The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_malloc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1987, 1991, 1993
    3  *      The Regents of the University of California.
    4  * Copyright (c) 2005 Robert N. M. Watson
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 4. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)kern_malloc.c       8.3 (Berkeley) 1/4/94
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD: releng/6.0/sys/kern/kern_malloc.c 148559 2005-07-30 06:14:57Z pjd $");
   36 
   37 #include "opt_vm.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/systm.h>
   41 #include <sys/kdb.h>
   42 #include <sys/kernel.h>
   43 #include <sys/lock.h>
   44 #include <sys/malloc.h>
   45 #include <sys/mbuf.h>
   46 #include <sys/mutex.h>
   47 #include <sys/vmmeter.h>
   48 #include <sys/proc.h>
   49 #include <sys/sbuf.h>
   50 #include <sys/sysctl.h>
   51 #include <sys/time.h>
   52 
   53 #include <vm/vm.h>
   54 #include <vm/pmap.h>
   55 #include <vm/vm_param.h>
   56 #include <vm/vm_kern.h>
   57 #include <vm/vm_extern.h>
   58 #include <vm/vm_map.h>
   59 #include <vm/vm_page.h>
   60 #include <vm/uma.h>
   61 #include <vm/uma_int.h>
   62 #include <vm/uma_dbg.h>
   63 
   64 #ifdef DEBUG_MEMGUARD
   65 #include <vm/memguard.h>
   66 #endif
   67 
   68 #if defined(INVARIANTS) && defined(__i386__)
   69 #include <machine/cpu.h>
   70 #endif
   71 
   72 /*
   73  * When realloc() is called, if the new size is sufficiently smaller than
   74  * the old size, realloc() will allocate a new, smaller block to avoid
   75  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
   76  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
   77  */
   78 #ifndef REALLOC_FRACTION
   79 #define REALLOC_FRACTION        1       /* new block if <= half the size */
   80 #endif
   81 
   82 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
   83 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
   84 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
   85 
   86 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
   87 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
   88 
   89 static void kmeminit(void *);
   90 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
   91 
   92 static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
   93 
   94 static struct malloc_type *kmemstatistics;
   95 static char *kmembase;
   96 static char *kmemlimit;
   97 static int kmemcount;
   98 
   99 #define KMEM_ZSHIFT     4
  100 #define KMEM_ZBASE      16
  101 #define KMEM_ZMASK      (KMEM_ZBASE - 1)
  102 
  103 #define KMEM_ZMAX       PAGE_SIZE
  104 #define KMEM_ZSIZE      (KMEM_ZMAX >> KMEM_ZSHIFT)
  105 static u_int8_t kmemsize[KMEM_ZSIZE + 1];
  106 
  107 /* These won't be powers of two for long */
  108 struct {
  109         int kz_size;
  110         char *kz_name;
  111         uma_zone_t kz_zone;
  112 } kmemzones[] = {
  113         {16, "16", NULL},
  114         {32, "32", NULL},
  115         {64, "64", NULL},
  116         {128, "128", NULL},
  117         {256, "256", NULL},
  118         {512, "512", NULL},
  119         {1024, "1024", NULL},
  120         {2048, "2048", NULL},
  121         {4096, "4096", NULL},
  122 #if PAGE_SIZE > 4096
  123         {8192, "8192", NULL},
  124 #if PAGE_SIZE > 8192
  125         {16384, "16384", NULL},
  126 #if PAGE_SIZE > 16384
  127         {32768, "32768", NULL},
  128 #if PAGE_SIZE > 32768
  129         {65536, "65536", NULL},
  130 #if PAGE_SIZE > 65536
  131 #error  "Unsupported PAGE_SIZE"
  132 #endif  /* 65536 */
  133 #endif  /* 32768 */
  134 #endif  /* 16384 */
  135 #endif  /* 8192 */
  136 #endif  /* 4096 */
  137         {0, NULL},
  138 };
  139 
  140 static uma_zone_t mt_zone;
  141 
  142 #ifdef DEBUG_MEMGUARD
  143 u_int vm_memguard_divisor;
  144 SYSCTL_UINT(_vm, OID_AUTO, memguard_divisor, CTLFLAG_RD, &vm_memguard_divisor,
  145     0, "(kmem_size/memguard_divisor) == memguard submap size");
  146 #endif
  147 
  148 u_int vm_kmem_size;
  149 SYSCTL_UINT(_vm, OID_AUTO, kmem_size, CTLFLAG_RD, &vm_kmem_size, 0,
  150     "Size of kernel memory");
  151 
  152 u_int vm_kmem_size_max;
  153 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RD, &vm_kmem_size_max, 0,
  154     "Maximum size of kernel memory");
  155 
  156 u_int vm_kmem_size_scale;
  157 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RD, &vm_kmem_size_scale, 0,
  158     "Scale factor for kernel memory size");
  159 
  160 /*
  161  * The malloc_mtx protects the kmemstatistics linked list.
  162  */
  163 
  164 struct mtx malloc_mtx;
  165 
  166 #ifdef MALLOC_PROFILE
  167 uint64_t krequests[KMEM_ZSIZE + 1];
  168 
  169 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
  170 #endif
  171 
  172 static int sysctl_kern_malloc(SYSCTL_HANDLER_ARGS);
  173 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
  174 
  175 /* time_uptime of last malloc(9) failure */
  176 static time_t t_malloc_fail;
  177 
  178 #ifdef MALLOC_MAKE_FAILURES
  179 /*
  180  * Causes malloc failures every (n) mallocs with M_NOWAIT.  If set to 0,
  181  * doesn't cause failures.
  182  */
  183 SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
  184     "Kernel malloc debugging options");
  185 
  186 static int malloc_failure_rate;
  187 static int malloc_nowait_count;
  188 static int malloc_failure_count;
  189 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW,
  190     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
  191 TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate);
  192 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
  193     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
  194 #endif
  195 
  196 int
  197 malloc_last_fail(void)
  198 {
  199 
  200         return (time_uptime - t_malloc_fail);
  201 }
  202 
  203 /*
  204  * Add this to the informational malloc_type bucket.
  205  */
  206 static void
  207 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
  208     int zindx)
  209 {
  210         struct malloc_type_internal *mtip;
  211         struct malloc_type_stats *mtsp;
  212 
  213         critical_enter();
  214         mtip = mtp->ks_handle;
  215         mtsp = &mtip->mti_stats[curcpu];
  216         if (size > 0) {
  217                 mtsp->mts_memalloced += size;
  218                 mtsp->mts_numallocs++;
  219         }
  220         if (zindx != -1)
  221                 mtsp->mts_size |= 1 << zindx;
  222         critical_exit();
  223 }
  224 
  225 void
  226 malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
  227 {
  228 
  229         if (size > 0)
  230                 malloc_type_zone_allocated(mtp, size, -1);
  231 }
  232 
  233 /*
  234  * Remove this allocation from the informational malloc_type bucket.
  235  */
  236 void
  237 malloc_type_freed(struct malloc_type *mtp, unsigned long size)
  238 {
  239         struct malloc_type_internal *mtip;
  240         struct malloc_type_stats *mtsp;
  241 
  242         critical_enter();
  243         mtip = mtp->ks_handle;
  244         mtsp = &mtip->mti_stats[curcpu];
  245         mtsp->mts_memfreed += size;
  246         mtsp->mts_numfrees++;
  247         critical_exit();
  248 }
  249 
  250 /*
  251  *      malloc:
  252  *
  253  *      Allocate a block of memory.
  254  *
  255  *      If M_NOWAIT is set, this routine will not block and return NULL if
  256  *      the allocation fails.
  257  */
  258 void *
  259 malloc(unsigned long size, struct malloc_type *mtp, int flags)
  260 {
  261         int indx;
  262         caddr_t va;
  263         uma_zone_t zone;
  264         uma_keg_t keg;
  265 #ifdef DIAGNOSTIC
  266         unsigned long osize = size;
  267 #endif
  268 
  269 #ifdef INVARIANTS
  270         /*
  271          * To make sure that WAITOK or NOWAIT is set, but not more than
  272          * one, and check against the API botches that are common.
  273          */
  274         indx = flags & (M_WAITOK | M_NOWAIT | M_DONTWAIT | M_TRYWAIT);
  275         if (indx != M_NOWAIT && indx != M_WAITOK) {
  276                 static  struct timeval lasterr;
  277                 static  int curerr, once;
  278                 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
  279                         printf("Bad malloc flags: %x\n", indx);
  280                         kdb_backtrace();
  281                         flags |= M_WAITOK;
  282                         once++;
  283                 }
  284         }
  285 #endif
  286 #if 0
  287         if (size == 0)
  288                 kdb_enter("zero size malloc");
  289 #endif
  290 #ifdef MALLOC_MAKE_FAILURES
  291         if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
  292                 atomic_add_int(&malloc_nowait_count, 1);
  293                 if ((malloc_nowait_count % malloc_failure_rate) == 0) {
  294                         atomic_add_int(&malloc_failure_count, 1);
  295                         t_malloc_fail = time_uptime;
  296                         return (NULL);
  297                 }
  298         }
  299 #endif
  300         if (flags & M_WAITOK)
  301                 KASSERT(curthread->td_intr_nesting_level == 0,
  302                    ("malloc(M_WAITOK) in interrupt context"));
  303 
  304 #ifdef DEBUG_MEMGUARD
  305         /* XXX CHANGEME! */
  306         if (mtp == M_SUBPROC)
  307                 return memguard_alloc(size, flags);
  308 #endif
  309 
  310         if (size <= KMEM_ZMAX) {
  311                 if (size & KMEM_ZMASK)
  312                         size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
  313                 indx = kmemsize[size >> KMEM_ZSHIFT];
  314                 zone = kmemzones[indx].kz_zone;
  315                 keg = zone->uz_keg;
  316 #ifdef MALLOC_PROFILE
  317                 krequests[size >> KMEM_ZSHIFT]++;
  318 #endif
  319                 va = uma_zalloc(zone, flags);
  320                 if (va != NULL)
  321                         size = keg->uk_size;
  322                 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
  323         } else {
  324                 size = roundup(size, PAGE_SIZE);
  325                 zone = NULL;
  326                 keg = NULL;
  327                 va = uma_large_malloc(size, flags);
  328                 malloc_type_allocated(mtp, va == NULL ? 0 : size);
  329         }
  330         if (flags & M_WAITOK)
  331                 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
  332         else if (va == NULL)
  333                 t_malloc_fail = time_uptime;
  334 #ifdef DIAGNOSTIC
  335         if (va != NULL && !(flags & M_ZERO)) {
  336                 memset(va, 0x70, osize);
  337         }
  338 #endif
  339         return ((void *) va);
  340 }
  341 
  342 /*
  343  *      free:
  344  *
  345  *      Free a block of memory allocated by malloc.
  346  *
  347  *      This routine may not block.
  348  */
  349 void
  350 free(void *addr, struct malloc_type *mtp)
  351 {
  352         uma_slab_t slab;
  353         u_long size;
  354 
  355         /* free(NULL, ...) does nothing */
  356         if (addr == NULL)
  357                 return;
  358 
  359 #ifdef DEBUG_MEMGUARD
  360         /* XXX CHANGEME! */
  361         if (mtp == M_SUBPROC) {
  362                 memguard_free(addr);
  363                 return;
  364         }
  365 #endif
  366 
  367         size = 0;
  368 
  369         slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
  370 
  371         if (slab == NULL)
  372                 panic("free: address %p(%p) has not been allocated.\n",
  373                     addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
  374 
  375 
  376         if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
  377 #ifdef INVARIANTS
  378                 struct malloc_type **mtpp = addr;
  379 #endif
  380                 size = slab->us_keg->uk_size;
  381 #ifdef INVARIANTS
  382                 /*
  383                  * Cache a pointer to the malloc_type that most recently freed
  384                  * this memory here.  This way we know who is most likely to
  385                  * have stepped on it later.
  386                  *
  387                  * This code assumes that size is a multiple of 8 bytes for
  388                  * 64 bit machines
  389                  */
  390                 mtpp = (struct malloc_type **)
  391                     ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
  392                 mtpp += (size - sizeof(struct malloc_type *)) /
  393                     sizeof(struct malloc_type *);
  394                 *mtpp = mtp;
  395 #endif
  396                 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
  397         } else {
  398                 size = slab->us_size;
  399                 uma_large_free(slab);
  400         }
  401         malloc_type_freed(mtp, size);
  402 }
  403 
  404 /*
  405  *      realloc: change the size of a memory block
  406  */
  407 void *
  408 realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
  409 {
  410         uma_slab_t slab;
  411         unsigned long alloc;
  412         void *newaddr;
  413 
  414         /* realloc(NULL, ...) is equivalent to malloc(...) */
  415         if (addr == NULL)
  416                 return (malloc(size, mtp, flags));
  417 
  418         /*
  419          * XXX: Should report free of old memory and alloc of new memory to
  420          * per-CPU stats.
  421          */
  422 
  423 #ifdef DEBUG_MEMGUARD
  424 /* XXX: CHANGEME! */
  425 if (mtp == M_SUBPROC) {
  426         slab = NULL;
  427         alloc = size;
  428 } else {
  429 #endif
  430 
  431         slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
  432 
  433         /* Sanity check */
  434         KASSERT(slab != NULL,
  435             ("realloc: address %p out of range", (void *)addr));
  436 
  437         /* Get the size of the original block */
  438         if (slab->us_keg)
  439                 alloc = slab->us_keg->uk_size;
  440         else
  441                 alloc = slab->us_size;
  442 
  443         /* Reuse the original block if appropriate */
  444         if (size <= alloc
  445             && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
  446                 return (addr);
  447 
  448 #ifdef DEBUG_MEMGUARD
  449 }
  450 #endif
  451 
  452         /* Allocate a new, bigger (or smaller) block */
  453         if ((newaddr = malloc(size, mtp, flags)) == NULL)
  454                 return (NULL);
  455 
  456         /* Copy over original contents */
  457         bcopy(addr, newaddr, min(size, alloc));
  458         free(addr, mtp);
  459         return (newaddr);
  460 }
  461 
  462 /*
  463  *      reallocf: same as realloc() but free memory on failure.
  464  */
  465 void *
  466 reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
  467 {
  468         void *mem;
  469 
  470         if ((mem = realloc(addr, size, mtp, flags)) == NULL)
  471                 free(addr, mtp);
  472         return (mem);
  473 }
  474 
  475 /*
  476  * Initialize the kernel memory allocator
  477  */
  478 /* ARGSUSED*/
  479 static void
  480 kmeminit(void *dummy)
  481 {
  482         u_int8_t indx;
  483         u_long mem_size;
  484         int i;
  485  
  486         mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
  487 
  488         /*
  489          * Try to auto-tune the kernel memory size, so that it is
  490          * more applicable for a wider range of machine sizes.
  491          * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
  492          * a VM_KMEM_SIZE of 12MB is a fair compromise.  The
  493          * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
  494          * available, and on an X86 with a total KVA space of 256MB,
  495          * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
  496          *
  497          * Note that the kmem_map is also used by the zone allocator,
  498          * so make sure that there is enough space.
  499          */
  500         vm_kmem_size = VM_KMEM_SIZE + nmbclusters * PAGE_SIZE;
  501         mem_size = cnt.v_page_count;
  502 
  503 #if defined(VM_KMEM_SIZE_SCALE)
  504         vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
  505 #endif
  506         TUNABLE_INT_FETCH("vm.kmem_size_scale", &vm_kmem_size_scale);
  507         if (vm_kmem_size_scale > 0 &&
  508             (mem_size / vm_kmem_size_scale) > (vm_kmem_size / PAGE_SIZE))
  509                 vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
  510 
  511 #if defined(VM_KMEM_SIZE_MAX)
  512         vm_kmem_size_max = VM_KMEM_SIZE_MAX;
  513 #endif
  514         TUNABLE_INT_FETCH("vm.kmem_size_max", &vm_kmem_size_max);
  515         if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
  516                 vm_kmem_size = vm_kmem_size_max;
  517 
  518         /* Allow final override from the kernel environment */
  519 #ifndef BURN_BRIDGES
  520         if (TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size) != 0)
  521                 printf("kern.vm.kmem.size is now called vm.kmem_size!\n");
  522 #endif
  523         TUNABLE_INT_FETCH("vm.kmem_size", &vm_kmem_size);
  524 
  525         /*
  526          * Limit kmem virtual size to twice the physical memory.
  527          * This allows for kmem map sparseness, but limits the size
  528          * to something sane. Be careful to not overflow the 32bit
  529          * ints while doing the check.
  530          */
  531         if (((vm_kmem_size / 2) / PAGE_SIZE) > cnt.v_page_count)
  532                 vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE;
  533 
  534         /*
  535          * Tune settings based on the kernel map's size at this time.
  536          */
  537         init_param3(vm_kmem_size / PAGE_SIZE);
  538 
  539         kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
  540                 (vm_offset_t *)&kmemlimit, vm_kmem_size);
  541         kmem_map->system_map = 1;
  542 
  543 #ifdef DEBUG_MEMGUARD
  544         /*
  545          * Initialize MemGuard if support compiled in.  MemGuard is a
  546          * replacement allocator used for detecting tamper-after-free
  547          * scenarios as they occur.  It is only used for debugging.
  548          */
  549         vm_memguard_divisor = 10;
  550         TUNABLE_INT_FETCH("vm.memguard_divisor", &vm_memguard_divisor);
  551 
  552         /* Pick a conservative value if provided value sucks. */
  553         if ((vm_memguard_divisor <= 0) ||
  554             ((vm_kmem_size / vm_memguard_divisor) == 0))
  555                 vm_memguard_divisor = 10;
  556         memguard_init(kmem_map, vm_kmem_size / vm_memguard_divisor);
  557 #endif
  558 
  559         uma_startup2();
  560 
  561         mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
  562 #ifdef INVARIANTS
  563             mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
  564 #else
  565             NULL, NULL, NULL, NULL,
  566 #endif
  567             UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
  568         for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
  569                 int size = kmemzones[indx].kz_size;
  570                 char *name = kmemzones[indx].kz_name;
  571 
  572                 kmemzones[indx].kz_zone = uma_zcreate(name, size,
  573 #ifdef INVARIANTS
  574                     mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
  575 #else
  576                     NULL, NULL, NULL, NULL,
  577 #endif
  578                     UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
  579                     
  580                 for (;i <= size; i+= KMEM_ZBASE)
  581                         kmemsize[i >> KMEM_ZSHIFT] = indx;
  582                 
  583         }
  584 }
  585 
  586 void
  587 malloc_init(void *data)
  588 {
  589         struct malloc_type_internal *mtip;
  590         struct malloc_type *mtp;
  591 
  592         KASSERT(cnt.v_page_count != 0, ("malloc_register before vm_init"));
  593 
  594         mtp = data;
  595         mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
  596         mtp->ks_handle = mtip;
  597 
  598         mtx_lock(&malloc_mtx);
  599         mtp->ks_next = kmemstatistics;
  600         kmemstatistics = mtp;
  601         kmemcount++;
  602         mtx_unlock(&malloc_mtx);
  603 }
  604 
  605 void
  606 malloc_uninit(void *data)
  607 {
  608         struct malloc_type_internal *mtip;
  609         struct malloc_type *mtp, *temp;
  610 
  611         mtp = data;
  612         KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
  613         mtx_lock(&malloc_mtx);
  614         mtip = mtp->ks_handle;
  615         mtp->ks_handle = NULL;
  616         if (mtp != kmemstatistics) {
  617                 for (temp = kmemstatistics; temp != NULL;
  618                     temp = temp->ks_next) {
  619                         if (temp->ks_next == mtp)
  620                                 temp->ks_next = mtp->ks_next;
  621                 }
  622         } else
  623                 kmemstatistics = mtp->ks_next;
  624         kmemcount--;
  625         mtx_unlock(&malloc_mtx);
  626         uma_zfree(mt_zone, mtip);
  627 }
  628 
  629 static int
  630 sysctl_kern_malloc(SYSCTL_HANDLER_ARGS)
  631 {
  632         struct malloc_type_stats mts_local, *mtsp;
  633         struct malloc_type_internal *mtip;
  634         struct malloc_type *mtp;
  635         struct sbuf sbuf;
  636         long temp_allocs, temp_bytes;
  637         int linesize = 128;
  638         int bufsize;
  639         int first;
  640         int error;
  641         char *buf;
  642         int cnt;
  643         int i;
  644 
  645         cnt = 0;
  646 
  647         /* Guess at how much room is needed. */
  648         mtx_lock(&malloc_mtx);
  649         cnt = kmemcount;
  650         mtx_unlock(&malloc_mtx);
  651 
  652         bufsize = linesize * (cnt + 1);
  653         buf = malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
  654         sbuf_new(&sbuf, buf, bufsize, SBUF_FIXEDLEN);
  655 
  656         mtx_lock(&malloc_mtx);
  657         sbuf_printf(&sbuf,
  658             "\n        Type  InUse MemUse HighUse Requests  Size(s)\n");
  659         for (mtp = kmemstatistics; cnt != 0 && mtp != NULL;
  660             mtp = mtp->ks_next, cnt--) {
  661                 mtip = mtp->ks_handle;
  662                 bzero(&mts_local, sizeof(mts_local));
  663                 for (i = 0; i < MAXCPU; i++) {
  664                         mtsp = &mtip->mti_stats[i];
  665                         mts_local.mts_memalloced += mtsp->mts_memalloced;
  666                         mts_local.mts_memfreed += mtsp->mts_memfreed;
  667                         mts_local.mts_numallocs += mtsp->mts_numallocs;
  668                         mts_local.mts_numfrees += mtsp->mts_numfrees;
  669                         mts_local.mts_size |= mtsp->mts_size;
  670                 }
  671                 if (mts_local.mts_numallocs == 0)
  672                         continue;
  673 
  674                 /*
  675                  * Due to races in per-CPU statistics gather, it's possible to
  676                  * get a slightly negative number here.  If we do, approximate
  677                  * with 0.
  678                  */
  679                 if (mts_local.mts_numallocs > mts_local.mts_numfrees)
  680                         temp_allocs = mts_local.mts_numallocs -
  681                             mts_local.mts_numfrees;
  682                 else
  683                         temp_allocs = 0;
  684 
  685                 /*
  686                  * Ditto for bytes allocated.
  687                  */
  688                 if (mts_local.mts_memalloced > mts_local.mts_memfreed)
  689                         temp_bytes = mts_local.mts_memalloced -
  690                             mts_local.mts_memfreed;
  691                 else
  692                         temp_bytes = 0;
  693 
  694                 /*
  695                  * High-waterwark is no longer easily available, so we just
  696                  * print '-' for that column.
  697                  */
  698                 sbuf_printf(&sbuf, "%13s%6lu%6luK       -%9llu",
  699                     mtp->ks_shortdesc,
  700                     temp_allocs,
  701                     (temp_bytes + 1023) / 1024,
  702                     (unsigned long long)mts_local.mts_numallocs);
  703 
  704                 first = 1;
  705                 for (i = 0; i < sizeof(kmemzones) / sizeof(kmemzones[0]) - 1;
  706                     i++) {
  707                         if (mts_local.mts_size & (1 << i)) {
  708                                 if (first)
  709                                         sbuf_printf(&sbuf, "  ");
  710                                 else
  711                                         sbuf_printf(&sbuf, ",");
  712                                 sbuf_printf(&sbuf, "%s",
  713                                     kmemzones[i].kz_name);
  714                                 first = 0;
  715                         }
  716                 }
  717                 sbuf_printf(&sbuf, "\n");
  718         }
  719         sbuf_finish(&sbuf);
  720         mtx_unlock(&malloc_mtx);
  721 
  722         error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
  723 
  724         sbuf_delete(&sbuf);
  725         free(buf, M_TEMP);
  726         return (error);
  727 }
  728 
  729 SYSCTL_OID(_kern, OID_AUTO, malloc, CTLTYPE_STRING|CTLFLAG_RD,
  730     NULL, 0, sysctl_kern_malloc, "A", "Malloc Stats");
  731 
  732 static int
  733 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
  734 {
  735         struct malloc_type_stream_header mtsh;
  736         struct malloc_type_internal *mtip;
  737         struct malloc_type_header mth;
  738         struct malloc_type *mtp;
  739         int buflen, count, error, i;
  740         struct sbuf sbuf;
  741         char *buffer;
  742 
  743         mtx_lock(&malloc_mtx);
  744 restart:
  745         mtx_assert(&malloc_mtx, MA_OWNED);
  746         count = kmemcount;
  747         mtx_unlock(&malloc_mtx);
  748         buflen = sizeof(mtsh) + count * (sizeof(mth) +
  749             sizeof(struct malloc_type_stats) * MAXCPU) + 1;
  750         buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO);
  751         mtx_lock(&malloc_mtx);
  752         if (count < kmemcount) {
  753                 free(buffer, M_TEMP);
  754                 goto restart;
  755         }
  756 
  757         sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN);
  758 
  759         /*
  760          * Insert stream header.
  761          */
  762         bzero(&mtsh, sizeof(mtsh));
  763         mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
  764         mtsh.mtsh_maxcpus = MAXCPU;
  765         mtsh.mtsh_count = kmemcount;
  766         if (sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)) < 0) {
  767                 mtx_unlock(&malloc_mtx);
  768                 error = ENOMEM;
  769                 goto out;
  770         }
  771 
  772         /*
  773          * Insert alternating sequence of type headers and type statistics.
  774          */
  775         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
  776                 mtip = (struct malloc_type_internal *)mtp->ks_handle;
  777 
  778                 /*
  779                  * Insert type header.
  780                  */
  781                 bzero(&mth, sizeof(mth));
  782                 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
  783                 if (sbuf_bcat(&sbuf, &mth, sizeof(mth)) < 0) {
  784                         mtx_unlock(&malloc_mtx);
  785                         error = ENOMEM;
  786                         goto out;
  787                 }
  788 
  789                 /*
  790                  * Insert type statistics for each CPU.
  791                  */
  792                 for (i = 0; i < MAXCPU; i++) {
  793                         if (sbuf_bcat(&sbuf, &mtip->mti_stats[i],
  794                             sizeof(mtip->mti_stats[i])) < 0) {
  795                                 mtx_unlock(&malloc_mtx);
  796                                 error = ENOMEM;
  797                                 goto out;
  798                         }
  799                 }
  800         }
  801         mtx_unlock(&malloc_mtx);
  802         sbuf_finish(&sbuf);
  803         error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
  804 out:
  805         sbuf_delete(&sbuf);
  806         free(buffer, M_TEMP);
  807         return (error);
  808 }
  809 
  810 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
  811     0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
  812     "Return malloc types");
  813 
  814 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
  815     "Count of kernel malloc types");
  816 
  817 #ifdef MALLOC_PROFILE
  818 
  819 static int
  820 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
  821 {
  822         int linesize = 64;
  823         struct sbuf sbuf;
  824         uint64_t count;
  825         uint64_t waste;
  826         uint64_t mem;
  827         int bufsize;
  828         int error;
  829         char *buf;
  830         int rsize;
  831         int size;
  832         int i;
  833 
  834         bufsize = linesize * (KMEM_ZSIZE + 1);
  835         bufsize += 128;         /* For the stats line */
  836         bufsize += 128;         /* For the banner line */
  837         waste = 0;
  838         mem = 0;
  839 
  840         buf = malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
  841         sbuf_new(&sbuf, buf, bufsize, SBUF_FIXEDLEN);
  842         sbuf_printf(&sbuf, 
  843             "\n  Size                    Requests  Real Size\n");
  844         for (i = 0; i < KMEM_ZSIZE; i++) {
  845                 size = i << KMEM_ZSHIFT;
  846                 rsize = kmemzones[kmemsize[i]].kz_size;
  847                 count = (long long unsigned)krequests[i];
  848 
  849                 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
  850                     (unsigned long long)count, rsize);
  851 
  852                 if ((rsize * count) > (size * count))
  853                         waste += (rsize * count) - (size * count);
  854                 mem += (rsize * count);
  855         }
  856         sbuf_printf(&sbuf,
  857             "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
  858             (unsigned long long)mem, (unsigned long long)waste);
  859         sbuf_finish(&sbuf);
  860 
  861         error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
  862 
  863         sbuf_delete(&sbuf);
  864         free(buf, M_TEMP);
  865         return (error);
  866 }
  867 
  868 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
  869     NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
  870 #endif /* MALLOC_PROFILE */

Cache object: 2d04ba8f7b2341c1e8e8da5367e264e1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.