The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_malloc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1987, 1991, 1993
    5  *      The Regents of the University of California.
    6  * Copyright (c) 2005-2009 Robert N. M. Watson
    7  * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> (mallocarray)
    8  * All rights reserved.
    9  *
   10  * Redistribution and use in source and binary forms, with or without
   11  * modification, are permitted provided that the following conditions
   12  * are met:
   13  * 1. Redistributions of source code must retain the above copyright
   14  *    notice, this list of conditions and the following disclaimer.
   15  * 2. Redistributions in binary form must reproduce the above copyright
   16  *    notice, this list of conditions and the following disclaimer in the
   17  *    documentation and/or other materials provided with the distribution.
   18  * 3. Neither the name of the University nor the names of its contributors
   19  *    may be used to endorse or promote products derived from this software
   20  *    without specific prior written permission.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  *
   34  *      @(#)kern_malloc.c       8.3 (Berkeley) 1/4/94
   35  */
   36 
   37 /*
   38  * Kernel malloc(9) implementation -- general purpose kernel memory allocator
   39  * based on memory types.  Back end is implemented using the UMA(9) zone
   40  * allocator.  A set of fixed-size buckets are used for smaller allocations,
   41  * and a special UMA allocation interface is used for larger allocations.
   42  * Callers declare memory types, and statistics are maintained independently
   43  * for each memory type.  Statistics are maintained per-CPU for performance
   44  * reasons.  See malloc(9) and comments in malloc.h for a detailed
   45  * description.
   46  */
   47 
   48 #include <sys/cdefs.h>
   49 __FBSDID("$FreeBSD$");
   50 
   51 #include "opt_ddb.h"
   52 #include "opt_vm.h"
   53 
   54 #include <sys/param.h>
   55 #include <sys/systm.h>
   56 #include <sys/asan.h>
   57 #include <sys/kdb.h>
   58 #include <sys/kernel.h>
   59 #include <sys/lock.h>
   60 #include <sys/malloc.h>
   61 #include <sys/mutex.h>
   62 #include <sys/vmmeter.h>
   63 #include <sys/proc.h>
   64 #include <sys/queue.h>
   65 #include <sys/sbuf.h>
   66 #include <sys/smp.h>
   67 #include <sys/sysctl.h>
   68 #include <sys/time.h>
   69 #include <sys/vmem.h>
   70 #ifdef EPOCH_TRACE
   71 #include <sys/epoch.h>
   72 #endif
   73 
   74 #include <vm/vm.h>
   75 #include <vm/pmap.h>
   76 #include <vm/vm_domainset.h>
   77 #include <vm/vm_pageout.h>
   78 #include <vm/vm_param.h>
   79 #include <vm/vm_kern.h>
   80 #include <vm/vm_extern.h>
   81 #include <vm/vm_map.h>
   82 #include <vm/vm_page.h>
   83 #include <vm/vm_phys.h>
   84 #include <vm/vm_pagequeue.h>
   85 #include <vm/uma.h>
   86 #include <vm/uma_int.h>
   87 #include <vm/uma_dbg.h>
   88 
   89 #ifdef DEBUG_MEMGUARD
   90 #include <vm/memguard.h>
   91 #endif
   92 #ifdef DEBUG_REDZONE
   93 #include <vm/redzone.h>
   94 #endif
   95 
   96 #if defined(INVARIANTS) && defined(__i386__)
   97 #include <machine/cpu.h>
   98 #endif
   99 
  100 #include <ddb/ddb.h>
  101 
  102 #ifdef KDTRACE_HOOKS
  103 #include <sys/dtrace_bsd.h>
  104 
  105 bool    __read_frequently                       dtrace_malloc_enabled;
  106 dtrace_malloc_probe_func_t __read_mostly        dtrace_malloc_probe;
  107 #endif
  108 
  109 #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) ||             \
  110     defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE)
  111 #define MALLOC_DEBUG    1
  112 #endif
  113 
  114 #if defined(KASAN) || defined(DEBUG_REDZONE)
  115 #define DEBUG_REDZONE_ARG_DEF   , unsigned long osize
  116 #define DEBUG_REDZONE_ARG       , osize
  117 #else
  118 #define DEBUG_REDZONE_ARG_DEF
  119 #define DEBUG_REDZONE_ARG
  120 #endif
  121 
  122 /*
  123  * When realloc() is called, if the new size is sufficiently smaller than
  124  * the old size, realloc() will allocate a new, smaller block to avoid
  125  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
  126  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
  127  */
  128 #ifndef REALLOC_FRACTION
  129 #define REALLOC_FRACTION        1       /* new block if <= half the size */
  130 #endif
  131 
  132 /*
  133  * Centrally define some common malloc types.
  134  */
  135 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
  136 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
  137 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
  138 
  139 static struct malloc_type *kmemstatistics;
  140 static int kmemcount;
  141 
  142 #define KMEM_ZSHIFT     4
  143 #define KMEM_ZBASE      16
  144 #define KMEM_ZMASK      (KMEM_ZBASE - 1)
  145 
  146 #define KMEM_ZMAX       65536
  147 #define KMEM_ZSIZE      (KMEM_ZMAX >> KMEM_ZSHIFT)
  148 static uint8_t kmemsize[KMEM_ZSIZE + 1];
  149 
  150 #ifndef MALLOC_DEBUG_MAXZONES
  151 #define MALLOC_DEBUG_MAXZONES   1
  152 #endif
  153 static int numzones = MALLOC_DEBUG_MAXZONES;
  154 
  155 /*
  156  * Small malloc(9) memory allocations are allocated from a set of UMA buckets
  157  * of various sizes.
  158  *
  159  * Warning: the layout of the struct is duplicated in libmemstat for KVM support.
  160  *
  161  * XXX: The comment here used to read "These won't be powers of two for
  162  * long."  It's possible that a significant amount of wasted memory could be
  163  * recovered by tuning the sizes of these buckets.
  164  */
  165 struct {
  166         int kz_size;
  167         const char *kz_name;
  168         uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES];
  169 } kmemzones[] = {
  170         {16, "malloc-16", },
  171         {32, "malloc-32", },
  172         {64, "malloc-64", },
  173         {128, "malloc-128", },
  174         {256, "malloc-256", },
  175         {384, "malloc-384", },
  176         {512, "malloc-512", },
  177         {1024, "malloc-1024", },
  178         {2048, "malloc-2048", },
  179         {4096, "malloc-4096", },
  180         {8192, "malloc-8192", },
  181         {16384, "malloc-16384", },
  182         {32768, "malloc-32768", },
  183         {65536, "malloc-65536", },
  184         {0, NULL},
  185 };
  186 
  187 u_long vm_kmem_size;
  188 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0,
  189     "Size of kernel memory");
  190 
  191 static u_long kmem_zmax = KMEM_ZMAX;
  192 SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0,
  193     "Maximum allocation size that malloc(9) would use UMA as backend");
  194 
  195 static u_long vm_kmem_size_min;
  196 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0,
  197     "Minimum size of kernel memory");
  198 
  199 static u_long vm_kmem_size_max;
  200 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0,
  201     "Maximum size of kernel memory");
  202 
  203 static u_int vm_kmem_size_scale;
  204 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0,
  205     "Scale factor for kernel memory size");
  206 
  207 static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS);
  208 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size,
  209     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
  210     sysctl_kmem_map_size, "LU", "Current kmem allocation size");
  211 
  212 static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS);
  213 SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free,
  214     CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0,
  215     sysctl_kmem_map_free, "LU", "Free space in kmem");
  216 
  217 static SYSCTL_NODE(_vm, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
  218     "Malloc information");
  219 
  220 static u_int vm_malloc_zone_count = nitems(kmemzones);
  221 SYSCTL_UINT(_vm_malloc, OID_AUTO, zone_count,
  222     CTLFLAG_RD, &vm_malloc_zone_count, 0,
  223     "Number of malloc zones");
  224 
  225 static int sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS);
  226 SYSCTL_PROC(_vm_malloc, OID_AUTO, zone_sizes,
  227     CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, NULL, 0,
  228     sysctl_vm_malloc_zone_sizes, "S", "Zone sizes used by malloc");
  229 
  230 /*
  231  * The malloc_mtx protects the kmemstatistics linked list.
  232  */
  233 struct mtx malloc_mtx;
  234 
  235 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
  236 
  237 #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1)
  238 static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
  239     "Kernel malloc debugging options");
  240 #endif
  241 
  242 /*
  243  * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
  244  * the caller specifies M_NOWAIT.  If set to 0, no failures are caused.
  245  */
  246 #ifdef MALLOC_MAKE_FAILURES
  247 static int malloc_failure_rate;
  248 static int malloc_nowait_count;
  249 static int malloc_failure_count;
  250 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN,
  251     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
  252 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
  253     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
  254 #endif
  255 
  256 static int
  257 sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS)
  258 {
  259         u_long size;
  260 
  261         size = uma_size();
  262         return (sysctl_handle_long(oidp, &size, 0, req));
  263 }
  264 
  265 static int
  266 sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS)
  267 {
  268         u_long size, limit;
  269 
  270         /* The sysctl is unsigned, implement as a saturation value. */
  271         size = uma_size();
  272         limit = uma_limit();
  273         if (size > limit)
  274                 size = 0;
  275         else
  276                 size = limit - size;
  277         return (sysctl_handle_long(oidp, &size, 0, req));
  278 }
  279 
  280 static int
  281 sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS)
  282 {
  283         int sizes[nitems(kmemzones)];
  284         int i;
  285 
  286         for (i = 0; i < nitems(kmemzones); i++) {
  287                 sizes[i] = kmemzones[i].kz_size;
  288         }
  289 
  290         return (SYSCTL_OUT(req, &sizes, sizeof(sizes)));
  291 }
  292 
  293 /*
  294  * malloc(9) uma zone separation -- sub-page buffer overruns in one
  295  * malloc type will affect only a subset of other malloc types.
  296  */
  297 #if MALLOC_DEBUG_MAXZONES > 1
  298 static void
  299 tunable_set_numzones(void)
  300 {
  301 
  302         TUNABLE_INT_FETCH("debug.malloc.numzones",
  303             &numzones);
  304 
  305         /* Sanity check the number of malloc uma zones. */
  306         if (numzones <= 0)
  307                 numzones = 1;
  308         if (numzones > MALLOC_DEBUG_MAXZONES)
  309                 numzones = MALLOC_DEBUG_MAXZONES;
  310 }
  311 SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL);
  312 SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
  313     &numzones, 0, "Number of malloc uma subzones");
  314 
  315 /*
  316  * Any number that changes regularly is an okay choice for the
  317  * offset.  Build numbers are pretty good of you have them.
  318  */
  319 static u_int zone_offset = __FreeBSD_version;
  320 TUNABLE_INT("debug.malloc.zone_offset", &zone_offset);
  321 SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN,
  322     &zone_offset, 0, "Separate malloc types by examining the "
  323     "Nth character in the malloc type short description.");
  324 
  325 static void
  326 mtp_set_subzone(struct malloc_type *mtp)
  327 {
  328         struct malloc_type_internal *mtip;
  329         const char *desc;
  330         size_t len;
  331         u_int val;
  332 
  333         mtip = &mtp->ks_mti;
  334         desc = mtp->ks_shortdesc;
  335         if (desc == NULL || (len = strlen(desc)) == 0)
  336                 val = 0;
  337         else
  338                 val = desc[zone_offset % len];
  339         mtip->mti_zone = (val % numzones);
  340 }
  341 
  342 static inline u_int
  343 mtp_get_subzone(struct malloc_type *mtp)
  344 {
  345         struct malloc_type_internal *mtip;
  346 
  347         mtip = &mtp->ks_mti;
  348 
  349         KASSERT(mtip->mti_zone < numzones,
  350             ("mti_zone %u out of range %d",
  351             mtip->mti_zone, numzones));
  352         return (mtip->mti_zone);
  353 }
  354 #elif MALLOC_DEBUG_MAXZONES == 0
  355 #error "MALLOC_DEBUG_MAXZONES must be positive."
  356 #else
  357 static void
  358 mtp_set_subzone(struct malloc_type *mtp)
  359 {
  360         struct malloc_type_internal *mtip;
  361 
  362         mtip = &mtp->ks_mti;
  363         mtip->mti_zone = 0;
  364 }
  365 
  366 static inline u_int
  367 mtp_get_subzone(struct malloc_type *mtp)
  368 {
  369 
  370         return (0);
  371 }
  372 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
  373 
  374 /*
  375  * An allocation has succeeded -- update malloc type statistics for the
  376  * amount of bucket size.  Occurs within a critical section so that the
  377  * thread isn't preempted and doesn't migrate while updating per-PCU
  378  * statistics.
  379  */
  380 static void
  381 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
  382     int zindx)
  383 {
  384         struct malloc_type_internal *mtip;
  385         struct malloc_type_stats *mtsp;
  386 
  387         critical_enter();
  388         mtip = &mtp->ks_mti;
  389         mtsp = zpcpu_get(mtip->mti_stats);
  390         if (size > 0) {
  391                 mtsp->mts_memalloced += size;
  392                 mtsp->mts_numallocs++;
  393         }
  394         if (zindx != -1)
  395                 mtsp->mts_size |= 1 << zindx;
  396 
  397 #ifdef KDTRACE_HOOKS
  398         if (__predict_false(dtrace_malloc_enabled)) {
  399                 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
  400                 if (probe_id != 0)
  401                         (dtrace_malloc_probe)(probe_id,
  402                             (uintptr_t) mtp, (uintptr_t) mtip,
  403                             (uintptr_t) mtsp, size, zindx);
  404         }
  405 #endif
  406 
  407         critical_exit();
  408 }
  409 
  410 void
  411 malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
  412 {
  413 
  414         if (size > 0)
  415                 malloc_type_zone_allocated(mtp, size, -1);
  416 }
  417 
  418 /*
  419  * A free operation has occurred -- update malloc type statistics for the
  420  * amount of the bucket size.  Occurs within a critical section so that the
  421  * thread isn't preempted and doesn't migrate while updating per-CPU
  422  * statistics.
  423  */
  424 void
  425 malloc_type_freed(struct malloc_type *mtp, unsigned long size)
  426 {
  427         struct malloc_type_internal *mtip;
  428         struct malloc_type_stats *mtsp;
  429 
  430         critical_enter();
  431         mtip = &mtp->ks_mti;
  432         mtsp = zpcpu_get(mtip->mti_stats);
  433         mtsp->mts_memfreed += size;
  434         mtsp->mts_numfrees++;
  435 
  436 #ifdef KDTRACE_HOOKS
  437         if (__predict_false(dtrace_malloc_enabled)) {
  438                 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
  439                 if (probe_id != 0)
  440                         (dtrace_malloc_probe)(probe_id,
  441                             (uintptr_t) mtp, (uintptr_t) mtip,
  442                             (uintptr_t) mtsp, size, 0);
  443         }
  444 #endif
  445 
  446         critical_exit();
  447 }
  448 
  449 /*
  450  *      contigmalloc:
  451  *
  452  *      Allocate a block of physically contiguous memory.
  453  *
  454  *      If M_NOWAIT is set, this routine will not block and return NULL if
  455  *      the allocation fails.
  456  */
  457 void *
  458 contigmalloc(unsigned long size, struct malloc_type *type, int flags,
  459     vm_paddr_t low, vm_paddr_t high, unsigned long alignment,
  460     vm_paddr_t boundary)
  461 {
  462         void *ret;
  463 
  464         ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment,
  465             boundary, VM_MEMATTR_DEFAULT);
  466         if (ret != NULL)
  467                 malloc_type_allocated(type, round_page(size));
  468         return (ret);
  469 }
  470 
  471 void *
  472 contigmalloc_domainset(unsigned long size, struct malloc_type *type,
  473     struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high,
  474     unsigned long alignment, vm_paddr_t boundary)
  475 {
  476         void *ret;
  477 
  478         ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high,
  479             alignment, boundary, VM_MEMATTR_DEFAULT);
  480         if (ret != NULL)
  481                 malloc_type_allocated(type, round_page(size));
  482         return (ret);
  483 }
  484 
  485 /*
  486  *      contigfree:
  487  *
  488  *      Free a block of memory allocated by contigmalloc.
  489  *
  490  *      This routine may not block.
  491  */
  492 void
  493 contigfree(void *addr, unsigned long size, struct malloc_type *type)
  494 {
  495 
  496         kmem_free((vm_offset_t)addr, size);
  497         malloc_type_freed(type, round_page(size));
  498 }
  499 
  500 #ifdef MALLOC_DEBUG
  501 static int
  502 malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp,
  503     int flags)
  504 {
  505 #ifdef INVARIANTS
  506         int indx;
  507 
  508         KASSERT(mtp->ks_version == M_VERSION, ("malloc: bad malloc type version"));
  509         /*
  510          * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
  511          */
  512         indx = flags & (M_WAITOK | M_NOWAIT);
  513         if (indx != M_NOWAIT && indx != M_WAITOK) {
  514                 static  struct timeval lasterr;
  515                 static  int curerr, once;
  516                 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
  517                         printf("Bad malloc flags: %x\n", indx);
  518                         kdb_backtrace();
  519                         flags |= M_WAITOK;
  520                         once++;
  521                 }
  522         }
  523 #endif
  524 #ifdef MALLOC_MAKE_FAILURES
  525         if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
  526                 atomic_add_int(&malloc_nowait_count, 1);
  527                 if ((malloc_nowait_count % malloc_failure_rate) == 0) {
  528                         atomic_add_int(&malloc_failure_count, 1);
  529                         *vap = NULL;
  530                         return (EJUSTRETURN);
  531                 }
  532         }
  533 #endif
  534         if (flags & M_WAITOK) {
  535                 KASSERT(curthread->td_intr_nesting_level == 0,
  536                    ("malloc(M_WAITOK) in interrupt context"));
  537                 if (__predict_false(!THREAD_CAN_SLEEP())) {
  538 #ifdef EPOCH_TRACE
  539                         epoch_trace_list(curthread);
  540 #endif
  541                         KASSERT(1, 
  542                             ("malloc(M_WAITOK) with sleeping prohibited"));
  543                 }
  544         }
  545         KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
  546             ("malloc: called with spinlock or critical section held"));
  547 
  548 #ifdef DEBUG_MEMGUARD
  549         if (memguard_cmp_mtp(mtp, *sizep)) {
  550                 *vap = memguard_alloc(*sizep, flags);
  551                 if (*vap != NULL)
  552                         return (EJUSTRETURN);
  553                 /* This is unfortunate but should not be fatal. */
  554         }
  555 #endif
  556 
  557 #ifdef DEBUG_REDZONE
  558         *sizep = redzone_size_ntor(*sizep);
  559 #endif
  560 
  561         return (0);
  562 }
  563 #endif
  564 
  565 /*
  566  * Handle large allocations and frees by using kmem_malloc directly.
  567  */
  568 static inline bool
  569 malloc_large_slab(uma_slab_t slab)
  570 {
  571         uintptr_t va;
  572 
  573         va = (uintptr_t)slab;
  574         return ((va & 1) != 0);
  575 }
  576 
  577 static inline size_t
  578 malloc_large_size(uma_slab_t slab)
  579 {
  580         uintptr_t va;
  581 
  582         va = (uintptr_t)slab;
  583         return (va >> 1);
  584 }
  585 
  586 static caddr_t __noinline
  587 malloc_large(size_t *size, struct malloc_type *mtp, struct domainset *policy,
  588     int flags DEBUG_REDZONE_ARG_DEF)
  589 {
  590         vm_offset_t kva;
  591         caddr_t va;
  592         size_t sz;
  593 
  594         sz = roundup(*size, PAGE_SIZE);
  595         kva = kmem_malloc_domainset(policy, sz, flags);
  596         if (kva != 0) {
  597                 /* The low bit is unused for slab pointers. */
  598                 vsetzoneslab(kva, NULL, (void *)((sz << 1) | 1));
  599                 uma_total_inc(sz);
  600                 *size = sz;
  601         }
  602         va = (caddr_t)kva;
  603         malloc_type_allocated(mtp, va == NULL ? 0 : sz);
  604         if (__predict_false(va == NULL)) {
  605                 KASSERT((flags & M_WAITOK) == 0,
  606                     ("malloc(M_WAITOK) returned NULL"));
  607         } else {
  608 #ifdef DEBUG_REDZONE
  609                 va = redzone_setup(va, osize);
  610 #endif
  611                 kasan_mark((void *)va, osize, sz, KASAN_MALLOC_REDZONE);
  612         }
  613         return (va);
  614 }
  615 
  616 static void
  617 free_large(void *addr, size_t size)
  618 {
  619 
  620         kmem_free((vm_offset_t)addr, size);
  621         uma_total_dec(size);
  622 }
  623 
  624 /*
  625  *      malloc:
  626  *
  627  *      Allocate a block of memory.
  628  *
  629  *      If M_NOWAIT is set, this routine will not block and return NULL if
  630  *      the allocation fails.
  631  */
  632 void *
  633 (malloc)(size_t size, struct malloc_type *mtp, int flags)
  634 {
  635         int indx;
  636         caddr_t va;
  637         uma_zone_t zone;
  638 #if defined(DEBUG_REDZONE) || defined(KASAN)
  639         unsigned long osize = size;
  640 #endif
  641 
  642         MPASS((flags & M_EXEC) == 0);
  643 
  644 #ifdef MALLOC_DEBUG
  645         va = NULL;
  646         if (malloc_dbg(&va, &size, mtp, flags) != 0)
  647                 return (va);
  648 #endif
  649 
  650         if (__predict_false(size > kmem_zmax))
  651                 return (malloc_large(&size, mtp, DOMAINSET_RR(), flags
  652                     DEBUG_REDZONE_ARG));
  653 
  654         if (size & KMEM_ZMASK)
  655                 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
  656         indx = kmemsize[size >> KMEM_ZSHIFT];
  657         zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)];
  658         va = uma_zalloc(zone, flags);
  659         if (va != NULL)
  660                 size = zone->uz_size;
  661         malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
  662         if (__predict_false(va == NULL)) {
  663                 KASSERT((flags & M_WAITOK) == 0,
  664                     ("malloc(M_WAITOK) returned NULL"));
  665         }
  666 #ifdef DEBUG_REDZONE
  667         if (va != NULL)
  668                 va = redzone_setup(va, osize);
  669 #endif
  670 #ifdef KASAN
  671         if (va != NULL)
  672                 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE);
  673 #endif
  674         return ((void *) va);
  675 }
  676 
  677 static void *
  678 malloc_domain(size_t *sizep, int *indxp, struct malloc_type *mtp, int domain,
  679     int flags)
  680 {
  681         uma_zone_t zone;
  682         caddr_t va;
  683         size_t size;
  684         int indx;
  685 
  686         size = *sizep;
  687         KASSERT(size <= kmem_zmax && (flags & M_EXEC) == 0,
  688             ("malloc_domain: Called with bad flag / size combination."));
  689         if (size & KMEM_ZMASK)
  690                 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
  691         indx = kmemsize[size >> KMEM_ZSHIFT];
  692         zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)];
  693         va = uma_zalloc_domain(zone, NULL, domain, flags);
  694         if (va != NULL)
  695                 *sizep = zone->uz_size;
  696         *indxp = indx;
  697         return ((void *)va);
  698 }
  699 
  700 void *
  701 malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds,
  702     int flags)
  703 {
  704         struct vm_domainset_iter di;
  705         caddr_t va;
  706         int domain;
  707         int indx;
  708 #if defined(KASAN) || defined(DEBUG_REDZONE)
  709         unsigned long osize = size;
  710 #endif
  711 
  712         MPASS((flags & M_EXEC) == 0);
  713 
  714 #ifdef MALLOC_DEBUG
  715         va = NULL;
  716         if (malloc_dbg(&va, &size, mtp, flags) != 0)
  717                 return (va);
  718 #endif
  719 
  720         if (__predict_false(size > kmem_zmax))
  721                 return (malloc_large(&size, mtp, DOMAINSET_RR(), flags
  722                     DEBUG_REDZONE_ARG));
  723 
  724         vm_domainset_iter_policy_init(&di, ds, &domain, &flags);
  725         do {
  726                 va = malloc_domain(&size, &indx, mtp, domain, flags);
  727         } while (va == NULL && vm_domainset_iter_policy(&di, &domain) == 0);
  728         malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
  729         if (__predict_false(va == NULL)) {
  730                 KASSERT((flags & M_WAITOK) == 0,
  731                     ("malloc(M_WAITOK) returned NULL"));
  732         }
  733 #ifdef DEBUG_REDZONE
  734         if (va != NULL)
  735                 va = redzone_setup(va, osize);
  736 #endif
  737 #ifdef KASAN
  738         if (va != NULL)
  739                 kasan_mark((void *)va, osize, size, KASAN_MALLOC_REDZONE);
  740 #endif
  741         return (va);
  742 }
  743 
  744 /*
  745  * Allocate an executable area.
  746  */
  747 void *
  748 malloc_exec(size_t size, struct malloc_type *mtp, int flags)
  749 {
  750 
  751         return (malloc_domainset_exec(size, mtp, DOMAINSET_RR(), flags));
  752 }
  753 
  754 void *
  755 malloc_domainset_exec(size_t size, struct malloc_type *mtp, struct domainset *ds,
  756     int flags)
  757 {
  758 #if defined(DEBUG_REDZONE) || defined(KASAN)
  759         unsigned long osize = size;
  760 #endif
  761 #ifdef MALLOC_DEBUG
  762         caddr_t va;
  763 #endif
  764 
  765         flags |= M_EXEC;
  766 
  767 #ifdef MALLOC_DEBUG
  768         va = NULL;
  769         if (malloc_dbg(&va, &size, mtp, flags) != 0)
  770                 return (va);
  771 #endif
  772 
  773         return (malloc_large(&size, mtp, ds, flags DEBUG_REDZONE_ARG));
  774 }
  775 
  776 void *
  777 malloc_aligned(size_t size, size_t align, struct malloc_type *type, int flags)
  778 {
  779         return (malloc_domainset_aligned(size, align, type, DOMAINSET_RR(),
  780             flags));
  781 }
  782 
  783 void *
  784 malloc_domainset_aligned(size_t size, size_t align,
  785     struct malloc_type *mtp, struct domainset *ds, int flags)
  786 {
  787         void *res;
  788         size_t asize;
  789 
  790         KASSERT(powerof2(align),
  791             ("malloc_domainset_aligned: wrong align %#zx size %#zx",
  792             align, size));
  793         KASSERT(align <= PAGE_SIZE,
  794             ("malloc_domainset_aligned: align %#zx (size %#zx) too large",
  795             align, size));
  796 
  797         /*
  798          * Round the allocation size up to the next power of 2,
  799          * because we can only guarantee alignment for
  800          * power-of-2-sized allocations.  Further increase the
  801          * allocation size to align if the rounded size is less than
  802          * align, since malloc zones provide alignment equal to their
  803          * size.
  804          */
  805         if (size == 0)
  806                 size = 1;
  807         asize = size <= align ? align : 1UL << flsl(size - 1);
  808 
  809         res = malloc_domainset(asize, mtp, ds, flags);
  810         KASSERT(res == NULL || ((uintptr_t)res & (align - 1)) == 0,
  811             ("malloc_domainset_aligned: result not aligned %p size %#zx "
  812             "allocsize %#zx align %#zx", res, size, asize, align));
  813         return (res);
  814 }
  815 
  816 void *
  817 mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags)
  818 {
  819 
  820         if (WOULD_OVERFLOW(nmemb, size))
  821                 panic("mallocarray: %zu * %zu overflowed", nmemb, size);
  822 
  823         return (malloc(size * nmemb, type, flags));
  824 }
  825 
  826 void *
  827 mallocarray_domainset(size_t nmemb, size_t size, struct malloc_type *type,
  828     struct domainset *ds, int flags)
  829 {
  830 
  831         if (WOULD_OVERFLOW(nmemb, size))
  832                 panic("mallocarray_domainset: %zu * %zu overflowed", nmemb, size);
  833 
  834         return (malloc_domainset(size * nmemb, type, ds, flags));
  835 }
  836 
  837 #if defined(INVARIANTS) && !defined(KASAN)
  838 static void
  839 free_save_type(void *addr, struct malloc_type *mtp, u_long size)
  840 {
  841         struct malloc_type **mtpp = addr;
  842 
  843         /*
  844          * Cache a pointer to the malloc_type that most recently freed
  845          * this memory here.  This way we know who is most likely to
  846          * have stepped on it later.
  847          *
  848          * This code assumes that size is a multiple of 8 bytes for
  849          * 64 bit machines
  850          */
  851         mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
  852         mtpp += (size - sizeof(struct malloc_type *)) /
  853             sizeof(struct malloc_type *);
  854         *mtpp = mtp;
  855 }
  856 #endif
  857 
  858 #ifdef MALLOC_DEBUG
  859 static int
  860 free_dbg(void **addrp, struct malloc_type *mtp)
  861 {
  862         void *addr;
  863 
  864         addr = *addrp;
  865         KASSERT(mtp->ks_version == M_VERSION, ("free: bad malloc type version"));
  866         KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
  867             ("free: called with spinlock or critical section held"));
  868 
  869         /* free(NULL, ...) does nothing */
  870         if (addr == NULL)
  871                 return (EJUSTRETURN);
  872 
  873 #ifdef DEBUG_MEMGUARD
  874         if (is_memguard_addr(addr)) {
  875                 memguard_free(addr);
  876                 return (EJUSTRETURN);
  877         }
  878 #endif
  879 
  880 #ifdef DEBUG_REDZONE
  881         redzone_check(addr);
  882         *addrp = redzone_addr_ntor(addr);
  883 #endif
  884 
  885         return (0);
  886 }
  887 #endif
  888 
  889 /*
  890  *      free:
  891  *
  892  *      Free a block of memory allocated by malloc.
  893  *
  894  *      This routine may not block.
  895  */
  896 void
  897 free(void *addr, struct malloc_type *mtp)
  898 {
  899         uma_zone_t zone;
  900         uma_slab_t slab;
  901         u_long size;
  902 
  903 #ifdef MALLOC_DEBUG
  904         if (free_dbg(&addr, mtp) != 0)
  905                 return;
  906 #endif
  907         /* free(NULL, ...) does nothing */
  908         if (addr == NULL)
  909                 return;
  910 
  911         vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
  912         if (slab == NULL)
  913                 panic("free: address %p(%p) has not been allocated.\n",
  914                     addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
  915 
  916         if (__predict_true(!malloc_large_slab(slab))) {
  917                 size = zone->uz_size;
  918 #if defined(INVARIANTS) && !defined(KASAN)
  919                 free_save_type(addr, mtp, size);
  920 #endif
  921                 uma_zfree_arg(zone, addr, slab);
  922         } else {
  923                 size = malloc_large_size(slab);
  924                 free_large(addr, size);
  925         }
  926         malloc_type_freed(mtp, size);
  927 }
  928 
  929 /*
  930  *      zfree:
  931  *
  932  *      Zero then free a block of memory allocated by malloc.
  933  *
  934  *      This routine may not block.
  935  */
  936 void
  937 zfree(void *addr, struct malloc_type *mtp)
  938 {
  939         uma_zone_t zone;
  940         uma_slab_t slab;
  941         u_long size;
  942 
  943 #ifdef MALLOC_DEBUG
  944         if (free_dbg(&addr, mtp) != 0)
  945                 return;
  946 #endif
  947         /* free(NULL, ...) does nothing */
  948         if (addr == NULL)
  949                 return;
  950 
  951         vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
  952         if (slab == NULL)
  953                 panic("free: address %p(%p) has not been allocated.\n",
  954                     addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
  955 
  956         if (__predict_true(!malloc_large_slab(slab))) {
  957                 size = zone->uz_size;
  958 #if defined(INVARIANTS) && !defined(KASAN)
  959                 free_save_type(addr, mtp, size);
  960 #endif
  961                 kasan_mark(addr, size, size, 0);
  962                 explicit_bzero(addr, size);
  963                 uma_zfree_arg(zone, addr, slab);
  964         } else {
  965                 size = malloc_large_size(slab);
  966                 kasan_mark(addr, size, size, 0);
  967                 explicit_bzero(addr, size);
  968                 free_large(addr, size);
  969         }
  970         malloc_type_freed(mtp, size);
  971 }
  972 
  973 /*
  974  *      realloc: change the size of a memory block
  975  */
  976 void *
  977 realloc(void *addr, size_t size, struct malloc_type *mtp, int flags)
  978 {
  979         uma_zone_t zone;
  980         uma_slab_t slab;
  981         unsigned long alloc;
  982         void *newaddr;
  983 
  984         KASSERT(mtp->ks_version == M_VERSION,
  985             ("realloc: bad malloc type version"));
  986         KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(),
  987             ("realloc: called with spinlock or critical section held"));
  988 
  989         /* realloc(NULL, ...) is equivalent to malloc(...) */
  990         if (addr == NULL)
  991                 return (malloc(size, mtp, flags));
  992 
  993         /*
  994          * XXX: Should report free of old memory and alloc of new memory to
  995          * per-CPU stats.
  996          */
  997 
  998 #ifdef DEBUG_MEMGUARD
  999         if (is_memguard_addr(addr))
 1000                 return (memguard_realloc(addr, size, mtp, flags));
 1001 #endif
 1002 
 1003 #ifdef DEBUG_REDZONE
 1004         slab = NULL;
 1005         zone = NULL;
 1006         alloc = redzone_get_size(addr);
 1007 #else
 1008         vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
 1009 
 1010         /* Sanity check */
 1011         KASSERT(slab != NULL,
 1012             ("realloc: address %p out of range", (void *)addr));
 1013 
 1014         /* Get the size of the original block */
 1015         if (!malloc_large_slab(slab))
 1016                 alloc = zone->uz_size;
 1017         else
 1018                 alloc = malloc_large_size(slab);
 1019 
 1020         /* Reuse the original block if appropriate */
 1021         if (size <= alloc &&
 1022             (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) {
 1023                 kasan_mark((void *)addr, size, alloc, KASAN_MALLOC_REDZONE);
 1024                 return (addr);
 1025         }
 1026 #endif /* !DEBUG_REDZONE */
 1027 
 1028         /* Allocate a new, bigger (or smaller) block */
 1029         if ((newaddr = malloc(size, mtp, flags)) == NULL)
 1030                 return (NULL);
 1031 
 1032         /*
 1033          * Copy over original contents.  For KASAN, the redzone must be marked
 1034          * valid before performing the copy.
 1035          */
 1036         kasan_mark(addr, alloc, alloc, 0);
 1037         bcopy(addr, newaddr, min(size, alloc));
 1038         free(addr, mtp);
 1039         return (newaddr);
 1040 }
 1041 
 1042 /*
 1043  *      reallocf: same as realloc() but free memory on failure.
 1044  */
 1045 void *
 1046 reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags)
 1047 {
 1048         void *mem;
 1049 
 1050         if ((mem = realloc(addr, size, mtp, flags)) == NULL)
 1051                 free(addr, mtp);
 1052         return (mem);
 1053 }
 1054 
 1055 /*
 1056  *      malloc_size: returns the number of bytes allocated for a request of the
 1057  *                   specified size
 1058  */
 1059 size_t
 1060 malloc_size(size_t size)
 1061 {
 1062         int indx;
 1063 
 1064         if (size > kmem_zmax)
 1065                 return (0);
 1066         if (size & KMEM_ZMASK)
 1067                 size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
 1068         indx = kmemsize[size >> KMEM_ZSHIFT];
 1069         return (kmemzones[indx].kz_size);
 1070 }
 1071 
 1072 /*
 1073  *      malloc_usable_size: returns the usable size of the allocation.
 1074  */
 1075 size_t
 1076 malloc_usable_size(const void *addr)
 1077 {
 1078 #ifndef DEBUG_REDZONE
 1079         uma_zone_t zone;
 1080         uma_slab_t slab;
 1081 #endif
 1082         u_long size;
 1083 
 1084         if (addr == NULL)
 1085                 return (0);
 1086 
 1087 #ifdef DEBUG_MEMGUARD
 1088         if (is_memguard_addr(__DECONST(void *, addr)))
 1089                 return (memguard_get_req_size(addr));
 1090 #endif
 1091 
 1092 #ifdef DEBUG_REDZONE
 1093         size = redzone_get_size(__DECONST(void *, addr));
 1094 #else
 1095         vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab);
 1096         if (slab == NULL)
 1097                 panic("malloc_usable_size: address %p(%p) is not allocated.\n",
 1098                     addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
 1099 
 1100         if (!malloc_large_slab(slab))
 1101                 size = zone->uz_size;
 1102         else
 1103                 size = malloc_large_size(slab);
 1104 #endif
 1105         return (size);
 1106 }
 1107 
 1108 CTASSERT(VM_KMEM_SIZE_SCALE >= 1);
 1109 
 1110 /*
 1111  * Initialize the kernel memory (kmem) arena.
 1112  */
 1113 void
 1114 kmeminit(void)
 1115 {
 1116         u_long mem_size;
 1117         u_long tmp;
 1118 
 1119 #ifdef VM_KMEM_SIZE
 1120         if (vm_kmem_size == 0)
 1121                 vm_kmem_size = VM_KMEM_SIZE;
 1122 #endif
 1123 #ifdef VM_KMEM_SIZE_MIN
 1124         if (vm_kmem_size_min == 0)
 1125                 vm_kmem_size_min = VM_KMEM_SIZE_MIN;
 1126 #endif
 1127 #ifdef VM_KMEM_SIZE_MAX
 1128         if (vm_kmem_size_max == 0)
 1129                 vm_kmem_size_max = VM_KMEM_SIZE_MAX;
 1130 #endif
 1131         /*
 1132          * Calculate the amount of kernel virtual address (KVA) space that is
 1133          * preallocated to the kmem arena.  In order to support a wide range
 1134          * of machines, it is a function of the physical memory size,
 1135          * specifically,
 1136          *
 1137          *      min(max(physical memory size / VM_KMEM_SIZE_SCALE,
 1138          *          VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX)
 1139          *
 1140          * Every architecture must define an integral value for
 1141          * VM_KMEM_SIZE_SCALE.  However, the definitions of VM_KMEM_SIZE_MIN
 1142          * and VM_KMEM_SIZE_MAX, which represent respectively the floor and
 1143          * ceiling on this preallocation, are optional.  Typically,
 1144          * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on
 1145          * a given architecture.
 1146          */
 1147         mem_size = vm_cnt.v_page_count;
 1148         if (mem_size <= 32768) /* delphij XXX 128MB */
 1149                 kmem_zmax = PAGE_SIZE;
 1150 
 1151         if (vm_kmem_size_scale < 1)
 1152                 vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
 1153 
 1154         /*
 1155          * Check if we should use defaults for the "vm_kmem_size"
 1156          * variable:
 1157          */
 1158         if (vm_kmem_size == 0) {
 1159                 vm_kmem_size = mem_size / vm_kmem_size_scale;
 1160                 vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ?
 1161                     vm_kmem_size_max : vm_kmem_size * PAGE_SIZE;
 1162                 if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min)
 1163                         vm_kmem_size = vm_kmem_size_min;
 1164                 if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
 1165                         vm_kmem_size = vm_kmem_size_max;
 1166         }
 1167         if (vm_kmem_size == 0)
 1168                 panic("Tune VM_KMEM_SIZE_* for the platform");
 1169 
 1170         /*
 1171          * The amount of KVA space that is preallocated to the
 1172          * kmem arena can be set statically at compile-time or manually
 1173          * through the kernel environment.  However, it is still limited to
 1174          * twice the physical memory size, which has been sufficient to handle
 1175          * the most severe cases of external fragmentation in the kmem arena. 
 1176          */
 1177         if (vm_kmem_size / 2 / PAGE_SIZE > mem_size)
 1178                 vm_kmem_size = 2 * mem_size * PAGE_SIZE;
 1179 
 1180         vm_kmem_size = round_page(vm_kmem_size);
 1181 
 1182 #ifdef KASAN
 1183         /*
 1184          * With KASAN enabled, dynamically allocated kernel memory is shadowed.
 1185          * Account for this when setting the UMA limit.
 1186          */
 1187         vm_kmem_size = (vm_kmem_size * KASAN_SHADOW_SCALE) /
 1188             (KASAN_SHADOW_SCALE + 1);
 1189 #endif
 1190 
 1191 #ifdef DEBUG_MEMGUARD
 1192         tmp = memguard_fudge(vm_kmem_size, kernel_map);
 1193 #else
 1194         tmp = vm_kmem_size;
 1195 #endif
 1196         uma_set_limit(tmp);
 1197 
 1198 #ifdef DEBUG_MEMGUARD
 1199         /*
 1200          * Initialize MemGuard if support compiled in.  MemGuard is a
 1201          * replacement allocator used for detecting tamper-after-free
 1202          * scenarios as they occur.  It is only used for debugging.
 1203          */
 1204         memguard_init(kernel_arena);
 1205 #endif
 1206 }
 1207 
 1208 /*
 1209  * Initialize the kernel memory allocator
 1210  */
 1211 /* ARGSUSED*/
 1212 static void
 1213 mallocinit(void *dummy)
 1214 {
 1215         int i;
 1216         uint8_t indx;
 1217 
 1218         mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
 1219 
 1220         kmeminit();
 1221 
 1222         if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX)
 1223                 kmem_zmax = KMEM_ZMAX;
 1224 
 1225         for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
 1226                 int size = kmemzones[indx].kz_size;
 1227                 const char *name = kmemzones[indx].kz_name;
 1228                 size_t align;
 1229                 int subzone;
 1230 
 1231                 align = UMA_ALIGN_PTR;
 1232                 if (powerof2(size) && size > sizeof(void *))
 1233                         align = MIN(size, PAGE_SIZE) - 1;
 1234                 for (subzone = 0; subzone < numzones; subzone++) {
 1235                         kmemzones[indx].kz_zone[subzone] =
 1236                             uma_zcreate(name, size,
 1237 #if defined(INVARIANTS) && !defined(KASAN)
 1238                             mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
 1239 #else
 1240                             NULL, NULL, NULL, NULL,
 1241 #endif
 1242                             align, UMA_ZONE_MALLOC);
 1243                 }
 1244                 for (;i <= size; i+= KMEM_ZBASE)
 1245                         kmemsize[i >> KMEM_ZSHIFT] = indx;
 1246         }
 1247 }
 1248 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL);
 1249 
 1250 void
 1251 malloc_init(void *data)
 1252 {
 1253         struct malloc_type_internal *mtip;
 1254         struct malloc_type *mtp;
 1255 
 1256         KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init"));
 1257 
 1258         mtp = data;
 1259         if (mtp->ks_version != M_VERSION)
 1260                 panic("malloc_init: type %s with unsupported version %lu",
 1261                     mtp->ks_shortdesc, mtp->ks_version);
 1262 
 1263         mtip = &mtp->ks_mti;
 1264         mtip->mti_stats = uma_zalloc_pcpu(pcpu_zone_64, M_WAITOK | M_ZERO);
 1265         mtp_set_subzone(mtp);
 1266 
 1267         mtx_lock(&malloc_mtx);
 1268         mtp->ks_next = kmemstatistics;
 1269         kmemstatistics = mtp;
 1270         kmemcount++;
 1271         mtx_unlock(&malloc_mtx);
 1272 }
 1273 
 1274 void
 1275 malloc_uninit(void *data)
 1276 {
 1277         struct malloc_type_internal *mtip;
 1278         struct malloc_type_stats *mtsp;
 1279         struct malloc_type *mtp, *temp;
 1280         long temp_allocs, temp_bytes;
 1281         int i;
 1282 
 1283         mtp = data;
 1284         KASSERT(mtp->ks_version == M_VERSION,
 1285             ("malloc_uninit: bad malloc type version"));
 1286 
 1287         mtx_lock(&malloc_mtx);
 1288         mtip = &mtp->ks_mti;
 1289         if (mtp != kmemstatistics) {
 1290                 for (temp = kmemstatistics; temp != NULL;
 1291                     temp = temp->ks_next) {
 1292                         if (temp->ks_next == mtp) {
 1293                                 temp->ks_next = mtp->ks_next;
 1294                                 break;
 1295                         }
 1296                 }
 1297                 KASSERT(temp,
 1298                     ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
 1299         } else
 1300                 kmemstatistics = mtp->ks_next;
 1301         kmemcount--;
 1302         mtx_unlock(&malloc_mtx);
 1303 
 1304         /*
 1305          * Look for memory leaks.
 1306          */
 1307         temp_allocs = temp_bytes = 0;
 1308         for (i = 0; i <= mp_maxid; i++) {
 1309                 mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
 1310                 temp_allocs += mtsp->mts_numallocs;
 1311                 temp_allocs -= mtsp->mts_numfrees;
 1312                 temp_bytes += mtsp->mts_memalloced;
 1313                 temp_bytes -= mtsp->mts_memfreed;
 1314         }
 1315         if (temp_allocs > 0 || temp_bytes > 0) {
 1316                 printf("Warning: memory type %s leaked memory on destroy "
 1317                     "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
 1318                     temp_allocs, temp_bytes);
 1319         }
 1320 
 1321         uma_zfree_pcpu(pcpu_zone_64, mtip->mti_stats);
 1322 }
 1323 
 1324 struct malloc_type *
 1325 malloc_desc2type(const char *desc)
 1326 {
 1327         struct malloc_type *mtp;
 1328 
 1329         mtx_assert(&malloc_mtx, MA_OWNED);
 1330         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1331                 if (strcmp(mtp->ks_shortdesc, desc) == 0)
 1332                         return (mtp);
 1333         }
 1334         return (NULL);
 1335 }
 1336 
 1337 static int
 1338 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
 1339 {
 1340         struct malloc_type_stream_header mtsh;
 1341         struct malloc_type_internal *mtip;
 1342         struct malloc_type_stats *mtsp, zeromts;
 1343         struct malloc_type_header mth;
 1344         struct malloc_type *mtp;
 1345         int error, i;
 1346         struct sbuf sbuf;
 1347 
 1348         error = sysctl_wire_old_buffer(req, 0);
 1349         if (error != 0)
 1350                 return (error);
 1351         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
 1352         sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL);
 1353         mtx_lock(&malloc_mtx);
 1354 
 1355         bzero(&zeromts, sizeof(zeromts));
 1356 
 1357         /*
 1358          * Insert stream header.
 1359          */
 1360         bzero(&mtsh, sizeof(mtsh));
 1361         mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
 1362         mtsh.mtsh_maxcpus = MAXCPU;
 1363         mtsh.mtsh_count = kmemcount;
 1364         (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh));
 1365 
 1366         /*
 1367          * Insert alternating sequence of type headers and type statistics.
 1368          */
 1369         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1370                 mtip = &mtp->ks_mti;
 1371 
 1372                 /*
 1373                  * Insert type header.
 1374                  */
 1375                 bzero(&mth, sizeof(mth));
 1376                 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
 1377                 (void)sbuf_bcat(&sbuf, &mth, sizeof(mth));
 1378 
 1379                 /*
 1380                  * Insert type statistics for each CPU.
 1381                  */
 1382                 for (i = 0; i <= mp_maxid; i++) {
 1383                         mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
 1384                         (void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp));
 1385                 }
 1386                 /*
 1387                  * Fill in the missing CPUs.
 1388                  */
 1389                 for (; i < MAXCPU; i++) {
 1390                         (void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts));
 1391                 }
 1392         }
 1393         mtx_unlock(&malloc_mtx);
 1394         error = sbuf_finish(&sbuf);
 1395         sbuf_delete(&sbuf);
 1396         return (error);
 1397 }
 1398 
 1399 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats,
 1400     CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_MPSAFE, 0, 0,
 1401     sysctl_kern_malloc_stats, "s,malloc_type_ustats",
 1402     "Return malloc types");
 1403 
 1404 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
 1405     "Count of kernel malloc types");
 1406 
 1407 void
 1408 malloc_type_list(malloc_type_list_func_t *func, void *arg)
 1409 {
 1410         struct malloc_type *mtp, **bufmtp;
 1411         int count, i;
 1412         size_t buflen;
 1413 
 1414         mtx_lock(&malloc_mtx);
 1415 restart:
 1416         mtx_assert(&malloc_mtx, MA_OWNED);
 1417         count = kmemcount;
 1418         mtx_unlock(&malloc_mtx);
 1419 
 1420         buflen = sizeof(struct malloc_type *) * count;
 1421         bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
 1422 
 1423         mtx_lock(&malloc_mtx);
 1424 
 1425         if (count < kmemcount) {
 1426                 free(bufmtp, M_TEMP);
 1427                 goto restart;
 1428         }
 1429 
 1430         for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
 1431                 bufmtp[i] = mtp;
 1432 
 1433         mtx_unlock(&malloc_mtx);
 1434 
 1435         for (i = 0; i < count; i++)
 1436                 (func)(bufmtp[i], arg);
 1437 
 1438         free(bufmtp, M_TEMP);
 1439 }
 1440 
 1441 #ifdef DDB
 1442 static int64_t
 1443 get_malloc_stats(const struct malloc_type_internal *mtip, uint64_t *allocs,
 1444     uint64_t *inuse)
 1445 {
 1446         const struct malloc_type_stats *mtsp;
 1447         uint64_t frees, alloced, freed;
 1448         int i;
 1449 
 1450         *allocs = 0;
 1451         frees = 0;
 1452         alloced = 0;
 1453         freed = 0;
 1454         for (i = 0; i <= mp_maxid; i++) {
 1455                 mtsp = zpcpu_get_cpu(mtip->mti_stats, i);
 1456 
 1457                 *allocs += mtsp->mts_numallocs;
 1458                 frees += mtsp->mts_numfrees;
 1459                 alloced += mtsp->mts_memalloced;
 1460                 freed += mtsp->mts_memfreed;
 1461         }
 1462         *inuse = *allocs - frees;
 1463         return (alloced - freed);
 1464 }
 1465 
 1466 DB_SHOW_COMMAND(malloc, db_show_malloc)
 1467 {
 1468         const char *fmt_hdr, *fmt_entry;
 1469         struct malloc_type *mtp;
 1470         uint64_t allocs, inuse;
 1471         int64_t size;
 1472         /* variables for sorting */
 1473         struct malloc_type *last_mtype, *cur_mtype;
 1474         int64_t cur_size, last_size;
 1475         int ties;
 1476 
 1477         if (modif[0] == 'i') {
 1478                 fmt_hdr = "%s,%s,%s,%s\n";
 1479                 fmt_entry = "\"%s\",%ju,%jdK,%ju\n";
 1480         } else {
 1481                 fmt_hdr = "%18s %12s  %12s %12s\n";
 1482                 fmt_entry = "%18s %12ju %12jdK %12ju\n";
 1483         }
 1484 
 1485         db_printf(fmt_hdr, "Type", "InUse", "MemUse", "Requests");
 1486 
 1487         /* Select sort, largest size first. */
 1488         last_mtype = NULL;
 1489         last_size = INT64_MAX;
 1490         for (;;) {
 1491                 cur_mtype = NULL;
 1492                 cur_size = -1;
 1493                 ties = 0;
 1494 
 1495                 for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1496                         /*
 1497                          * In the case of size ties, print out mtypes
 1498                          * in the order they are encountered.  That is,
 1499                          * when we encounter the most recently output
 1500                          * mtype, we have already printed all preceding
 1501                          * ties, and we must print all following ties.
 1502                          */
 1503                         if (mtp == last_mtype) {
 1504                                 ties = 1;
 1505                                 continue;
 1506                         }
 1507                         size = get_malloc_stats(&mtp->ks_mti, &allocs,
 1508                             &inuse);
 1509                         if (size > cur_size && size < last_size + ties) {
 1510                                 cur_size = size;
 1511                                 cur_mtype = mtp;
 1512                         }
 1513                 }
 1514                 if (cur_mtype == NULL)
 1515                         break;
 1516 
 1517                 size = get_malloc_stats(&cur_mtype->ks_mti, &allocs, &inuse);
 1518                 db_printf(fmt_entry, cur_mtype->ks_shortdesc, inuse,
 1519                     howmany(size, 1024), allocs);
 1520 
 1521                 if (db_pager_quit)
 1522                         break;
 1523 
 1524                 last_mtype = cur_mtype;
 1525                 last_size = cur_size;
 1526         }
 1527 }
 1528 
 1529 #if MALLOC_DEBUG_MAXZONES > 1
 1530 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches)
 1531 {
 1532         struct malloc_type_internal *mtip;
 1533         struct malloc_type *mtp;
 1534         u_int subzone;
 1535 
 1536         if (!have_addr) {
 1537                 db_printf("Usage: show multizone_matches <malloc type/addr>\n");
 1538                 return;
 1539         }
 1540         mtp = (void *)addr;
 1541         if (mtp->ks_version != M_VERSION) {
 1542                 db_printf("Version %lx does not match expected %x\n",
 1543                     mtp->ks_version, M_VERSION);
 1544                 return;
 1545         }
 1546 
 1547         mtip = &mtp->ks_mti;
 1548         subzone = mtip->mti_zone;
 1549 
 1550         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
 1551                 mtip = &mtp->ks_mti;
 1552                 if (mtip->mti_zone != subzone)
 1553                         continue;
 1554                 db_printf("%s\n", mtp->ks_shortdesc);
 1555                 if (db_pager_quit)
 1556                         break;
 1557         }
 1558 }
 1559 #endif /* MALLOC_DEBUG_MAXZONES > 1 */
 1560 #endif /* DDB */

Cache object: 8dc77af1abaa8441e7ab670bd77b9ac7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.