The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_malloc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1987, 1991, 1993
    5  *      The Regents of the University of California.
    6  * Copyright (c) 2005-2009 Robert N. M. Watson
    7  * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray)
    8  * All rights reserved.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_malloc.c       8.3 (Berkeley) 1/4/94
   35  */
   36 
   37 /*
   38  * Kernel malloc(9) implementation -- general purpose kernel memory allocator
   39  * based on memory types.  Back end is implemented using the UMA(9) zone
   40  * allocator.  A set of fixed-size buckets are used for smaller allocations,
   41  * and a special UMA allocation interface is used for larger allocations.
   42  * Callers declare memory types, and statistics are maintained independently
   43  * for each memory type.  Statistics are maintained per-CPU for performance
   44  * reasons.  See malloc(9) and comments in malloc.h for a detailed
   45  * description.
   46  */
   47 
   48 #include <sys/cdefs.h>
   49 __FBSDID("$FreeBSD$");
   50 
   51 #include "opt_ddb.h"
   52 #include "opt_vm.h"
   53 
   54 #include <sys/param.h>
   55 #include <sys/systm.h>
   56 #include <sys/kdb.h>
   57 #include <sys/kernel.h>
   58 #include <sys/lock.h>
   59 #include <sys/malloc.h>
   60 #include <sys/mutex.h>
   61 #include <sys/vmmeter.h>
   62 #include <sys/proc.h>
   63 #include <sys/queue.h>
   64 #include <sys/sbuf.h>
   65 #include <sys/smp.h>
   66 #include <sys/sysctl.h>
   67 #include <sys/time.h>
   68 #include <sys/vmem.h>
   69 #ifdef EPOCH_TRACE
   70 #include <sys/epoch.h>
   71 #endif
   72 
   73 #include <vm/vm.h>
   74 #include <vm/pmap.h>
   75 #include <vm/vm_domainset.h>
   76 #include <vm/vm_pageout.h>
   77 #include <vm/vm_param.h>
   78 #include <vm/vm_kern.h>
   79 #include <vm/vm_extern.h>
   80 #include <vm/vm_map.h>
   81 #include <vm/vm_page.h>
   82 #include <vm/vm_phys.h>
   83 #include <vm/vm_pagequeue.h>
   84 #include <vm/uma.h>
   85 #include <vm/uma_int.h>
   86 #include <vm/uma_dbg.h>
   87 
   88 #ifdef DEBUG_MEMGUARD
   89 #include <vm/memguard.h>
   90 #endif
   91 #ifdef DEBUG_REDZONE
   92 #include <vm/redzone.h>
   93 #endif
   94 
   95 #if defined(INVARIANTS) && defined(__i386__)
   96 #include <machine/cpu.h>
   97 #endif
   98 
   99 #include <ddb/ddb.h>
  100 
  101 #ifdef KDTRACE_HOOKS
  102 #include <sys/dtrace_bsd.h>
  103 
  104 bool    __read_frequently                       dtrace_malloc_enabled;
  105 dtrace_malloc_probe_func_t __read_mostly        dtrace_malloc_probe;
  106 #endif
  107 
  108 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) ||             \
  109     defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE)
  110 #define MALLOC_DEBUG    1
  111 #endif
  112 
  113 #ifdef DEBUG_REDZONE
  114 #define DEBUG_REDZONE_ARG_DEF   , unsigned long osize
  115 #define DEBUG_REDZONE_ARG       , osize
  116 #else
  117 #define DEBUG_REDZONE_ARG_DEF
  118 #define DEBUG_REDZONE_ARG
  119 #endif
  120 
  121 /*
  122  * When realloc() is called, if the new size is sufficiently smaller than
  123  * the old size, realloc() will allocate a new, smaller block to avoid
  124  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
  125  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
  126  */
  127 #ifndef REALLOC_FRACTION
  128 #define REALLOC_FRACTION        1       /* new block if <= half the size */
  129 #endif
  130 
  131 /*
  132  * Centrally define some common malloc types.
  133  */
  134 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
  135 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
  136 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
  137 
  138 static struct malloc_type *kmemstatistics;
  139 static int kmemcount;
  140 
  141 #define KMEM_ZSHIFT     4
  142 #define KMEM_ZBASE      16
  143 #define KMEM_ZMASK      (KMEM_ZBASE - 1)
  144 
  145 #define KMEM_ZMAX       65536
  146 #define KMEM_ZSIZE      (KMEM_ZMAX >> KMEM_ZSHIFT)
  147 static uint8_t kmemsize[KMEM_ZSIZE + 1];
  148 
  149 #ifndef MALLOC_DEBUG_MAXZONES
  150 #define MALLOC_DEBUG_MAXZONES   1
  151 #endif
  152 static int numzones = MALLOC_DEBUG_MAXZONES;
  153 
  154 /*
  155  * Small malloc(9) memory allocations are allocated from a set of UMA buckets
  156  * of various sizes.
  157  *
  158  * Warning: the layout of the struct is duplicated in libmemstat for KVM support.
  159  *
  160  * XXX: The comment here used to read "These won't be powers of two for
  161  * long."  It's possible that a significant amount of wasted memory could be
  162  * recovered by tuning the sizes of these buckets.
  163  */
  164 struct {
  165         int kz_size;
  166         const char *kz_name;
  167         uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
  168 } kmemzones[] = {
  169         {16, "malloc-16", },
  170         {32, "malloc-32", },
  171         {64, "malloc-64", },
  172         {128, "malloc-128", },
  173         {256, "malloc-256", },
  174         {384, "malloc-384", },
  175         {512, "malloc-512", },
  176         {1024, "malloc-1024", },
  177         {2048, "malloc-2048", },
  178         {4096, "malloc-4096", },
  179         {8192, "malloc-8192", },
  180         {16384, "malloc-16384", },
  181         {32768, "malloc-32768", },
  182         {65536, "malloc-65536", },
  183         {0, NULL},
  184 };
  185 
  186 u_long vm_kmem_size;
  187 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
  188     "Size of kernel memory");
  189 
  190 static u_long kmem_zmax = KMEM_ZMAX;
  191 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0,
  192     "Maximum allocation size that malloc(9) would use UMA as backend");
  193 
  194 static u_long vm_kmem_size_min;
  195 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
  196     "Minimum size of kernel memory");
  197 
  198 static u_long vm_kmem_size_max;
  199 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
  200     "Maximum size of kernel memory");
  201 
  202 static u_int vm_kmem_size_scale;
  203 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
  204     "Scale factor for kernel memory size");
  205 
  206 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
  207 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
  208     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
  209     sysctl_kmem_map_size, "LU", "Current kmem allocation size");
  210 
  211 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
  212 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
  213     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
  214     sysctl_kmem_map_free, "LU", "Free space in kmem");
  215 
  216 static SYSCTL_NODE(_vm, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
  217     "Malloc information");
  218 
  219 static u_int vm_malloc_zone_count = nitems(kmemzones);
  220 SYSCTL_UINT(_vm_malloc, OID_AUTO, zone_count,
  221     CTLFLAG_RD, &vm_malloc_zone_count, 0,
  222     "Number of malloc zones");
  223 
  224 static int sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS);
  225 SYSCTL_PROC(_vm_malloc, OID_AUTO, zone_sizes,
  226     CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, NULL, 0,
  227     sysctl_vm_malloc_zone_sizes, "S", "Zone sizes used by malloc");
  228 
  229 /*
  230  * The malloc_mtx protects the kmemstatistics linked list.
  231  */
  232 struct mtx malloc_mtx;
  233 
  234 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
  235 
  236 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
  237 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
  238     "Kernel malloc debugging options");
  239 #endif
  240 
  241 /*
  242  * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
  243  * the caller specifies M_NOWAIT.  If set to 0, no failures are caused.
  244  */
  245 #ifdef MALLOC_MAKE_FAILURES
  246 static int malloc_failure_rate;
  247 static int malloc_nowait_count;
  248 static int malloc_failure_count;
  249 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN,
  250     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
  251 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
  252     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
  253 #endif
  254 
  255 static int
  256 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
  257 {
  258         u_long size;
  259 
  260         size = uma_size();
  261         return (sysctl_handle_long(oidp, &size, 0, req));
  262 }
  263 
  264 static int
  265 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
  266 {
  267         u_long size, limit;
  268 
  269         /* The sysctl is unsigned, implement as a saturation value. */
  270         size = uma_size();
  271         limit = uma_limit();
  272         if (size > limit)
  273                 size = 0;
  274         else
  275                 size = limit - size;
  276         return (sysctl_handle_long(oidp, &size, 0, req));
  277 }
  278 
  279 static int
  280 sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS)
  281 {
  282         int sizes[nitems(kmemzones)];
  283         int i;
  284 
  285         for (i = 0; i < nitems(kmemzones); i++) {
  286                 sizes[i] = kmemzones[i].kz_size;
  287         }
  288 
  289         return (SYSCTL_OUT(req, &sizes, sizeof(sizes)));
  290 }
  291 
  292 /*
  293  * malloc(9) uma zone separation -- sub-page buffer overruns in one
  294  * malloc type will affect only a subset of other malloc types.
  295  */
  296 #if MALLOC_DEBUG_MAXZONES > 1
  297 static void
  298 tunable_set_numzones(void)
  299 {
  300 
  301         TUNABLE_INT_FETCH("debug.malloc.numzones",
  302             &numzones);
  303 
  304         /* Sanity check the number of malloc uma zones. */
  305         if (numzones <= 0)
  306                 numzones = 1;
  307         if (numzones > MALLOC_DEBUG_MAXZONES)
  308                 numzones = MALLOC_DEBUG_MAXZONES;
  309 }
  310 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
  311 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
  312     &numzones, 0, "Number of malloc uma subzones");
  313 
  314 /*
  315  * Any number that changes regularly is an okay choice for the
  316  * offset.  Build numbers are pretty good of you have them.
  317  */
  318 static u_int zone_offset = __FreeBSD_version;
  319 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
  320 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
  321     &zone_offset, 0, "Separate malloc types by examining the "
  322     "Nth character in the malloc type short description.");
  323 
  324 static void
  325 mtp_set_subzone(struct malloc_type *mtp)
  326 {
  327         struct malloc_type_internal *mtip;
  328         const char *desc;
  329         size_t len;
  330         u_int val;
  331 
  332         mtip = &mtp->ks_mti;
  333         desc = mtp->ks_shortdesc;
  334         if (desc == NULL || (len = strlen(desc)) == 0)
  335                 val = 0;
  336         else
  337                 val = desc[zone_offset % len];
  338         mtip->mti_zone = (val % numzones);
  339 }
  340 
  341 static inline u_int
  342 mtp_get_subzone(struct malloc_type *mtp)
  343 {
  344         struct malloc_type_internal *mtip;
  345 
  346         mtip = &mtp->ks_mti;
  347 
  348         KASSERT(mtip->mti_zone < numzones,
  349             ("mti_zone %u out of range %d",
  350             mtip->mti_zone, numzones));
  351         return (mtip->mti_zone);
  352 }
  353 #elif MALLOC_DEBUG_MAXZONES == 0
  354 #error "MALLOC_DEBUG_MAXZONES must be positive."
  355 #else
  356 static void
  357 mtp_set_subzone(struct malloc_type *mtp)
  358 {
  359         struct malloc_type_internal *mtip;
  360 
  361         mtip = &mtp->ks_mti;
  362         mtip->mti_zone = 0;
  363 }
  364 
  365 static inline u_int
  366 mtp_get_subzone(struct malloc_type *mtp)
  367 {
  368 
  369         return (0);
  370 }
  371 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
  372 
  373 /*
  374  * An allocation has succeeded -- update malloc type statistics for the
  375  * amount of bucket size.  Occurs within a critical section so that the
  376  * thread isn't preempted and doesn't migrate while updating per-PCU
  377  * statistics.
  378  */
  379 static void
  380 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
  381     int zindx)
  382 {
  383         struct malloc_type_internal *mtip;
  384         struct malloc_type_stats *mtsp;
  385 
  386         critical_enter();
  387         mtip = &mtp->ks_mti;
  388         mtsp = zpcpu_get(mtip->mti_stats);
  389         if (size > 0) {
  390                 mtsp->mts_memalloced += size;
  391                 mtsp->mts_numallocs++;
  392         }
  393         if (zindx != -1)
  394                 mtsp->mts_size |= 1 << zindx;
  395 
  396 #ifdef KDTRACE_HOOKS
  397         if (__predict_false(dtrace_malloc_enabled)) {
  398                 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
  399                 if (probe_id != 0)
  400                         (dtrace_malloc_probe)(probe_id,
  401                             (uintptr_t) mtp, (uintptr_t) mtip,
  402                             (uintptr_t) mtsp, size, zindx);
  403         }
  404 #endif
  405 
  406         critical_exit();
  407 }
  408 
  409 void
  410 malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
  411 {
  412 
  413         if (size > 0)
  414                 malloc_type_zone_allocated(mtp, size, -1);
  415 }
  416 
  417 /*
  418  * A free operation has occurred -- update malloc type statistics for the
  419  * amount of the bucket size.  Occurs within a critical section so that the
  420  * thread isn't preempted and doesn't migrate while updating per-CPU
  421  * statistics.
  422  */
  423 void
  424 malloc_type_freed(struct malloc_type *mtp, unsigned long size)
  425 {
  426         struct malloc_type_internal *mtip;
  427         struct malloc_type_stats *mtsp;
  428 
  429         critical_enter();
  430         mtip = &mtp->ks_mti;
  431         mtsp = zpcpu_get(mtip->mti_stats);
  432         mtsp->mts_memfreed += size;
  433         mtsp->mts_numfrees++;
  434 
  435 #ifdef KDTRACE_HOOKS
  436         if (__predict_false(dtrace_malloc_enabled)) {
  437                 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
  438                 if (probe_id != 0)
  439                         (dtrace_malloc_probe)(probe_id,
  440                             (uintptr_t) mtp, (uintptr_t) mtip,
  441                             (uintptr_t) mtsp, size, 0);
  442         }
  443 #endif
  444 
  445         critical_exit();
  446 }
  447 
  448 /*
  449  *      contigmalloc:
  450  *
  451  *      Allocate a block of physically contiguous memory.
  452  *
  453  *      If M_NOWAIT is set, this routine will not block and return NULL if
  454  *      the allocation fails.
  455  */
  456 void *
  457 contigmalloc(unsigned long size, struct malloc_type *type, int flags,
  458     vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
  459     vm_paddr_t boundary)
  460 {
  461         void *ret;
  462 
  463         ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment,
  464             boundary, VM_MEMATTR_DEFAULT);
  465         if (ret != NULL)
  466                 malloc_type_allocated(type, round_page(size));
  467         return (ret);
  468 }
  469 
  470 void *
  471 contigmalloc_domainset(unsigned long size, struct malloc_type *type,
  472     struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high,
  473     unsigned long alignment, vm_paddr_t boundary)
  474 {
  475         void *ret;
  476 
  477         ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high,
  478             alignment, boundary, VM_MEMATTR_DEFAULT);
  479         if (ret != NULL)
  480                 malloc_type_allocated(type, round_page(size));
  481         return (ret);
  482 }
  483 
  484 /*
  485  *      contigfree:
  486  *
  487  *      Free a block of memory allocated by contigmalloc.
  488  *
  489  *      This routine may not block.
  490  */
  491 void
  492 contigfree(void *addr, unsigned long size, struct malloc_type *type)
  493 {
  494 
  495         kmem_free((vm_offset_t)addr, size);
  496         malloc_type_freed(type, round_page(size));
  497 }
  498 
  499 #ifdef MALLOC_DEBUG
  500 static int
  501 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp,
  502     int flags)
  503 {
  504 #ifdef INVARIANTS
  505         int indx;
  506 
  507         KASSERT(mtp->ks_version == M_VERSION, ("malloc: bad malloc type version"));
  508         /*
  509          * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
  510          */
  511         indx = flags & (M_WAITOK | M_NOWAIT);
  512         if (indx != M_NOWAIT && indx != M_WAITOK) {
  513                 static  struct timeval lasterr;
  514                 static  int curerr, once;
  515                 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
  516                         printf("Bad malloc flags: %x\n", indx);
  517                         kdb_backtrace();
  518                         flags |= M_WAITOK;
  519                         once++;
  520                 }
  521         }
  522 #endif
  523 #ifdef MALLOC_MAKE_FAILURES
  524         if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
  525                 atomic_add_int(&malloc_nowait_count, 1);
  526                 if ((malloc_nowait_count % malloc_failure_rate) == 0) {
  527                         atomic_add_int(&malloc_failure_count, 1);
  528                         *vap = NULL;
  529                         return (EJUSTRETURN);
  530                 }
  531         }
  532 #endif
  533         if (flags & M_WAITOK) {
  534                 KASSERT(curthread->td_intr_nesting_level == 0,
  535                    ("malloc(M_WAITOK) in interrupt context"));
  536                 if (__predict_false(!THREAD_CAN_SLEEP())) {
  537 #ifdef EPOCH_TRACE
  538                         epoch_trace_list(curthread);
  539 #endif
  540                         KASSERT(1, 
  541                             ("malloc(M_WAITOK) with sleeping prohibited"));
  542                 }
  543         }
  544         KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
  545             ("malloc: called with spinlock or critical section held"));
  546 
  547 #ifdef DEBUG_MEMGUARD
  548         if (memguard_cmp_mtp(mtp, *sizep)) {
  549                 *vap = memguard_alloc(*sizep, flags);
  550                 if (*vap != NULL)
  551                         return (EJUSTRETURN);
  552                 /* This is unfortunate but should not be fatal. */
  553         }
  554 #endif
  555 
  556 #ifdef DEBUG_REDZONE
  557         *sizep = redzone_size_ntor(*sizep);
  558 #endif
  559 
  560         return (0);
  561 }
  562 #endif
  563 
  564 /*
  565  * Handle large allocations and frees by using kmem_malloc directly.
  566  */
  567 static inline bool
  568 malloc_large_slab(uma_slab_t slab)
  569 {
  570         uintptr_t va;
  571 
  572         va = (uintptr_t)slab;
  573         return ((va & 1) != 0);
  574 }
  575 
  576 static inline size_t
  577 malloc_large_size(uma_slab_t slab)
  578 {
  579         uintptr_t va;
  580 
  581         va = (uintptr_t)slab;
  582         return (va >> 1);
  583 }
  584 
  585 static caddr_t __noinline
  586 malloc_large(size_t *size, struct malloc_type *mtp, struct domainset *policy,
  587     int flags DEBUG_REDZONE_ARG_DEF)
  588 {
  589         vm_offset_t kva;
  590         caddr_t va;
  591         size_t sz;
  592 
  593         sz = roundup(*size, PAGE_SIZE);
  594         kva = kmem_malloc_domainset(policy, sz, flags);
  595         if (kva != 0) {
  596                 /* The low bit is unused for slab pointers. */
  597                 vsetzoneslab(kva, NULL, (void *)((sz << 1) | 1));
  598                 uma_total_inc(sz);
  599                 *size = sz;
  600         }
  601         va = (caddr_t)kva;
  602         malloc_type_allocated(mtp, va == NULL ? 0 : sz);
  603         if (__predict_false(va == NULL)) {
  604                 KASSERT((flags & M_WAITOK) == 0,
  605                     ("malloc(M_WAITOK) returned NULL"));
  606         }
  607 #ifdef DEBUG_REDZONE
  608         if (va != NULL)
  609                 va = redzone_setup(va, osize);
  610 #endif
  611         return (va);
  612 }
  613 
  614 static void
  615 free_large(void *addr, size_t size)
  616 {
  617 
  618         kmem_free((vm_offset_t)addr, size);
  619         uma_total_dec(size);
  620 }
  621 
  622 /*
  623  *      malloc:
  624  *
  625  *      Allocate a block of memory.
  626  *
  627  *      If M_NOWAIT is set, this routine will not block and return NULL if
  628  *      the allocation fails.
  629  */
  630 void *
  631 (malloc)(size_t size, struct malloc_type *mtp, int flags)
  632 {
  633         int indx;
  634         caddr_t va;
  635         uma_zone_t zone;
  636 #ifdef DEBUG_REDZONE
  637         unsigned long osize = size;
  638 #endif
  639 
  640         MPASS((flags & M_EXEC) == 0);
  641 
  642 #ifdef MALLOC_DEBUG
  643         va = NULL;
  644         if (malloc_dbg(&va, &size, mtp, flags) != 0)
  645                 return (va);
  646 #endif
  647 
  648         if (__predict_false(size > kmem_zmax))
  649                 return (malloc_large(&size, mtp, DOMAINSET_RR(), flags
  650                     DEBUG_REDZONE_ARG));
  651 
  652         if (size & KMEM_ZMASK)
  653                 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
  654         indx = kmemsize[size >> KMEM_ZSHIFT];
  655         zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)];
  656         va = uma_zalloc(zone, flags);
  657         if (va != NULL)
  658                 size = zone->uz_size;
  659         malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
  660         if (__predict_false(va == NULL)) {
  661                 KASSERT((flags & M_WAITOK) == 0,
  662                     ("malloc(M_WAITOK) returned NULL"));
  663         }
  664 #ifdef DEBUG_REDZONE
  665         if (va != NULL)
  666                 va = redzone_setup(va, osize);
  667 #endif
  668         return ((void *) va);
  669 }
  670 
  671 static void *
  672 malloc_domain(size_t *sizep, int *indxp, struct malloc_type *mtp, int domain,
  673     int flags)
  674 {
  675         uma_zone_t zone;
  676         caddr_t va;
  677         size_t size;
  678         int indx;
  679 
  680         size = *sizep;
  681         KASSERT(size <= kmem_zmax && (flags & M_EXEC) == 0,
  682             ("malloc_domain: Called with bad flag / size combination."));
  683         if (size & KMEM_ZMASK)
  684                 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
  685         indx = kmemsize[size >> KMEM_ZSHIFT];
  686         zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)];
  687         va = uma_zalloc_domain(zone, NULL, domain, flags);
  688         if (va != NULL)
  689                 *sizep = zone->uz_size;
  690         *indxp = indx;
  691         return ((void *)va);
  692 }
  693 
  694 void *
  695 malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds,
  696     int flags)
  697 {
  698         struct vm_domainset_iter di;
  699         caddr_t va;
  700         int domain;
  701         int indx;
  702 #ifdef DEBUG_REDZONE
  703         unsigned long osize = size;
  704 #endif
  705 
  706         MPASS((flags & M_EXEC) == 0);
  707 
  708 #ifdef MALLOC_DEBUG
  709         va = NULL;
  710         if (malloc_dbg(&va, &size, mtp, flags) != 0)
  711                 return (va);
  712 #endif
  713 
  714         if (__predict_false(size > kmem_zmax))
  715                 return (malloc_large(&size, mtp, DOMAINSET_RR(), flags
  716                     DEBUG_REDZONE_ARG));
  717 
  718         vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
  719         do {
  720                 va = malloc_domain(&size, &indx, mtp, domain, flags);
  721         } while (va == NULL && vm_domainset_iter_policy(&di, &domain) == 0);
  722         malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
  723         if (__predict_false(va == NULL)) {
  724                 KASSERT((flags & M_WAITOK) == 0,
  725                     ("malloc(M_WAITOK) returned NULL"));
  726         }
  727 #ifdef DEBUG_REDZONE
  728         if (va != NULL)
  729                 va = redzone_setup(va, osize);
  730 #endif
  731         return (va);
  732 }
  733 
  734 /*
  735  * Allocate an executable area.
  736  */
  737 void *
  738 malloc_exec(size_t size, struct malloc_type *mtp, int flags)
  739 {
  740 
  741         return (malloc_domainset_exec(size, mtp, DOMAINSET_RR(), flags));
  742 }
  743 
  744 void *
  745 malloc_domainset_exec(size_t size, struct malloc_type *mtp, struct domainset *ds,
  746     int flags)
  747 {
  748 #ifdef DEBUG_REDZONE
  749         unsigned long osize = size;
  750 #endif
  751 #ifdef MALLOC_DEBUG
  752         caddr_t va;
  753 #endif
  754 
  755         flags |= M_EXEC;
  756 
  757 #ifdef MALLOC_DEBUG
  758         va = NULL;
  759         if (malloc_dbg(&va, &size, mtp, flags) != 0)
  760                 return (va);
  761 #endif
  762 
  763         return (malloc_large(&size, mtp, ds, flags DEBUG_REDZONE_ARG));
  764 }
  765 
  766 void *
  767 malloc_domainset_aligned(size_t size, size_t align,
  768     struct malloc_type *mtp, struct domainset *ds, int flags)
  769 {
  770         void *res;
  771         size_t asize;
  772 
  773         KASSERT(align != 0 && powerof2(align),
  774             ("malloc_domainset_aligned: wrong align %#zx size %#zx",
  775             align, size));
  776         KASSERT(align <= PAGE_SIZE,
  777             ("malloc_domainset_aligned: align %#zx (size %#zx) too large",
  778             align, size));
  779 
  780         /*
  781          * Round the allocation size up to the next power of 2,
  782          * because we can only guarantee alignment for
  783          * power-of-2-sized allocations.  Further increase the
  784          * allocation size to align if the rounded size is less than
  785          * align, since malloc zones provide alignment equal to their
  786          * size.
  787          */
  788         asize = size <= align ? align : 1UL << flsl(size - 1);
  789 
  790         res = malloc_domainset(asize, mtp, ds, flags);
  791         KASSERT(res == NULL || ((uintptr_t)res & (align - 1)) == 0,
  792             ("malloc_domainset_aligned: result not aligned %p size %#zx "
  793             "allocsize %#zx align %#zx", res, size, asize, align));
  794         return (res);
  795 }
  796 
  797 void *
  798 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags)
  799 {
  800 
  801         if (WOULD_OVERFLOW(nmemb, size))
  802                 panic("mallocarray: %zu * %zu overflowed", nmemb, size);
  803 
  804         return (malloc(size * nmemb, type, flags));
  805 }
  806 
  807 #ifdef INVARIANTS
  808 static void
  809 free_save_type(void *addr, struct malloc_type *mtp, u_long size)
  810 {
  811         struct malloc_type **mtpp = addr;
  812 
  813         /*
  814          * Cache a pointer to the malloc_type that most recently freed
  815          * this memory here.  This way we know who is most likely to
  816          * have stepped on it later.
  817          *
  818          * This code assumes that size is a multiple of 8 bytes for
  819          * 64 bit machines
  820          */
  821         mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
  822         mtpp += (size - sizeof(struct malloc_type *)) /
  823             sizeof(struct malloc_type *);
  824         *mtpp = mtp;
  825 }
  826 #endif
  827 
  828 #ifdef MALLOC_DEBUG
  829 static int
  830 free_dbg(void **addrp, struct malloc_type *mtp)
  831 {
  832         void *addr;
  833 
  834         addr = *addrp;
  835         KASSERT(mtp->ks_version == M_VERSION, ("free: bad malloc type version"));
  836         KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
  837             ("free: called with spinlock or critical section held"));
  838 
  839         /* free(NULL, ...) does nothing */
  840         if (addr == NULL)
  841                 return (EJUSTRETURN);
  842 
  843 #ifdef DEBUG_MEMGUARD
  844         if (is_memguard_addr(addr)) {
  845                 memguard_free(addr);
  846                 return (EJUSTRETURN);
  847         }
  848 #endif
  849 
  850 #ifdef DEBUG_REDZONE
  851         redzone_check(addr);
  852         *addrp = redzone_addr_ntor(addr);
  853 #endif
  854 
  855         return (0);
  856 }
  857 #endif
  858 
  859 /*
  860  *      free:
  861  *
  862  *      Free a block of memory allocated by malloc.
  863  *
  864  *      This routine may not block.
  865  */
  866 void
  867 free(void *addr, struct malloc_type *mtp)
  868 {
  869         uma_zone_t zone;
  870         uma_slab_t slab;
  871         u_long size;
  872 
  873 #ifdef MALLOC_DEBUG
  874         if (free_dbg(&addr, mtp) != 0)
  875                 return;
  876 #endif
  877         /* free(NULL, ...) does nothing */
  878         if (addr == NULL)
  879                 return;
  880 
  881         vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
  882         if (slab == NULL)
  883                 panic("free: address %p(%p) has not been allocated.\n",
  884                     addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
  885 
  886         if (__predict_true(!malloc_large_slab(slab))) {
  887                 size = zone->uz_size;
  888 #ifdef INVARIANTS
  889                 free_save_type(addr, mtp, size);
  890 #endif
  891                 uma_zfree_arg(zone, addr, slab);
  892         } else {
  893                 size = malloc_large_size(slab);
  894                 free_large(addr, size);
  895         }
  896         malloc_type_freed(mtp, size);
  897 }
  898 
  899 /*
  900  *      zfree:
  901  *
  902  *      Zero then free a block of memory allocated by malloc.
  903  *
  904  *      This routine may not block.
  905  */
  906 void
  907 zfree(void *addr, struct malloc_type *mtp)
  908 {
  909         uma_zone_t zone;
  910         uma_slab_t slab;
  911         u_long size;
  912 
  913 #ifdef MALLOC_DEBUG
  914         if (free_dbg(&addr, mtp) != 0)
  915                 return;
  916 #endif
  917         /* free(NULL, ...) does nothing */
  918         if (addr == NULL)
  919                 return;
  920 
  921         vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
  922         if (slab == NULL)
  923                 panic("free: address %p(%p) has not been allocated.\n",
  924                     addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
  925 
  926         if (__predict_true(!malloc_large_slab(slab))) {
  927                 size = zone->uz_size;
  928 #ifdef INVARIANTS
  929                 free_save_type(addr, mtp, size);
  930 #endif
  931                 explicit_bzero(addr, size);
  932                 uma_zfree_arg(zone, addr, slab);
  933         } else {
  934                 size = malloc_large_size(slab);
  935                 explicit_bzero(addr, size);
  936                 free_large(addr, size);
  937         }
  938         malloc_type_freed(mtp, size);
  939 }
  940 
  941 /*
  942  *      realloc: change the size of a memory block
  943  */
  944 void *
  945 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags)
  946 {
  947         uma_zone_t zone;
  948         uma_slab_t slab;
  949         unsigned long alloc;
  950         void *newaddr;
  951 
  952         KASSERT(mtp->ks_version == M_VERSION,
  953             ("realloc: bad malloc type version"));
  954         KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
  955             ("realloc: called with spinlock or critical section held"));
  956 
  957         /* realloc(NULL, ...) is equivalent to malloc(...) */
  958         if (addr == NULL)
  959                 return (malloc(size, mtp, flags));
  960 
  961         /*
  962          * XXX: Should report free of old memory and alloc of new memory to
  963          * per-CPU stats.
  964          */
  965 
  966 #ifdef DEBUG_MEMGUARD
  967         if (is_memguard_addr(addr))
  968                 return (memguard_realloc(addr, size, mtp, flags));
  969 #endif
  970 
  971 #ifdef DEBUG_REDZONE
  972         slab = NULL;
  973         zone = NULL;
  974         alloc = redzone_get_size(addr);
  975 #else
  976         vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
  977 
  978         /* Sanity check */
  979         KASSERT(slab != NULL,
  980             ("realloc: address %p out of range", (void *)addr));
  981 
  982         /* Get the size of the original block */
  983         if (!malloc_large_slab(slab))
  984                 alloc = zone->uz_size;
  985         else
  986                 alloc = malloc_large_size(slab);
  987 
  988         /* Reuse the original block if appropriate */
  989         if (size <= alloc
  990             && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
  991                 return (addr);
  992 #endif /* !DEBUG_REDZONE */
  993 
  994         /* Allocate a new, bigger (or smaller) block */
  995         if ((newaddr = malloc(size, mtp, flags)) == NULL)
  996                 return (NULL);
  997 
  998         /* Copy over original contents */
  999         bcopy(addr, newaddr, min(size, alloc));
 1000         free(addr, mtp);
 1001         return (newaddr);
 1002 }
 1003 
 1004 /*
 1005  *      reallocf: same as realloc() but free memory on failure.
 1006  */
 1007 void *
 1008 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags)
 1009 {
 1010         void *mem;
 1011 
 1012         if ((mem = realloc(addr, size, mtp, flags)) == NULL)
 1013                 free(addr, mtp);
 1014         return (mem);
 1015 }
 1016 
 1017 /*
 1018  *      malloc_size: returns the number of bytes allocated for a request of the
 1019  *                   specified size
 1020  */
 1021 size_t
 1022 malloc_size(size_t size)
 1023 {
 1024         int indx;
 1025 
 1026         if (size > kmem_zmax)
 1027                 return (0);
 1028         if (size & KMEM_ZMASK)
 1029                 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
 1030         indx = kmemsize[size >> KMEM_ZSHIFT];
 1031         return (kmemzones[indx].kz_size);
 1032 }
 1033 
 1034 /*
 1035  *      malloc_usable_size: returns the usable size of the allocation.
 1036  */
 1037 size_t
 1038 malloc_usable_size(const void *addr)
 1039 {
 1040 #ifndef DEBUG_REDZONE
 1041         uma_zone_t zone;
 1042         uma_slab_t slab;
 1043 #endif
 1044         u_long size;
 1045 
 1046         if (addr == NULL)
 1047                 return (0);
 1048 
 1049 #ifdef DEBUG_MEMGUARD
 1050         if (is_memguard_addr(__DECONST(void *, addr)))
 1051                 return (memguard_get_req_size(addr));
 1052 #endif
 1053 
 1054 #ifdef DEBUG_REDZONE
 1055         size = redzone_get_size(__DECONST(void *, addr));
 1056 #else
 1057         vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
 1058         if (slab == NULL)
 1059                 panic("malloc_usable_size: address %p(%p) is not allocated.\n",
 1060                     addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
 1061 
 1062         if (!malloc_large_slab(slab))
 1063                 size = zone->uz_size;
 1064         else
 1065                 size = malloc_large_size(slab);
 1066 #endif
 1067         return (size);
 1068 }
 1069 
 1070 CTASSERT(VM_KMEM_SIZE_SCALE >= 1);
 1071 
 1072 /*
 1073  * Initialize the kernel memory (kmem) arena.
 1074  */
 1075 void
 1076 kmeminit(void)
 1077 {
 1078         u_long mem_size;
 1079         u_long tmp;
 1080 
 1081 #ifdef VM_KMEM_SIZE
 1082         if (vm_kmem_size == 0)
 1083                 vm_kmem_size = VM_KMEM_SIZE;
 1084 #endif
 1085 #ifdef VM_KMEM_SIZE_MIN
 1086         if (vm_kmem_size_min == 0)
 1087                 vm_kmem_size_min = VM_KMEM_SIZE_MIN;
 1088 #endif
 1089 #ifdef VM_KMEM_SIZE_MAX
 1090         if (vm_kmem_size_max == 0)
 1091                 vm_kmem_size_max = VM_KMEM_SIZE_MAX;
 1092 #endif
 1093         /*
 1094          * Calculate the amount of kernel virtual address (KVA) space that is
 1095          * preallocated to the kmem arena.  In order to support a wide range
 1096          * of machines, it is a function of the physical memory size,
 1097          * specifically,
 1098          *
 1099          *      min(max(physical memory size / VM_KMEM_SIZE_SCALE,
 1100          *          VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX)
 1101          *
 1102          * Every architecture must define an integral value for
 1103          * VM_KMEM_SIZE_SCALE.  However, the definitions of VM_KMEM_SIZE_MIN
 1104          * and VM_KMEM_SIZE_MAX, which represent respectively the floor and
 1105          * ceiling on this preallocation, are optional.  Typically,
 1106          * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on
 1107          * a given architecture.
 1108          */
 1109         mem_size = vm_cnt.v_page_count;
 1110         if (mem_size <= 32768) /* delphij XXX 128MB */
 1111                 kmem_zmax = PAGE_SIZE;
 1112 
 1113         if (vm_kmem_size_scale < 1)
 1114                 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
 1115 
 1116         /*
 1117          * Check if we should use defaults for the "vm_kmem_size"
 1118          * variable:
 1119          */
 1120         if (vm_kmem_size == 0) {
 1121                 vm_kmem_size = mem_size / vm_kmem_size_scale;
 1122                 vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ?
 1123                     vm_kmem_size_max : vm_kmem_size * PAGE_SIZE;
 1124                 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min)
 1125                         vm_kmem_size = vm_kmem_size_min;
 1126                 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
 1127                         vm_kmem_size = vm_kmem_size_max;
 1128         }
 1129         if (vm_kmem_size == 0)
 1130                 panic("Tune VM_KMEM_SIZE_* for the platform");
 1131 
 1132         /*
 1133          * The amount of KVA space that is preallocated to the
 1134          * kmem arena can be set statically at compile-time or manually
 1135          * through the kernel environment.  However, it is still limited to
 1136          * twice the physical memory size, which has been sufficient to handle
 1137          * the most severe cases of external fragmentation in the kmem arena. 
 1138          */
 1139         if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
 1140                 vm_kmem_size = 2 * mem_size * PAGE_SIZE;
 1141 
 1142         vm_kmem_size = round_page(vm_kmem_size);
 1143 #ifdef DEBUG_MEMGUARD
 1144         tmp = memguard_fudge(vm_kmem_size, kernel_map);
 1145 #else
 1146         tmp = vm_kmem_size;
 1147 #endif
 1148         uma_set_limit(tmp);
 1149 
 1150 #ifdef DEBUG_MEMGUARD
 1151         /*
 1152          * Initialize MemGuard if support compiled in.  MemGuard is a
 1153          * replacement allocator used for detecting tamper-after-free
 1154          * scenarios as they occur.  It is only used for debugging.
 1155          */
 1156         memguard_init(kernel_arena);
 1157 #endif
 1158 }
 1159 
 1160 /*
 1161  * Initialize the kernel memory allocator
 1162  */
 1163 /* ARGSUSED*/
 1164 static void
 1165 mallocinit(void *dummy)
 1166 {
 1167         int i;
 1168         uint8_t indx;
 1169 
 1170         mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
 1171 
 1172         kmeminit();
 1173 
 1174         if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX)
 1175                 kmem_zmax = KMEM_ZMAX;
 1176 
 1177         for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
 1178                 int size = kmemzones[indx].kz_size;
 1179                 const char *name = kmemzones[indx].kz_name;
 1180                 size_t align;
 1181                 int subzone;
 1182 
 1183                 align = UMA_ALIGN_PTR;
 1184                 if (powerof2(size) && size > sizeof(void *))
 1185                         align = MIN(size, PAGE_SIZE) - 1;
 1186                 for (subzone = 0; subzone < numzones; subzone++) {
 1187                         kmemzones[indx].kz_zone[subzone] =
 1188                             uma_zcreate(name, size,
 1189 #ifdef INVARIANTS
 1190                             mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
 1191 #else
 1192                             NULL, NULL, NULL, NULL,
 1193 #endif
 1194                             align, UMA_ZONE_MALLOC);
 1195                 }
 1196                 for (;i <= size; i+= KMEM_ZBASE)
 1197                         kmemsize[i >> KMEM_ZSHIFT] = indx;
 1198         }
 1199 }
 1200 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL);
 1201 
 1202 void
 1203 malloc_init(void *data)
 1204 {
 1205         struct malloc_type_internal *mtip;
 1206         struct malloc_type *mtp;
 1207 
 1208         KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init"));
 1209 
 1210         mtp = data;
 1211         if (mtp->ks_version != M_VERSION)
 1212                 panic("malloc_init: type %s with unsupported version %lu",
 1213                     mtp->ks_shortdesc, mtp->ks_version);
 1214 
 1215         mtip = &mtp->ks_mti;
 1216         mtip->mti_stats = uma_zalloc_pcpu(pcpu_zone_64, M_WAITOK | M_ZERO);
 1217         mtp_set_subzone(mtp);
 1218 
 1219         mtx_lock(&malloc_mtx);
 1220         mtp->ks_next = kmemstatistics;
 1221         kmemstatistics = mtp;
 1222         kmemcount++;
 1223         mtx_unlock(&malloc_mtx);
 1224 }
 1225 
 1226 void
 1227 malloc_uninit(void *data)
 1228 {
 1229         struct malloc_type_internal *mtip;
 1230         struct malloc_type_stats *mtsp;
 1231         struct malloc_type *mtp, *temp;
 1232         long temp_allocs, temp_bytes;
 1233         int i;
 1234 
 1235         mtp = data;
 1236         KASSERT(mtp->ks_version == M_VERSION,
 1237             ("malloc_uninit: bad malloc type version"));
 1238 
 1239         mtx_lock(&malloc_mtx);
 1240         mtip = &mtp->ks_mti;
 1241         if (mtp != kmemstatistics) {
 1242                 for (temp = kmemstatistics; temp != NULL;
 1243                     temp = temp->ks_next) {
 1244                         if (temp->ks_next == mtp) {
 1245                                 temp->ks_next = mtp->ks_next;
 1246                                 break;
 1247                         }
 1248                 }
 1249                 KASSERT(temp,
 1250                     ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
 1251         } else
 1252                 kmemstatistics = mtp->ks_next;
 1253         kmemcount--;
 1254         mtx_unlock(&malloc_mtx);
 1255 
 1256         /*
 1257          * Look for memory leaks.
 1258          */
 1259         temp_allocs = temp_bytes = 0;
 1260         for (i = 0; i <= mp_maxid; i++) {
 1261                 mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
 1262                 temp_allocs += mtsp->mts_numallocs;
 1263                 temp_allocs -= mtsp->mts_numfrees;
 1264                 temp_bytes += mtsp->mts_memalloced;
 1265                 temp_bytes -= mtsp->mts_memfreed;
 1266         }
 1267         if (temp_allocs > 0 || temp_bytes > 0) {
 1268                 printf("Warning: memory type %s leaked memory on destroy "
 1269                     "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
 1270                     temp_allocs, temp_bytes);
 1271         }
 1272 
 1273         uma_zfree_pcpu(pcpu_zone_64, mtip->mti_stats);
 1274 }
 1275 
 1276 struct malloc_type *
 1277 malloc_desc2type(const char *desc)
 1278 {
 1279         struct malloc_type *mtp;
 1280 
 1281         mtx_assert(&malloc_mtx, MA_OWNED);
 1282         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1283                 if (strcmp(mtp->ks_shortdesc, desc) == 0)
 1284                         return (mtp);
 1285         }
 1286         return (NULL);
 1287 }
 1288 
 1289 static int
 1290 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
 1291 {
 1292         struct malloc_type_stream_header mtsh;
 1293         struct malloc_type_internal *mtip;
 1294         struct malloc_type_stats *mtsp, zeromts;
 1295         struct malloc_type_header mth;
 1296         struct malloc_type *mtp;
 1297         int error, i;
 1298         struct sbuf sbuf;
 1299 
 1300         error = sysctl_wire_old_buffer(req, 0);
 1301         if (error != 0)
 1302                 return (error);
 1303         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
 1304         sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
 1305         mtx_lock(&malloc_mtx);
 1306 
 1307         bzero(&zeromts, sizeof(zeromts));
 1308 
 1309         /*
 1310          * Insert stream header.
 1311          */
 1312         bzero(&mtsh, sizeof(mtsh));
 1313         mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
 1314         mtsh.mtsh_maxcpus = MAXCPU;
 1315         mtsh.mtsh_count = kmemcount;
 1316         (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
 1317 
 1318         /*
 1319          * Insert alternating sequence of type headers and type statistics.
 1320          */
 1321         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1322                 mtip = &mtp->ks_mti;
 1323 
 1324                 /*
 1325                  * Insert type header.
 1326                  */
 1327                 bzero(&mth, sizeof(mth));
 1328                 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
 1329                 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
 1330 
 1331                 /*
 1332                  * Insert type statistics for each CPU.
 1333                  */
 1334                 for (i = 0; i <= mp_maxid; i++) {
 1335                         mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
 1336                         (void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp));
 1337                 }
 1338                 /*
 1339                  * Fill in the missing CPUs.
 1340                  */
 1341                 for (; i < MAXCPU; i++) {
 1342                         (void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts));
 1343                 }
 1344         }
 1345         mtx_unlock(&malloc_mtx);
 1346         error = sbuf_finish(&sbuf);
 1347         sbuf_delete(&sbuf);
 1348         return (error);
 1349 }
 1350 
 1351 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats,
 1352     CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_MPSAFE, 0, 0,
 1353     sysctl_kern_malloc_stats, "s,malloc_type_ustats",
 1354     "Return malloc types");
 1355 
 1356 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
 1357     "Count of kernel malloc types");
 1358 
 1359 void
 1360 malloc_type_list(malloc_type_list_func_t *func, void *arg)
 1361 {
 1362         struct malloc_type *mtp, **bufmtp;
 1363         int count, i;
 1364         size_t buflen;
 1365 
 1366         mtx_lock(&malloc_mtx);
 1367 restart:
 1368         mtx_assert(&malloc_mtx, MA_OWNED);
 1369         count = kmemcount;
 1370         mtx_unlock(&malloc_mtx);
 1371 
 1372         buflen = sizeof(struct malloc_type *) * count;
 1373         bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
 1374 
 1375         mtx_lock(&malloc_mtx);
 1376 
 1377         if (count < kmemcount) {
 1378                 free(bufmtp, M_TEMP);
 1379                 goto restart;
 1380         }
 1381 
 1382         for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
 1383                 bufmtp[i] = mtp;
 1384 
 1385         mtx_unlock(&malloc_mtx);
 1386 
 1387         for (i = 0; i < count; i++)
 1388                 (func)(bufmtp[i], arg);
 1389 
 1390         free(bufmtp, M_TEMP);
 1391 }
 1392 
 1393 #ifdef DDB
 1394 static int64_t
 1395 get_malloc_stats(const struct malloc_type_internal *mtip, uint64_t *allocs,
 1396     uint64_t *inuse)
 1397 {
 1398         const struct malloc_type_stats *mtsp;
 1399         uint64_t frees, alloced, freed;
 1400         int i;
 1401 
 1402         *allocs = 0;
 1403         frees = 0;
 1404         alloced = 0;
 1405         freed = 0;
 1406         for (i = 0; i <= mp_maxid; i++) {
 1407                 mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
 1408 
 1409                 *allocs += mtsp->mts_numallocs;
 1410                 frees += mtsp->mts_numfrees;
 1411                 alloced += mtsp->mts_memalloced;
 1412                 freed += mtsp->mts_memfreed;
 1413         }
 1414         *inuse = *allocs - frees;
 1415         return (alloced - freed);
 1416 }
 1417 
 1418 DB_SHOW_COMMAND(malloc, db_show_malloc)
 1419 {
 1420         const char *fmt_hdr, *fmt_entry;
 1421         struct malloc_type *mtp;
 1422         uint64_t allocs, inuse;
 1423         int64_t size;
 1424         /* variables for sorting */
 1425         struct malloc_type *last_mtype, *cur_mtype;
 1426         int64_t cur_size, last_size;
 1427         int ties;
 1428 
 1429         if (modif[0] == 'i') {
 1430                 fmt_hdr = "%s,%s,%s,%s\n";
 1431                 fmt_entry = "\"%s\",%ju,%jdK,%ju\n";
 1432         } else {
 1433                 fmt_hdr = "%18s %12s  %12s %12s\n";
 1434                 fmt_entry = "%18s %12ju %12jdK %12ju\n";
 1435         }
 1436 
 1437         db_printf(fmt_hdr, "Type", "InUse", "MemUse", "Requests");
 1438 
 1439         /* Select sort, largest size first. */
 1440         last_mtype = NULL;
 1441         last_size = INT64_MAX;
 1442         for (;;) {
 1443                 cur_mtype = NULL;
 1444                 cur_size = -1;
 1445                 ties = 0;
 1446 
 1447                 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1448                         /*
 1449                          * In the case of size ties, print out mtypes
 1450                          * in the order they are encountered.  That is,
 1451                          * when we encounter the most recently output
 1452                          * mtype, we have already printed all preceding
 1453                          * ties, and we must print all following ties.
 1454                          */
 1455                         if (mtp == last_mtype) {
 1456                                 ties = 1;
 1457                                 continue;
 1458                         }
 1459                         size = get_malloc_stats(&mtp->ks_mti, &allocs,
 1460                             &inuse);
 1461                         if (size > cur_size && size < last_size + ties) {
 1462                                 cur_size = size;
 1463                                 cur_mtype = mtp;
 1464                         }
 1465                 }
 1466                 if (cur_mtype == NULL)
 1467                         break;
 1468 
 1469                 size = get_malloc_stats(&cur_mtype->ks_mti, &allocs, &inuse);
 1470                 db_printf(fmt_entry, cur_mtype->ks_shortdesc, inuse,
 1471                     howmany(size, 1024), allocs);
 1472 
 1473                 if (db_pager_quit)
 1474                         break;
 1475 
 1476                 last_mtype = cur_mtype;
 1477                 last_size = cur_size;
 1478         }
 1479 }
 1480 
 1481 #if MALLOC_DEBUG_MAXZONES > 1
 1482 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
 1483 {
 1484         struct malloc_type_internal *mtip;
 1485         struct malloc_type *mtp;
 1486         u_int subzone;
 1487 
 1488         if (!have_addr) {
 1489                 db_printf("Usage: show multizone_matches <malloc type/addr>\n");
 1490                 return;
 1491         }
 1492         mtp = (void *)addr;
 1493         if (mtp->ks_version != M_VERSION) {
 1494                 db_printf("Version %lx does not match expected %x\n",
 1495                     mtp->ks_version, M_VERSION);
 1496                 return;
 1497         }
 1498 
 1499         mtip = &mtp->ks_mti;
 1500         subzone = mtip->mti_zone;
 1501 
 1502         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1503                 mtip = &mtp->ks_mti;
 1504                 if (mtip->mti_zone != subzone)
 1505                         continue;
 1506                 db_printf("%s\n", mtp->ks_shortdesc);
 1507                 if (db_pager_quit)
 1508                         break;
 1509         }
 1510 }
 1511 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
 1512 #endif /* DDB */

Cache object: 57099c1a4cf5936cbe89755b730956e9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.