 1245                 db_printf("Usage: show multizone_matches <malloc type/addr>\n");
 1246                 return;
 1247         }
 1248         mtp = (void *)addr;
 1249         if (mtp->ks_magic != M_MAGIC) {
 1250                 db_printf("Magic %lx does not match expected %x\n",
 1251                     mtp->ks_magic, M_MAGIC);
 1252                 return;
 1253         }
 1254 
 1255         mtip = mtp->ks_handle;
 1256         subzone = mtip->mti_zone;
 1257 
 1258         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1259                 mtip = mtp->ks_handle;
 1260                 if (mtip->mti_zone != subzone)
 1261                         continue;
 1262                 db_printf("%s\n", mtp->ks_shortdesc);
 1263                 if (db_pager_quit)
 1264                         break;
 1265         }
 1266 }
 1267 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
 1268 #endif /* DDB */
 1269 
 1270 #ifdef MALLOC_PROFILE
 1271 
 1272 static int
 1273 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
 1274 {
 1275         struct sbuf sbuf;
 1276         uint64_t count;
 1277         uint64_t waste;
 1278         uint64_t mem;
 1279         int error;
 1280         int rsize;
 1281         int size;
 1282         int i;
 1283 
 1284         waste = 0;
 1285         mem = 0;
 1286 
 1287         error = sysctl_wire_old_buffer(req, 0);
 1288         if (error != 0)
 1289                 return (error);
 1290         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
 1291         sbuf_printf(&sbuf, 
 1292             "\n  Size                    Requests  Real Size\n");
 1293         for (i = 0; i < KMEM_ZSIZE; i++) {
 1294                 size = i << KMEM_ZSHIFT;
 1295                 rsize = kmemzones[kmemsize[i]].kz_size;
 1296                 count = (long long unsigned)krequests[i];
 1297 
 1298                 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
 1299                     (unsigned long long)count, rsize);
 1300 
 1301                 if ((rsize * count) > (size * count))
 1302                         waste += (rsize * count) - (size * count);
 1303                 mem += (rsize * count);
 1304         }
 1305         sbuf_printf(&sbuf,
 1306             "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
 1307             (unsigned long long)mem, (unsigned long long)waste);
 1308         error = sbuf_finish(&sbuf);
 1309         sbuf_delete(&sbuf);
 1310         return (error);
 1311 }
 1312 
 1313 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
 1314     NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
 1315 #endif /* MALLOC_PROFILE */

Cache object: a9dd9b73791b254db69ecb4109f3f28f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.