The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_malloc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1987, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by the University of
   16  *      California, Berkeley and its contributors.
   17  * 4. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      @(#)kern_malloc.c       8.3 (Berkeley) 1/4/94
   34  * $FreeBSD$
   35  */
   36 
   37 #include "opt_vm.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/systm.h>
   41 #include <sys/kernel.h>
   42 #include <sys/malloc.h>
   43 #include <sys/mbuf.h>
   44 #include <sys/vmmeter.h>
   45 #include <sys/lock.h>
   46 
   47 #include <vm/vm.h>
   48 #include <vm/vm_param.h>
   49 #include <vm/vm_kern.h>
   50 #include <vm/vm_extern.h>
   51 #include <vm/pmap.h>
   52 #include <vm/vm_map.h>
   53 
   54 #if defined(INVARIANTS) && defined(__i386__)
   55 #include <machine/cpu.h>
   56 #endif
   57 
   58 /*
   59  * When realloc() is called, if the new size is sufficiently smaller than
   60  * the old size, realloc() will allocate a new, smaller block to avoid
   61  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
   62  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
   63  */
   64 #ifndef REALLOC_FRACTION
   65 #define REALLOC_FRACTION        1       /* new block if <= half the size */
   66 #endif
   67 
   68 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
   69 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
   70 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
   71 
   72 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
   73 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
   74 
   75 static void kmeminit __P((void *));
   76 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
   77 
   78 static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
   79 
   80 static struct malloc_type *kmemstatistics;
   81 static struct kmembuckets bucket[MINBUCKET + 16];
   82 static struct kmemusage *kmemusage;
   83 static char *kmembase;
   84 static char *kmemlimit;
   85 
   86 u_int vm_kmem_size;
   87 
   88 #ifdef INVARIANTS
   89 /*
   90  * This structure provides a set of masks to catch unaligned frees.
   91  */
   92 static long addrmask[] = { 0,
   93         0x00000001, 0x00000003, 0x00000007, 0x0000000f,
   94         0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
   95         0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
   96         0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
   97 };
   98 
   99 /*
  100  * The WEIRD_ADDR is used as known text to copy into free objects so
  101  * that modifications after frees can be detected.
  102  */
  103 #define WEIRD_ADDR      0xdeadc0de
  104 #define MAX_COPY        64
  105 
  106 /*
  107  * Normally the first word of the structure is used to hold the list
  108  * pointer for free objects. However, when running with diagnostics,
  109  * we use the third and fourth fields, so as to catch modifications
  110  * in the most commonly trashed first two words.
  111  */
  112 struct freelist {
  113         long    spare0;
  114         struct malloc_type *type;
  115         long    spare1;
  116         caddr_t next;
  117 };
  118 #else /* !INVARIANTS */
  119 struct freelist {
  120         caddr_t next;
  121 };
  122 #endif /* INVARIANTS */
  123 
  124 /*
  125  *      malloc:
  126  *
  127  *      Allocate a block of memory.
  128  *
  129  *      If M_NOWAIT is set, this routine will not block and return NULL if
  130  *      the allocation fails.
  131  *
  132  *      If M_ASLEEP is set (M_NOWAIT must also be set), this routine
  133  *      will have the side effect of calling asleep() if it returns NULL,
  134  *      allowing the parent to await() at some future time.
  135  */
  136 void *
  137 malloc(size, type, flags)
  138         unsigned long size;
  139         struct malloc_type *type;
  140         int flags;
  141 {
  142         register struct kmembuckets *kbp;
  143         register struct kmemusage *kup;
  144         register struct freelist *freep;
  145         long indx, npg, allocsize;
  146         int s;
  147         caddr_t va, cp, savedlist;
  148 #ifdef INVARIANTS
  149         long *end, *lp;
  150         int copysize;
  151         const char *savedtype;
  152 #endif
  153         register struct malloc_type *ksp = type;
  154 
  155 #if defined(INVARIANTS) && defined(__i386__)
  156         if (flags == M_WAITOK)
  157                 KASSERT(intr_nesting_level == 0,
  158                    ("malloc(M_WAITOK) in interrupt context"));
  159 #endif
  160         /*
  161          * Must be at splmem() prior to initializing segment to handle
  162          * potential initialization race.
  163          */
  164 
  165         s = splmem();
  166 
  167         if (type->ks_limit == 0)
  168                 malloc_init(type);
  169 
  170         indx = BUCKETINDX(size);
  171         kbp = &bucket[indx];
  172 
  173         while (ksp->ks_memuse >= ksp->ks_limit) {
  174                 if (flags & M_ASLEEP) {
  175                         if (ksp->ks_limblocks < 65535)
  176                                 ksp->ks_limblocks++;
  177                         asleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0);
  178                 }
  179                 if (flags & M_NOWAIT) {
  180                         splx(s);
  181                         return ((void *) NULL);
  182                 }
  183                 if (ksp->ks_limblocks < 65535)
  184                         ksp->ks_limblocks++;
  185                 tsleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0);
  186         }
  187         ksp->ks_size |= 1 << indx;
  188 #ifdef INVARIANTS
  189         copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
  190 #endif
  191         if (kbp->kb_next == NULL) {
  192                 kbp->kb_last = NULL;
  193                 if (size > MAXALLOCSAVE)
  194                         allocsize = roundup(size, PAGE_SIZE);
  195                 else
  196                         allocsize = 1 << indx;
  197                 npg = btoc(allocsize);
  198                 va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg), flags);
  199                 if (va == NULL) {
  200                         splx(s);
  201                         return ((void *) NULL);
  202                 }
  203                 kbp->kb_total += kbp->kb_elmpercl;
  204                 kup = btokup(va);
  205                 kup->ku_indx = indx;
  206                 if (allocsize > MAXALLOCSAVE) {
  207                         if (npg > 65535)
  208                                 panic("malloc: allocation too large");
  209                         kup->ku_pagecnt = npg;
  210                         ksp->ks_memuse += allocsize;
  211                         goto out;
  212                 }
  213                 kup->ku_freecnt = kbp->kb_elmpercl;
  214                 kbp->kb_totalfree += kbp->kb_elmpercl;
  215                 /*
  216                  * Just in case we blocked while allocating memory,
  217                  * and someone else also allocated memory for this
  218                  * bucket, don't assume the list is still empty.
  219                  */
  220                 savedlist = kbp->kb_next;
  221                 kbp->kb_next = cp = va + (npg * PAGE_SIZE) - allocsize;
  222                 for (;;) {
  223                         freep = (struct freelist *)cp;
  224 #ifdef INVARIANTS
  225                         /*
  226                          * Copy in known text to detect modification
  227                          * after freeing.
  228                          */
  229                         end = (long *)&cp[copysize];
  230                         for (lp = (long *)cp; lp < end; lp++)
  231                                 *lp = WEIRD_ADDR;
  232                         freep->type = M_FREE;
  233 #endif /* INVARIANTS */
  234                         if (cp <= va)
  235                                 break;
  236                         cp -= allocsize;
  237                         freep->next = cp;
  238                 }
  239                 freep->next = savedlist;
  240                 if (kbp->kb_last == NULL)
  241                         kbp->kb_last = (caddr_t)freep;
  242         }
  243         va = kbp->kb_next;
  244         kbp->kb_next = ((struct freelist *)va)->next;
  245 #ifdef INVARIANTS
  246         freep = (struct freelist *)va;
  247         savedtype = (const char *) freep->type->ks_shortdesc;
  248 #if BYTE_ORDER == BIG_ENDIAN
  249         freep->type = (struct malloc_type *)WEIRD_ADDR >> 16;
  250 #endif
  251 #if BYTE_ORDER == LITTLE_ENDIAN
  252         freep->type = (struct malloc_type *)WEIRD_ADDR;
  253 #endif
  254         if ((intptr_t)(void *)&freep->next & 0x2)
  255                 freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16));
  256         else
  257                 freep->next = (caddr_t)WEIRD_ADDR;
  258         end = (long *)&va[copysize];
  259         for (lp = (long *)va; lp < end; lp++) {
  260                 if (*lp == WEIRD_ADDR)
  261                         continue;
  262                 printf("%s %ld of object %p size %lu %s %s (0x%lx != 0x%lx)\n",
  263                         "Data modified on freelist: word",
  264                         (long)(lp - (long *)va), (void *)va, size,
  265                         "previous type", savedtype, *lp, (u_long)WEIRD_ADDR);
  266                 break;
  267         }
  268         freep->spare0 = 0;
  269 #endif /* INVARIANTS */
  270         kup = btokup(va);
  271         if (kup->ku_indx != indx)
  272                 panic("malloc: wrong bucket");
  273         if (kup->ku_freecnt == 0)
  274                 panic("malloc: lost data");
  275         kup->ku_freecnt--;
  276         kbp->kb_totalfree--;
  277         ksp->ks_memuse += 1 << indx;
  278 out:
  279         kbp->kb_calls++;
  280         ksp->ks_inuse++;
  281         ksp->ks_calls++;
  282         if (ksp->ks_memuse > ksp->ks_maxused)
  283                 ksp->ks_maxused = ksp->ks_memuse;
  284         splx(s);
  285         /* XXX: Do idle pre-zeroing.  */
  286         if (va != NULL && (flags & M_ZERO))
  287                 bzero(va, size);
  288         return ((void *) va);
  289 }
  290 
  291 /*
  292  *      free:
  293  *
  294  *      Free a block of memory allocated by malloc.
  295  *
  296  *      This routine may not block.
  297  */
  298 void
  299 free(addr, type)
  300         void *addr;
  301         struct malloc_type *type;
  302 {
  303         register struct kmembuckets *kbp;
  304         register struct kmemusage *kup;
  305         register struct freelist *freep;
  306         long size;
  307         int s;
  308 #ifdef INVARIANTS
  309         struct freelist *fp;
  310         long *end, *lp, alloc, copysize;
  311 #endif
  312         register struct malloc_type *ksp = type;
  313 
  314         if (type->ks_limit == 0)
  315                 panic("freeing with unknown type (%s)", type->ks_shortdesc);
  316 
  317         /* free(NULL, ...) does nothing */
  318         if (addr == NULL)
  319                 return;
  320 
  321         KASSERT(kmembase <= (char *)addr && (char *)addr < kmemlimit,
  322             ("free: address %p out of range", (void *)addr));
  323         kup = btokup(addr);
  324         size = 1 << kup->ku_indx;
  325         kbp = &bucket[kup->ku_indx];
  326         s = splmem();
  327 #ifdef INVARIANTS
  328         /*
  329          * Check for returns of data that do not point to the
  330          * beginning of the allocation.
  331          */
  332         if (size > PAGE_SIZE)
  333                 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
  334         else
  335                 alloc = addrmask[kup->ku_indx];
  336         if (((uintptr_t)(void *)addr & alloc) != 0)
  337                 panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
  338                     (void *)addr, size, type->ks_shortdesc, alloc);
  339 #endif /* INVARIANTS */
  340         if (size > MAXALLOCSAVE) {
  341                 kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt));
  342                 size = kup->ku_pagecnt << PAGE_SHIFT;
  343                 ksp->ks_memuse -= size;
  344                 kup->ku_indx = 0;
  345                 kup->ku_pagecnt = 0;
  346                 if (ksp->ks_memuse + size >= ksp->ks_limit &&
  347                     ksp->ks_memuse < ksp->ks_limit)
  348                         wakeup((caddr_t)ksp);
  349                 ksp->ks_inuse--;
  350                 kbp->kb_total -= 1;
  351                 splx(s);
  352                 return;
  353         }
  354         freep = (struct freelist *)addr;
  355 #ifdef INVARIANTS
  356         /*
  357          * Check for multiple frees. Use a quick check to see if
  358          * it looks free before laboriously searching the freelist.
  359          */
  360         if (freep->spare0 == WEIRD_ADDR) {
  361                 fp = (struct freelist *)kbp->kb_next;
  362                 while (fp) {
  363                         if (fp->spare0 != WEIRD_ADDR)
  364                                 panic("free: free item %p modified", fp);
  365                         else if (addr == (caddr_t)fp)
  366                                 panic("free: multiple freed item %p", addr);
  367                         fp = (struct freelist *)fp->next;
  368                 }
  369         }
  370         /*
  371          * Copy in known text to detect modification after freeing
  372          * and to make it look free. Also, save the type being freed
  373          * so we can list likely culprit if modification is detected
  374          * when the object is reallocated.
  375          */
  376         copysize = size < MAX_COPY ? size : MAX_COPY;
  377         end = (long *)&((caddr_t)addr)[copysize];
  378         for (lp = (long *)addr; lp < end; lp++)
  379                 *lp = WEIRD_ADDR;
  380         freep->type = type;
  381 #endif /* INVARIANTS */
  382         kup->ku_freecnt++;
  383         if (kup->ku_freecnt >= kbp->kb_elmpercl) {
  384                 if (kup->ku_freecnt > kbp->kb_elmpercl)
  385                         panic("free: multiple frees");
  386                 else if (kbp->kb_totalfree > kbp->kb_highwat)
  387                         kbp->kb_couldfree++;
  388         }
  389         kbp->kb_totalfree++;
  390         ksp->ks_memuse -= size;
  391         if (ksp->ks_memuse + size >= ksp->ks_limit &&
  392             ksp->ks_memuse < ksp->ks_limit)
  393                 wakeup((caddr_t)ksp);
  394         ksp->ks_inuse--;
  395 #ifdef OLD_MALLOC_MEMORY_POLICY
  396         if (kbp->kb_next == NULL)
  397                 kbp->kb_next = addr;
  398         else
  399                 ((struct freelist *)kbp->kb_last)->next = addr;
  400         freep->next = NULL;
  401         kbp->kb_last = addr;
  402 #else
  403         /*
  404          * Return memory to the head of the queue for quick reuse.  This
  405          * can improve performance by improving the probability of the
  406          * item being in the cache when it is reused.
  407          */
  408         if (kbp->kb_next == NULL) {
  409                 kbp->kb_next = addr;
  410                 kbp->kb_last = addr;
  411                 freep->next = NULL;
  412         } else {
  413                 freep->next = kbp->kb_next;
  414                 kbp->kb_next = addr;
  415         }
  416 #endif
  417         splx(s);
  418 }
  419 
  420 /*
  421  *      realloc: change the size of a memory block
  422  */
  423 void *
  424 realloc(addr, size, type, flags)
  425         void *addr;
  426         unsigned long size;
  427         struct malloc_type *type;
  428         int flags;
  429 {
  430         struct kmemusage *kup;
  431         unsigned long alloc;
  432         void *newaddr;
  433 
  434         /* realloc(NULL, ...) is equivalent to malloc(...) */
  435         if (addr == NULL)
  436                 return (malloc(size, type, flags));
  437 
  438         /* Sanity check */
  439         KASSERT(kmembase <= (char *)addr && (char *)addr < kmemlimit,
  440             ("realloc: address %p out of range", (void *)addr));
  441 
  442         /* Get the size of the original block */
  443         kup = btokup(addr);
  444         alloc = 1 << kup->ku_indx;
  445         if (alloc > MAXALLOCSAVE)
  446                 alloc = kup->ku_pagecnt << PAGE_SHIFT;
  447 
  448         /* Reuse the original block if appropriate */
  449         if (size <= alloc
  450             && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
  451                 return (addr);
  452 
  453         /* Allocate a new, bigger (or smaller) block */
  454         if ((newaddr = malloc(size, type, flags)) == NULL)
  455                 return (NULL);
  456 
  457         /* Copy over original contents */
  458         bcopy(addr, newaddr, min(size, alloc));
  459         free(addr, type);
  460         return (newaddr);
  461 }
  462 
  463 /*
  464  *      reallocf: same as realloc() but free memory on failure.
  465  */
  466 void *
  467 reallocf(addr, size, type, flags)
  468         void *addr;
  469         unsigned long size;
  470         struct malloc_type *type;
  471         int flags;
  472 {
  473         void *mem;
  474 
  475         if ((mem = realloc(addr, size, type, flags)) == NULL)
  476                 free(addr, type);
  477         return (mem);
  478 }
  479 
  480 /*
  481  * Initialize the kernel memory allocator
  482  */
  483 /* ARGSUSED*/
  484 static void
  485 kmeminit(dummy)
  486         void *dummy;
  487 {
  488         register long indx;
  489         u_long npg;
  490         u_long mem_size;
  491 
  492 #if     ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
  493 #error "kmeminit: MAXALLOCSAVE not power of 2"
  494 #endif
  495 #if     (MAXALLOCSAVE > MINALLOCSIZE * 32768)
  496 #error "kmeminit: MAXALLOCSAVE too big"
  497 #endif
  498 #if     (MAXALLOCSAVE < PAGE_SIZE)
  499 #error "kmeminit: MAXALLOCSAVE too small"
  500 #endif
  501 
  502         /*
  503          * Try to auto-tune the kernel memory size, so that it is
  504          * more applicable for a wider range of machine sizes.
  505          * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
  506          * a VM_KMEM_SIZE of 12MB is a fair compromise.  The
  507          * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
  508          * available, and on an X86 with a total KVA space of 256MB,
  509          * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
  510          *
  511          * Note that the kmem_map is also used by the zone allocator,
  512          * so make sure that there is enough space.
  513          */
  514         vm_kmem_size = VM_KMEM_SIZE;
  515         mem_size = cnt.v_page_count * PAGE_SIZE;
  516 
  517 #if defined(VM_KMEM_SIZE_SCALE)
  518         if ((mem_size / VM_KMEM_SIZE_SCALE) > vm_kmem_size)
  519                 vm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE;
  520 #endif
  521 
  522 #if defined(VM_KMEM_SIZE_MAX)
  523         if (vm_kmem_size >= VM_KMEM_SIZE_MAX)
  524                 vm_kmem_size = VM_KMEM_SIZE_MAX;
  525 #endif
  526 
  527         /* Allow final override from the kernel environment */
  528         TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size);
  529 
  530         /*
  531          * Limit kmem virtual size to twice the physical memory.
  532          * This allows for kmem map sparseness, but limits the size
  533          * to something sane. Be careful to not overflow the 32bit
  534          * ints while doing the check.
  535          */
  536         if ((vm_kmem_size / 2) > (cnt.v_page_count * PAGE_SIZE))
  537                 vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE;
  538 
  539         npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + vm_kmem_size)
  540                 / PAGE_SIZE;
  541 
  542         kmemusage = (struct kmemusage *) kmem_alloc(kernel_map,
  543                 (vm_size_t)(npg * sizeof(struct kmemusage)));
  544         kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
  545                 (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE));
  546         kmem_map->system_map = 1;
  547         for (indx = 0; indx < MINBUCKET + 16; indx++) {
  548                 if (1 << indx >= PAGE_SIZE)
  549                         bucket[indx].kb_elmpercl = 1;
  550                 else
  551                         bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
  552                 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl;
  553         }
  554 }
  555 
  556 void
  557 malloc_init(data)
  558         void *data;
  559 {
  560         struct malloc_type *type = (struct malloc_type *)data;
  561 
  562         if (type->ks_magic != M_MAGIC)
  563                 panic("malloc type lacks magic");
  564 
  565         if (type->ks_limit != 0)
  566                 return;
  567 
  568         if (cnt.v_page_count == 0)
  569                 panic("malloc_init not allowed before vm init");
  570 
  571         /*
  572          * The default limits for each malloc region is 1/2 of the
  573          * malloc portion of the kmem map size.
  574          */
  575         type->ks_limit = vm_kmem_size / 2;
  576         type->ks_next = kmemstatistics; 
  577         kmemstatistics = type;
  578 }
  579 
  580 void
  581 malloc_uninit(data)
  582         void *data;
  583 {
  584         struct malloc_type *type = (struct malloc_type *)data;
  585         struct malloc_type *t;
  586 #ifdef INVARIANTS
  587         struct kmembuckets *kbp;
  588         struct freelist *freep;
  589         long indx;
  590         int s;
  591 #endif
  592 
  593         if (type->ks_magic != M_MAGIC)
  594                 panic("malloc type lacks magic");
  595 
  596         if (cnt.v_page_count == 0)
  597                 panic("malloc_uninit not allowed before vm init");
  598 
  599         if (type->ks_limit == 0)
  600                 panic("malloc_uninit on uninitialized type");
  601 
  602 #ifdef INVARIANTS
  603         s = splmem();
  604         for (indx = 0; indx < MINBUCKET + 16; indx++) {
  605                 kbp = bucket + indx;
  606                 freep = (struct freelist*)kbp->kb_next;
  607                 while (freep) {
  608                         if (freep->type == type)
  609                                 freep->type = M_FREE;
  610                         freep = (struct freelist*)freep->next;
  611                 }
  612         }
  613         splx(s);
  614 
  615         if (type->ks_memuse != 0)
  616                 printf("malloc_uninit: %ld bytes of '%s' still allocated\n",
  617                     type->ks_memuse, type->ks_shortdesc);
  618 #endif
  619 
  620         if (type == kmemstatistics)
  621                 kmemstatistics = type->ks_next;
  622         else {
  623                 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
  624                         if (t->ks_next == type) {
  625                                 t->ks_next = type->ks_next;
  626                                 break;
  627                         }
  628                 }
  629         }
  630         type->ks_next = NULL;
  631         type->ks_limit = 0;
  632 }

Cache object: 26b0bd4a03c409b21a6c90308cc2c7b3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.