The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_malloc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1987, 1991, 1993
    3  *      The Regents of the University of California.
    4  * Copyright (c) 2005 Robert N. M. Watson
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 4. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)kern_malloc.c       8.3 (Berkeley) 1/4/94
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD: releng/6.4/sys/kern/kern_malloc.c 182404 2008-08-28 20:29:33Z emaste $");
   36 
   37 #include "opt_ddb.h"
   38 #include "opt_vm.h"
   39 
   40 #include <sys/param.h>
   41 #include <sys/systm.h>
   42 #include <sys/kdb.h>
   43 #include <sys/kernel.h>
   44 #include <sys/lock.h>
   45 #include <sys/malloc.h>
   46 #include <sys/mbuf.h>
   47 #include <sys/mutex.h>
   48 #include <sys/vmmeter.h>
   49 #include <sys/proc.h>
   50 #include <sys/sbuf.h>
   51 #include <sys/sysctl.h>
   52 #include <sys/time.h>
   53 
   54 #include <vm/vm.h>
   55 #include <vm/pmap.h>
   56 #include <vm/vm_param.h>
   57 #include <vm/vm_kern.h>
   58 #include <vm/vm_extern.h>
   59 #include <vm/vm_map.h>
   60 #include <vm/vm_page.h>
   61 #include <vm/uma.h>
   62 #include <vm/uma_int.h>
   63 #include <vm/uma_dbg.h>
   64 
   65 #ifdef DEBUG_MEMGUARD
   66 #include <vm/memguard.h>
   67 #endif
   68 #ifdef DEBUG_REDZONE
   69 #include <vm/redzone.h>
   70 #endif
   71 
   72 #if defined(INVARIANTS) && defined(__i386__)
   73 #include <machine/cpu.h>
   74 #endif
   75 
   76 #include <ddb/ddb.h>
   77 
   78 /*
   79  * When realloc() is called, if the new size is sufficiently smaller than
   80  * the old size, realloc() will allocate a new, smaller block to avoid
   81  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
   82  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
   83  */
   84 #ifndef REALLOC_FRACTION
   85 #define REALLOC_FRACTION        1       /* new block if <= half the size */
   86 #endif
   87 
   88 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
   89 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
   90 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
   91 
   92 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
   93 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
   94 
   95 static void kmeminit(void *);
   96 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
   97 
   98 static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
   99 
  100 static struct malloc_type *kmemstatistics;
  101 static char *kmembase;
  102 static char *kmemlimit;
  103 static int kmemcount;
  104 
  105 #define KMEM_ZSHIFT     4
  106 #define KMEM_ZBASE      16
  107 #define KMEM_ZMASK      (KMEM_ZBASE - 1)
  108 
  109 #define KMEM_ZMAX       PAGE_SIZE
  110 #define KMEM_ZSIZE      (KMEM_ZMAX >> KMEM_ZSHIFT)
  111 static u_int8_t kmemsize[KMEM_ZSIZE + 1];
  112 
  113 /* These won't be powers of two for long */
  114 struct {
  115         int kz_size;
  116         char *kz_name;
  117         uma_zone_t kz_zone;
  118 } kmemzones[] = {
  119         {16, "16", NULL},
  120         {32, "32", NULL},
  121         {64, "64", NULL},
  122         {128, "128", NULL},
  123         {256, "256", NULL},
  124         {512, "512", NULL},
  125         {1024, "1024", NULL},
  126         {2048, "2048", NULL},
  127         {4096, "4096", NULL},
  128 #if PAGE_SIZE > 4096
  129         {8192, "8192", NULL},
  130 #if PAGE_SIZE > 8192
  131         {16384, "16384", NULL},
  132 #if PAGE_SIZE > 16384
  133         {32768, "32768", NULL},
  134 #if PAGE_SIZE > 32768
  135         {65536, "65536", NULL},
  136 #if PAGE_SIZE > 65536
  137 #error  "Unsupported PAGE_SIZE"
  138 #endif  /* 65536 */
  139 #endif  /* 32768 */
  140 #endif  /* 16384 */
  141 #endif  /* 8192 */
  142 #endif  /* 4096 */
  143         {0, NULL},
  144 };
  145 
  146 static uma_zone_t mt_zone;
  147 
  148 u_int vm_kmem_size;
  149 SYSCTL_UINT(_vm, OID_AUTO, kmem_size, CTLFLAG_RD, &vm_kmem_size, 0,
  150     "Size of kernel memory");
  151 
  152 u_int vm_kmem_size_max;
  153 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RD, &vm_kmem_size_max, 0,
  154     "Maximum size of kernel memory");
  155 
  156 u_int vm_kmem_size_scale;
  157 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RD, &vm_kmem_size_scale, 0,
  158     "Scale factor for kernel memory size");
  159 
  160 /*
  161  * The malloc_mtx protects the kmemstatistics linked list.
  162  */
  163 
  164 struct mtx malloc_mtx;
  165 
  166 #ifdef MALLOC_PROFILE
  167 uint64_t krequests[KMEM_ZSIZE + 1];
  168 
  169 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
  170 #endif
  171 
  172 static int sysctl_kern_malloc(SYSCTL_HANDLER_ARGS);
  173 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
  174 
  175 /* time_uptime of last malloc(9) failure */
  176 static time_t t_malloc_fail;
  177 
  178 #ifdef MALLOC_MAKE_FAILURES
  179 /*
  180  * Causes malloc failures every (n) mallocs with M_NOWAIT.  If set to 0,
  181  * doesn't cause failures.
  182  */
  183 SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
  184     "Kernel malloc debugging options");
  185 
  186 static int malloc_failure_rate;
  187 static int malloc_nowait_count;
  188 static int malloc_failure_count;
  189 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW,
  190     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
  191 TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate);
  192 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
  193     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
  194 #endif
  195 
  196 int
  197 malloc_last_fail(void)
  198 {
  199 
  200         return (time_uptime - t_malloc_fail);
  201 }
  202 
  203 /*
  204  * Add this to the informational malloc_type bucket.
  205  */
  206 static void
  207 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
  208     int zindx)
  209 {
  210         struct malloc_type_internal *mtip;
  211         struct malloc_type_stats *mtsp;
  212 
  213         critical_enter();
  214         mtip = mtp->ks_handle;
  215         mtsp = &mtip->mti_stats[curcpu];
  216         if (size > 0) {
  217                 mtsp->mts_memalloced += size;
  218                 mtsp->mts_numallocs++;
  219         }
  220         if (zindx != -1)
  221                 mtsp->mts_size |= 1 << zindx;
  222         critical_exit();
  223 }
  224 
  225 void
  226 malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
  227 {
  228 
  229         if (size > 0)
  230                 malloc_type_zone_allocated(mtp, size, -1);
  231 }
  232 
  233 /*
  234  * Remove this allocation from the informational malloc_type bucket.
  235  */
  236 void
  237 malloc_type_freed(struct malloc_type *mtp, unsigned long size)
  238 {
  239         struct malloc_type_internal *mtip;
  240         struct malloc_type_stats *mtsp;
  241 
  242         critical_enter();
  243         mtip = mtp->ks_handle;
  244         mtsp = &mtip->mti_stats[curcpu];
  245         mtsp->mts_memfreed += size;
  246         mtsp->mts_numfrees++;
  247         critical_exit();
  248 }
  249 
  250 /*
  251  *      malloc:
  252  *
  253  *      Allocate a block of memory.
  254  *
  255  *      If M_NOWAIT is set, this routine will not block and return NULL if
  256  *      the allocation fails.
  257  */
  258 void *
  259 malloc(unsigned long size, struct malloc_type *mtp, int flags)
  260 {
  261         int indx;
  262         caddr_t va;
  263         uma_zone_t zone;
  264         uma_keg_t keg;
  265 #if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE)
  266         unsigned long osize = size;
  267 #endif
  268 
  269 #ifdef INVARIANTS
  270         /*
  271          * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
  272          */
  273         indx = flags & (M_WAITOK | M_NOWAIT);
  274         if (indx != M_NOWAIT && indx != M_WAITOK) {
  275                 static  struct timeval lasterr;
  276                 static  int curerr, once;
  277                 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
  278                         printf("Bad malloc flags: %x\n", indx);
  279                         kdb_backtrace();
  280                         flags |= M_WAITOK;
  281                         once++;
  282                 }
  283         }
  284 #endif
  285 #if 0
  286         if (size == 0)
  287                 kdb_enter("zero size malloc");
  288 #endif
  289 #ifdef MALLOC_MAKE_FAILURES
  290         if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
  291                 atomic_add_int(&malloc_nowait_count, 1);
  292                 if ((malloc_nowait_count % malloc_failure_rate) == 0) {
  293                         atomic_add_int(&malloc_failure_count, 1);
  294                         t_malloc_fail = time_uptime;
  295                         return (NULL);
  296                 }
  297         }
  298 #endif
  299         if (flags & M_WAITOK)
  300                 KASSERT(curthread->td_intr_nesting_level == 0,
  301                    ("malloc(M_WAITOK) in interrupt context"));
  302 
  303 #ifdef DEBUG_MEMGUARD
  304         if (memguard_cmp(mtp))
  305                 return memguard_alloc(size, flags);
  306 #endif
  307 
  308 #ifdef DEBUG_REDZONE
  309         size = redzone_size_ntor(size);
  310 #endif
  311 
  312         if (size <= KMEM_ZMAX) {
  313                 if (size & KMEM_ZMASK)
  314                         size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
  315                 indx = kmemsize[size >> KMEM_ZSHIFT];
  316                 zone = kmemzones[indx].kz_zone;
  317                 keg = zone->uz_keg;
  318 #ifdef MALLOC_PROFILE
  319                 krequests[size >> KMEM_ZSHIFT]++;
  320 #endif
  321                 va = uma_zalloc(zone, flags);
  322                 if (va != NULL)
  323                         size = keg->uk_size;
  324                 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
  325         } else {
  326                 size = roundup(size, PAGE_SIZE);
  327                 zone = NULL;
  328                 keg = NULL;
  329                 va = uma_large_malloc(size, flags);
  330                 malloc_type_allocated(mtp, va == NULL ? 0 : size);
  331         }
  332         if (flags & M_WAITOK)
  333                 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
  334         else if (va == NULL)
  335                 t_malloc_fail = time_uptime;
  336 #ifdef DIAGNOSTIC
  337         if (va != NULL && !(flags & M_ZERO)) {
  338                 memset(va, 0x70, osize);
  339         }
  340 #endif
  341 #ifdef DEBUG_REDZONE
  342         if (va != NULL)
  343                 va = redzone_setup(va, osize);
  344 #endif
  345         return ((void *) va);
  346 }
  347 
  348 /*
  349  *      free:
  350  *
  351  *      Free a block of memory allocated by malloc.
  352  *
  353  *      This routine may not block.
  354  */
  355 void
  356 free(void *addr, struct malloc_type *mtp)
  357 {
  358         uma_slab_t slab;
  359         u_long size;
  360 
  361         /* free(NULL, ...) does nothing */
  362         if (addr == NULL)
  363                 return;
  364 
  365 #ifdef DEBUG_MEMGUARD
  366         if (memguard_cmp(mtp)) {
  367                 memguard_free(addr);
  368                 return;
  369         }
  370 #endif
  371 
  372 #ifdef DEBUG_REDZONE
  373         redzone_check(addr);
  374         addr = redzone_addr_ntor(addr);
  375 #endif
  376 
  377         size = 0;
  378 
  379         slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
  380 
  381         if (slab == NULL)
  382                 panic("free: address %p(%p) has not been allocated.\n",
  383                     addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
  384 
  385 
  386         if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
  387 #ifdef INVARIANTS
  388                 struct malloc_type **mtpp = addr;
  389 #endif
  390                 size = slab->us_keg->uk_size;
  391 #ifdef INVARIANTS
  392                 /*
  393                  * Cache a pointer to the malloc_type that most recently freed
  394                  * this memory here.  This way we know who is most likely to
  395                  * have stepped on it later.
  396                  *
  397                  * This code assumes that size is a multiple of 8 bytes for
  398                  * 64 bit machines
  399                  */
  400                 mtpp = (struct malloc_type **)
  401                     ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
  402                 mtpp += (size - sizeof(struct malloc_type *)) /
  403                     sizeof(struct malloc_type *);
  404                 *mtpp = mtp;
  405 #endif
  406                 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
  407         } else {
  408                 size = slab->us_size;
  409                 uma_large_free(slab);
  410         }
  411         malloc_type_freed(mtp, size);
  412 }
  413 
  414 /*
  415  *      realloc: change the size of a memory block
  416  */
  417 void *
  418 realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
  419 {
  420         uma_slab_t slab;
  421         unsigned long alloc;
  422         void *newaddr;
  423 
  424         /* realloc(NULL, ...) is equivalent to malloc(...) */
  425         if (addr == NULL)
  426                 return (malloc(size, mtp, flags));
  427 
  428         /*
  429          * XXX: Should report free of old memory and alloc of new memory to
  430          * per-CPU stats.
  431          */
  432 
  433 #ifdef DEBUG_MEMGUARD
  434 if (memguard_cmp(mtp)) {
  435         slab = NULL;
  436         alloc = size;
  437 } else {
  438 #endif
  439 
  440 #ifdef DEBUG_REDZONE
  441         slab = NULL;
  442         alloc = redzone_get_size(addr);
  443 #else
  444         slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
  445 
  446         /* Sanity check */
  447         KASSERT(slab != NULL,
  448             ("realloc: address %p out of range", (void *)addr));
  449 
  450         /* Get the size of the original block */
  451         if (!(slab->us_flags & UMA_SLAB_MALLOC))
  452                 alloc = slab->us_keg->uk_size;
  453         else
  454                 alloc = slab->us_size;
  455 
  456         /* Reuse the original block if appropriate */
  457         if (size <= alloc
  458             && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
  459                 return (addr);
  460 #endif /* !DEBUG_REDZONE */
  461 
  462 #ifdef DEBUG_MEMGUARD
  463 }
  464 #endif
  465 
  466         /* Allocate a new, bigger (or smaller) block */
  467         if ((newaddr = malloc(size, mtp, flags)) == NULL)
  468                 return (NULL);
  469 
  470         /* Copy over original contents */
  471         bcopy(addr, newaddr, min(size, alloc));
  472         free(addr, mtp);
  473         return (newaddr);
  474 }
  475 
  476 /*
  477  *      reallocf: same as realloc() but free memory on failure.
  478  */
  479 void *
  480 reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
  481 {
  482         void *mem;
  483 
  484         if ((mem = realloc(addr, size, mtp, flags)) == NULL)
  485                 free(addr, mtp);
  486         return (mem);
  487 }
  488 
  489 /*
  490  * Initialize the kernel memory allocator
  491  */
  492 /* ARGSUSED*/
  493 static void
  494 kmeminit(void *dummy)
  495 {
  496         u_int8_t indx;
  497         u_long mem_size;
  498         int i;
  499  
  500         mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
  501 
  502         /*
  503          * Try to auto-tune the kernel memory size, so that it is
  504          * more applicable for a wider range of machine sizes.
  505          * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
  506          * a VM_KMEM_SIZE of 12MB is a fair compromise.  The
  507          * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
  508          * available, and on an X86 with a total KVA space of 256MB,
  509          * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
  510          *
  511          * Note that the kmem_map is also used by the zone allocator,
  512          * so make sure that there is enough space.
  513          */
  514         vm_kmem_size = VM_KMEM_SIZE + nmbclusters * PAGE_SIZE;
  515         mem_size = cnt.v_page_count;
  516 
  517 #if defined(VM_KMEM_SIZE_SCALE)
  518         vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
  519 #endif
  520         TUNABLE_INT_FETCH("vm.kmem_size_scale", &vm_kmem_size_scale);
  521         if (vm_kmem_size_scale > 0 &&
  522             (mem_size / vm_kmem_size_scale) > (vm_kmem_size / PAGE_SIZE))
  523                 vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
  524 
  525 #if defined(VM_KMEM_SIZE_MAX)
  526         vm_kmem_size_max = VM_KMEM_SIZE_MAX;
  527 #endif
  528         TUNABLE_INT_FETCH("vm.kmem_size_max", &vm_kmem_size_max);
  529         if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
  530                 vm_kmem_size = vm_kmem_size_max;
  531 
  532         /* Allow final override from the kernel environment */
  533 #ifndef BURN_BRIDGES
  534         if (TUNABLE_INT_FETCH("kern.vm.kmem.size", &vm_kmem_size) != 0)
  535                 printf("kern.vm.kmem.size is now called vm.kmem_size!\n");
  536 #endif
  537         TUNABLE_INT_FETCH("vm.kmem_size", &vm_kmem_size);
  538 
  539         /*
  540          * Limit kmem virtual size to twice the physical memory.
  541          * This allows for kmem map sparseness, but limits the size
  542          * to something sane. Be careful to not overflow the 32bit
  543          * ints while doing the check.
  544          */
  545         if (((vm_kmem_size / 2) / PAGE_SIZE) > cnt.v_page_count)
  546                 vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE;
  547 
  548         /*
  549          * Tune settings based on the kernel map's size at this time.
  550          */
  551         init_param3(vm_kmem_size / PAGE_SIZE);
  552 
  553         kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase,
  554                 (vm_offset_t *)&kmemlimit, vm_kmem_size);
  555         kmem_map->system_map = 1;
  556 
  557 #ifdef DEBUG_MEMGUARD
  558         /*
  559          * Initialize MemGuard if support compiled in.  MemGuard is a
  560          * replacement allocator used for detecting tamper-after-free
  561          * scenarios as they occur.  It is only used for debugging.
  562          */
  563         vm_memguard_divisor = 10;
  564         TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor);
  565 
  566         /* Pick a conservative value if provided value sucks. */
  567         if ((vm_memguard_divisor <= 0) ||
  568             ((vm_kmem_size / vm_memguard_divisor) == 0))
  569                 vm_memguard_divisor = 10;
  570         memguard_init(kmem_map, vm_kmem_size / vm_memguard_divisor);
  571 #endif
  572 
  573         uma_startup2();
  574 
  575         mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
  576 #ifdef INVARIANTS
  577             mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
  578 #else
  579             NULL, NULL, NULL, NULL,
  580 #endif
  581             UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
  582         for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
  583                 int size = kmemzones[indx].kz_size;
  584                 char *name = kmemzones[indx].kz_name;
  585 
  586                 kmemzones[indx].kz_zone = uma_zcreate(name, size,
  587 #ifdef INVARIANTS
  588                     mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
  589 #else
  590                     NULL, NULL, NULL, NULL,
  591 #endif
  592                     UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
  593                     
  594                 for (;i <= size; i+= KMEM_ZBASE)
  595                         kmemsize[i >> KMEM_ZSHIFT] = indx;
  596                 
  597         }
  598 }
  599 
  600 void
  601 malloc_init(void *data)
  602 {
  603         struct malloc_type_internal *mtip;
  604         struct malloc_type *mtp;
  605 
  606         KASSERT(cnt.v_page_count != 0, ("malloc_register before vm_init"));
  607 
  608         mtp = data;
  609         mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
  610         mtp->ks_handle = mtip;
  611 
  612         mtx_lock(&malloc_mtx);
  613         mtp->ks_next = kmemstatistics;
  614         kmemstatistics = mtp;
  615         kmemcount++;
  616         mtx_unlock(&malloc_mtx);
  617 }
  618 
  619 void
  620 malloc_uninit(void *data)
  621 {
  622         struct malloc_type_internal *mtip;
  623         struct malloc_type_stats *mtsp;
  624         struct malloc_type *mtp, *temp;
  625         uma_slab_t slab;
  626         long temp_allocs, temp_bytes;
  627         int i;
  628 
  629         mtp = data;
  630         KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
  631         mtx_lock(&malloc_mtx);
  632         mtip = mtp->ks_handle;
  633         mtp->ks_handle = NULL;
  634         if (mtp != kmemstatistics) {
  635                 for (temp = kmemstatistics; temp != NULL;
  636                     temp = temp->ks_next) {
  637                         if (temp->ks_next == mtp)
  638                                 temp->ks_next = mtp->ks_next;
  639                 }
  640         } else
  641                 kmemstatistics = mtp->ks_next;
  642         kmemcount--;
  643         mtx_unlock(&malloc_mtx);
  644 
  645         /*
  646          * Look for memory leaks.
  647          */
  648         temp_allocs = temp_bytes = 0;
  649         for (i = 0; i < MAXCPU; i++) {
  650                 mtsp = &mtip->mti_stats[i];
  651                 temp_allocs += mtsp->mts_numallocs;
  652                 temp_allocs -= mtsp->mts_numfrees;
  653                 temp_bytes += mtsp->mts_memalloced;
  654                 temp_bytes -= mtsp->mts_memfreed;
  655         }
  656         if (temp_allocs > 0 || temp_bytes > 0) {
  657                 printf("Warning: memory type %s leaked memory on destroy "
  658                     "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
  659                     temp_allocs, temp_bytes);
  660         }
  661 
  662         slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK));
  663         uma_zfree_arg(mt_zone, mtip, slab);
  664 }
  665 
  666 struct malloc_type *
  667 malloc_desc2type(const char *desc)
  668 {
  669         struct malloc_type *mtp;
  670 
  671         mtx_assert(&malloc_mtx, MA_OWNED);
  672         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
  673                 if (strcmp(mtp->ks_shortdesc, desc) == 0)
  674                         return (mtp);
  675         }
  676         return (NULL);
  677 }
  678 
  679 static int
  680 sysctl_kern_malloc(SYSCTL_HANDLER_ARGS)
  681 {
  682         struct malloc_type_stats mts_local, *mtsp;
  683         struct malloc_type_internal *mtip;
  684         struct malloc_type *mtp;
  685         struct sbuf sbuf;
  686         long temp_allocs, temp_bytes;
  687         int linesize = 128;
  688         int bufsize;
  689         int first;
  690         int error;
  691         char *buf;
  692         int cnt;
  693         int i;
  694 
  695         cnt = 0;
  696 
  697         /* Guess at how much room is needed. */
  698         mtx_lock(&malloc_mtx);
  699         cnt = kmemcount;
  700         mtx_unlock(&malloc_mtx);
  701 
  702         bufsize = linesize * (cnt + 1);
  703         buf = malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
  704         sbuf_new(&sbuf, buf, bufsize, SBUF_FIXEDLEN);
  705 
  706         mtx_lock(&malloc_mtx);
  707         sbuf_printf(&sbuf,
  708             "\n        Type  InUse MemUse HighUse Requests  Size(s)\n");
  709         for (mtp = kmemstatistics; cnt != 0 && mtp != NULL;
  710             mtp = mtp->ks_next, cnt--) {
  711                 mtip = mtp->ks_handle;
  712                 bzero(&mts_local, sizeof(mts_local));
  713                 for (i = 0; i < MAXCPU; i++) {
  714                         mtsp = &mtip->mti_stats[i];
  715                         mts_local.mts_memalloced += mtsp->mts_memalloced;
  716                         mts_local.mts_memfreed += mtsp->mts_memfreed;
  717                         mts_local.mts_numallocs += mtsp->mts_numallocs;
  718                         mts_local.mts_numfrees += mtsp->mts_numfrees;
  719                         mts_local.mts_size |= mtsp->mts_size;
  720                 }
  721                 if (mts_local.mts_numallocs == 0)
  722                         continue;
  723 
  724                 /*
  725                  * Due to races in per-CPU statistics gather, it's possible to
  726                  * get a slightly negative number here.  If we do, approximate
  727                  * with 0.
  728                  */
  729                 if (mts_local.mts_numallocs > mts_local.mts_numfrees)
  730                         temp_allocs = mts_local.mts_numallocs -
  731                             mts_local.mts_numfrees;
  732                 else
  733                         temp_allocs = 0;
  734 
  735                 /*
  736                  * Ditto for bytes allocated.
  737                  */
  738                 if (mts_local.mts_memalloced > mts_local.mts_memfreed)
  739                         temp_bytes = mts_local.mts_memalloced -
  740                             mts_local.mts_memfreed;
  741                 else
  742                         temp_bytes = 0;
  743 
  744                 /*
  745                  * High-waterwark is no longer easily available, so we just
  746                  * print '-' for that column.
  747                  */
  748                 sbuf_printf(&sbuf, "%13s%6lu%6luK       -%9llu",
  749                     mtp->ks_shortdesc,
  750                     temp_allocs,
  751                     (temp_bytes + 1023) / 1024,
  752                     (unsigned long long)mts_local.mts_numallocs);
  753 
  754                 first = 1;
  755                 for (i = 0; i < sizeof(kmemzones) / sizeof(kmemzones[0]) - 1;
  756                     i++) {
  757                         if (mts_local.mts_size & (1 << i)) {
  758                                 if (first)
  759                                         sbuf_printf(&sbuf, "  ");
  760                                 else
  761                                         sbuf_printf(&sbuf, ",");
  762                                 sbuf_printf(&sbuf, "%s",
  763                                     kmemzones[i].kz_name);
  764                                 first = 0;
  765                         }
  766                 }
  767                 sbuf_printf(&sbuf, "\n");
  768         }
  769         sbuf_finish(&sbuf);
  770         mtx_unlock(&malloc_mtx);
  771 
  772         error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
  773 
  774         sbuf_delete(&sbuf);
  775         free(buf, M_TEMP);
  776         return (error);
  777 }
  778 
  779 SYSCTL_OID(_kern, OID_AUTO, malloc, CTLTYPE_STRING|CTLFLAG_RD,
  780     NULL, 0, sysctl_kern_malloc, "A", "Malloc Stats");
  781 
  782 static int
  783 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
  784 {
  785         struct malloc_type_stream_header mtsh;
  786         struct malloc_type_internal *mtip;
  787         struct malloc_type_header mth;
  788         struct malloc_type *mtp;
  789         int buflen, count, error, i;
  790         struct sbuf sbuf;
  791         char *buffer;
  792 
  793         mtx_lock(&malloc_mtx);
  794 restart:
  795         mtx_assert(&malloc_mtx, MA_OWNED);
  796         count = kmemcount;
  797         mtx_unlock(&malloc_mtx);
  798         buflen = sizeof(mtsh) + count * (sizeof(mth) +
  799             sizeof(struct malloc_type_stats) * MAXCPU) + 1;
  800         buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO);
  801         mtx_lock(&malloc_mtx);
  802         if (count < kmemcount) {
  803                 free(buffer, M_TEMP);
  804                 goto restart;
  805         }
  806 
  807         sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN);
  808 
  809         /*
  810          * Insert stream header.
  811          */
  812         bzero(&mtsh, sizeof(mtsh));
  813         mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
  814         mtsh.mtsh_maxcpus = MAXCPU;
  815         mtsh.mtsh_count = kmemcount;
  816         if (sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)) < 0) {
  817                 mtx_unlock(&malloc_mtx);
  818                 error = ENOMEM;
  819                 goto out;
  820         }
  821 
  822         /*
  823          * Insert alternating sequence of type headers and type statistics.
  824          */
  825         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
  826                 mtip = (struct malloc_type_internal *)mtp->ks_handle;
  827 
  828                 /*
  829                  * Insert type header.
  830                  */
  831                 bzero(&mth, sizeof(mth));
  832                 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
  833                 if (sbuf_bcat(&sbuf, &mth, sizeof(mth)) < 0) {
  834                         mtx_unlock(&malloc_mtx);
  835                         error = ENOMEM;
  836                         goto out;
  837                 }
  838 
  839                 /*
  840                  * Insert type statistics for each CPU.
  841                  */
  842                 for (i = 0; i < MAXCPU; i++) {
  843                         if (sbuf_bcat(&sbuf, &mtip->mti_stats[i],
  844                             sizeof(mtip->mti_stats[i])) < 0) {
  845                                 mtx_unlock(&malloc_mtx);
  846                                 error = ENOMEM;
  847                                 goto out;
  848                         }
  849                 }
  850         }
  851         mtx_unlock(&malloc_mtx);
  852         sbuf_finish(&sbuf);
  853         error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
  854 out:
  855         sbuf_delete(&sbuf);
  856         free(buffer, M_TEMP);
  857         return (error);
  858 }
  859 
  860 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
  861     0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
  862     "Return malloc types");
  863 
  864 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
  865     "Count of kernel malloc types");
  866 
  867 #ifdef DDB
  868 DB_SHOW_COMMAND(malloc, db_show_malloc)
  869 {
  870         struct malloc_type_internal *mtip;
  871         struct malloc_type *mtp;
  872         u_int64_t allocs, frees;
  873         int i;
  874 
  875         db_printf("%18s %12s %12s %12s\n", "Type", "Allocs", "Frees",
  876             "Used");
  877         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
  878                 mtip = (struct malloc_type_internal *)mtp->ks_handle;
  879                 allocs = 0;
  880                 frees = 0;
  881                 for (i = 0; i < MAXCPU; i++) {
  882                         allocs += mtip->mti_stats[i].mts_numallocs;
  883                         frees += mtip->mti_stats[i].mts_numfrees;
  884                 }
  885                 db_printf("%18s %12ju %12ju %12ju\n", mtp->ks_shortdesc,
  886                     allocs, frees, allocs - frees);
  887         }
  888 }
  889 #endif
  890 
  891 #ifdef MALLOC_PROFILE
  892 
  893 static int
  894 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
  895 {
  896         int linesize = 64;
  897         struct sbuf sbuf;
  898         uint64_t count;
  899         uint64_t waste;
  900         uint64_t mem;
  901         int bufsize;
  902         int error;
  903         char *buf;
  904         int rsize;
  905         int size;
  906         int i;
  907 
  908         bufsize = linesize * (KMEM_ZSIZE + 1);
  909         bufsize += 128;         /* For the stats line */
  910         bufsize += 128;         /* For the banner line */
  911         waste = 0;
  912         mem = 0;
  913 
  914         buf = malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
  915         sbuf_new(&sbuf, buf, bufsize, SBUF_FIXEDLEN);
  916         sbuf_printf(&sbuf, 
  917             "\n  Size                    Requests  Real Size\n");
  918         for (i = 0; i < KMEM_ZSIZE; i++) {
  919                 size = i << KMEM_ZSHIFT;
  920                 rsize = kmemzones[kmemsize[i]].kz_size;
  921                 count = (long long unsigned)krequests[i];
  922 
  923                 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
  924                     (unsigned long long)count, rsize);
  925 
  926                 if ((rsize * count) > (size * count))
  927                         waste += (rsize * count) - (size * count);
  928                 mem += (rsize * count);
  929         }
  930         sbuf_printf(&sbuf,
  931             "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
  932             (unsigned long long)mem, (unsigned long long)waste);
  933         sbuf_finish(&sbuf);
  934 
  935         error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
  936 
  937         sbuf_delete(&sbuf);
  938         free(buf, M_TEMP);
  939         return (error);
  940 }
  941 
  942 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
  943     NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
  944 #endif /* MALLOC_PROFILE */

Cache object: 8aabb14b9077f84011526668b509fdd9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.