The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_mbuf.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2004, 2005,
    5  *      Bosko Milekic <bmilekic@FreeBSD.org>.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice unmodified, this list of conditions and the following
   12  *    disclaimer.
   13  * 2. Redistributions in binary form must reproduce the above copyright
   14  *    notice, this list of conditions and the following disclaimer in the
   15  *    documentation and/or other materials provided with the distribution.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  */
   29 
   30 #include <sys/cdefs.h>
   31 __FBSDID("$FreeBSD$");
   32 
   33 #include "opt_param.h"
   34 #include "opt_kern_tls.h"
   35 
   36 #include <sys/param.h>
   37 #include <sys/conf.h>
   38 #include <sys/domainset.h>
   39 #include <sys/malloc.h>
   40 #include <sys/systm.h>
   41 #include <sys/mbuf.h>
   42 #include <sys/domain.h>
   43 #include <sys/eventhandler.h>
   44 #include <sys/kernel.h>
   45 #include <sys/ktls.h>
   46 #include <sys/limits.h>
   47 #include <sys/lock.h>
   48 #include <sys/mutex.h>
   49 #include <sys/protosw.h>
   50 #include <sys/refcount.h>
   51 #include <sys/sf_buf.h>
   52 #include <sys/smp.h>
   53 #include <sys/socket.h>
   54 #include <sys/sysctl.h>
   55 
   56 #include <net/if.h>
   57 #include <net/if_var.h>
   58 
   59 #include <vm/vm.h>
   60 #include <vm/vm_extern.h>
   61 #include <vm/vm_kern.h>
   62 #include <vm/vm_page.h>
   63 #include <vm/vm_pageout.h>
   64 #include <vm/vm_map.h>
   65 #include <vm/uma.h>
   66 #include <vm/uma_dbg.h>
   67 
   68 /*
   69  * In FreeBSD, Mbufs and Mbuf Clusters are allocated from UMA
   70  * Zones.
   71  *
   72  * Mbuf Clusters (2K, contiguous) are allocated from the Cluster
   73  * Zone.  The Zone can be capped at kern.ipc.nmbclusters, if the
   74  * administrator so desires.
   75  *
   76  * Mbufs are allocated from a UMA Primary Zone called the Mbuf
   77  * Zone.
   78  *
   79  * Additionally, FreeBSD provides a Packet Zone, which it
   80  * configures as a Secondary Zone to the Mbuf Primary Zone,
   81  * thus sharing backend Slab kegs with the Mbuf Primary Zone.
   82  *
   83  * Thus common-case allocations and locking are simplified:
   84  *
   85  *  m_clget()                m_getcl()
   86  *    |                         |
   87  *    |   .------------>[(Packet Cache)]    m_get(), m_gethdr()
   88  *    |   |             [     Packet   ]            |
   89  *  [(Cluster Cache)]   [    Secondary ]   [ (Mbuf Cache)     ]
   90  *  [ Cluster Zone  ]   [     Zone     ]   [ Mbuf Primary Zone ]
   91  *        |                       \________         |
   92  *  [ Cluster Keg   ]                      \       /
   93  *        |                              [ Mbuf Keg   ]
   94  *  [ Cluster Slabs ]                         |
   95  *        |                              [ Mbuf Slabs ]
   96  *         \____________(VM)_________________/
   97  *
   98  *
   99  * Whenever an object is allocated with uma_zalloc() out of
  100  * one of the Zones its _ctor_ function is executed.  The same
  101  * for any deallocation through uma_zfree() the _dtor_ function
  102  * is executed.
  103  *
  104  * Caches are per-CPU and are filled from the Primary Zone.
  105  *
  106  * Whenever an object is allocated from the underlying global
  107  * memory pool it gets pre-initialized with the _zinit_ functions.
  108  * When the Keg's are overfull objects get decommissioned with
  109  * _zfini_ functions and free'd back to the global memory pool.
  110  *
  111  */
  112 
  113 int nmbufs;                     /* limits number of mbufs */
  114 int nmbclusters;                /* limits number of mbuf clusters */
  115 int nmbjumbop;                  /* limits number of page size jumbo clusters */
  116 int nmbjumbo9;                  /* limits number of 9k jumbo clusters */
  117 int nmbjumbo16;                 /* limits number of 16k jumbo clusters */
  118 
  119 bool mb_use_ext_pgs = true;     /* use M_EXTPG mbufs for sendfile & TLS */
  120 SYSCTL_BOOL(_kern_ipc, OID_AUTO, mb_use_ext_pgs, CTLFLAG_RWTUN,
  121     &mb_use_ext_pgs, 0,
  122     "Use unmapped mbufs for sendfile(2) and TLS offload");
  123 
  124 static quad_t maxmbufmem;       /* overall real memory limit for all mbufs */
  125 
  126 SYSCTL_QUAD(_kern_ipc, OID_AUTO, maxmbufmem, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &maxmbufmem, 0,
  127     "Maximum real memory allocatable to various mbuf types");
  128 
  129 static counter_u64_t snd_tag_count;
  130 SYSCTL_COUNTER_U64(_kern_ipc, OID_AUTO, num_snd_tags, CTLFLAG_RW,
  131     &snd_tag_count, "# of active mbuf send tags");
  132 
  133 /*
  134  * tunable_mbinit() has to be run before any mbuf allocations are done.
  135  */
  136 static void
  137 tunable_mbinit(void *dummy)
  138 {
  139         quad_t realmem;
  140 
  141         /*
  142          * The default limit for all mbuf related memory is 1/2 of all
  143          * available kernel memory (physical or kmem).
  144          * At most it can be 3/4 of available kernel memory.
  145          */
  146         realmem = qmin((quad_t)physmem * PAGE_SIZE, vm_kmem_size);
  147         maxmbufmem = realmem / 2;
  148         TUNABLE_QUAD_FETCH("kern.ipc.maxmbufmem", &maxmbufmem);
  149         if (maxmbufmem > realmem / 4 * 3)
  150                 maxmbufmem = realmem / 4 * 3;
  151 
  152         TUNABLE_INT_FETCH("kern.ipc.nmbclusters", &nmbclusters);
  153         if (nmbclusters == 0)
  154                 nmbclusters = maxmbufmem / MCLBYTES / 4;
  155 
  156         TUNABLE_INT_FETCH("kern.ipc.nmbjumbop", &nmbjumbop);
  157         if (nmbjumbop == 0)
  158                 nmbjumbop = maxmbufmem / MJUMPAGESIZE / 4;
  159 
  160         TUNABLE_INT_FETCH("kern.ipc.nmbjumbo9", &nmbjumbo9);
  161         if (nmbjumbo9 == 0)
  162                 nmbjumbo9 = maxmbufmem / MJUM9BYTES / 6;
  163 
  164         TUNABLE_INT_FETCH("kern.ipc.nmbjumbo16", &nmbjumbo16);
  165         if (nmbjumbo16 == 0)
  166                 nmbjumbo16 = maxmbufmem / MJUM16BYTES / 6;
  167 
  168         /*
  169          * We need at least as many mbufs as we have clusters of
  170          * the various types added together.
  171          */
  172         TUNABLE_INT_FETCH("kern.ipc.nmbufs", &nmbufs);
  173         if (nmbufs < nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16)
  174                 nmbufs = lmax(maxmbufmem / MSIZE / 5,
  175                     nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16);
  176 }
  177 SYSINIT(tunable_mbinit, SI_SUB_KMEM, SI_ORDER_MIDDLE, tunable_mbinit, NULL);
  178 
  179 static int
  180 sysctl_nmbclusters(SYSCTL_HANDLER_ARGS)
  181 {
  182         int error, newnmbclusters;
  183 
  184         newnmbclusters = nmbclusters;
  185         error = sysctl_handle_int(oidp, &newnmbclusters, 0, req);
  186         if (error == 0 && req->newptr && newnmbclusters != nmbclusters) {
  187                 if (newnmbclusters > nmbclusters &&
  188                     nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
  189                         nmbclusters = newnmbclusters;
  190                         nmbclusters = uma_zone_set_max(zone_clust, nmbclusters);
  191                         EVENTHANDLER_INVOKE(nmbclusters_change);
  192                 } else
  193                         error = EINVAL;
  194         }
  195         return (error);
  196 }
  197 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbclusters,
  198     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &nmbclusters, 0,
  199     sysctl_nmbclusters, "IU",
  200     "Maximum number of mbuf clusters allowed");
  201 
  202 static int
  203 sysctl_nmbjumbop(SYSCTL_HANDLER_ARGS)
  204 {
  205         int error, newnmbjumbop;
  206 
  207         newnmbjumbop = nmbjumbop;
  208         error = sysctl_handle_int(oidp, &newnmbjumbop, 0, req);
  209         if (error == 0 && req->newptr && newnmbjumbop != nmbjumbop) {
  210                 if (newnmbjumbop > nmbjumbop &&
  211                     nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
  212                         nmbjumbop = newnmbjumbop;
  213                         nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop);
  214                 } else
  215                         error = EINVAL;
  216         }
  217         return (error);
  218 }
  219 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbop,
  220     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &nmbjumbop, 0,
  221     sysctl_nmbjumbop, "IU",
  222     "Maximum number of mbuf page size jumbo clusters allowed");
  223 
  224 static int
  225 sysctl_nmbjumbo9(SYSCTL_HANDLER_ARGS)
  226 {
  227         int error, newnmbjumbo9;
  228 
  229         newnmbjumbo9 = nmbjumbo9;
  230         error = sysctl_handle_int(oidp, &newnmbjumbo9, 0, req);
  231         if (error == 0 && req->newptr && newnmbjumbo9 != nmbjumbo9) {
  232                 if (newnmbjumbo9 > nmbjumbo9 &&
  233                     nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
  234                         nmbjumbo9 = newnmbjumbo9;
  235                         nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9);
  236                 } else
  237                         error = EINVAL;
  238         }
  239         return (error);
  240 }
  241 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo9,
  242     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &nmbjumbo9, 0,
  243     sysctl_nmbjumbo9, "IU",
  244     "Maximum number of mbuf 9k jumbo clusters allowed");
  245 
  246 static int
  247 sysctl_nmbjumbo16(SYSCTL_HANDLER_ARGS)
  248 {
  249         int error, newnmbjumbo16;
  250 
  251         newnmbjumbo16 = nmbjumbo16;
  252         error = sysctl_handle_int(oidp, &newnmbjumbo16, 0, req);
  253         if (error == 0 && req->newptr && newnmbjumbo16 != nmbjumbo16) {
  254                 if (newnmbjumbo16 > nmbjumbo16 &&
  255                     nmbufs >= nmbclusters + nmbjumbop + nmbjumbo9 + nmbjumbo16) {
  256                         nmbjumbo16 = newnmbjumbo16;
  257                         nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16);
  258                 } else
  259                         error = EINVAL;
  260         }
  261         return (error);
  262 }
  263 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbjumbo16,
  264     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &nmbjumbo16, 0,
  265     sysctl_nmbjumbo16, "IU",
  266     "Maximum number of mbuf 16k jumbo clusters allowed");
  267 
  268 static int
  269 sysctl_nmbufs(SYSCTL_HANDLER_ARGS)
  270 {
  271         int error, newnmbufs;
  272 
  273         newnmbufs = nmbufs;
  274         error = sysctl_handle_int(oidp, &newnmbufs, 0, req);
  275         if (error == 0 && req->newptr && newnmbufs != nmbufs) {
  276                 if (newnmbufs > nmbufs) {
  277                         nmbufs = newnmbufs;
  278                         nmbufs = uma_zone_set_max(zone_mbuf, nmbufs);
  279                         EVENTHANDLER_INVOKE(nmbufs_change);
  280                 } else
  281                         error = EINVAL;
  282         }
  283         return (error);
  284 }
  285 SYSCTL_PROC(_kern_ipc, OID_AUTO, nmbufs,
  286     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
  287     &nmbufs, 0, sysctl_nmbufs, "IU",
  288     "Maximum number of mbufs allowed");
  289 
  290 /*
  291  * Zones from which we allocate.
  292  */
  293 uma_zone_t      zone_mbuf;
  294 uma_zone_t      zone_clust;
  295 uma_zone_t      zone_pack;
  296 uma_zone_t      zone_jumbop;
  297 uma_zone_t      zone_jumbo9;
  298 uma_zone_t      zone_jumbo16;
  299 
  300 /*
  301  * Local prototypes.
  302  */
  303 static int      mb_ctor_mbuf(void *, int, void *, int);
  304 static int      mb_ctor_clust(void *, int, void *, int);
  305 static int      mb_ctor_pack(void *, int, void *, int);
  306 static void     mb_dtor_mbuf(void *, int, void *);
  307 static void     mb_dtor_pack(void *, int, void *);
  308 static int      mb_zinit_pack(void *, int, int);
  309 static void     mb_zfini_pack(void *, int);
  310 static void     mb_reclaim(uma_zone_t, int);
  311 
  312 /* Ensure that MSIZE is a power of 2. */
  313 CTASSERT((((MSIZE - 1) ^ MSIZE) + 1) >> 1 == MSIZE);
  314 
  315 _Static_assert(sizeof(struct mbuf) <= MSIZE,
  316     "size of mbuf exceeds MSIZE");
  317 /*
  318  * Initialize FreeBSD Network buffer allocation.
  319  */
  320 static void
  321 mbuf_init(void *dummy)
  322 {
  323 
  324         /*
  325          * Configure UMA zones for Mbufs, Clusters, and Packets.
  326          */
  327         zone_mbuf = uma_zcreate(MBUF_MEM_NAME, MSIZE,
  328             mb_ctor_mbuf, mb_dtor_mbuf, NULL, NULL,
  329             MSIZE - 1, UMA_ZONE_CONTIG | UMA_ZONE_MAXBUCKET);
  330         if (nmbufs > 0)
  331                 nmbufs = uma_zone_set_max(zone_mbuf, nmbufs);
  332         uma_zone_set_warning(zone_mbuf, "kern.ipc.nmbufs limit reached");
  333         uma_zone_set_maxaction(zone_mbuf, mb_reclaim);
  334 
  335         zone_clust = uma_zcreate(MBUF_CLUSTER_MEM_NAME, MCLBYTES,
  336             mb_ctor_clust, NULL, NULL, NULL,
  337             UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
  338         if (nmbclusters > 0)
  339                 nmbclusters = uma_zone_set_max(zone_clust, nmbclusters);
  340         uma_zone_set_warning(zone_clust, "kern.ipc.nmbclusters limit reached");
  341         uma_zone_set_maxaction(zone_clust, mb_reclaim);
  342 
  343         zone_pack = uma_zsecond_create(MBUF_PACKET_MEM_NAME, mb_ctor_pack,
  344             mb_dtor_pack, mb_zinit_pack, mb_zfini_pack, zone_mbuf);
  345 
  346         /* Make jumbo frame zone too. Page size, 9k and 16k. */
  347         zone_jumbop = uma_zcreate(MBUF_JUMBOP_MEM_NAME, MJUMPAGESIZE,
  348             mb_ctor_clust, NULL, NULL, NULL,
  349             UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
  350         if (nmbjumbop > 0)
  351                 nmbjumbop = uma_zone_set_max(zone_jumbop, nmbjumbop);
  352         uma_zone_set_warning(zone_jumbop, "kern.ipc.nmbjumbop limit reached");
  353         uma_zone_set_maxaction(zone_jumbop, mb_reclaim);
  354 
  355         zone_jumbo9 = uma_zcreate(MBUF_JUMBO9_MEM_NAME, MJUM9BYTES,
  356             mb_ctor_clust, NULL, NULL, NULL,
  357             UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
  358         if (nmbjumbo9 > 0)
  359                 nmbjumbo9 = uma_zone_set_max(zone_jumbo9, nmbjumbo9);
  360         uma_zone_set_warning(zone_jumbo9, "kern.ipc.nmbjumbo9 limit reached");
  361         uma_zone_set_maxaction(zone_jumbo9, mb_reclaim);
  362 
  363         zone_jumbo16 = uma_zcreate(MBUF_JUMBO16_MEM_NAME, MJUM16BYTES,
  364             mb_ctor_clust, NULL, NULL, NULL,
  365             UMA_ALIGN_PTR, UMA_ZONE_CONTIG);
  366         if (nmbjumbo16 > 0)
  367                 nmbjumbo16 = uma_zone_set_max(zone_jumbo16, nmbjumbo16);
  368         uma_zone_set_warning(zone_jumbo16, "kern.ipc.nmbjumbo16 limit reached");
  369         uma_zone_set_maxaction(zone_jumbo16, mb_reclaim);
  370 
  371         /*
  372          * Hook event handler for low-memory situation, used to
  373          * drain protocols and push data back to the caches (UMA
  374          * later pushes it back to VM).
  375          */
  376         EVENTHANDLER_REGISTER(vm_lowmem, mb_reclaim, NULL,
  377             EVENTHANDLER_PRI_FIRST);
  378 
  379         snd_tag_count = counter_u64_alloc(M_WAITOK);
  380 }
  381 SYSINIT(mbuf, SI_SUB_MBUF, SI_ORDER_FIRST, mbuf_init, NULL);
  382 
  383 #ifdef DEBUGNET
  384 /*
  385  * debugnet makes use of a pre-allocated pool of mbufs and clusters.  When
  386  * debugnet is configured, we initialize a set of UMA cache zones which return
  387  * items from this pool.  At panic-time, the regular UMA zone pointers are
  388  * overwritten with those of the cache zones so that drivers may allocate and
  389  * free mbufs and clusters without attempting to allocate physical memory.
  390  *
  391  * We keep mbufs and clusters in a pair of mbuf queues.  In particular, for
  392  * the purpose of caching clusters, we treat them as mbufs.
  393  */
  394 static struct mbufq dn_mbufq =
  395     { STAILQ_HEAD_INITIALIZER(dn_mbufq.mq_head), 0, INT_MAX };
  396 static struct mbufq dn_clustq =
  397     { STAILQ_HEAD_INITIALIZER(dn_clustq.mq_head), 0, INT_MAX };
  398 
  399 static int dn_clsize;
  400 static uma_zone_t dn_zone_mbuf;
  401 static uma_zone_t dn_zone_clust;
  402 static uma_zone_t dn_zone_pack;
  403 
  404 static struct debugnet_saved_zones {
  405         uma_zone_t dsz_mbuf;
  406         uma_zone_t dsz_clust;
  407         uma_zone_t dsz_pack;
  408         uma_zone_t dsz_jumbop;
  409         uma_zone_t dsz_jumbo9;
  410         uma_zone_t dsz_jumbo16;
  411         bool dsz_debugnet_zones_enabled;
  412 } dn_saved_zones;
  413 
  414 static int
  415 dn_buf_import(void *arg, void **store, int count, int domain __unused,
  416     int flags)
  417 {
  418         struct mbufq *q;
  419         struct mbuf *m;
  420         int i;
  421 
  422         q = arg;
  423 
  424         for (i = 0; i < count; i++) {
  425                 m = mbufq_dequeue(q);
  426                 if (m == NULL)
  427                         break;
  428                 trash_init(m, q == &dn_mbufq ? MSIZE : dn_clsize, flags);
  429                 store[i] = m;
  430         }
  431         KASSERT((flags & M_WAITOK) == 0 || i == count,
  432             ("%s: ran out of pre-allocated mbufs", __func__));
  433         return (i);
  434 }
  435 
  436 static void
  437 dn_buf_release(void *arg, void **store, int count)
  438 {
  439         struct mbufq *q;
  440         struct mbuf *m;
  441         int i;
  442 
  443         q = arg;
  444 
  445         for (i = 0; i < count; i++) {
  446                 m = store[i];
  447                 (void)mbufq_enqueue(q, m);
  448         }
  449 }
  450 
  451 static int
  452 dn_pack_import(void *arg __unused, void **store, int count, int domain __unused,
  453     int flags __unused)
  454 {
  455         struct mbuf *m;
  456         void *clust;
  457         int i;
  458 
  459         for (i = 0; i < count; i++) {
  460                 m = m_get(MT_DATA, M_NOWAIT);
  461                 if (m == NULL)
  462                         break;
  463                 clust = uma_zalloc(dn_zone_clust, M_NOWAIT);
  464                 if (clust == NULL) {
  465                         m_free(m);
  466                         break;
  467                 }
  468                 mb_ctor_clust(clust, dn_clsize, m, 0);
  469                 store[i] = m;
  470         }
  471         KASSERT((flags & M_WAITOK) == 0 || i == count,
  472             ("%s: ran out of pre-allocated mbufs", __func__));
  473         return (i);
  474 }
  475 
  476 static void
  477 dn_pack_release(void *arg __unused, void **store, int count)
  478 {
  479         struct mbuf *m;
  480         void *clust;
  481         int i;
  482 
  483         for (i = 0; i < count; i++) {
  484                 m = store[i];
  485                 clust = m->m_ext.ext_buf;
  486                 uma_zfree(dn_zone_clust, clust);
  487                 uma_zfree(dn_zone_mbuf, m);
  488         }
  489 }
  490 
  491 /*
  492  * Free the pre-allocated mbufs and clusters reserved for debugnet, and destroy
  493  * the corresponding UMA cache zones.
  494  */
  495 void
  496 debugnet_mbuf_drain(void)
  497 {
  498         struct mbuf *m;
  499         void *item;
  500 
  501         if (dn_zone_mbuf != NULL) {
  502                 uma_zdestroy(dn_zone_mbuf);
  503                 dn_zone_mbuf = NULL;
  504         }
  505         if (dn_zone_clust != NULL) {
  506                 uma_zdestroy(dn_zone_clust);
  507                 dn_zone_clust = NULL;
  508         }
  509         if (dn_zone_pack != NULL) {
  510                 uma_zdestroy(dn_zone_pack);
  511                 dn_zone_pack = NULL;
  512         }
  513 
  514         while ((m = mbufq_dequeue(&dn_mbufq)) != NULL)
  515                 m_free(m);
  516         while ((item = mbufq_dequeue(&dn_clustq)) != NULL)
  517                 uma_zfree(m_getzone(dn_clsize), item);
  518 }
  519 
  520 /*
  521  * Callback invoked immediately prior to starting a debugnet connection.
  522  */
  523 void
  524 debugnet_mbuf_start(void)
  525 {
  526 
  527         MPASS(!dn_saved_zones.dsz_debugnet_zones_enabled);
  528 
  529         /* Save the old zone pointers to restore when debugnet is closed. */
  530         dn_saved_zones = (struct debugnet_saved_zones) {
  531                 .dsz_debugnet_zones_enabled = true,
  532                 .dsz_mbuf = zone_mbuf,
  533                 .dsz_clust = zone_clust,
  534                 .dsz_pack = zone_pack,
  535                 .dsz_jumbop = zone_jumbop,
  536                 .dsz_jumbo9 = zone_jumbo9,
  537                 .dsz_jumbo16 = zone_jumbo16,
  538         };
  539 
  540         /*
  541          * All cluster zones return buffers of the size requested by the
  542          * drivers.  It's up to the driver to reinitialize the zones if the
  543          * MTU of a debugnet-enabled interface changes.
  544          */
  545         printf("debugnet: overwriting mbuf zone pointers\n");
  546         zone_mbuf = dn_zone_mbuf;
  547         zone_clust = dn_zone_clust;
  548         zone_pack = dn_zone_pack;
  549         zone_jumbop = dn_zone_clust;
  550         zone_jumbo9 = dn_zone_clust;
  551         zone_jumbo16 = dn_zone_clust;
  552 }
  553 
  554 /*
  555  * Callback invoked when a debugnet connection is closed/finished.
  556  */
  557 void
  558 debugnet_mbuf_finish(void)
  559 {
  560 
  561         MPASS(dn_saved_zones.dsz_debugnet_zones_enabled);
  562 
  563         printf("debugnet: restoring mbuf zone pointers\n");
  564         zone_mbuf = dn_saved_zones.dsz_mbuf;
  565         zone_clust = dn_saved_zones.dsz_clust;
  566         zone_pack = dn_saved_zones.dsz_pack;
  567         zone_jumbop = dn_saved_zones.dsz_jumbop;
  568         zone_jumbo9 = dn_saved_zones.dsz_jumbo9;
  569         zone_jumbo16 = dn_saved_zones.dsz_jumbo16;
  570 
  571         memset(&dn_saved_zones, 0, sizeof(dn_saved_zones));
  572 }
  573 
  574 /*
  575  * Reinitialize the debugnet mbuf+cluster pool and cache zones.
  576  */
  577 void
  578 debugnet_mbuf_reinit(int nmbuf, int nclust, int clsize)
  579 {
  580         struct mbuf *m;
  581         void *item;
  582 
  583         debugnet_mbuf_drain();
  584 
  585         dn_clsize = clsize;
  586 
  587         dn_zone_mbuf = uma_zcache_create("debugnet_" MBUF_MEM_NAME,
  588             MSIZE, mb_ctor_mbuf, mb_dtor_mbuf, NULL, NULL,
  589             dn_buf_import, dn_buf_release,
  590             &dn_mbufq, UMA_ZONE_NOBUCKET);
  591 
  592         dn_zone_clust = uma_zcache_create("debugnet_" MBUF_CLUSTER_MEM_NAME,
  593             clsize, mb_ctor_clust, NULL, NULL, NULL,
  594             dn_buf_import, dn_buf_release,
  595             &dn_clustq, UMA_ZONE_NOBUCKET);
  596 
  597         dn_zone_pack = uma_zcache_create("debugnet_" MBUF_PACKET_MEM_NAME,
  598             MCLBYTES, mb_ctor_pack, mb_dtor_pack, NULL, NULL,
  599             dn_pack_import, dn_pack_release,
  600             NULL, UMA_ZONE_NOBUCKET);
  601 
  602         while (nmbuf-- > 0) {
  603                 m = m_get(MT_DATA, M_WAITOK);
  604                 uma_zfree(dn_zone_mbuf, m);
  605         }
  606         while (nclust-- > 0) {
  607                 item = uma_zalloc(m_getzone(dn_clsize), M_WAITOK);
  608                 uma_zfree(dn_zone_clust, item);
  609         }
  610 }
  611 #endif /* DEBUGNET */
  612 
  613 /*
  614  * Constructor for Mbuf primary zone.
  615  *
  616  * The 'arg' pointer points to a mb_args structure which
  617  * contains call-specific information required to support the
  618  * mbuf allocation API.  See mbuf.h.
  619  */
  620 static int
  621 mb_ctor_mbuf(void *mem, int size, void *arg, int how)
  622 {
  623         struct mbuf *m;
  624         struct mb_args *args;
  625         int error;
  626         int flags;
  627         short type;
  628 
  629         args = (struct mb_args *)arg;
  630         type = args->type;
  631 
  632         /*
  633          * The mbuf is initialized later.  The caller has the
  634          * responsibility to set up any MAC labels too.
  635          */
  636         if (type == MT_NOINIT)
  637                 return (0);
  638 
  639         m = (struct mbuf *)mem;
  640         flags = args->flags;
  641         MPASS((flags & M_NOFREE) == 0);
  642 
  643         error = m_init(m, how, type, flags);
  644 
  645         return (error);
  646 }
  647 
  648 /*
  649  * The Mbuf primary zone destructor.
  650  */
  651 static void
  652 mb_dtor_mbuf(void *mem, int size, void *arg)
  653 {
  654         struct mbuf *m;
  655         unsigned long flags;
  656 
  657         m = (struct mbuf *)mem;
  658         flags = (unsigned long)arg;
  659 
  660         KASSERT((m->m_flags & M_NOFREE) == 0, ("%s: M_NOFREE set", __func__));
  661         if (!(flags & MB_DTOR_SKIP) && (m->m_flags & M_PKTHDR) && !SLIST_EMPTY(&m->m_pkthdr.tags))
  662                 m_tag_delete_chain(m, NULL);
  663 }
  664 
  665 /*
  666  * The Mbuf Packet zone destructor.
  667  */
  668 static void
  669 mb_dtor_pack(void *mem, int size, void *arg)
  670 {
  671         struct mbuf *m;
  672 
  673         m = (struct mbuf *)mem;
  674         if ((m->m_flags & M_PKTHDR) != 0)
  675                 m_tag_delete_chain(m, NULL);
  676 
  677         /* Make sure we've got a clean cluster back. */
  678         KASSERT((m->m_flags & M_EXT) == M_EXT, ("%s: M_EXT not set", __func__));
  679         KASSERT(m->m_ext.ext_buf != NULL, ("%s: ext_buf == NULL", __func__));
  680         KASSERT(m->m_ext.ext_free == NULL, ("%s: ext_free != NULL", __func__));
  681         KASSERT(m->m_ext.ext_arg1 == NULL, ("%s: ext_arg1 != NULL", __func__));
  682         KASSERT(m->m_ext.ext_arg2 == NULL, ("%s: ext_arg2 != NULL", __func__));
  683         KASSERT(m->m_ext.ext_size == MCLBYTES, ("%s: ext_size != MCLBYTES", __func__));
  684         KASSERT(m->m_ext.ext_type == EXT_PACKET, ("%s: ext_type != EXT_PACKET", __func__));
  685 #ifdef INVARIANTS
  686         trash_dtor(m->m_ext.ext_buf, MCLBYTES, arg);
  687 #endif
  688         /*
  689          * If there are processes blocked on zone_clust, waiting for pages
  690          * to be freed up, cause them to be woken up by draining the
  691          * packet zone.  We are exposed to a race here (in the check for
  692          * the UMA_ZFLAG_FULL) where we might miss the flag set, but that
  693          * is deliberate. We don't want to acquire the zone lock for every
  694          * mbuf free.
  695          */
  696         if (uma_zone_exhausted(zone_clust))
  697                 uma_zone_reclaim(zone_pack, UMA_RECLAIM_DRAIN);
  698 }
  699 
  700 /*
  701  * The Cluster and Jumbo[PAGESIZE|9|16] zone constructor.
  702  *
  703  * Here the 'arg' pointer points to the Mbuf which we
  704  * are configuring cluster storage for.  If 'arg' is
  705  * empty we allocate just the cluster without setting
  706  * the mbuf to it.  See mbuf.h.
  707  */
  708 static int
  709 mb_ctor_clust(void *mem, int size, void *arg, int how)
  710 {
  711         struct mbuf *m;
  712 
  713         m = (struct mbuf *)arg;
  714         if (m != NULL) {
  715                 m->m_ext.ext_buf = (char *)mem;
  716                 m->m_data = m->m_ext.ext_buf;
  717                 m->m_flags |= M_EXT;
  718                 m->m_ext.ext_free = NULL;
  719                 m->m_ext.ext_arg1 = NULL;
  720                 m->m_ext.ext_arg2 = NULL;
  721                 m->m_ext.ext_size = size;
  722                 m->m_ext.ext_type = m_gettype(size);
  723                 m->m_ext.ext_flags = EXT_FLAG_EMBREF;
  724                 m->m_ext.ext_count = 1;
  725         }
  726 
  727         return (0);
  728 }
  729 
  730 /*
  731  * The Packet secondary zone's init routine, executed on the
  732  * object's transition from mbuf keg slab to zone cache.
  733  */
  734 static int
  735 mb_zinit_pack(void *mem, int size, int how)
  736 {
  737         struct mbuf *m;
  738 
  739         m = (struct mbuf *)mem;         /* m is virgin. */
  740         if (uma_zalloc_arg(zone_clust, m, how) == NULL ||
  741             m->m_ext.ext_buf == NULL)
  742                 return (ENOMEM);
  743         m->m_ext.ext_type = EXT_PACKET; /* Override. */
  744 #ifdef INVARIANTS
  745         trash_init(m->m_ext.ext_buf, MCLBYTES, how);
  746 #endif
  747         return (0);
  748 }
  749 
  750 /*
  751  * The Packet secondary zone's fini routine, executed on the
  752  * object's transition from zone cache to keg slab.
  753  */
  754 static void
  755 mb_zfini_pack(void *mem, int size)
  756 {
  757         struct mbuf *m;
  758 
  759         m = (struct mbuf *)mem;
  760 #ifdef INVARIANTS
  761         trash_fini(m->m_ext.ext_buf, MCLBYTES);
  762 #endif
  763         uma_zfree_arg(zone_clust, m->m_ext.ext_buf, NULL);
  764 #ifdef INVARIANTS
  765         trash_dtor(mem, size, NULL);
  766 #endif
  767 }
  768 
  769 /*
  770  * The "packet" keg constructor.
  771  */
  772 static int
  773 mb_ctor_pack(void *mem, int size, void *arg, int how)
  774 {
  775         struct mbuf *m;
  776         struct mb_args *args;
  777         int error, flags;
  778         short type;
  779 
  780         m = (struct mbuf *)mem;
  781         args = (struct mb_args *)arg;
  782         flags = args->flags;
  783         type = args->type;
  784         MPASS((flags & M_NOFREE) == 0);
  785 
  786 #ifdef INVARIANTS
  787         trash_ctor(m->m_ext.ext_buf, MCLBYTES, arg, how);
  788 #endif
  789 
  790         error = m_init(m, how, type, flags);
  791 
  792         /* m_ext is already initialized. */
  793         m->m_data = m->m_ext.ext_buf;
  794         m->m_flags = (flags | M_EXT);
  795 
  796         return (error);
  797 }
  798 
  799 /*
  800  * This is the protocol drain routine.  Called by UMA whenever any of the
  801  * mbuf zones is closed to its limit.
  802  *
  803  * No locks should be held when this is called.  The drain routines have to
  804  * presently acquire some locks which raises the possibility of lock order
  805  * reversal.
  806  */
  807 static void
  808 mb_reclaim(uma_zone_t zone __unused, int pending __unused)
  809 {
  810         struct epoch_tracker et;
  811         struct domain *dp;
  812         struct protosw *pr;
  813 
  814         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK | WARN_PANIC, NULL, __func__);
  815 
  816         NET_EPOCH_ENTER(et);
  817         for (dp = domains; dp != NULL; dp = dp->dom_next)
  818                 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
  819                         if (pr->pr_drain != NULL)
  820                                 (*pr->pr_drain)();
  821         NET_EPOCH_EXIT(et);
  822 }
  823 
  824 /*
  825  * Free "count" units of I/O from an mbuf chain.  They could be held
  826  * in M_EXTPG or just as a normal mbuf.  This code is intended to be
  827  * called in an error path (I/O error, closed connection, etc).
  828  */
  829 void
  830 mb_free_notready(struct mbuf *m, int count)
  831 {
  832         int i;
  833 
  834         for (i = 0; i < count && m != NULL; i++) {
  835                 if ((m->m_flags & M_EXTPG) != 0) {
  836                         m->m_epg_nrdy--;
  837                         if (m->m_epg_nrdy != 0)
  838                                 continue;
  839                 }
  840                 m = m_free(m);
  841         }
  842         KASSERT(i == count, ("Removed only %d items from %p", i, m));
  843 }
  844 
  845 /*
  846  * Compress an unmapped mbuf into a simple mbuf when it holds a small
  847  * amount of data.  This is used as a DOS defense to avoid having
  848  * small packets tie up wired pages, an ext_pgs structure, and an
  849  * mbuf.  Since this converts the existing mbuf in place, it can only
  850  * be used if there are no other references to 'm'.
  851  */
  852 int
  853 mb_unmapped_compress(struct mbuf *m)
  854 {
  855         volatile u_int *refcnt;
  856         char buf[MLEN];
  857 
  858         /*
  859          * Assert that 'm' does not have a packet header.  If 'm' had
  860          * a packet header, it would only be able to hold MHLEN bytes
  861          * and m_data would have to be initialized differently.
  862          */
  863         KASSERT((m->m_flags & M_PKTHDR) == 0 && (m->m_flags & M_EXTPG),
  864             ("%s: m %p !M_EXTPG or M_PKTHDR", __func__, m));
  865         KASSERT(m->m_len <= MLEN, ("m_len too large %p", m));
  866 
  867         if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
  868                 refcnt = &m->m_ext.ext_count;
  869         } else {
  870                 KASSERT(m->m_ext.ext_cnt != NULL,
  871                     ("%s: no refcounting pointer on %p", __func__, m));
  872                 refcnt = m->m_ext.ext_cnt;
  873         }
  874 
  875         if (*refcnt != 1)
  876                 return (EBUSY);
  877 
  878         m_copydata(m, 0, m->m_len, buf);
  879 
  880         /* Free the backing pages. */
  881         m->m_ext.ext_free(m);
  882 
  883         /* Turn 'm' into a "normal" mbuf. */
  884         m->m_flags &= ~(M_EXT | M_RDONLY | M_EXTPG);
  885         m->m_data = m->m_dat;
  886 
  887         /* Copy data back into m. */
  888         bcopy(buf, mtod(m, char *), m->m_len);
  889 
  890         return (0);
  891 }
  892 
  893 /*
  894  * These next few routines are used to permit downgrading an unmapped
  895  * mbuf to a chain of mapped mbufs.  This is used when an interface
  896  * doesn't supported unmapped mbufs or if checksums need to be
  897  * computed in software.
  898  *
  899  * Each unmapped mbuf is converted to a chain of mbufs.  First, any
  900  * TLS header data is stored in a regular mbuf.  Second, each page of
  901  * unmapped data is stored in an mbuf with an EXT_SFBUF external
  902  * cluster.  These mbufs use an sf_buf to provide a valid KVA for the
  903  * associated physical page.  They also hold a reference on the
  904  * original M_EXTPG mbuf to ensure the physical page doesn't go away.
  905  * Finally, any TLS trailer data is stored in a regular mbuf.
  906  *
  907  * mb_unmapped_free_mext() is the ext_free handler for the EXT_SFBUF
  908  * mbufs.  It frees the associated sf_buf and releases its reference
  909  * on the original M_EXTPG mbuf.
  910  *
  911  * _mb_unmapped_to_ext() is a helper function that converts a single
  912  * unmapped mbuf into a chain of mbufs.
  913  *
  914  * mb_unmapped_to_ext() is the public function that walks an mbuf
  915  * chain converting any unmapped mbufs to mapped mbufs.  It returns
  916  * the new chain of unmapped mbufs on success.  On failure it frees
  917  * the original mbuf chain and returns NULL.
  918  */
  919 static void
  920 mb_unmapped_free_mext(struct mbuf *m)
  921 {
  922         struct sf_buf *sf;
  923         struct mbuf *old_m;
  924 
  925         sf = m->m_ext.ext_arg1;
  926         sf_buf_free(sf);
  927 
  928         /* Drop the reference on the backing M_EXTPG mbuf. */
  929         old_m = m->m_ext.ext_arg2;
  930         mb_free_extpg(old_m);
  931 }
  932 
  933 static struct mbuf *
  934 _mb_unmapped_to_ext(struct mbuf *m)
  935 {
  936         struct mbuf *m_new, *top, *prev, *mref;
  937         struct sf_buf *sf;
  938         vm_page_t pg;
  939         int i, len, off, pglen, pgoff, seglen, segoff;
  940         volatile u_int *refcnt;
  941         u_int ref_inc = 0;
  942 
  943         M_ASSERTEXTPG(m);
  944         len = m->m_len;
  945         KASSERT(m->m_epg_tls == NULL, ("%s: can't convert TLS mbuf %p",
  946             __func__, m));
  947 
  948         /* See if this is the mbuf that holds the embedded refcount. */
  949         if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
  950                 refcnt = &m->m_ext.ext_count;
  951                 mref = m;
  952         } else {
  953                 KASSERT(m->m_ext.ext_cnt != NULL,
  954                     ("%s: no refcounting pointer on %p", __func__, m));
  955                 refcnt = m->m_ext.ext_cnt;
  956                 mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
  957         }
  958 
  959         /* Skip over any data removed from the front. */
  960         off = mtod(m, vm_offset_t);
  961 
  962         top = NULL;
  963         if (m->m_epg_hdrlen != 0) {
  964                 if (off >= m->m_epg_hdrlen) {
  965                         off -= m->m_epg_hdrlen;
  966                 } else {
  967                         seglen = m->m_epg_hdrlen - off;
  968                         segoff = off;
  969                         seglen = min(seglen, len);
  970                         off = 0;
  971                         len -= seglen;
  972                         m_new = m_get(M_NOWAIT, MT_DATA);
  973                         if (m_new == NULL)
  974                                 goto fail;
  975                         m_new->m_len = seglen;
  976                         prev = top = m_new;
  977                         memcpy(mtod(m_new, void *), &m->m_epg_hdr[segoff],
  978                             seglen);
  979                 }
  980         }
  981         pgoff = m->m_epg_1st_off;
  982         for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
  983                 pglen = m_epg_pagelen(m, i, pgoff);
  984                 if (off >= pglen) {
  985                         off -= pglen;
  986                         pgoff = 0;
  987                         continue;
  988                 }
  989                 seglen = pglen - off;
  990                 segoff = pgoff + off;
  991                 off = 0;
  992                 seglen = min(seglen, len);
  993                 len -= seglen;
  994 
  995                 pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
  996                 m_new = m_get(M_NOWAIT, MT_DATA);
  997                 if (m_new == NULL)
  998                         goto fail;
  999                 if (top == NULL) {
 1000                         top = prev = m_new;
 1001                 } else {
 1002                         prev->m_next = m_new;
 1003                         prev = m_new;
 1004                 }
 1005                 sf = sf_buf_alloc(pg, SFB_NOWAIT);
 1006                 if (sf == NULL)
 1007                         goto fail;
 1008 
 1009                 ref_inc++;
 1010                 m_extadd(m_new, (char *)sf_buf_kva(sf), PAGE_SIZE,
 1011                     mb_unmapped_free_mext, sf, mref, M_RDONLY, EXT_SFBUF);
 1012                 m_new->m_data += segoff;
 1013                 m_new->m_len = seglen;
 1014 
 1015                 pgoff = 0;
 1016         };
 1017         if (len != 0) {
 1018                 KASSERT((off + len) <= m->m_epg_trllen,
 1019                     ("off + len > trail (%d + %d > %d)", off, len,
 1020                     m->m_epg_trllen));
 1021                 m_new = m_get(M_NOWAIT, MT_DATA);
 1022                 if (m_new == NULL)
 1023                         goto fail;
 1024                 if (top == NULL)
 1025                         top = m_new;
 1026                 else
 1027                         prev->m_next = m_new;
 1028                 m_new->m_len = len;
 1029                 memcpy(mtod(m_new, void *), &m->m_epg_trail[off], len);
 1030         }
 1031 
 1032         if (ref_inc != 0) {
 1033                 /*
 1034                  * Obtain an additional reference on the old mbuf for
 1035                  * each created EXT_SFBUF mbuf.  They will be dropped
 1036                  * in mb_unmapped_free_mext().
 1037                  */
 1038                 if (*refcnt == 1)
 1039                         *refcnt += ref_inc;
 1040                 else
 1041                         atomic_add_int(refcnt, ref_inc);
 1042         }
 1043         m_free(m);
 1044         return (top);
 1045 
 1046 fail:
 1047         if (ref_inc != 0) {
 1048                 /*
 1049                  * Obtain an additional reference on the old mbuf for
 1050                  * each created EXT_SFBUF mbuf.  They will be
 1051                  * immediately dropped when these mbufs are freed
 1052                  * below.
 1053                  */
 1054                 if (*refcnt == 1)
 1055                         *refcnt += ref_inc;
 1056                 else
 1057                         atomic_add_int(refcnt, ref_inc);
 1058         }
 1059         m_free(m);
 1060         m_freem(top);
 1061         return (NULL);
 1062 }
 1063 
 1064 struct mbuf *
 1065 mb_unmapped_to_ext(struct mbuf *top)
 1066 {
 1067         struct mbuf *m, *next, *prev = NULL;
 1068 
 1069         prev = NULL;
 1070         for (m = top; m != NULL; m = next) {
 1071                 /* m might be freed, so cache the next pointer. */
 1072                 next = m->m_next;
 1073                 if (m->m_flags & M_EXTPG) {
 1074                         if (prev != NULL) {
 1075                                 /*
 1076                                  * Remove 'm' from the new chain so
 1077                                  * that the 'top' chain terminates
 1078                                  * before 'm' in case 'top' is freed
 1079                                  * due to an error.
 1080                                  */
 1081                                 prev->m_next = NULL;
 1082                         }
 1083                         m = _mb_unmapped_to_ext(m);
 1084                         if (m == NULL) {
 1085                                 m_freem(top);
 1086                                 m_freem(next);
 1087                                 return (NULL);
 1088                         }
 1089                         if (prev == NULL) {
 1090                                 top = m;
 1091                         } else {
 1092                                 prev->m_next = m;
 1093                         }
 1094 
 1095                         /*
 1096                          * Replaced one mbuf with a chain, so we must
 1097                          * find the end of chain.
 1098                          */
 1099                         prev = m_last(m);
 1100                 } else {
 1101                         if (prev != NULL) {
 1102                                 prev->m_next = m;
 1103                         }
 1104                         prev = m;
 1105                 }
 1106         }
 1107         return (top);
 1108 }
 1109 
 1110 /*
 1111  * Allocate an empty M_EXTPG mbuf.  The ext_free routine is
 1112  * responsible for freeing any pages backing this mbuf when it is
 1113  * freed.
 1114  */
 1115 struct mbuf *
 1116 mb_alloc_ext_pgs(int how, m_ext_free_t ext_free)
 1117 {
 1118         struct mbuf *m;
 1119 
 1120         m = m_get(how, MT_DATA);
 1121         if (m == NULL)
 1122                 return (NULL);
 1123 
 1124         m->m_epg_npgs = 0;
 1125         m->m_epg_nrdy = 0;
 1126         m->m_epg_1st_off = 0;
 1127         m->m_epg_last_len = 0;
 1128         m->m_epg_flags = 0;
 1129         m->m_epg_hdrlen = 0;
 1130         m->m_epg_trllen = 0;
 1131         m->m_epg_tls = NULL;
 1132         m->m_epg_so = NULL;
 1133         m->m_data = NULL;
 1134         m->m_flags |= (M_EXT | M_RDONLY | M_EXTPG);
 1135         m->m_ext.ext_flags = EXT_FLAG_EMBREF;
 1136         m->m_ext.ext_count = 1;
 1137         m->m_ext.ext_size = 0;
 1138         m->m_ext.ext_free = ext_free;
 1139         return (m);
 1140 }
 1141 
 1142 /*
 1143  * Clean up after mbufs with M_EXT storage attached to them if the
 1144  * reference count hits 1.
 1145  */
 1146 void
 1147 mb_free_ext(struct mbuf *m)
 1148 {
 1149         volatile u_int *refcnt;
 1150         struct mbuf *mref;
 1151         int freembuf;
 1152 
 1153         KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
 1154 
 1155         /* See if this is the mbuf that holds the embedded refcount. */
 1156         if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
 1157                 refcnt = &m->m_ext.ext_count;
 1158                 mref = m;
 1159         } else {
 1160                 KASSERT(m->m_ext.ext_cnt != NULL,
 1161                     ("%s: no refcounting pointer on %p", __func__, m));
 1162                 refcnt = m->m_ext.ext_cnt;
 1163                 mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
 1164         }
 1165 
 1166         /*
 1167          * Check if the header is embedded in the cluster.  It is
 1168          * important that we can't touch any of the mbuf fields
 1169          * after we have freed the external storage, since mbuf
 1170          * could have been embedded in it.  For now, the mbufs
 1171          * embedded into the cluster are always of type EXT_EXTREF,
 1172          * and for this type we won't free the mref.
 1173          */
 1174         if (m->m_flags & M_NOFREE) {
 1175                 freembuf = 0;
 1176                 KASSERT(m->m_ext.ext_type == EXT_EXTREF ||
 1177                     m->m_ext.ext_type == EXT_RXRING,
 1178                     ("%s: no-free mbuf %p has wrong type", __func__, m));
 1179         } else
 1180                 freembuf = 1;
 1181 
 1182         /* Free attached storage if this mbuf is the only reference to it. */
 1183         if (*refcnt == 1 || atomic_fetchadd_int(refcnt, -1) == 1) {
 1184                 switch (m->m_ext.ext_type) {
 1185                 case EXT_PACKET:
 1186                         /* The packet zone is special. */
 1187                         if (*refcnt == 0)
 1188                                 *refcnt = 1;
 1189                         uma_zfree(zone_pack, mref);
 1190                         break;
 1191                 case EXT_CLUSTER:
 1192                         uma_zfree(zone_clust, m->m_ext.ext_buf);
 1193                         uma_zfree(zone_mbuf, mref);
 1194                         break;
 1195                 case EXT_JUMBOP:
 1196                         uma_zfree(zone_jumbop, m->m_ext.ext_buf);
 1197                         uma_zfree(zone_mbuf, mref);
 1198                         break;
 1199                 case EXT_JUMBO9:
 1200                         uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
 1201                         uma_zfree(zone_mbuf, mref);
 1202                         break;
 1203                 case EXT_JUMBO16:
 1204                         uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
 1205                         uma_zfree(zone_mbuf, mref);
 1206                         break;
 1207                 case EXT_SFBUF:
 1208                 case EXT_NET_DRV:
 1209                 case EXT_MOD_TYPE:
 1210                 case EXT_DISPOSABLE:
 1211                         KASSERT(mref->m_ext.ext_free != NULL,
 1212                             ("%s: ext_free not set", __func__));
 1213                         mref->m_ext.ext_free(mref);
 1214                         uma_zfree(zone_mbuf, mref);
 1215                         break;
 1216                 case EXT_EXTREF:
 1217                         KASSERT(m->m_ext.ext_free != NULL,
 1218                             ("%s: ext_free not set", __func__));
 1219                         m->m_ext.ext_free(m);
 1220                         break;
 1221                 case EXT_RXRING:
 1222                         KASSERT(m->m_ext.ext_free == NULL,
 1223                             ("%s: ext_free is set", __func__));
 1224                         break;
 1225                 default:
 1226                         KASSERT(m->m_ext.ext_type == 0,
 1227                             ("%s: unknown ext_type", __func__));
 1228                 }
 1229         }
 1230 
 1231         if (freembuf && m != mref)
 1232                 uma_zfree(zone_mbuf, m);
 1233 }
 1234 
 1235 /*
 1236  * Clean up after mbufs with M_EXTPG storage attached to them if the
 1237  * reference count hits 1.
 1238  */
 1239 void
 1240 mb_free_extpg(struct mbuf *m)
 1241 {
 1242         volatile u_int *refcnt;
 1243         struct mbuf *mref;
 1244 
 1245         M_ASSERTEXTPG(m);
 1246 
 1247         /* See if this is the mbuf that holds the embedded refcount. */
 1248         if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
 1249                 refcnt = &m->m_ext.ext_count;
 1250                 mref = m;
 1251         } else {
 1252                 KASSERT(m->m_ext.ext_cnt != NULL,
 1253                     ("%s: no refcounting pointer on %p", __func__, m));
 1254                 refcnt = m->m_ext.ext_cnt;
 1255                 mref = __containerof(refcnt, struct mbuf, m_ext.ext_count);
 1256         }
 1257 
 1258         /* Free attached storage if this mbuf is the only reference to it. */
 1259         if (*refcnt == 1 || atomic_fetchadd_int(refcnt, -1) == 1) {
 1260                 KASSERT(mref->m_ext.ext_free != NULL,
 1261                     ("%s: ext_free not set", __func__));
 1262 
 1263                 mref->m_ext.ext_free(mref);
 1264 #ifdef KERN_TLS
 1265                 if (mref->m_epg_tls != NULL &&
 1266                     !refcount_release_if_not_last(&mref->m_epg_tls->refcount))
 1267                         ktls_enqueue_to_free(mref);
 1268                 else
 1269 #endif
 1270                         uma_zfree(zone_mbuf, mref);
 1271         }
 1272 
 1273         if (m != mref)
 1274                 uma_zfree(zone_mbuf, m);
 1275 }
 1276 
 1277 /*
 1278  * Official mbuf(9) allocation KPI for stack and drivers:
 1279  *
 1280  * m_get()      - a single mbuf without any attachments, sys/mbuf.h.
 1281  * m_gethdr()   - a single mbuf initialized as M_PKTHDR, sys/mbuf.h.
 1282  * m_getcl()    - an mbuf + 2k cluster, sys/mbuf.h.
 1283  * m_clget()    - attach cluster to already allocated mbuf.
 1284  * m_cljget()   - attach jumbo cluster to already allocated mbuf.
 1285  * m_get2()     - allocate minimum mbuf that would fit size argument.
 1286  * m_getm2()    - allocate a chain of mbufs/clusters.
 1287  * m_extadd()   - attach external cluster to mbuf.
 1288  *
 1289  * m_free()     - free single mbuf with its tags and ext, sys/mbuf.h.
 1290  * m_freem()    - free chain of mbufs.
 1291  */
 1292 
 1293 int
 1294 m_clget(struct mbuf *m, int how)
 1295 {
 1296 
 1297         KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
 1298             __func__, m));
 1299         m->m_ext.ext_buf = (char *)NULL;
 1300         uma_zalloc_arg(zone_clust, m, how);
 1301         /*
 1302          * On a cluster allocation failure, drain the packet zone and retry,
 1303          * we might be able to loosen a few clusters up on the drain.
 1304          */
 1305         if ((how & M_NOWAIT) && (m->m_ext.ext_buf == NULL)) {
 1306                 uma_zone_reclaim(zone_pack, UMA_RECLAIM_DRAIN);
 1307                 uma_zalloc_arg(zone_clust, m, how);
 1308         }
 1309         MBUF_PROBE2(m__clget, m, how);
 1310         return (m->m_flags & M_EXT);
 1311 }
 1312 
 1313 /*
 1314  * m_cljget() is different from m_clget() as it can allocate clusters without
 1315  * attaching them to an mbuf.  In that case the return value is the pointer
 1316  * to the cluster of the requested size.  If an mbuf was specified, it gets
 1317  * the cluster attached to it and the return value can be safely ignored.
 1318  * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
 1319  */
 1320 void *
 1321 m_cljget(struct mbuf *m, int how, int size)
 1322 {
 1323         uma_zone_t zone;
 1324         void *retval;
 1325 
 1326         if (m != NULL) {
 1327                 KASSERT((m->m_flags & M_EXT) == 0, ("%s: mbuf %p has M_EXT",
 1328                     __func__, m));
 1329                 m->m_ext.ext_buf = NULL;
 1330         }
 1331 
 1332         zone = m_getzone(size);
 1333         retval = uma_zalloc_arg(zone, m, how);
 1334 
 1335         MBUF_PROBE4(m__cljget, m, how, size, retval);
 1336 
 1337         return (retval);
 1338 }
 1339 
 1340 /*
 1341  * m_get2() allocates minimum mbuf that would fit "size" argument.
 1342  */
 1343 struct mbuf *
 1344 m_get2(int size, int how, short type, int flags)
 1345 {
 1346         struct mb_args args;
 1347         struct mbuf *m, *n;
 1348 
 1349         args.flags = flags;
 1350         args.type = type;
 1351 
 1352         if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
 1353                 return (uma_zalloc_arg(zone_mbuf, &args, how));
 1354         if (size <= MCLBYTES)
 1355                 return (uma_zalloc_arg(zone_pack, &args, how));
 1356 
 1357         if (size > MJUMPAGESIZE)
 1358                 return (NULL);
 1359 
 1360         m = uma_zalloc_arg(zone_mbuf, &args, how);
 1361         if (m == NULL)
 1362                 return (NULL);
 1363 
 1364         n = uma_zalloc_arg(zone_jumbop, m, how);
 1365         if (n == NULL) {
 1366                 uma_zfree(zone_mbuf, m);
 1367                 return (NULL);
 1368         }
 1369 
 1370         return (m);
 1371 }
 1372 
 1373 /*
 1374  * m_getjcl() returns an mbuf with a cluster of the specified size attached.
 1375  * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
 1376  */
 1377 struct mbuf *
 1378 m_getjcl(int how, short type, int flags, int size)
 1379 {
 1380         struct mb_args args;
 1381         struct mbuf *m, *n;
 1382         uma_zone_t zone;
 1383 
 1384         if (size == MCLBYTES)
 1385                 return m_getcl(how, type, flags);
 1386 
 1387         args.flags = flags;
 1388         args.type = type;
 1389 
 1390         m = uma_zalloc_arg(zone_mbuf, &args, how);
 1391         if (m == NULL)
 1392                 return (NULL);
 1393 
 1394         zone = m_getzone(size);
 1395         n = uma_zalloc_arg(zone, m, how);
 1396         if (n == NULL) {
 1397                 uma_zfree(zone_mbuf, m);
 1398                 return (NULL);
 1399         }
 1400         MBUF_PROBE5(m__getjcl, how, type, flags, size, m);
 1401         return (m);
 1402 }
 1403 
 1404 /*
 1405  * Allocate a given length worth of mbufs and/or clusters (whatever fits
 1406  * best) and return a pointer to the top of the allocated chain.  If an
 1407  * existing mbuf chain is provided, then we will append the new chain
 1408  * to the existing one and return a pointer to the provided mbuf.
 1409  */
 1410 struct mbuf *
 1411 m_getm2(struct mbuf *m, int len, int how, short type, int flags)
 1412 {
 1413         struct mbuf *mb, *nm = NULL, *mtail = NULL;
 1414 
 1415         KASSERT(len >= 0, ("%s: len is < 0", __func__));
 1416 
 1417         /* Validate flags. */
 1418         flags &= (M_PKTHDR | M_EOR);
 1419 
 1420         /* Packet header mbuf must be first in chain. */
 1421         if ((flags & M_PKTHDR) && m != NULL)
 1422                 flags &= ~M_PKTHDR;
 1423 
 1424         /* Loop and append maximum sized mbufs to the chain tail. */
 1425         while (len > 0) {
 1426                 mb = NULL;
 1427                 if (len > MCLBYTES) {
 1428                         mb = m_getjcl(M_NOWAIT, type, (flags & M_PKTHDR),
 1429                             MJUMPAGESIZE);
 1430                 }
 1431                 if (mb == NULL) {
 1432                         if (len >= MINCLSIZE)
 1433                                 mb = m_getcl(how, type, (flags & M_PKTHDR));
 1434                         else if (flags & M_PKTHDR)
 1435                                 mb = m_gethdr(how, type);
 1436                         else
 1437                                 mb = m_get(how, type);
 1438 
 1439                         /*
 1440                          * Fail the whole operation if one mbuf can't be
 1441                          * allocated.
 1442                          */
 1443                         if (mb == NULL) {
 1444                                 m_freem(nm);
 1445                                 return (NULL);
 1446                         }
 1447                 }
 1448 
 1449                 /* Book keeping. */
 1450                 len -= M_SIZE(mb);
 1451                 if (mtail != NULL)
 1452                         mtail->m_next = mb;
 1453                 else
 1454                         nm = mb;
 1455                 mtail = mb;
 1456                 flags &= ~M_PKTHDR;     /* Only valid on the first mbuf. */
 1457         }
 1458         if (flags & M_EOR)
 1459                 mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
 1460 
 1461         /* If mbuf was supplied, append new chain to the end of it. */
 1462         if (m != NULL) {
 1463                 for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
 1464                         ;
 1465                 mtail->m_next = nm;
 1466                 mtail->m_flags &= ~M_EOR;
 1467         } else
 1468                 m = nm;
 1469 
 1470         return (m);
 1471 }
 1472 
 1473 /*-
 1474  * Configure a provided mbuf to refer to the provided external storage
 1475  * buffer and setup a reference count for said buffer.
 1476  *
 1477  * Arguments:
 1478  *    mb     The existing mbuf to which to attach the provided buffer.
 1479  *    buf    The address of the provided external storage buffer.
 1480  *    size   The size of the provided buffer.
 1481  *    freef  A pointer to a routine that is responsible for freeing the
 1482  *           provided external storage buffer.
 1483  *    args   A pointer to an argument structure (of any type) to be passed
 1484  *           to the provided freef routine (may be NULL).
 1485  *    flags  Any other flags to be passed to the provided mbuf.
 1486  *    type   The type that the external storage buffer should be
 1487  *           labeled with.
 1488  *
 1489  * Returns:
 1490  *    Nothing.
 1491  */
 1492 void
 1493 m_extadd(struct mbuf *mb, char *buf, u_int size, m_ext_free_t freef,
 1494     void *arg1, void *arg2, int flags, int type)
 1495 {
 1496 
 1497         KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
 1498 
 1499         mb->m_flags |= (M_EXT | flags);
 1500         mb->m_ext.ext_buf = buf;
 1501         mb->m_data = mb->m_ext.ext_buf;
 1502         mb->m_ext.ext_size = size;
 1503         mb->m_ext.ext_free = freef;
 1504         mb->m_ext.ext_arg1 = arg1;
 1505         mb->m_ext.ext_arg2 = arg2;
 1506         mb->m_ext.ext_type = type;
 1507 
 1508         if (type != EXT_EXTREF) {
 1509                 mb->m_ext.ext_count = 1;
 1510                 mb->m_ext.ext_flags = EXT_FLAG_EMBREF;
 1511         } else
 1512                 mb->m_ext.ext_flags = 0;
 1513 }
 1514 
 1515 /*
 1516  * Free an entire chain of mbufs and associated external buffers, if
 1517  * applicable.
 1518  */
 1519 void
 1520 m_freem(struct mbuf *mb)
 1521 {
 1522 
 1523         MBUF_PROBE1(m__freem, mb);
 1524         while (mb != NULL)
 1525                 mb = m_free(mb);
 1526 }
 1527 
 1528 int
 1529 m_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params,
 1530     struct m_snd_tag **mstp)
 1531 {
 1532 
 1533         if (ifp->if_snd_tag_alloc == NULL)
 1534                 return (EOPNOTSUPP);
 1535         return (ifp->if_snd_tag_alloc(ifp, params, mstp));
 1536 }
 1537 
 1538 void
 1539 m_snd_tag_init(struct m_snd_tag *mst, struct ifnet *ifp, u_int type)
 1540 {
 1541 
 1542         if_ref(ifp);
 1543         mst->ifp = ifp;
 1544         refcount_init(&mst->refcount, 1);
 1545         mst->type = type;
 1546         counter_u64_add(snd_tag_count, 1);
 1547 }
 1548 
 1549 void
 1550 m_snd_tag_destroy(struct m_snd_tag *mst)
 1551 {
 1552         struct ifnet *ifp;
 1553 
 1554         ifp = mst->ifp;
 1555         ifp->if_snd_tag_free(mst);
 1556         if_rele(ifp);
 1557         counter_u64_add(snd_tag_count, -1);
 1558 }
 1559 
 1560 /*
 1561  * Allocate an mbuf with anonymous external pages.
 1562  */
 1563 struct mbuf *
 1564 mb_alloc_ext_plus_pages(int len, int how)
 1565 {
 1566         struct mbuf *m;
 1567         vm_page_t pg;
 1568         int i, npgs;
 1569 
 1570         m = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
 1571         if (m == NULL)
 1572                 return (NULL);
 1573         m->m_epg_flags |= EPG_FLAG_ANON;
 1574         npgs = howmany(len, PAGE_SIZE);
 1575         for (i = 0; i < npgs; i++) {
 1576                 do {
 1577                         pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
 1578                             VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | VM_ALLOC_WIRED);
 1579                         if (pg == NULL) {
 1580                                 if (how == M_NOWAIT) {
 1581                                         m->m_epg_npgs = i;
 1582                                         m_free(m);
 1583                                         return (NULL);
 1584                                 }
 1585                                 vm_wait(NULL);
 1586                         }
 1587                 } while (pg == NULL);
 1588                 m->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg);
 1589         }
 1590         m->m_epg_npgs = npgs;
 1591         return (m);
 1592 }
 1593 
 1594 /*
 1595  * Copy the data in the mbuf chain to a chain of mbufs with anonymous external
 1596  * unmapped pages.
 1597  * len is the length of data in the input mbuf chain.
 1598  * mlen is the maximum number of bytes put into each ext_page mbuf.
 1599  */
 1600 struct mbuf *
 1601 mb_mapped_to_unmapped(struct mbuf *mp, int len, int mlen, int how,
 1602     struct mbuf **mlast)
 1603 {
 1604         struct mbuf *m, *mout;
 1605         char *pgpos, *mbpos;
 1606         int i, mblen, mbufsiz, pglen, xfer;
 1607 
 1608         if (len == 0)
 1609                 return (NULL);
 1610         mbufsiz = min(mlen, len);
 1611         m = mout = mb_alloc_ext_plus_pages(mbufsiz, how);
 1612         if (m == NULL)
 1613                 return (m);
 1614         pgpos = (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[0]);
 1615         pglen = PAGE_SIZE;
 1616         mblen = 0;
 1617         i = 0;
 1618         do {
 1619                 if (pglen == 0) {
 1620                         if (++i == m->m_epg_npgs) {
 1621                                 m->m_epg_last_len = PAGE_SIZE;
 1622                                 mbufsiz = min(mlen, len);
 1623                                 m->m_next = mb_alloc_ext_plus_pages(mbufsiz,
 1624                                     how);
 1625                                 m = m->m_next;
 1626                                 if (m == NULL) {
 1627                                         m_freem(mout);
 1628                                         return (m);
 1629                                 }
 1630                                 i = 0;
 1631                         }
 1632                         pgpos = (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[i]);
 1633                         pglen = PAGE_SIZE;
 1634                 }
 1635                 while (mblen == 0) {
 1636                         if (mp == NULL) {
 1637                                 m_freem(mout);
 1638                                 return (NULL);
 1639                         }
 1640                         KASSERT((mp->m_flags & M_EXTPG) == 0,
 1641                             ("mb_copym_ext_pgs: ext_pgs input mbuf"));
 1642                         mbpos = mtod(mp, char *);
 1643                         mblen = mp->m_len;
 1644                         mp = mp->m_next;
 1645                 }
 1646                 xfer = min(mblen, pglen);
 1647                 memcpy(pgpos, mbpos, xfer);
 1648                 pgpos += xfer;
 1649                 mbpos += xfer;
 1650                 pglen -= xfer;
 1651                 mblen -= xfer;
 1652                 len -= xfer;
 1653                 m->m_len += xfer;
 1654         } while (len > 0);
 1655         m->m_epg_last_len = PAGE_SIZE - pglen;
 1656         if (mlast != NULL)
 1657                 *mlast = m;
 1658         return (mout);
 1659 }

Cache object: 23f3c9ecbffed0b1b6d607a0973264f8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.