The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_malloc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: kern_malloc.c,v 1.121.4.1 2010/02/14 13:37:42 bouyer Exp $     */
    2 
    3 /*
    4  * Copyright (c) 1987, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)kern_malloc.c       8.4 (Berkeley) 5/20/95
   32  */
   33 
   34 /*
   35  * Copyright (c) 1996 Christopher G. Demetriou.  All rights reserved.
   36  *
   37  * Redistribution and use in source and binary forms, with or without
   38  * modification, are permitted provided that the following conditions
   39  * are met:
   40  * 1. Redistributions of source code must retain the above copyright
   41  *    notice, this list of conditions and the following disclaimer.
   42  * 2. Redistributions in binary form must reproduce the above copyright
   43  *    notice, this list of conditions and the following disclaimer in the
   44  *    documentation and/or other materials provided with the distribution.
   45  * 3. All advertising materials mentioning features or use of this software
   46  *    must display the following acknowledgement:
   47  *      This product includes software developed by the University of
   48  *      California, Berkeley and its contributors.
   49  * 4. Neither the name of the University nor the names of its contributors
   50  *    may be used to endorse or promote products derived from this software
   51  *    without specific prior written permission.
   52  *
   53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   63  * SUCH DAMAGE.
   64  *
   65  *      @(#)kern_malloc.c       8.4 (Berkeley) 5/20/95
   66  */
   67 
   68 #include <sys/cdefs.h>
   69 __KERNEL_RCSID(0, "$NetBSD: kern_malloc.c,v 1.121.4.1 2010/02/14 13:37:42 bouyer Exp $");
   70 
   71 #include <sys/param.h>
   72 #include <sys/proc.h>
   73 #include <sys/kernel.h>
   74 #include <sys/malloc.h>
   75 #include <sys/systm.h>
   76 #include <sys/debug.h>
   77 #include <sys/mutex.h>
   78 #include <sys/lockdebug.h>
   79 
   80 #include <uvm/uvm_extern.h>
   81 
   82 static struct vm_map_kernel kmem_map_store;
   83 struct vm_map *kmem_map = NULL;
   84 
   85 #include "opt_kmempages.h"
   86 
   87 #ifdef NKMEMCLUSTERS
   88 #error NKMEMCLUSTERS is obsolete; remove it from your kernel config file and use NKMEMPAGES instead or let the kernel auto-size
   89 #endif
   90 
   91 /*
   92  * Default number of pages in kmem_map.  We attempt to calculate this
   93  * at run-time, but allow it to be either patched or set in the kernel
   94  * config file.
   95  */
   96 #ifndef NKMEMPAGES
   97 #define NKMEMPAGES      0
   98 #endif
   99 int     nkmempages = NKMEMPAGES;
  100 
  101 /*
  102  * Defaults for lower- and upper-bounds for the kmem_map page count.
  103  * Can be overridden by kernel config options.
  104  */
  105 #ifndef NKMEMPAGES_MIN
  106 #define NKMEMPAGES_MIN  NKMEMPAGES_MIN_DEFAULT
  107 #endif
  108 
  109 #ifndef NKMEMPAGES_MAX
  110 #define NKMEMPAGES_MAX  NKMEMPAGES_MAX_DEFAULT
  111 #endif
  112 
  113 #include "opt_kmemstats.h"
  114 #include "opt_malloclog.h"
  115 #include "opt_malloc_debug.h"
  116 
  117 #define MINALLOCSIZE    (1 << MINBUCKET)
  118 #define BUCKETINDX(size) \
  119         ((size) <= (MINALLOCSIZE * 128) \
  120                 ? (size) <= (MINALLOCSIZE * 8) \
  121                         ? (size) <= (MINALLOCSIZE * 2) \
  122                                 ? (size) <= (MINALLOCSIZE * 1) \
  123                                         ? (MINBUCKET + 0) \
  124                                         : (MINBUCKET + 1) \
  125                                 : (size) <= (MINALLOCSIZE * 4) \
  126                                         ? (MINBUCKET + 2) \
  127                                         : (MINBUCKET + 3) \
  128                         : (size) <= (MINALLOCSIZE* 32) \
  129                                 ? (size) <= (MINALLOCSIZE * 16) \
  130                                         ? (MINBUCKET + 4) \
  131                                         : (MINBUCKET + 5) \
  132                                 : (size) <= (MINALLOCSIZE * 64) \
  133                                         ? (MINBUCKET + 6) \
  134                                         : (MINBUCKET + 7) \
  135                 : (size) <= (MINALLOCSIZE * 2048) \
  136                         ? (size) <= (MINALLOCSIZE * 512) \
  137                                 ? (size) <= (MINALLOCSIZE * 256) \
  138                                         ? (MINBUCKET + 8) \
  139                                         : (MINBUCKET + 9) \
  140                                 : (size) <= (MINALLOCSIZE * 1024) \
  141                                         ? (MINBUCKET + 10) \
  142                                         : (MINBUCKET + 11) \
  143                         : (size) <= (MINALLOCSIZE * 8192) \
  144                                 ? (size) <= (MINALLOCSIZE * 4096) \
  145                                         ? (MINBUCKET + 12) \
  146                                         : (MINBUCKET + 13) \
  147                                 : (size) <= (MINALLOCSIZE * 16384) \
  148                                         ? (MINBUCKET + 14) \
  149                                         : (MINBUCKET + 15))
  150 
  151 /*
  152  * Array of descriptors that describe the contents of each page
  153  */
  154 struct kmemusage {
  155         short ku_indx;          /* bucket index */
  156         union {
  157                 u_short freecnt;/* for small allocations, free pieces in page */
  158                 u_short pagecnt;/* for large allocations, pages alloced */
  159         } ku_un;
  160 };
  161 #define ku_freecnt ku_un.freecnt
  162 #define ku_pagecnt ku_un.pagecnt
  163 
  164 struct kmembuckets kmembuckets[MINBUCKET + 16];
  165 struct kmemusage *kmemusage;
  166 char *kmembase, *kmemlimit;
  167 
  168 #ifdef DEBUG
  169 static void *malloc_freecheck;
  170 #endif
  171 
  172 /*
  173  * Turn virtual addresses into kmem map indicies
  174  */
  175 #define btokup(addr)    (&kmemusage[((char *)(addr) - kmembase) >> PGSHIFT])
  176 
  177 struct malloc_type *kmemstatistics;
  178 
  179 #ifdef MALLOCLOG
  180 #ifndef MALLOCLOGSIZE
  181 #define MALLOCLOGSIZE   100000
  182 #endif
  183 
  184 struct malloclog {
  185         void *addr;
  186         long size;
  187         struct malloc_type *type;
  188         int action;
  189         const char *file;
  190         long line;
  191 } malloclog[MALLOCLOGSIZE];
  192 
  193 long    malloclogptr;
  194 
  195 /*
  196  * Fuzz factor for neighbour address match this must be a mask of the lower
  197  * bits we wish to ignore when comparing addresses
  198  */
  199 __uintptr_t malloclog_fuzz = 0x7FL;
  200 
  201 
  202 static void
  203 domlog(void *a, long size, struct malloc_type *type, int action,
  204     const char *file, long line)
  205 {
  206 
  207         malloclog[malloclogptr].addr = a;
  208         malloclog[malloclogptr].size = size;
  209         malloclog[malloclogptr].type = type;
  210         malloclog[malloclogptr].action = action;
  211         malloclog[malloclogptr].file = file;
  212         malloclog[malloclogptr].line = line;
  213         malloclogptr++;
  214         if (malloclogptr >= MALLOCLOGSIZE)
  215                 malloclogptr = 0;
  216 }
  217 
  218 #ifdef DIAGNOSTIC
  219 static void
  220 hitmlog(void *a)
  221 {
  222         struct malloclog *lp;
  223         long l;
  224 
  225 #define PRT do { \
  226         lp = &malloclog[l]; \
  227         if (lp->addr == a && lp->action) { \
  228                 printf("malloc log entry %ld:\n", l); \
  229                 printf("\taddr = %p\n", lp->addr); \
  230                 printf("\tsize = %ld\n", lp->size); \
  231                 printf("\ttype = %s\n", lp->type->ks_shortdesc); \
  232                 printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
  233                 printf("\tfile = %s\n", lp->file); \
  234                 printf("\tline = %ld\n", lp->line); \
  235         } \
  236 } while (/* CONSTCOND */0)
  237 
  238 /*
  239  * Print fuzzy matched "neighbour" - look for the memory block that has
  240  * been allocated below the address we are interested in.  We look for a
  241  * base address + size that is within malloclog_fuzz of our target
  242  * address. If the base address and target address are the same then it is
  243  * likely we have found a free (size is 0 in this case) so we won't report
  244  * those, they will get reported by PRT anyway.
  245  */
  246 #define NPRT do { \
  247         __uintptr_t fuzz_mask = ~(malloclog_fuzz); \
  248         lp = &malloclog[l]; \
  249         if ((__uintptr_t)lp->addr != (__uintptr_t)a && \
  250             (((__uintptr_t)lp->addr + lp->size + malloclog_fuzz) & fuzz_mask) \
  251             == ((__uintptr_t)a & fuzz_mask) && lp->action) {            \
  252                 printf("neighbour malloc log entry %ld:\n", l); \
  253                 printf("\taddr = %p\n", lp->addr); \
  254                 printf("\tsize = %ld\n", lp->size); \
  255                 printf("\ttype = %s\n", lp->type->ks_shortdesc); \
  256                 printf("\taction = %s\n", lp->action == 1 ? "alloc" : "free"); \
  257                 printf("\tfile = %s\n", lp->file); \
  258                 printf("\tline = %ld\n", lp->line); \
  259         } \
  260 } while (/* CONSTCOND */0)
  261 
  262         for (l = malloclogptr; l < MALLOCLOGSIZE; l++) {
  263                 PRT;
  264                 NPRT;
  265         }
  266 
  267 
  268         for (l = 0; l < malloclogptr; l++) {
  269                 PRT;
  270                 NPRT;
  271         }
  272 
  273 #undef PRT
  274 }
  275 #endif /* DIAGNOSTIC */
  276 #endif /* MALLOCLOG */
  277 
  278 #ifdef DIAGNOSTIC
  279 /*
  280  * This structure provides a set of masks to catch unaligned frees.
  281  */
  282 const long addrmask[] = { 0,
  283         0x00000001, 0x00000003, 0x00000007, 0x0000000f,
  284         0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff,
  285         0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
  286         0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff,
  287 };
  288 
  289 /*
  290  * The WEIRD_ADDR is used as known text to copy into free objects so
  291  * that modifications after frees can be detected.
  292  */
  293 #define WEIRD_ADDR      ((uint32_t) 0xdeadbeef)
  294 #ifdef DEBUG
  295 #define MAX_COPY        PAGE_SIZE
  296 #else
  297 #define MAX_COPY        32
  298 #endif
  299 
  300 /*
  301  * Normally the freelist structure is used only to hold the list pointer
  302  * for free objects.  However, when running with diagnostics, the first
  303  * 8/16 bytes of the structure is unused except for diagnostic information,
  304  * and the free list pointer is at offset 8/16 in the structure.  Since the
  305  * first 8 bytes is the portion of the structure most often modified, this
  306  * helps to detect memory reuse problems and avoid free list corruption.
  307  */
  308 struct freelist {
  309         uint32_t spare0;
  310 #ifdef _LP64
  311         uint32_t spare1;                /* explicit padding */
  312 #endif
  313         struct malloc_type *type;
  314         void *  next;
  315 };
  316 #else /* !DIAGNOSTIC */
  317 struct freelist {
  318         void *  next;
  319 };
  320 #endif /* DIAGNOSTIC */
  321 
  322 kmutex_t malloc_lock;
  323 
  324 /*
  325  * Allocate a block of memory
  326  */
  327 #ifdef MALLOCLOG
  328 void *
  329 _malloc(unsigned long size, struct malloc_type *ksp, int flags,
  330     const char *file, long line)
  331 #else
  332 void *
  333 malloc(unsigned long size, struct malloc_type *ksp, int flags)
  334 #endif /* MALLOCLOG */
  335 {
  336         struct kmembuckets *kbp;
  337         struct kmemusage *kup;
  338         struct freelist *freep;
  339         long indx, npg, allocsize;
  340         char *va, *cp, *savedlist;
  341 #ifdef DIAGNOSTIC
  342         uint32_t *end, *lp;
  343         int copysize;
  344 #endif
  345 
  346 #ifdef LOCKDEBUG
  347         if ((flags & M_NOWAIT) == 0) {
  348                 ASSERT_SLEEPABLE();
  349         }
  350 #endif
  351 #ifdef MALLOC_DEBUG
  352         if (debug_malloc(size, ksp, flags, (void *) &va)) {
  353                 if (va != 0)
  354                         FREECHECK_OUT(&malloc_freecheck, (void *)va);
  355                 return ((void *) va);
  356         }
  357 #endif
  358         indx = BUCKETINDX(size);
  359         kbp = &kmembuckets[indx];
  360         mutex_spin_enter(&malloc_lock);
  361 #ifdef KMEMSTATS
  362         while (ksp->ks_memuse >= ksp->ks_limit) {
  363                 if (flags & M_NOWAIT) {
  364                         mutex_spin_exit(&malloc_lock);
  365                         return ((void *) NULL);
  366                 }
  367                 if (ksp->ks_limblocks < 65535)
  368                         ksp->ks_limblocks++;
  369                 mtsleep((void *)ksp, PSWP+2, ksp->ks_shortdesc, 0,
  370                         &malloc_lock);
  371         }
  372         ksp->ks_size |= 1 << indx;
  373 #endif
  374 #ifdef DIAGNOSTIC
  375         copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY;
  376 #endif
  377         if (kbp->kb_next == NULL) {
  378                 int s;
  379                 kbp->kb_last = NULL;
  380                 if (size > MAXALLOCSAVE)
  381                         allocsize = round_page(size);
  382                 else
  383                         allocsize = 1 << indx;
  384                 npg = btoc(allocsize);
  385                 mutex_spin_exit(&malloc_lock);
  386                 s = splvm();
  387                 va = (void *) uvm_km_alloc(kmem_map,
  388                     (vsize_t)ctob(npg), 0,
  389                     ((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) |
  390                     ((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0) |
  391                     UVM_KMF_WIRED);
  392                 splx(s);
  393                 if (__predict_false(va == NULL)) {
  394                         /*
  395                          * Kmem_malloc() can return NULL, even if it can
  396                          * wait, if there is no map space available, because
  397                          * it can't fix that problem.  Neither can we,
  398                          * right now.  (We should release pages which
  399                          * are completely free and which are in kmembuckets
  400                          * with too many free elements.)
  401                          */
  402                         if ((flags & (M_NOWAIT|M_CANFAIL)) == 0)
  403                                 panic("malloc: out of space in kmem_map");
  404                         return (NULL);
  405                 }
  406                 mutex_spin_enter(&malloc_lock);
  407 #ifdef KMEMSTATS
  408                 kbp->kb_total += kbp->kb_elmpercl;
  409 #endif
  410                 kup = btokup(va);
  411                 kup->ku_indx = indx;
  412                 if (allocsize > MAXALLOCSAVE) {
  413                         if (npg > 65535)
  414                                 panic("malloc: allocation too large");
  415                         kup->ku_pagecnt = npg;
  416 #ifdef KMEMSTATS
  417                         ksp->ks_memuse += allocsize;
  418 #endif
  419                         goto out;
  420                 }
  421 #ifdef KMEMSTATS
  422                 kup->ku_freecnt = kbp->kb_elmpercl;
  423                 kbp->kb_totalfree += kbp->kb_elmpercl;
  424 #endif
  425                 /*
  426                  * Just in case we blocked while allocating memory,
  427                  * and someone else also allocated memory for this
  428                  * kmembucket, don't assume the list is still empty.
  429                  */
  430                 savedlist = kbp->kb_next;
  431                 kbp->kb_next = cp = va + (npg << PAGE_SHIFT) - allocsize;
  432                 for (;;) {
  433                         freep = (struct freelist *)cp;
  434 #ifdef DIAGNOSTIC
  435                         /*
  436                          * Copy in known text to detect modification
  437                          * after freeing.
  438                          */
  439                         end = (uint32_t *)&cp[copysize];
  440                         for (lp = (uint32_t *)cp; lp < end; lp++)
  441                                 *lp = WEIRD_ADDR;
  442                         freep->type = M_FREE;
  443 #endif /* DIAGNOSTIC */
  444                         if (cp <= va)
  445                                 break;
  446                         cp -= allocsize;
  447                         freep->next = cp;
  448                 }
  449                 freep->next = savedlist;
  450                 if (savedlist == NULL)
  451                         kbp->kb_last = (void *)freep;
  452         }
  453         va = kbp->kb_next;
  454         kbp->kb_next = ((struct freelist *)va)->next;
  455 #ifdef DIAGNOSTIC
  456         freep = (struct freelist *)va;
  457         /* XXX potential to get garbage pointer here. */
  458         if (kbp->kb_next) {
  459                 int rv;
  460                 vaddr_t addr = (vaddr_t)kbp->kb_next;
  461 
  462                 vm_map_lock(kmem_map);
  463                 rv = uvm_map_checkprot(kmem_map, addr,
  464                     addr + sizeof(struct freelist), VM_PROT_WRITE);
  465                 vm_map_unlock(kmem_map);
  466 
  467                 if (__predict_false(rv == 0)) {
  468                         printf("Data modified on freelist: "
  469                             "word %ld of object %p size %ld previous type %s "
  470                             "(invalid addr %p)\n",
  471                             (long)((int32_t *)&kbp->kb_next - (int32_t *)kbp),
  472                             va, size, "foo", kbp->kb_next);
  473 #ifdef MALLOCLOG
  474                         hitmlog(va);
  475 #endif
  476                         kbp->kb_next = NULL;
  477                 }
  478         }
  479 
  480         /* Fill the fields that we've used with WEIRD_ADDR */
  481 #ifdef _LP64
  482         freep->type = (struct malloc_type *)
  483             (WEIRD_ADDR | (((u_long) WEIRD_ADDR) << 32));
  484 #else
  485         freep->type = (struct malloc_type *) WEIRD_ADDR;
  486 #endif
  487         end = (uint32_t *)&freep->next +
  488             (sizeof(freep->next) / sizeof(int32_t));
  489         for (lp = (uint32_t *)&freep->next; lp < end; lp++)
  490                 *lp = WEIRD_ADDR;
  491 
  492         /* and check that the data hasn't been modified. */
  493         end = (uint32_t *)&va[copysize];
  494         for (lp = (uint32_t *)va; lp < end; lp++) {
  495                 if (__predict_true(*lp == WEIRD_ADDR))
  496                         continue;
  497                 printf("Data modified on freelist: "
  498                     "word %ld of object %p size %ld previous type %s "
  499                     "(0x%x != 0x%x)\n",
  500                     (long)(lp - (uint32_t *)va), va, size,
  501                     "bar", *lp, WEIRD_ADDR);
  502 #ifdef MALLOCLOG
  503                 hitmlog(va);
  504 #endif
  505                 break;
  506         }
  507 
  508         freep->spare0 = 0;
  509 #endif /* DIAGNOSTIC */
  510 #ifdef KMEMSTATS
  511         kup = btokup(va);
  512         if (kup->ku_indx != indx)
  513                 panic("malloc: wrong bucket");
  514         if (kup->ku_freecnt == 0)
  515                 panic("malloc: lost data");
  516         kup->ku_freecnt--;
  517         kbp->kb_totalfree--;
  518         ksp->ks_memuse += 1 << indx;
  519 out:
  520         kbp->kb_calls++;
  521         ksp->ks_inuse++;
  522         ksp->ks_calls++;
  523         if (ksp->ks_memuse > ksp->ks_maxused)
  524                 ksp->ks_maxused = ksp->ks_memuse;
  525 #else
  526 out:
  527 #endif
  528 #ifdef MALLOCLOG
  529         domlog(va, size, ksp, 1, file, line);
  530 #endif
  531         mutex_spin_exit(&malloc_lock);
  532         if ((flags & M_ZERO) != 0)
  533                 memset(va, 0, size);
  534         FREECHECK_OUT(&malloc_freecheck, (void *)va);
  535         return ((void *) va);
  536 }
  537 
  538 /*
  539  * Free a block of memory allocated by malloc.
  540  */
  541 #ifdef MALLOCLOG
  542 void
  543 _free(void *addr, struct malloc_type *ksp, const char *file, long line)
  544 #else
  545 void
  546 free(void *addr, struct malloc_type *ksp)
  547 #endif /* MALLOCLOG */
  548 {
  549         struct kmembuckets *kbp;
  550         struct kmemusage *kup;
  551         struct freelist *freep;
  552         long size;
  553 #ifdef DIAGNOSTIC
  554         void *cp;
  555         int32_t *end, *lp;
  556         long alloc, copysize;
  557 #endif
  558 
  559         FREECHECK_IN(&malloc_freecheck, addr);
  560 #ifdef MALLOC_DEBUG
  561         if (debug_free(addr, ksp))
  562                 return;
  563 #endif
  564 
  565 #ifdef DIAGNOSTIC
  566         /*
  567          * Ensure that we're free'ing something that we could
  568          * have allocated in the first place.  That is, check
  569          * to see that the address is within kmem_map.
  570          */
  571         if (__predict_false((vaddr_t)addr < vm_map_min(kmem_map) ||
  572             (vaddr_t)addr >= vm_map_max(kmem_map)))
  573                 panic("free: addr %p not within kmem_map", addr);
  574 #endif
  575 
  576         kup = btokup(addr);
  577         size = 1 << kup->ku_indx;
  578         kbp = &kmembuckets[kup->ku_indx];
  579 
  580         LOCKDEBUG_MEM_CHECK(addr,
  581             size <= MAXALLOCSAVE ? size : ctob(kup->ku_pagecnt));
  582 
  583         mutex_spin_enter(&malloc_lock);
  584 #ifdef MALLOCLOG
  585         domlog(addr, 0, ksp, 2, file, line);
  586 #endif
  587 #ifdef DIAGNOSTIC
  588         /*
  589          * Check for returns of data that do not point to the
  590          * beginning of the allocation.
  591          */
  592         if (size > PAGE_SIZE)
  593                 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
  594         else
  595                 alloc = addrmask[kup->ku_indx];
  596         if (((u_long)addr & alloc) != 0)
  597                 panic("free: unaligned addr %p, size %ld, type %s, mask %ld",
  598                     addr, size, ksp->ks_shortdesc, alloc);
  599 #endif /* DIAGNOSTIC */
  600         if (size > MAXALLOCSAVE) {
  601                 uvm_km_free(kmem_map, (vaddr_t)addr, ctob(kup->ku_pagecnt),
  602                     UVM_KMF_WIRED);
  603 #ifdef KMEMSTATS
  604                 size = kup->ku_pagecnt << PGSHIFT;
  605                 ksp->ks_memuse -= size;
  606                 kup->ku_indx = 0;
  607                 kup->ku_pagecnt = 0;
  608                 if (ksp->ks_memuse + size >= ksp->ks_limit &&
  609                     ksp->ks_memuse < ksp->ks_limit)
  610                         wakeup((void *)ksp);
  611 #ifdef DIAGNOSTIC
  612                 if (ksp->ks_inuse == 0)
  613                         panic("free 1: inuse 0, probable double free");
  614 #endif
  615                 ksp->ks_inuse--;
  616                 kbp->kb_total -= 1;
  617 #endif
  618                 mutex_spin_exit(&malloc_lock);
  619                 return;
  620         }
  621         freep = (struct freelist *)addr;
  622 #ifdef DIAGNOSTIC
  623         /*
  624          * Check for multiple frees. Use a quick check to see if
  625          * it looks free before laboriously searching the freelist.
  626          */
  627         if (__predict_false(freep->spare0 == WEIRD_ADDR)) {
  628                 for (cp = kbp->kb_next; cp;
  629                     cp = ((struct freelist *)cp)->next) {
  630                         if (addr != cp)
  631                                 continue;
  632                         printf("multiply freed item %p\n", addr);
  633 #ifdef MALLOCLOG
  634                         hitmlog(addr);
  635 #endif
  636                         panic("free: duplicated free");
  637                 }
  638         }
  639 
  640         /*
  641          * Copy in known text to detect modification after freeing
  642          * and to make it look free. Also, save the type being freed
  643          * so we can list likely culprit if modification is detected
  644          * when the object is reallocated.
  645          */
  646         copysize = size < MAX_COPY ? size : MAX_COPY;
  647         end = (int32_t *)&((char *)addr)[copysize];
  648         for (lp = (int32_t *)addr; lp < end; lp++)
  649                 *lp = WEIRD_ADDR;
  650         freep->type = ksp;
  651 #endif /* DIAGNOSTIC */
  652 #ifdef KMEMSTATS
  653         kup->ku_freecnt++;
  654         if (kup->ku_freecnt >= kbp->kb_elmpercl) {
  655                 if (kup->ku_freecnt > kbp->kb_elmpercl)
  656                         panic("free: multiple frees");
  657                 else if (kbp->kb_totalfree > kbp->kb_highwat)
  658                         kbp->kb_couldfree++;
  659         }
  660         kbp->kb_totalfree++;
  661         ksp->ks_memuse -= size;
  662         if (ksp->ks_memuse + size >= ksp->ks_limit &&
  663             ksp->ks_memuse < ksp->ks_limit)
  664                 wakeup((void *)ksp);
  665 #ifdef DIAGNOSTIC
  666         if (ksp->ks_inuse == 0)
  667                 panic("free 2: inuse 0, probable double free");
  668 #endif
  669         ksp->ks_inuse--;
  670 #endif
  671         if (kbp->kb_next == NULL)
  672                 kbp->kb_next = addr;
  673         else
  674                 ((struct freelist *)kbp->kb_last)->next = addr;
  675         freep->next = NULL;
  676         kbp->kb_last = addr;
  677         mutex_spin_exit(&malloc_lock);
  678 }
  679 
  680 /*
  681  * Change the size of a block of memory.
  682  */
  683 void *
  684 realloc(void *curaddr, unsigned long newsize, struct malloc_type *ksp,
  685     int flags)
  686 {
  687         struct kmemusage *kup;
  688         unsigned long cursize;
  689         void *newaddr;
  690 #ifdef DIAGNOSTIC
  691         long alloc;
  692 #endif
  693 
  694         /*
  695          * realloc() with a NULL pointer is the same as malloc().
  696          */
  697         if (curaddr == NULL)
  698                 return (malloc(newsize, ksp, flags));
  699 
  700         /*
  701          * realloc() with zero size is the same as free().
  702          */
  703         if (newsize == 0) {
  704                 free(curaddr, ksp);
  705                 return (NULL);
  706         }
  707 
  708 #ifdef LOCKDEBUG
  709         if ((flags & M_NOWAIT) == 0) {
  710                 ASSERT_SLEEPABLE();
  711         }
  712 #endif
  713 
  714         /*
  715          * Find out how large the old allocation was (and do some
  716          * sanity checking).
  717          */
  718         kup = btokup(curaddr);
  719         cursize = 1 << kup->ku_indx;
  720 
  721 #ifdef DIAGNOSTIC
  722         /*
  723          * Check for returns of data that do not point to the
  724          * beginning of the allocation.
  725          */
  726         if (cursize > PAGE_SIZE)
  727                 alloc = addrmask[BUCKETINDX(PAGE_SIZE)];
  728         else
  729                 alloc = addrmask[kup->ku_indx];
  730         if (((u_long)curaddr & alloc) != 0)
  731                 panic("realloc: "
  732                     "unaligned addr %p, size %ld, type %s, mask %ld\n",
  733                     curaddr, cursize, ksp->ks_shortdesc, alloc);
  734 #endif /* DIAGNOSTIC */
  735 
  736         if (cursize > MAXALLOCSAVE)
  737                 cursize = ctob(kup->ku_pagecnt);
  738 
  739         /*
  740          * If we already actually have as much as they want, we're done.
  741          */
  742         if (newsize <= cursize)
  743                 return (curaddr);
  744 
  745         /*
  746          * Can't satisfy the allocation with the existing block.
  747          * Allocate a new one and copy the data.
  748          */
  749         newaddr = malloc(newsize, ksp, flags);
  750         if (__predict_false(newaddr == NULL)) {
  751                 /*
  752                  * malloc() failed, because flags included M_NOWAIT.
  753                  * Return NULL to indicate that failure.  The old
  754                  * pointer is still valid.
  755                  */
  756                 return (NULL);
  757         }
  758         memcpy(newaddr, curaddr, cursize);
  759 
  760         /*
  761          * We were successful: free the old allocation and return
  762          * the new one.
  763          */
  764         free(curaddr, ksp);
  765         return (newaddr);
  766 }
  767 
  768 /*
  769  * Roundup size to the actual allocation size.
  770  */
  771 unsigned long
  772 malloc_roundup(unsigned long size)
  773 {
  774 
  775         if (size > MAXALLOCSAVE)
  776                 return (roundup(size, PAGE_SIZE));
  777         else
  778                 return (1 << BUCKETINDX(size));
  779 }
  780 
  781 /*
  782  * Add a malloc type to the system.
  783  */
  784 void
  785 malloc_type_attach(struct malloc_type *type)
  786 {
  787 
  788         if (nkmempages == 0)
  789                 panic("malloc_type_attach: nkmempages == 0");
  790 
  791         if (type->ks_magic != M_MAGIC)
  792                 panic("malloc_type_attach: bad magic");
  793 
  794 #ifdef DIAGNOSTIC
  795         {
  796                 struct malloc_type *ksp;
  797                 for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
  798                         if (ksp == type)
  799                                 panic("malloc_type_attach: already on list");
  800                 }
  801         }
  802 #endif
  803 
  804 #ifdef KMEMSTATS
  805         if (type->ks_limit == 0)
  806                 type->ks_limit = ((u_long)nkmempages << PAGE_SHIFT) * 6U / 10U;
  807 #else
  808         type->ks_limit = 0;
  809 #endif
  810 
  811         type->ks_next = kmemstatistics;
  812         kmemstatistics = type;
  813 }
  814 
  815 /*
  816  * Remove a malloc type from the system..
  817  */
  818 void
  819 malloc_type_detach(struct malloc_type *type)
  820 {
  821         struct malloc_type *ksp;
  822 
  823 #ifdef DIAGNOSTIC
  824         if (type->ks_magic != M_MAGIC)
  825                 panic("malloc_type_detach: bad magic");
  826 #endif
  827 
  828         if (type == kmemstatistics)
  829                 kmemstatistics = type->ks_next;
  830         else {
  831                 for (ksp = kmemstatistics; ksp->ks_next != NULL;
  832                      ksp = ksp->ks_next) {
  833                         if (ksp->ks_next == type) {
  834                                 ksp->ks_next = type->ks_next;
  835                                 break;
  836                         }
  837                 }
  838 #ifdef DIAGNOSTIC
  839                 if (ksp->ks_next == NULL)
  840                         panic("malloc_type_detach: not on list");
  841 #endif
  842         }
  843         type->ks_next = NULL;
  844 }
  845 
  846 /*
  847  * Set the limit on a malloc type.
  848  */
  849 void
  850 malloc_type_setlimit(struct malloc_type *type, u_long limit)
  851 {
  852 #ifdef KMEMSTATS
  853         mutex_spin_enter(&malloc_lock);
  854         type->ks_limit = limit;
  855         mutex_spin_exit(&malloc_lock);
  856 #endif
  857 }
  858 
  859 /*
  860  * Compute the number of pages that kmem_map will map, that is,
  861  * the size of the kernel malloc arena.
  862  */
  863 void
  864 kmeminit_nkmempages(void)
  865 {
  866         int npages;
  867 
  868         if (nkmempages != 0) {
  869                 /*
  870                  * It's already been set (by us being here before, or
  871                  * by patching or kernel config options), bail out now.
  872                  */
  873                 return;
  874         }
  875 
  876         npages = physmem;
  877 
  878         if (npages > NKMEMPAGES_MAX)
  879                 npages = NKMEMPAGES_MAX;
  880 
  881         if (npages < NKMEMPAGES_MIN)
  882                 npages = NKMEMPAGES_MIN;
  883 
  884         nkmempages = npages;
  885 }
  886 
  887 /*
  888  * Initialize the kernel memory allocator
  889  */
  890 void
  891 kmeminit(void)
  892 {
  893         __link_set_decl(malloc_types, struct malloc_type);
  894         struct malloc_type * const *ksp;
  895         vaddr_t kmb, kml;
  896 #ifdef KMEMSTATS
  897         long indx;
  898 #endif
  899 
  900 #if     ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0)
  901                 ERROR!_kmeminit:_MAXALLOCSAVE_not_power_of_2
  902 #endif
  903 #if     (MAXALLOCSAVE > MINALLOCSIZE * 32768)
  904                 ERROR!_kmeminit:_MAXALLOCSAVE_too_big
  905 #endif
  906 #if     (MAXALLOCSAVE < NBPG)
  907                 ERROR!_kmeminit:_MAXALLOCSAVE_too_small
  908 #endif
  909 
  910         if (sizeof(struct freelist) > (1 << MINBUCKET))
  911                 panic("minbucket too small/struct freelist too big");
  912 
  913         mutex_init(&malloc_lock, MUTEX_DEFAULT, IPL_VM);
  914 
  915         /*
  916          * Compute the number of kmem_map pages, if we have not
  917          * done so already.
  918          */
  919         kmeminit_nkmempages();
  920 
  921         kmemusage = (struct kmemusage *) uvm_km_alloc(kernel_map,
  922             (vsize_t)(nkmempages * sizeof(struct kmemusage)), 0,
  923             UVM_KMF_WIRED|UVM_KMF_ZERO);
  924         kmb = 0;
  925         kmem_map = uvm_km_suballoc(kernel_map, &kmb,
  926             &kml, ((vsize_t)nkmempages << PAGE_SHIFT),
  927             VM_MAP_INTRSAFE, false, &kmem_map_store);
  928         uvm_km_vacache_init(kmem_map, "kvakmem", 0);
  929         kmembase = (char *)kmb;
  930         kmemlimit = (char *)kml;
  931 #ifdef KMEMSTATS
  932         for (indx = 0; indx < MINBUCKET + 16; indx++) {
  933                 if (1 << indx >= PAGE_SIZE)
  934                         kmembuckets[indx].kb_elmpercl = 1;
  935                 else
  936                         kmembuckets[indx].kb_elmpercl = PAGE_SIZE / (1 << indx);
  937                 kmembuckets[indx].kb_highwat =
  938                         5 * kmembuckets[indx].kb_elmpercl;
  939         }
  940 #endif
  941 
  942         /* Attach all of the statically-linked malloc types. */
  943         __link_set_foreach(ksp, malloc_types)
  944                 malloc_type_attach(*ksp);
  945 }
  946 
  947 #ifdef DDB
  948 #include <ddb/db_output.h>
  949 
  950 /*
  951  * Dump kmem statistics from ddb.
  952  *
  953  * usage: call dump_kmemstats
  954  */
  955 void    dump_kmemstats(void);
  956 
  957 void
  958 dump_kmemstats(void)
  959 {
  960 #ifdef KMEMSTATS
  961         struct malloc_type *ksp;
  962 
  963         for (ksp = kmemstatistics; ksp != NULL; ksp = ksp->ks_next) {
  964                 if (ksp->ks_memuse == 0)
  965                         continue;
  966                 db_printf("%s%.*s %ld\n", ksp->ks_shortdesc,
  967                     (int)(20 - strlen(ksp->ks_shortdesc)),
  968                     "                    ",
  969                     ksp->ks_memuse);
  970         }
  971 #else
  972         db_printf("Kmem stats are not being collected.\n");
  973 #endif /* KMEMSTATS */
  974 }
  975 #endif /* DDB */
  976 
  977 
  978 #if 0
  979 /*
  980  * Diagnostic messages about "Data modified on
  981  * freelist" indicate a memory corruption, but
  982  * they do not help tracking it down.
  983  * This function can be called at various places
  984  * to sanity check malloc's freelist and discover
  985  * where does the corruption take place.
  986  */
  987 int
  988 freelist_sanitycheck(void) {
  989         int i,j;
  990         struct kmembuckets *kbp;
  991         struct freelist *freep;
  992         int rv = 0;
  993 
  994         for (i = MINBUCKET; i <= MINBUCKET + 15; i++) {
  995                 kbp = &kmembuckets[i];
  996                 freep = (struct freelist *)kbp->kb_next;
  997                 j = 0;
  998                 while(freep) {
  999                         vm_map_lock(kmem_map);
 1000                         rv = uvm_map_checkprot(kmem_map, (vaddr_t)freep,
 1001                             (vaddr_t)freep + sizeof(struct freelist),
 1002                             VM_PROT_WRITE);
 1003                         vm_map_unlock(kmem_map);
 1004 
 1005                         if ((rv == 0) || (*(int *)freep != WEIRD_ADDR)) {
 1006                                 printf("bucket %i, chunck %d at %p modified\n",
 1007                                     i, j, freep);
 1008                                 return 1;
 1009                         }
 1010                         freep = (struct freelist *)freep->next;
 1011                         j++;
 1012                 }
 1013         }
 1014 
 1015         return 0;
 1016 }
 1017 #endif

Cache object: 51e01fb46cdc37c7328daac11bc324fe


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.