The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_malloc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1987, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by the University of
   16  *      California, Berkeley and its contributors.
   17  * 4. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      @(#)kern_malloc.c       8.3 (Berkeley) 1/4/94
   34  * $FreeBSD$
   35  */
   36 
   37 #include "opt_vm.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/systm.h>
   41 #include <sys/kernel.h>
   42 #define MALLOC_INSTANTIATE
   43 #include <sys/malloc.h>
   44 #include <sys/mbuf.h>
   45 #include <sys/vmmeter.h>
   46 #include <sys/lock.h>
   47 
   48 #include <vm/vm.h>
   49 #include <vm/vm_param.h>
   50 #include <vm/vm_kern.h>
   51 #include <vm/vm_extern.h>
   52 #include <vm/pmap.h>
   53 #include <vm/vm_map.h>
   54 
   55 static void kmeminit __P((void *));
   56 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
   57 
   58 static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
   59 
   60 static struct malloc_type *kmemstatistics;
   61 static struct kmembuckets bucket[MINBUCKET + 16];
   62 static struct kmemusage *kmemusage;
   63 static char *kmembase;
   64 static char *kmemlimit;
   65 static int vm_kmem_size;
   66 
   67 #ifdef INVARIANTS
   68 /*
   69  * This structure provides a set of masks to catch unaligned frees.
   70  */
   71 static long addrmask[] = { 0,
   72         0x00000001, 0x00000003, 0x00000007, 0x0000000f,
   73         0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
   74         0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
   75         0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
   76 };
   77 
   78 /*
   79  * The WEIRD_ADDR is used as known text to copy into free objects so
   80  * that modifications after frees can be detected.
   81  */
   82 #define WEIRD_ADDR      0xdeadc0de
   83 #define MAX_COPY        64
   84 
   85 /*
   86  * Normally the first word of the structure is used to hold the list
   87  * pointer for free objects. However, when running with diagnostics,
   88  * we use the third and fourth fields, so as to catch modifications
   89  * in the most commonly trashed first two words.
   90  */
   91 struct freelist {
   92         long    spare0;
   93         struct malloc_type *type;
   94         long    spare1;
   95         caddr_t next;
   96 };
   97 #else /* !INVARIANTS */
   98 struct freelist {
   99         caddr_t next;
  100 };
  101 #endif /* INVARIANTS */
  102 
  103 /*
  104  * Allocate a block of memory
  105  */
  106 void *
  107 malloc(size, type, flags)
  108         unsigned long size;
  109         struct malloc_type *type;
  110         int flags;
  111 {
  112         register struct kmembuckets *kbp;
  113         register struct kmemusage *kup;
  114         register struct freelist *freep;
  115         long indx, npg, allocsize;
  116         int s;
  117         caddr_t va, cp, savedlist;
  118 #ifdef INVARIANTS
  119         long *end, *lp;
  120         int copysize;
  121         char *savedtype;
  122 #endif
  123         register struct malloc_type *ksp = type;
  124 
  125         /*
  126          * Must be at splmem() prior to initializing segment to handle
  127          * potential initialization race.
  128          */
  129 
  130         s = splmem();
  131 
  132         if (type->ks_limit == 0)
  133                 malloc_init(type);
  134 
  135         indx = BUCKETINDX(size);
  136         kbp = &bucket[indx];
  137         while (ksp->ks_memuse >= ksp->ks_limit) {
  138                 if (flags & M_NOWAIT) {
  139                         splx(s);
  140                         return ((void *) NULL);
  141                 }
  142                 if (ksp->ks_limblocks < 65535)
  143                         ksp->ks_limblocks++;
  144                 tsleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0);
  145         }
  146         ksp->ks_size |= 1 << indx;
  147 #ifdef INVARIANTS
  148         copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
  149 #endif
  150         if (kbp->kb_next == NULL) {
  151                 kbp->kb_last = NULL;
  152                 if (size > MAXALLOCSAVE)
  153                         allocsize = roundup(size, PAGE_SIZE);
  154                 else
  155                         allocsize = 1 << indx;
  156                 npg = btoc(allocsize);
  157                 va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg), flags);
  158                 if (va == NULL) {
  159                         splx(s);
  160                         return ((void *) NULL);
  161                 }
  162                 kbp->kb_total += kbp->kb_elmpercl;
  163                 kup = btokup(va);
  164                 kup->ku_indx = indx;
  165                 if (allocsize > MAXALLOCSAVE) {
  166                         if (npg > 65535)
  167                                 panic("malloc: allocation too large");
  168                         kup->ku_pagecnt = npg;
  169                         ksp->ks_memuse += allocsize;
  170                         goto out;
  171                 }
  172                 kup->ku_freecnt = kbp->kb_elmpercl;
  173                 kbp->kb_totalfree += kbp->kb_elmpercl;
  174                 /*
  175                  * Just in case we blocked while allocating memory,
  176                  * and someone else also allocated memory for this
  177                  * bucket, don't assume the list is still empty.
  178                  */
  179                 savedlist = kbp->kb_next;
  180                 kbp->kb_next = cp = va + (npg * PAGE_SIZE) - allocsize;
  181                 for (;;) {
  182                         freep = (struct freelist *)cp;
  183 #ifdef INVARIANTS
  184                         /*
  185                          * Copy in known text to detect modification
  186                          * after freeing.
  187                          */
  188                         end = (long *)&cp[copysize];
  189                         for (lp = (long *)cp; lp < end; lp++)
  190                                 *lp = WEIRD_ADDR;
  191                         freep->type = M_FREE;
  192 #endif /* INVARIANTS */
  193                         if (cp <= va)
  194                                 break;
  195                         cp -= allocsize;
  196                         freep->next = cp;
  197                 }
  198                 freep->next = savedlist;
  199                 if (kbp->kb_last == NULL)
  200                         kbp->kb_last = (caddr_t)freep;
  201         }
  202         va = kbp->kb_next;
  203         kbp->kb_next = ((struct freelist *)va)->next;
  204 #ifdef INVARIANTS
  205         freep = (struct freelist *)va;
  206         savedtype = (char *) type->ks_shortdesc;
  207 #if BYTE_ORDER == BIG_ENDIAN
  208         freep->type = (struct malloc_type *)WEIRD_ADDR >> 16;
  209 #endif
  210 #if BYTE_ORDER == LITTLE_ENDIAN
  211         freep->type = (struct malloc_type *)WEIRD_ADDR;
  212 #endif
  213         if ((intptr_t)(void *)&freep->next & 0x2)
  214                 freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16));
  215         else
  216                 freep->next = (caddr_t)WEIRD_ADDR;
  217         end = (long *)&va[copysize];
  218         for (lp = (long *)va; lp < end; lp++) {
  219                 if (*lp == WEIRD_ADDR)
  220                         continue;
  221                 printf("%s %ld of object %p size %lu %s %s (0x%lx != 0x%lx)\n",
  222                         "Data modified on freelist: word",
  223                         (long)(lp - (long *)va), (void *)va, size,
  224                         "previous type", savedtype, *lp, (u_long)WEIRD_ADDR);
  225                 break;
  226         }
  227         freep->spare0 = 0;
  228 #endif /* INVARIANTS */
  229         kup = btokup(va);
  230         if (kup->ku_indx != indx)
  231                 panic("malloc: wrong bucket");
  232         if (kup->ku_freecnt == 0)
  233                 panic("malloc: lost data");
  234         kup->ku_freecnt--;
  235         kbp->kb_totalfree--;
  236         ksp->ks_memuse += 1 << indx;
  237 out:
  238         kbp->kb_calls++;
  239         ksp->ks_inuse++;
  240         ksp->ks_calls++;
  241         if (ksp->ks_memuse > ksp->ks_maxused)
  242                 ksp->ks_maxused = ksp->ks_memuse;
  243         splx(s);
  244         return ((void *) va);
  245 }
  246 
  247 /*
  248  * Free a block of memory allocated by malloc.
  249  */
  250 void
  251 free(addr, type)
  252         void *addr;
  253         struct malloc_type *type;
  254 {
  255         register struct kmembuckets *kbp;
  256         register struct kmemusage *kup;
  257         register struct freelist *freep;
  258         long size;
  259         int s;
  260 #ifdef INVARIANTS
  261         struct freelist *fp;
  262         long *end, *lp, alloc, copysize;
  263 #endif
  264         register struct malloc_type *ksp = type;
  265 
  266         if (type->ks_limit == 0)
  267                 panic("freeing with unknown type (%s)", type->ks_shortdesc);
  268 
  269         KASSERT(kmembase <= (char *)addr && (char *)addr < kmemlimit,
  270             ("free: address %p out of range", (void *)addr));
  271         kup = btokup(addr);
  272         size = 1 << kup->ku_indx;
  273         kbp = &bucket[kup->ku_indx];
  274         s = splmem();
  275 #ifdef INVARIANTS
  276         /*
  277          * Check for returns of data that do not point to the
  278          * beginning of the allocation.
  279          */
  280         if (size > PAGE_SIZE)
  281                 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
  282         else
  283                 alloc = addrmask[kup->ku_indx];
  284         if (((uintptr_t)(void *)addr & alloc) != 0)
  285                 panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
  286                     (void *)addr, size, type->ks_shortdesc, alloc);
  287 #endif /* INVARIANTS */
  288         if (size > MAXALLOCSAVE) {
  289                 kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
  290                 size = kup->ku_pagecnt << PAGE_SHIFT;
  291                 ksp->ks_memuse -= size;
  292                 kup->ku_indx = 0;
  293                 kup->ku_pagecnt = 0;
  294                 if (ksp->ks_memuse + size >= ksp->ks_limit &&
  295                     ksp->ks_memuse < ksp->ks_limit)
  296                         wakeup((caddr_t)ksp);
  297                 ksp->ks_inuse--;
  298                 kbp->kb_total -= 1;
  299                 splx(s);
  300                 return;
  301         }
  302         freep = (struct freelist *)addr;
  303 #ifdef INVARIANTS
  304         /*
  305          * Check for multiple frees. Use a quick check to see if
  306          * it looks free before laboriously searching the freelist.
  307          */
  308         if (freep->spare0 == WEIRD_ADDR) {
  309                 fp = (struct freelist *)kbp->kb_next;
  310                 while (fp) {
  311                         if (fp->spare0 != WEIRD_ADDR)
  312                                 panic("free: free item %p modified", fp);
  313                         else if (addr == (caddr_t)fp)
  314                                 panic("free: multiple freed item %p", addr);
  315                         fp = (struct freelist *)fp->next;
  316                 }
  317         }
  318         /*
  319          * Copy in known text to detect modification after freeing
  320          * and to make it look free. Also, save the type being freed
  321          * so we can list likely culprit if modification is detected
  322          * when the object is reallocated.
  323          */
  324         copysize = size < MAX_COPY ? size : MAX_COPY;
  325         end = (long *)&((caddr_t)addr)[copysize];
  326         for (lp = (long *)addr; lp < end; lp++)
  327                 *lp = WEIRD_ADDR;
  328         freep->type = type;
  329 #endif /* INVARIANTS */
  330         kup->ku_freecnt++;
  331         if (kup->ku_freecnt >= kbp->kb_elmpercl)
  332                 if (kup->ku_freecnt > kbp->kb_elmpercl)
  333                         panic("free: multiple frees");
  334                 else if (kbp->kb_totalfree > kbp->kb_highwat)
  335                         kbp->kb_couldfree++;
  336         kbp->kb_totalfree++;
  337         ksp->ks_memuse -= size;
  338         if (ksp->ks_memuse + size >= ksp->ks_limit &&
  339             ksp->ks_memuse < ksp->ks_limit)
  340                 wakeup((caddr_t)ksp);
  341         ksp->ks_inuse--;
  342 #ifdef OLD_MALLOC_MEMORY_POLICY
  343         if (kbp->kb_next == NULL)
  344                 kbp->kb_next = addr;
  345         else
  346                 ((struct freelist *)kbp->kb_last)->next = addr;
  347         freep->next = NULL;
  348         kbp->kb_last = addr;
  349 #else
  350         /*
  351          * Return memory to the head of the queue for quick reuse.  This
  352          * can improve performance by improving the probability of the
  353          * item being in the cache when it is reused.
  354          */
  355         if (kbp->kb_next == NULL) {
  356                 kbp->kb_next = addr;
  357                 kbp->kb_last = addr;
  358                 freep->next = NULL;
  359         } else {
  360                 freep->next = kbp->kb_next;
  361                 kbp->kb_next = addr;
  362         }
  363 #endif
  364         splx(s);
  365 }
  366 
  367 /*
  368  * Initialize the kernel memory allocator
  369  */
  370 /* ARGSUSED*/
  371 static void
  372 kmeminit(dummy)
  373         void *dummy;
  374 {
  375         register long indx;
  376         int npg;
  377         int mem_size;
  378         int xvm_kmem_size;
  379 
  380 #if     ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
  381 #error "kmeminit: MAXALLOCSAVE not power of 2"
  382 #endif
  383 #if     (MAXALLOCSAVE > MINALLOCSIZE * 32768)
  384 #error "kmeminit: MAXALLOCSAVE too big"
  385 #endif
  386 #if     (MAXALLOCSAVE < PAGE_SIZE)
  387 #error "kmeminit: MAXALLOCSAVE too small"
  388 #endif
  389 
  390         /*
  391          * Try to auto-tune the kernel memory size, so that it is
  392          * more applicable for a wider range of machine sizes.
  393          * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
  394          * a VM_KMEM_SIZE of 12MB is a fair compromise.  The
  395          * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
  396          * available, and on an X86 with a total KVA space of 256MB,
  397          * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
  398          *
  399          * Note that the kmem_map is also used by the zone allocator,
  400          * so make sure that there is enough space.
  401          */
  402         vm_kmem_size = VM_KMEM_SIZE;
  403         mem_size = cnt.v_page_count * PAGE_SIZE;
  404 
  405 #if defined(VM_KMEM_SIZE_SCALE)
  406         if ((mem_size / VM_KMEM_SIZE_SCALE) > vm_kmem_size)
  407                 vm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE;
  408 #endif
  409 
  410 #if defined(VM_KMEM_SIZE_MAX)
  411         if (vm_kmem_size >= VM_KMEM_SIZE_MAX)
  412                 vm_kmem_size = VM_KMEM_SIZE_MAX;
  413 #endif
  414 
  415         /* Allow final override from the kernel environment */
  416         if (getenv_int("kern.vm.kmem.size", &xvm_kmem_size))
  417             vm_kmem_size = xvm_kmem_size;
  418 
  419         if (vm_kmem_size > 2 * (cnt.v_page_count * PAGE_SIZE))
  420                 vm_kmem_size = 2 * (cnt.v_page_count * PAGE_SIZE);
  421 
  422         npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + vm_kmem_size)
  423                 / PAGE_SIZE;
  424 
  425         kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
  426                 (vm_size_t)(npg * sizeof(struct kmemusage)));
  427         kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
  428                 (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE));
  429         kmem_map->system_map = 1;
  430         for (indx = 0; indx < MINBUCKET + 16; indx++) {
  431                 if (1 << indx >= PAGE_SIZE)
  432                         bucket[indx].kb_elmpercl = 1;
  433                 else
  434                         bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
  435                 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
  436         }
  437 }
  438 
  439 void
  440 malloc_init(data)
  441         void *data;
  442 {
  443         struct malloc_type *type = (struct malloc_type *)data;
  444 
  445         if (type->ks_magic != M_MAGIC) 
  446                 panic("malloc type lacks magic");
  447 
  448         if (type->ks_limit != 0)
  449                 return;
  450 
  451         if (cnt.v_page_count == 0)
  452                 panic("malloc_init not allowed before vm init");
  453 
  454         /*
  455          * The default limits for each malloc region is 1/2 of the
  456          * malloc portion of the kmem map size.
  457          */
  458         type->ks_limit = vm_kmem_size / 2;
  459         type->ks_next = kmemstatistics; 
  460         kmemstatistics = type;
  461 }
  462 
  463 void
  464 malloc_uninit(data)
  465         void *data;
  466 {
  467         struct malloc_type *type = (struct malloc_type *)data;
  468         struct malloc_type *t;
  469 
  470         if (type->ks_magic != M_MAGIC) 
  471                 panic("malloc type lacks magic");
  472 
  473         if (cnt.v_page_count == 0)
  474                 panic("malloc_uninit not allowed before vm init");
  475 
  476         if (type->ks_limit == 0)
  477                 panic("malloc_uninit on uninitialized type");
  478 
  479         if (type == kmemstatistics)
  480                 kmemstatistics = type->ks_next;
  481         else {
  482                 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
  483                         if (t->ks_next == type) {
  484                                 t->ks_next = type->ks_next;
  485                                 break;
  486                         }
  487                 }
  488         }
  489         type->ks_next = NULL;
  490         type->ks_limit = 0;
  491 }

Cache object: 6367de91a3f7a23206f1d7ab58f31751


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.