The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_malloc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1987, 1991, 1993
    3  *      The Regents of the University of California.
    4  * Copyright (c) 2005-2009 Robert N. M. Watson
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 4. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)kern_malloc.c       8.3 (Berkeley) 1/4/94
   32  */
   33 
   34 /*
   35  * Kernel malloc(9) implementation -- general purpose kernel memory allocator
   36  * based on memory types.  Back end is implemented using the UMA(9) zone
   37  * allocator.  A set of fixed-size buckets are used for smaller allocations,
   38  * and a special UMA allocation interface is used for larger allocations.
   39  * Callers declare memory types, and statistics are maintained independently
   40  * for each memory type.  Statistics are maintained per-CPU for performance
   41  * reasons.  See malloc(9) and comments in malloc.h for a detailed
   42  * description.
   43  */
   44 
   45 #include <sys/cdefs.h>
   46 __FBSDID("$FreeBSD: releng/8.1/sys/kern/kern_malloc.c 199583 2009-11-20 15:27:52Z jhb $");
   47 
   48 #include "opt_ddb.h"
   49 #include "opt_kdtrace.h"
   50 #include "opt_vm.h"
   51 
   52 #include <sys/param.h>
   53 #include <sys/systm.h>
   54 #include <sys/kdb.h>
   55 #include <sys/kernel.h>
   56 #include <sys/lock.h>
   57 #include <sys/malloc.h>
   58 #include <sys/mbuf.h>
   59 #include <sys/mutex.h>
   60 #include <sys/vmmeter.h>
   61 #include <sys/proc.h>
   62 #include <sys/sbuf.h>
   63 #include <sys/sysctl.h>
   64 #include <sys/time.h>
   65 
   66 #include <vm/vm.h>
   67 #include <vm/pmap.h>
   68 #include <vm/vm_param.h>
   69 #include <vm/vm_kern.h>
   70 #include <vm/vm_extern.h>
   71 #include <vm/vm_map.h>
   72 #include <vm/vm_page.h>
   73 #include <vm/uma.h>
   74 #include <vm/uma_int.h>
   75 #include <vm/uma_dbg.h>
   76 
   77 #ifdef DEBUG_MEMGUARD
   78 #include <vm/memguard.h>
   79 #endif
   80 #ifdef DEBUG_REDZONE
   81 #include <vm/redzone.h>
   82 #endif
   83 
   84 #if defined(INVARIANTS) && defined(__i386__)
   85 #include <machine/cpu.h>
   86 #endif
   87 
   88 #include <ddb/ddb.h>
   89 
   90 #ifdef KDTRACE_HOOKS
   91 #include <sys/dtrace_bsd.h>
   92 
   93 dtrace_malloc_probe_func_t      dtrace_malloc_probe;
   94 #endif
   95 
   96 /*
   97  * When realloc() is called, if the new size is sufficiently smaller than
   98  * the old size, realloc() will allocate a new, smaller block to avoid
   99  * wasting memory. 'Sufficiently smaller' is defined as: newsize <=
  100  * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'.
  101  */
  102 #ifndef REALLOC_FRACTION
  103 #define REALLOC_FRACTION        1       /* new block if <= half the size */
  104 #endif
  105 
  106 /*
  107  * Centrally define some common malloc types.
  108  */
  109 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
  110 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
  111 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
  112 
  113 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
  114 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
  115 
  116 static void kmeminit(void *);
  117 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL);
  118 
  119 static MALLOC_DEFINE(M_FREE, "free", "should be on free list");
  120 
  121 static struct malloc_type *kmemstatistics;
  122 static vm_offset_t kmembase;
  123 static vm_offset_t kmemlimit;
  124 static int kmemcount;
  125 
  126 #define KMEM_ZSHIFT     4
  127 #define KMEM_ZBASE      16
  128 #define KMEM_ZMASK      (KMEM_ZBASE - 1)
  129 
  130 #define KMEM_ZMAX       PAGE_SIZE
  131 #define KMEM_ZSIZE      (KMEM_ZMAX >> KMEM_ZSHIFT)
  132 static u_int8_t kmemsize[KMEM_ZSIZE + 1];
  133 
  134 /*
  135  * Small malloc(9) memory allocations are allocated from a set of UMA buckets
  136  * of various sizes.
  137  *
  138  * XXX: The comment here used to read "These won't be powers of two for
  139  * long."  It's possible that a significant amount of wasted memory could be
  140  * recovered by tuning the sizes of these buckets.
  141  */
  142 struct {
  143         int kz_size;
  144         char *kz_name;
  145         uma_zone_t kz_zone;
  146 } kmemzones[] = {
  147         {16, "16", NULL},
  148         {32, "32", NULL},
  149         {64, "64", NULL},
  150         {128, "128", NULL},
  151         {256, "256", NULL},
  152         {512, "512", NULL},
  153         {1024, "1024", NULL},
  154         {2048, "2048", NULL},
  155         {4096, "4096", NULL},
  156 #if PAGE_SIZE > 4096
  157         {8192, "8192", NULL},
  158 #if PAGE_SIZE > 8192
  159         {16384, "16384", NULL},
  160 #if PAGE_SIZE > 16384
  161         {32768, "32768", NULL},
  162 #if PAGE_SIZE > 32768
  163         {65536, "65536", NULL},
  164 #if PAGE_SIZE > 65536
  165 #error  "Unsupported PAGE_SIZE"
  166 #endif  /* 65536 */
  167 #endif  /* 32768 */
  168 #endif  /* 16384 */
  169 #endif  /* 8192 */
  170 #endif  /* 4096 */
  171         {0, NULL},
  172 };
  173 
  174 /*
  175  * Zone to allocate malloc type descriptions from.  For ABI reasons, memory
  176  * types are described by a data structure passed by the declaring code, but
  177  * the malloc(9) implementation has its own data structure describing the
  178  * type and statistics.  This permits the malloc(9)-internal data structures
  179  * to be modified without breaking binary-compiled kernel modules that
  180  * declare malloc types.
  181  */
  182 static uma_zone_t mt_zone;
  183 
  184 u_long vm_kmem_size;
  185 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RD, &vm_kmem_size, 0,
  186     "Size of kernel memory");
  187 
  188 static u_long vm_kmem_size_min;
  189 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RD, &vm_kmem_size_min, 0,
  190     "Minimum size of kernel memory");
  191 
  192 static u_long vm_kmem_size_max;
  193 SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RD, &vm_kmem_size_max, 0,
  194     "Maximum size of kernel memory");
  195 
  196 static u_int vm_kmem_size_scale;
  197 SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RD, &vm_kmem_size_scale, 0,
  198     "Scale factor for kernel memory size");
  199 
  200 /*
  201  * The malloc_mtx protects the kmemstatistics linked list.
  202  */
  203 struct mtx malloc_mtx;
  204 
  205 #ifdef MALLOC_PROFILE
  206 uint64_t krequests[KMEM_ZSIZE + 1];
  207 
  208 static int sysctl_kern_mprof(SYSCTL_HANDLER_ARGS);
  209 #endif
  210 
  211 static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS);
  212 
  213 /*
  214  * time_uptime of the last malloc(9) failure (induced or real).
  215  */
  216 static time_t t_malloc_fail;
  217 
  218 /*
  219  * malloc(9) fault injection -- cause malloc failures every (n) mallocs when
  220  * the caller specifies M_NOWAIT.  If set to 0, no failures are caused.
  221  */
  222 #ifdef MALLOC_MAKE_FAILURES
  223 SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD, 0,
  224     "Kernel malloc debugging options");
  225 
  226 static int malloc_failure_rate;
  227 static int malloc_nowait_count;
  228 static int malloc_failure_count;
  229 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RW,
  230     &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail");
  231 TUNABLE_INT("debug.malloc.failure_rate", &malloc_failure_rate);
  232 SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD,
  233     &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures");
  234 #endif
  235 
  236 int
  237 malloc_last_fail(void)
  238 {
  239 
  240         return (time_uptime - t_malloc_fail);
  241 }
  242 
  243 /*
  244  * An allocation has succeeded -- update malloc type statistics for the
  245  * amount of bucket size.  Occurs within a critical section so that the
  246  * thread isn't preempted and doesn't migrate while updating per-PCU
  247  * statistics.
  248  */
  249 static void
  250 malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size,
  251     int zindx)
  252 {
  253         struct malloc_type_internal *mtip;
  254         struct malloc_type_stats *mtsp;
  255 
  256         critical_enter();
  257         mtip = mtp->ks_handle;
  258         mtsp = &mtip->mti_stats[curcpu];
  259         if (size > 0) {
  260                 mtsp->mts_memalloced += size;
  261                 mtsp->mts_numallocs++;
  262         }
  263         if (zindx != -1)
  264                 mtsp->mts_size |= 1 << zindx;
  265 
  266 #ifdef KDTRACE_HOOKS
  267         if (dtrace_malloc_probe != NULL) {
  268                 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC];
  269                 if (probe_id != 0)
  270                         (dtrace_malloc_probe)(probe_id,
  271                             (uintptr_t) mtp, (uintptr_t) mtip,
  272                             (uintptr_t) mtsp, size, zindx);
  273         }
  274 #endif
  275 
  276         critical_exit();
  277 }
  278 
  279 void
  280 malloc_type_allocated(struct malloc_type *mtp, unsigned long size)
  281 {
  282 
  283         if (size > 0)
  284                 malloc_type_zone_allocated(mtp, size, -1);
  285 }
  286 
  287 /*
  288  * A free operation has occurred -- update malloc type statistics for the
  289  * amount of the bucket size.  Occurs within a critical section so that the
  290  * thread isn't preempted and doesn't migrate while updating per-CPU
  291  * statistics.
  292  */
  293 void
  294 malloc_type_freed(struct malloc_type *mtp, unsigned long size)
  295 {
  296         struct malloc_type_internal *mtip;
  297         struct malloc_type_stats *mtsp;
  298 
  299         critical_enter();
  300         mtip = mtp->ks_handle;
  301         mtsp = &mtip->mti_stats[curcpu];
  302         mtsp->mts_memfreed += size;
  303         mtsp->mts_numfrees++;
  304 
  305 #ifdef KDTRACE_HOOKS
  306         if (dtrace_malloc_probe != NULL) {
  307                 uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE];
  308                 if (probe_id != 0)
  309                         (dtrace_malloc_probe)(probe_id,
  310                             (uintptr_t) mtp, (uintptr_t) mtip,
  311                             (uintptr_t) mtsp, size, 0);
  312         }
  313 #endif
  314 
  315         critical_exit();
  316 }
  317 
  318 /*
  319  *      malloc:
  320  *
  321  *      Allocate a block of memory.
  322  *
  323  *      If M_NOWAIT is set, this routine will not block and return NULL if
  324  *      the allocation fails.
  325  */
  326 void *
  327 malloc(unsigned long size, struct malloc_type *mtp, int flags)
  328 {
  329         int indx;
  330         caddr_t va;
  331         uma_zone_t zone;
  332 #if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE)
  333         unsigned long osize = size;
  334 #endif
  335 
  336 #ifdef INVARIANTS
  337         KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic"));
  338         /*
  339          * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
  340          */
  341         indx = flags & (M_WAITOK | M_NOWAIT);
  342         if (indx != M_NOWAIT && indx != M_WAITOK) {
  343                 static  struct timeval lasterr;
  344                 static  int curerr, once;
  345                 if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
  346                         printf("Bad malloc flags: %x\n", indx);
  347                         kdb_backtrace();
  348                         flags |= M_WAITOK;
  349                         once++;
  350                 }
  351         }
  352 #endif
  353 #ifdef MALLOC_MAKE_FAILURES
  354         if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
  355                 atomic_add_int(&malloc_nowait_count, 1);
  356                 if ((malloc_nowait_count % malloc_failure_rate) == 0) {
  357                         atomic_add_int(&malloc_failure_count, 1);
  358                         t_malloc_fail = time_uptime;
  359                         return (NULL);
  360                 }
  361         }
  362 #endif
  363         if (flags & M_WAITOK)
  364                 KASSERT(curthread->td_intr_nesting_level == 0,
  365                    ("malloc(M_WAITOK) in interrupt context"));
  366 
  367 #ifdef DEBUG_MEMGUARD
  368         if (memguard_cmp(mtp))
  369                 return memguard_alloc(size, flags);
  370 #endif
  371 
  372 #ifdef DEBUG_REDZONE
  373         size = redzone_size_ntor(size);
  374 #endif
  375 
  376         if (size <= KMEM_ZMAX) {
  377                 if (size & KMEM_ZMASK)
  378                         size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
  379                 indx = kmemsize[size >> KMEM_ZSHIFT];
  380                 zone = kmemzones[indx].kz_zone;
  381 #ifdef MALLOC_PROFILE
  382                 krequests[size >> KMEM_ZSHIFT]++;
  383 #endif
  384                 va = uma_zalloc(zone, flags);
  385                 if (va != NULL)
  386                         size = zone->uz_size;
  387                 malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
  388         } else {
  389                 size = roundup(size, PAGE_SIZE);
  390                 zone = NULL;
  391                 va = uma_large_malloc(size, flags);
  392                 malloc_type_allocated(mtp, va == NULL ? 0 : size);
  393         }
  394         if (flags & M_WAITOK)
  395                 KASSERT(va != NULL, ("malloc(M_WAITOK) returned NULL"));
  396         else if (va == NULL)
  397                 t_malloc_fail = time_uptime;
  398 #ifdef DIAGNOSTIC
  399         if (va != NULL && !(flags & M_ZERO)) {
  400                 memset(va, 0x70, osize);
  401         }
  402 #endif
  403 #ifdef DEBUG_REDZONE
  404         if (va != NULL)
  405                 va = redzone_setup(va, osize);
  406 #endif
  407         return ((void *) va);
  408 }
  409 
  410 /*
  411  *      free:
  412  *
  413  *      Free a block of memory allocated by malloc.
  414  *
  415  *      This routine may not block.
  416  */
  417 void
  418 free(void *addr, struct malloc_type *mtp)
  419 {
  420         uma_slab_t slab;
  421         u_long size;
  422 
  423         KASSERT(mtp->ks_magic == M_MAGIC, ("free: bad malloc type magic"));
  424 
  425         /* free(NULL, ...) does nothing */
  426         if (addr == NULL)
  427                 return;
  428 
  429 #ifdef DEBUG_MEMGUARD
  430         if (memguard_cmp(mtp)) {
  431                 memguard_free(addr);
  432                 return;
  433         }
  434 #endif
  435 
  436 #ifdef DEBUG_REDZONE
  437         redzone_check(addr);
  438         addr = redzone_addr_ntor(addr);
  439 #endif
  440 
  441         slab = vtoslab((vm_offset_t)addr & (~UMA_SLAB_MASK));
  442 
  443         if (slab == NULL)
  444                 panic("free: address %p(%p) has not been allocated.\n",
  445                     addr, (void *)((u_long)addr & (~UMA_SLAB_MASK)));
  446 
  447 
  448         if (!(slab->us_flags & UMA_SLAB_MALLOC)) {
  449 #ifdef INVARIANTS
  450                 struct malloc_type **mtpp = addr;
  451 #endif
  452                 size = slab->us_keg->uk_size;
  453 #ifdef INVARIANTS
  454                 /*
  455                  * Cache a pointer to the malloc_type that most recently freed
  456                  * this memory here.  This way we know who is most likely to
  457                  * have stepped on it later.
  458                  *
  459                  * This code assumes that size is a multiple of 8 bytes for
  460                  * 64 bit machines
  461                  */
  462                 mtpp = (struct malloc_type **)
  463                     ((unsigned long)mtpp & ~UMA_ALIGN_PTR);
  464                 mtpp += (size - sizeof(struct malloc_type *)) /
  465                     sizeof(struct malloc_type *);
  466                 *mtpp = mtp;
  467 #endif
  468                 uma_zfree_arg(LIST_FIRST(&slab->us_keg->uk_zones), addr, slab);
  469         } else {
  470                 size = slab->us_size;
  471                 uma_large_free(slab);
  472         }
  473         malloc_type_freed(mtp, size);
  474 }
  475 
  476 /*
  477  *      realloc: change the size of a memory block
  478  */
  479 void *
  480 realloc(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
  481 {
  482         uma_slab_t slab;
  483         unsigned long alloc;
  484         void *newaddr;
  485 
  486         KASSERT(mtp->ks_magic == M_MAGIC,
  487             ("realloc: bad malloc type magic"));
  488 
  489         /* realloc(NULL, ...) is equivalent to malloc(...) */
  490         if (addr == NULL)
  491                 return (malloc(size, mtp, flags));
  492 
  493         /*
  494          * XXX: Should report free of old memory and alloc of new memory to
  495          * per-CPU stats.
  496          */
  497 
  498 #ifdef DEBUG_MEMGUARD
  499 if (memguard_cmp(mtp)) {
  500         slab = NULL;
  501         alloc = size;
  502 } else {
  503 #endif
  504 
  505 #ifdef DEBUG_REDZONE
  506         slab = NULL;
  507         alloc = redzone_get_size(addr);
  508 #else
  509         slab = vtoslab((vm_offset_t)addr & ~(UMA_SLAB_MASK));
  510 
  511         /* Sanity check */
  512         KASSERT(slab != NULL,
  513             ("realloc: address %p out of range", (void *)addr));
  514 
  515         /* Get the size of the original block */
  516         if (!(slab->us_flags & UMA_SLAB_MALLOC))
  517                 alloc = slab->us_keg->uk_size;
  518         else
  519                 alloc = slab->us_size;
  520 
  521         /* Reuse the original block if appropriate */
  522         if (size <= alloc
  523             && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE))
  524                 return (addr);
  525 #endif /* !DEBUG_REDZONE */
  526 
  527 #ifdef DEBUG_MEMGUARD
  528 }
  529 #endif
  530 
  531         /* Allocate a new, bigger (or smaller) block */
  532         if ((newaddr = malloc(size, mtp, flags)) == NULL)
  533                 return (NULL);
  534 
  535         /* Copy over original contents */
  536         bcopy(addr, newaddr, min(size, alloc));
  537         free(addr, mtp);
  538         return (newaddr);
  539 }
  540 
  541 /*
  542  *      reallocf: same as realloc() but free memory on failure.
  543  */
  544 void *
  545 reallocf(void *addr, unsigned long size, struct malloc_type *mtp, int flags)
  546 {
  547         void *mem;
  548 
  549         if ((mem = realloc(addr, size, mtp, flags)) == NULL)
  550                 free(addr, mtp);
  551         return (mem);
  552 }
  553 
  554 /*
  555  * Initialize the kernel memory allocator
  556  */
  557 /* ARGSUSED*/
  558 static void
  559 kmeminit(void *dummy)
  560 {
  561         u_int8_t indx;
  562         u_long mem_size;
  563         int i;
  564  
  565         mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF);
  566 
  567         /*
  568          * Try to auto-tune the kernel memory size, so that it is
  569          * more applicable for a wider range of machine sizes.
  570          * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while
  571          * a VM_KMEM_SIZE of 12MB is a fair compromise.  The
  572          * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space
  573          * available, and on an X86 with a total KVA space of 256MB,
  574          * try to keep VM_KMEM_SIZE_MAX at 80MB or below.
  575          *
  576          * Note that the kmem_map is also used by the zone allocator,
  577          * so make sure that there is enough space.
  578          */
  579         vm_kmem_size = VM_KMEM_SIZE + nmbclusters * PAGE_SIZE;
  580         mem_size = cnt.v_page_count;
  581 
  582 #if defined(VM_KMEM_SIZE_SCALE)
  583         vm_kmem_size_scale = VM_KMEM_SIZE_SCALE;
  584 #endif
  585         TUNABLE_INT_FETCH("vm.kmem_size_scale", &vm_kmem_size_scale);
  586         if (vm_kmem_size_scale > 0 &&
  587             (mem_size / vm_kmem_size_scale) > (vm_kmem_size / PAGE_SIZE))
  588                 vm_kmem_size = (mem_size / vm_kmem_size_scale) * PAGE_SIZE;
  589 
  590 #if defined(VM_KMEM_SIZE_MIN)
  591         vm_kmem_size_min = VM_KMEM_SIZE_MIN;
  592 #endif
  593         TUNABLE_ULONG_FETCH("vm.kmem_size_min", &vm_kmem_size_min);
  594         if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) {
  595                 vm_kmem_size = vm_kmem_size_min;
  596         }
  597 
  598 #if defined(VM_KMEM_SIZE_MAX)
  599         vm_kmem_size_max = VM_KMEM_SIZE_MAX;
  600 #endif
  601         TUNABLE_ULONG_FETCH("vm.kmem_size_max", &vm_kmem_size_max);
  602         if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max)
  603                 vm_kmem_size = vm_kmem_size_max;
  604 
  605         /* Allow final override from the kernel environment */
  606         TUNABLE_ULONG_FETCH("vm.kmem_size", &vm_kmem_size);
  607 
  608         /*
  609          * Limit kmem virtual size to twice the physical memory.
  610          * This allows for kmem map sparseness, but limits the size
  611          * to something sane. Be careful to not overflow the 32bit
  612          * ints while doing the check.
  613          */
  614         if (((vm_kmem_size / 2) / PAGE_SIZE) > cnt.v_page_count)
  615                 vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE;
  616 
  617         /*
  618          * Tune settings based on the kmem map's size at this time.
  619          */
  620         init_param3(vm_kmem_size / PAGE_SIZE);
  621 
  622         kmem_map = kmem_suballoc(kernel_map, &kmembase, &kmemlimit,
  623             vm_kmem_size, TRUE);
  624         kmem_map->system_map = 1;
  625 
  626 #ifdef DEBUG_MEMGUARD
  627         /*
  628          * Initialize MemGuard if support compiled in.  MemGuard is a
  629          * replacement allocator used for detecting tamper-after-free
  630          * scenarios as they occur.  It is only used for debugging.
  631          */
  632         vm_memguard_divisor = 10;
  633         TUNABLE_INT_FETCH("vm.memguard.divisor", &vm_memguard_divisor);
  634 
  635         /* Pick a conservative value if provided value sucks. */
  636         if ((vm_memguard_divisor <= 0) ||
  637             ((vm_kmem_size / vm_memguard_divisor) == 0))
  638                 vm_memguard_divisor = 10;
  639         memguard_init(kmem_map, vm_kmem_size / vm_memguard_divisor);
  640 #endif
  641 
  642         uma_startup2();
  643 
  644         mt_zone = uma_zcreate("mt_zone", sizeof(struct malloc_type_internal),
  645 #ifdef INVARIANTS
  646             mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
  647 #else
  648             NULL, NULL, NULL, NULL,
  649 #endif
  650             UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
  651         for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) {
  652                 int size = kmemzones[indx].kz_size;
  653                 char *name = kmemzones[indx].kz_name;
  654 
  655                 kmemzones[indx].kz_zone = uma_zcreate(name, size,
  656 #ifdef INVARIANTS
  657                     mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini,
  658 #else
  659                     NULL, NULL, NULL, NULL,
  660 #endif
  661                     UMA_ALIGN_PTR, UMA_ZONE_MALLOC);
  662                     
  663                 for (;i <= size; i+= KMEM_ZBASE)
  664                         kmemsize[i >> KMEM_ZSHIFT] = indx;
  665                 
  666         }
  667 }
  668 
  669 void
  670 malloc_init(void *data)
  671 {
  672         struct malloc_type_internal *mtip;
  673         struct malloc_type *mtp;
  674 
  675         KASSERT(cnt.v_page_count != 0, ("malloc_register before vm_init"));
  676 
  677         mtp = data;
  678         if (mtp->ks_magic != M_MAGIC)
  679                 panic("malloc_init: bad malloc type magic");
  680 
  681         mtip = uma_zalloc(mt_zone, M_WAITOK | M_ZERO);
  682         mtp->ks_handle = mtip;
  683 
  684         mtx_lock(&malloc_mtx);
  685         mtp->ks_next = kmemstatistics;
  686         kmemstatistics = mtp;
  687         kmemcount++;
  688         mtx_unlock(&malloc_mtx);
  689 }
  690 
  691 void
  692 malloc_uninit(void *data)
  693 {
  694         struct malloc_type_internal *mtip;
  695         struct malloc_type_stats *mtsp;
  696         struct malloc_type *mtp, *temp;
  697         uma_slab_t slab;
  698         long temp_allocs, temp_bytes;
  699         int i;
  700 
  701         mtp = data;
  702         KASSERT(mtp->ks_magic == M_MAGIC,
  703             ("malloc_uninit: bad malloc type magic"));
  704         KASSERT(mtp->ks_handle != NULL, ("malloc_deregister: cookie NULL"));
  705 
  706         mtx_lock(&malloc_mtx);
  707         mtip = mtp->ks_handle;
  708         mtp->ks_handle = NULL;
  709         if (mtp != kmemstatistics) {
  710                 for (temp = kmemstatistics; temp != NULL;
  711                     temp = temp->ks_next) {
  712                         if (temp->ks_next == mtp) {
  713                                 temp->ks_next = mtp->ks_next;
  714                                 break;
  715                         }
  716                 }
  717                 KASSERT(temp,
  718                     ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc));
  719         } else
  720                 kmemstatistics = mtp->ks_next;
  721         kmemcount--;
  722         mtx_unlock(&malloc_mtx);
  723 
  724         /*
  725          * Look for memory leaks.
  726          */
  727         temp_allocs = temp_bytes = 0;
  728         for (i = 0; i < MAXCPU; i++) {
  729                 mtsp = &mtip->mti_stats[i];
  730                 temp_allocs += mtsp->mts_numallocs;
  731                 temp_allocs -= mtsp->mts_numfrees;
  732                 temp_bytes += mtsp->mts_memalloced;
  733                 temp_bytes -= mtsp->mts_memfreed;
  734         }
  735         if (temp_allocs > 0 || temp_bytes > 0) {
  736                 printf("Warning: memory type %s leaked memory on destroy "
  737                     "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc,
  738                     temp_allocs, temp_bytes);
  739         }
  740 
  741         slab = vtoslab((vm_offset_t) mtip & (~UMA_SLAB_MASK));
  742         uma_zfree_arg(mt_zone, mtip, slab);
  743 }
  744 
  745 struct malloc_type *
  746 malloc_desc2type(const char *desc)
  747 {
  748         struct malloc_type *mtp;
  749 
  750         mtx_assert(&malloc_mtx, MA_OWNED);
  751         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
  752                 if (strcmp(mtp->ks_shortdesc, desc) == 0)
  753                         return (mtp);
  754         }
  755         return (NULL);
  756 }
  757 
  758 static int
  759 sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS)
  760 {
  761         struct malloc_type_stream_header mtsh;
  762         struct malloc_type_internal *mtip;
  763         struct malloc_type_header mth;
  764         struct malloc_type *mtp;
  765         int buflen, count, error, i;
  766         struct sbuf sbuf;
  767         char *buffer;
  768 
  769         mtx_lock(&malloc_mtx);
  770 restart:
  771         mtx_assert(&malloc_mtx, MA_OWNED);
  772         count = kmemcount;
  773         mtx_unlock(&malloc_mtx);
  774         buflen = sizeof(mtsh) + count * (sizeof(mth) +
  775             sizeof(struct malloc_type_stats) * MAXCPU) + 1;
  776         buffer = malloc(buflen, M_TEMP, M_WAITOK | M_ZERO);
  777         mtx_lock(&malloc_mtx);
  778         if (count < kmemcount) {
  779                 free(buffer, M_TEMP);
  780                 goto restart;
  781         }
  782 
  783         sbuf_new(&sbuf, buffer, buflen, SBUF_FIXEDLEN);
  784 
  785         /*
  786          * Insert stream header.
  787          */
  788         bzero(&mtsh, sizeof(mtsh));
  789         mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION;
  790         mtsh.mtsh_maxcpus = MAXCPU;
  791         mtsh.mtsh_count = kmemcount;
  792         if (sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)) < 0) {
  793                 mtx_unlock(&malloc_mtx);
  794                 error = ENOMEM;
  795                 goto out;
  796         }
  797 
  798         /*
  799          * Insert alternating sequence of type headers and type statistics.
  800          */
  801         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
  802                 mtip = (struct malloc_type_internal *)mtp->ks_handle;
  803 
  804                 /*
  805                  * Insert type header.
  806                  */
  807                 bzero(&mth, sizeof(mth));
  808                 strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME);
  809                 if (sbuf_bcat(&sbuf, &mth, sizeof(mth)) < 0) {
  810                         mtx_unlock(&malloc_mtx);
  811                         error = ENOMEM;
  812                         goto out;
  813                 }
  814 
  815                 /*
  816                  * Insert type statistics for each CPU.
  817                  */
  818                 for (i = 0; i < MAXCPU; i++) {
  819                         if (sbuf_bcat(&sbuf, &mtip->mti_stats[i],
  820                             sizeof(mtip->mti_stats[i])) < 0) {
  821                                 mtx_unlock(&malloc_mtx);
  822                                 error = ENOMEM;
  823                                 goto out;
  824                         }
  825                 }
  826         }
  827         mtx_unlock(&malloc_mtx);
  828         sbuf_finish(&sbuf);
  829         error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
  830 out:
  831         sbuf_delete(&sbuf);
  832         free(buffer, M_TEMP);
  833         return (error);
  834 }
  835 
  836 SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
  837     0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats",
  838     "Return malloc types");
  839 
  840 SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0,
  841     "Count of kernel malloc types");
  842 
  843 void
  844 malloc_type_list(malloc_type_list_func_t *func, void *arg)
  845 {
  846         struct malloc_type *mtp, **bufmtp;
  847         int count, i;
  848         size_t buflen;
  849 
  850         mtx_lock(&malloc_mtx);
  851 restart:
  852         mtx_assert(&malloc_mtx, MA_OWNED);
  853         count = kmemcount;
  854         mtx_unlock(&malloc_mtx);
  855 
  856         buflen = sizeof(struct malloc_type *) * count;
  857         bufmtp = malloc(buflen, M_TEMP, M_WAITOK);
  858 
  859         mtx_lock(&malloc_mtx);
  860 
  861         if (count < kmemcount) {
  862                 free(bufmtp, M_TEMP);
  863                 goto restart;
  864         }
  865 
  866         for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++)
  867                 bufmtp[i] = mtp;
  868 
  869         mtx_unlock(&malloc_mtx);
  870 
  871         for (i = 0; i < count; i++)
  872                 (func)(bufmtp[i], arg);
  873 
  874         free(bufmtp, M_TEMP);
  875 }
  876 
  877 #ifdef DDB
  878 DB_SHOW_COMMAND(malloc, db_show_malloc)
  879 {
  880         struct malloc_type_internal *mtip;
  881         struct malloc_type *mtp;
  882         u_int64_t allocs, frees;
  883         u_int64_t alloced, freed;
  884         int i;
  885 
  886         db_printf("%18s %12s  %12s %12s\n", "Type", "InUse", "MemUse",
  887             "Requests");
  888         for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) {
  889                 mtip = (struct malloc_type_internal *)mtp->ks_handle;
  890                 allocs = 0;
  891                 frees = 0;
  892                 alloced = 0;
  893                 freed = 0;
  894                 for (i = 0; i < MAXCPU; i++) {
  895                         allocs += mtip->mti_stats[i].mts_numallocs;
  896                         frees += mtip->mti_stats[i].mts_numfrees;
  897                         alloced += mtip->mti_stats[i].mts_memalloced;
  898                         freed += mtip->mti_stats[i].mts_memfreed;
  899                 }
  900                 db_printf("%18s %12ju %12juK %12ju\n",
  901                     mtp->ks_shortdesc, allocs - frees,
  902                     (alloced - freed + 1023) / 1024, allocs);
  903         }
  904 }
  905 #endif
  906 
  907 #ifdef MALLOC_PROFILE
  908 
  909 static int
  910 sysctl_kern_mprof(SYSCTL_HANDLER_ARGS)
  911 {
  912         int linesize = 64;
  913         struct sbuf sbuf;
  914         uint64_t count;
  915         uint64_t waste;
  916         uint64_t mem;
  917         int bufsize;
  918         int error;
  919         char *buf;
  920         int rsize;
  921         int size;
  922         int i;
  923 
  924         bufsize = linesize * (KMEM_ZSIZE + 1);
  925         bufsize += 128;         /* For the stats line */
  926         bufsize += 128;         /* For the banner line */
  927         waste = 0;
  928         mem = 0;
  929 
  930         buf = malloc(bufsize, M_TEMP, M_WAITOK|M_ZERO);
  931         sbuf_new(&sbuf, buf, bufsize, SBUF_FIXEDLEN);
  932         sbuf_printf(&sbuf, 
  933             "\n  Size                    Requests  Real Size\n");
  934         for (i = 0; i < KMEM_ZSIZE; i++) {
  935                 size = i << KMEM_ZSHIFT;
  936                 rsize = kmemzones[kmemsize[i]].kz_size;
  937                 count = (long long unsigned)krequests[i];
  938 
  939                 sbuf_printf(&sbuf, "%6d%28llu%11d\n", size,
  940                     (unsigned long long)count, rsize);
  941 
  942                 if ((rsize * count) > (size * count))
  943                         waste += (rsize * count) - (size * count);
  944                 mem += (rsize * count);
  945         }
  946         sbuf_printf(&sbuf,
  947             "\nTotal memory used:\t%30llu\nTotal Memory wasted:\t%30llu\n",
  948             (unsigned long long)mem, (unsigned long long)waste);
  949         sbuf_finish(&sbuf);
  950 
  951         error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
  952 
  953         sbuf_delete(&sbuf);
  954         free(buf, M_TEMP);
  955         return (error);
  956 }
  957 
  958 SYSCTL_OID(_kern, OID_AUTO, mprof, CTLTYPE_STRING|CTLFLAG_RD,
  959     NULL, 0, sysctl_kern_mprof, "A", "Malloc Profiling");
  960 #endif /* MALLOC_PROFILE */

Cache object: 263c0ed5069ca07cbc3b0d97b2788a9d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.