The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_mutex.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 3. Berkeley Software Design Inc's name may not be used to endorse or
   15  *    promote products derived from this software without specific prior
   16  *    written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
   31  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
   32  */
   33 
   34 /*
   35  * Machine independent bits of mutex implementation.
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD$");
   40 
   41 #include "opt_adaptive_mutexes.h"
   42 #include "opt_ddb.h"
   43 #include "opt_hwpmc_hooks.h"
   44 #include "opt_sched.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/bus.h>
   49 #include <sys/conf.h>
   50 #include <sys/kdb.h>
   51 #include <sys/kernel.h>
   52 #include <sys/ktr.h>
   53 #include <sys/lock.h>
   54 #include <sys/malloc.h>
   55 #include <sys/mutex.h>
   56 #include <sys/proc.h>
   57 #include <sys/resourcevar.h>
   58 #include <sys/sched.h>
   59 #include <sys/sbuf.h>
   60 #include <sys/smp.h>
   61 #include <sys/sysctl.h>
   62 #include <sys/turnstile.h>
   63 #include <sys/vmmeter.h>
   64 #include <sys/lock_profile.h>
   65 
   66 #include <machine/atomic.h>
   67 #include <machine/bus.h>
   68 #include <machine/cpu.h>
   69 
   70 #include <ddb/ddb.h>
   71 
   72 #include <fs/devfs/devfs_int.h>
   73 
   74 #include <vm/vm.h>
   75 #include <vm/vm_extern.h>
   76 
   77 #if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
   78 #define ADAPTIVE_MUTEXES
   79 #endif
   80 
   81 #ifdef HWPMC_HOOKS
   82 #include <sys/pmckern.h>
   83 PMC_SOFT_DEFINE( , , lock, failed);
   84 #endif
   85 
   86 /*
   87  * Return the mutex address when the lock cookie address is provided.
   88  * This functionality assumes that struct mtx* have a member named mtx_lock.
   89  */
   90 #define mtxlock2mtx(c)  (__containerof(c, struct mtx, mtx_lock))
   91 
   92 /*
   93  * Internal utility macros.
   94  */
   95 #define mtx_unowned(m)  ((m)->mtx_lock == MTX_UNOWNED)
   96 
   97 #define mtx_destroyed(m) ((m)->mtx_lock == MTX_DESTROYED)
   98 
   99 static void     assert_mtx(const struct lock_object *lock, int what);
  100 #ifdef DDB
  101 static void     db_show_mtx(const struct lock_object *lock);
  102 #endif
  103 static void     lock_mtx(struct lock_object *lock, uintptr_t how);
  104 static void     lock_spin(struct lock_object *lock, uintptr_t how);
  105 #ifdef KDTRACE_HOOKS
  106 static int      owner_mtx(const struct lock_object *lock,
  107                     struct thread **owner);
  108 #endif
  109 static uintptr_t unlock_mtx(struct lock_object *lock);
  110 static uintptr_t unlock_spin(struct lock_object *lock);
  111 
  112 /*
  113  * Lock classes for sleep and spin mutexes.
  114  */
  115 struct lock_class lock_class_mtx_sleep = {
  116         .lc_name = "sleep mutex",
  117         .lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
  118         .lc_assert = assert_mtx,
  119 #ifdef DDB
  120         .lc_ddb_show = db_show_mtx,
  121 #endif
  122         .lc_lock = lock_mtx,
  123         .lc_unlock = unlock_mtx,
  124 #ifdef KDTRACE_HOOKS
  125         .lc_owner = owner_mtx,
  126 #endif
  127 };
  128 struct lock_class lock_class_mtx_spin = {
  129         .lc_name = "spin mutex",
  130         .lc_flags = LC_SPINLOCK | LC_RECURSABLE,
  131         .lc_assert = assert_mtx,
  132 #ifdef DDB
  133         .lc_ddb_show = db_show_mtx,
  134 #endif
  135         .lc_lock = lock_spin,
  136         .lc_unlock = unlock_spin,
  137 #ifdef KDTRACE_HOOKS
  138         .lc_owner = owner_mtx,
  139 #endif
  140 };
  141 
  142 #ifdef ADAPTIVE_MUTEXES
  143 #ifdef MUTEX_CUSTOM_BACKOFF
  144 static SYSCTL_NODE(_debug, OID_AUTO, mtx, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
  145     "mtx debugging");
  146 
  147 static struct lock_delay_config __read_frequently mtx_delay;
  148 
  149 SYSCTL_U16(_debug_mtx, OID_AUTO, delay_base, CTLFLAG_RW, &mtx_delay.base,
  150     0, "");
  151 SYSCTL_U16(_debug_mtx, OID_AUTO, delay_max, CTLFLAG_RW, &mtx_delay.max,
  152     0, "");
  153 
  154 LOCK_DELAY_SYSINIT_DEFAULT(mtx_delay);
  155 #else
  156 #define mtx_delay       locks_delay
  157 #endif
  158 #endif
  159 
  160 #ifdef MUTEX_SPIN_CUSTOM_BACKOFF
  161 static SYSCTL_NODE(_debug, OID_AUTO, mtx_spin,
  162     CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
  163     "mtx spin debugging");
  164 
  165 static struct lock_delay_config __read_frequently mtx_spin_delay;
  166 
  167 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_base, CTLFLAG_RW,
  168     &mtx_spin_delay.base, 0, "");
  169 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_max, CTLFLAG_RW,
  170     &mtx_spin_delay.max, 0, "");
  171 
  172 LOCK_DELAY_SYSINIT_DEFAULT(mtx_spin_delay);
  173 #else
  174 #define mtx_spin_delay  locks_delay
  175 #endif
  176 
  177 /*
  178  * System-wide mutexes
  179  */
  180 struct mtx blocked_lock;
  181 struct mtx __exclusive_cache_line Giant;
  182 
  183 static void _mtx_lock_indefinite_check(struct mtx *, struct lock_delay_arg *);
  184 
  185 void
  186 assert_mtx(const struct lock_object *lock, int what)
  187 {
  188 
  189         /*
  190          * Treat LA_LOCKED as if LA_XLOCKED was asserted.
  191          *
  192          * Some callers of lc_assert uses LA_LOCKED to indicate that either
  193          * a shared lock or write lock was held, while other callers uses
  194          * the more strict LA_XLOCKED (used as MA_OWNED).
  195          *
  196          * Mutex is the only lock class that can not be shared, as a result,
  197          * we can reasonably consider the caller really intends to assert
  198          * LA_XLOCKED when they are asserting LA_LOCKED on a mutex object.
  199          */
  200         if (what & LA_LOCKED) {
  201                 what &= ~LA_LOCKED;
  202                 what |= LA_XLOCKED;
  203         }
  204         mtx_assert((const struct mtx *)lock, what);
  205 }
  206 
  207 void
  208 lock_mtx(struct lock_object *lock, uintptr_t how)
  209 {
  210 
  211         mtx_lock((struct mtx *)lock);
  212 }
  213 
  214 void
  215 lock_spin(struct lock_object *lock, uintptr_t how)
  216 {
  217 
  218         mtx_lock_spin((struct mtx *)lock);
  219 }
  220 
  221 uintptr_t
  222 unlock_mtx(struct lock_object *lock)
  223 {
  224         struct mtx *m;
  225 
  226         m = (struct mtx *)lock;
  227         mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
  228         mtx_unlock(m);
  229         return (0);
  230 }
  231 
  232 uintptr_t
  233 unlock_spin(struct lock_object *lock)
  234 {
  235         struct mtx *m;
  236 
  237         m = (struct mtx *)lock;
  238         mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
  239         mtx_unlock_spin(m);
  240         return (0);
  241 }
  242 
  243 #ifdef KDTRACE_HOOKS
  244 int
  245 owner_mtx(const struct lock_object *lock, struct thread **owner)
  246 {
  247         const struct mtx *m;
  248         uintptr_t x;
  249 
  250         m = (const struct mtx *)lock;
  251         x = m->mtx_lock;
  252         *owner = (struct thread *)(x & ~MTX_FLAGMASK);
  253         return (*owner != NULL);
  254 }
  255 #endif
  256 
  257 /*
  258  * Function versions of the inlined __mtx_* macros.  These are used by
  259  * modules and can also be called from assembly language if needed.
  260  */
  261 void
  262 __mtx_lock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
  263 {
  264         struct mtx *m;
  265         uintptr_t tid, v;
  266 
  267         m = mtxlock2mtx(c);
  268 
  269         KASSERT(kdb_active != 0 || SCHEDULER_STOPPED() ||
  270             !TD_IS_IDLETHREAD(curthread),
  271             ("mtx_lock() by idle thread %p on sleep mutex %s @ %s:%d",
  272             curthread, m->lock_object.lo_name, file, line));
  273         KASSERT(m->mtx_lock != MTX_DESTROYED,
  274             ("mtx_lock() of destroyed mutex @ %s:%d", file, line));
  275         KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
  276             ("mtx_lock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
  277             file, line));
  278         WITNESS_CHECKORDER(&m->lock_object, (opts & ~MTX_RECURSE) |
  279             LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
  280 
  281         tid = (uintptr_t)curthread;
  282         v = MTX_UNOWNED;
  283         if (!_mtx_obtain_lock_fetch(m, &v, tid))
  284                 _mtx_lock_sleep(m, v, opts, file, line);
  285         else
  286                 LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
  287                     m, 0, 0, file, line);
  288         LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
  289             line);
  290         WITNESS_LOCK(&m->lock_object, (opts & ~MTX_RECURSE) | LOP_EXCLUSIVE,
  291             file, line);
  292         TD_LOCKS_INC(curthread);
  293 }
  294 
  295 void
  296 __mtx_unlock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
  297 {
  298         struct mtx *m;
  299 
  300         m = mtxlock2mtx(c);
  301 
  302         KASSERT(m->mtx_lock != MTX_DESTROYED,
  303             ("mtx_unlock() of destroyed mutex @ %s:%d", file, line));
  304         KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
  305             ("mtx_unlock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
  306             file, line));
  307         WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
  308         LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
  309             line);
  310         mtx_assert(m, MA_OWNED);
  311 
  312 #ifdef LOCK_PROFILING
  313         __mtx_unlock_sleep(c, (uintptr_t)curthread, opts, file, line);
  314 #else
  315         __mtx_unlock(m, curthread, opts, file, line);
  316 #endif
  317         TD_LOCKS_DEC(curthread);
  318 }
  319 
  320 void
  321 __mtx_lock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
  322     int line)
  323 {
  324         struct mtx *m;
  325 #ifdef SMP
  326         uintptr_t tid, v;
  327 #endif
  328 
  329         m = mtxlock2mtx(c);
  330 
  331         KASSERT(m->mtx_lock != MTX_DESTROYED,
  332             ("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line));
  333         KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
  334             ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
  335             m->lock_object.lo_name, file, line));
  336         if (mtx_owned(m))
  337                 KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
  338                     (opts & MTX_RECURSE) != 0,
  339             ("mtx_lock_spin: recursed on non-recursive mutex %s @ %s:%d\n",
  340                     m->lock_object.lo_name, file, line));
  341         opts &= ~MTX_RECURSE;
  342         WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
  343             file, line, NULL);
  344 #ifdef SMP
  345         spinlock_enter();
  346         tid = (uintptr_t)curthread;
  347         v = MTX_UNOWNED;
  348         if (!_mtx_obtain_lock_fetch(m, &v, tid))
  349                 _mtx_lock_spin(m, v, opts, file, line);
  350         else
  351                 LOCKSTAT_PROFILE_OBTAIN_SPIN_LOCK_SUCCESS(spin__acquire,
  352                     m, 0, 0, file, line);
  353 #else
  354         __mtx_lock_spin(m, curthread, opts, file, line);
  355 #endif
  356         LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
  357             line);
  358         WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
  359 }
  360 
  361 int
  362 __mtx_trylock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
  363     int line)
  364 {
  365         struct mtx *m;
  366 
  367         if (SCHEDULER_STOPPED())
  368                 return (1);
  369 
  370         m = mtxlock2mtx(c);
  371 
  372         KASSERT(m->mtx_lock != MTX_DESTROYED,
  373             ("mtx_trylock_spin() of destroyed mutex @ %s:%d", file, line));
  374         KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
  375             ("mtx_trylock_spin() of sleep mutex %s @ %s:%d",
  376             m->lock_object.lo_name, file, line));
  377         KASSERT((opts & MTX_RECURSE) == 0,
  378             ("mtx_trylock_spin: unsupp. opt MTX_RECURSE on mutex %s @ %s:%d\n",
  379             m->lock_object.lo_name, file, line));
  380         if (__mtx_trylock_spin(m, curthread, opts, file, line)) {
  381                 LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 1, file, line);
  382                 WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
  383                 return (1);
  384         }
  385         LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 0, file, line);
  386         return (0);
  387 }
  388 
  389 void
  390 __mtx_unlock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
  391     int line)
  392 {
  393         struct mtx *m;
  394 
  395         m = mtxlock2mtx(c);
  396 
  397         KASSERT(m->mtx_lock != MTX_DESTROYED,
  398             ("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line));
  399         KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
  400             ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
  401             m->lock_object.lo_name, file, line));
  402         WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
  403         LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
  404             line);
  405         mtx_assert(m, MA_OWNED);
  406 
  407         __mtx_unlock_spin(m);
  408 }
  409 
  410 /*
  411  * The important part of mtx_trylock{,_flags}()
  412  * Tries to acquire lock `m.'  If this function is called on a mutex that
  413  * is already owned, it will recursively acquire the lock.
  414  */
  415 int
  416 _mtx_trylock_flags_int(struct mtx *m, int opts LOCK_FILE_LINE_ARG_DEF)
  417 {
  418         struct thread *td;
  419         uintptr_t tid, v;
  420 #ifdef LOCK_PROFILING
  421         uint64_t waittime = 0;
  422         int contested = 0;
  423 #endif
  424         int rval;
  425         bool recursed;
  426 
  427         td = curthread;
  428         tid = (uintptr_t)td;
  429         if (SCHEDULER_STOPPED_TD(td))
  430                 return (1);
  431 
  432         KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(td),
  433             ("mtx_trylock() by idle thread %p on sleep mutex %s @ %s:%d",
  434             curthread, m->lock_object.lo_name, file, line));
  435         KASSERT(m->mtx_lock != MTX_DESTROYED,
  436             ("mtx_trylock() of destroyed mutex @ %s:%d", file, line));
  437         KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
  438             ("mtx_trylock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
  439             file, line));
  440 
  441         rval = 1;
  442         recursed = false;
  443         v = MTX_UNOWNED;
  444         for (;;) {
  445                 if (_mtx_obtain_lock_fetch(m, &v, tid))
  446                         break;
  447                 if (v == MTX_UNOWNED)
  448                         continue;
  449                 if (v == tid &&
  450                     ((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
  451                     (opts & MTX_RECURSE) != 0)) {
  452                         m->mtx_recurse++;
  453                         atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
  454                         recursed = true;
  455                         break;
  456                 }
  457                 rval = 0;
  458                 break;
  459         }
  460 
  461         opts &= ~MTX_RECURSE;
  462 
  463         LOCK_LOG_TRY("LOCK", &m->lock_object, opts, rval, file, line);
  464         if (rval) {
  465                 WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
  466                     file, line);
  467                 TD_LOCKS_INC(curthread);
  468                 if (!recursed)
  469                         LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
  470                             m, contested, waittime, file, line);
  471         }
  472 
  473         return (rval);
  474 }
  475 
  476 int
  477 _mtx_trylock_flags_(volatile uintptr_t *c, int opts, const char *file, int line)
  478 {
  479         struct mtx *m;
  480 
  481         m = mtxlock2mtx(c);
  482         return (_mtx_trylock_flags_int(m, opts LOCK_FILE_LINE_ARG));
  483 }
  484 
  485 /*
  486  * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
  487  *
  488  * We call this if the lock is either contested (i.e. we need to go to
  489  * sleep waiting for it), or if we need to recurse on it.
  490  */
  491 #if LOCK_DEBUG > 0
  492 void
  493 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v, int opts, const char *file,
  494     int line)
  495 #else
  496 void
  497 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v)
  498 #endif
  499 {
  500         struct thread *td;
  501         struct mtx *m;
  502         struct turnstile *ts;
  503         uintptr_t tid;
  504         struct thread *owner;
  505 #ifdef LOCK_PROFILING
  506         int contested = 0;
  507         uint64_t waittime = 0;
  508 #endif
  509 #if defined(ADAPTIVE_MUTEXES) || defined(KDTRACE_HOOKS)
  510         struct lock_delay_arg lda;
  511 #endif
  512 #ifdef KDTRACE_HOOKS
  513         u_int sleep_cnt = 0;
  514         int64_t sleep_time = 0;
  515         int64_t all_time = 0;
  516 #endif
  517 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
  518         int doing_lockprof = 0;
  519 #endif
  520 
  521         td = curthread;
  522         tid = (uintptr_t)td;
  523         m = mtxlock2mtx(c);
  524 
  525 #ifdef KDTRACE_HOOKS
  526         if (LOCKSTAT_PROFILE_ENABLED(adaptive__acquire)) {
  527                 while (v == MTX_UNOWNED) {
  528                         if (_mtx_obtain_lock_fetch(m, &v, tid))
  529                                 goto out_lockstat;
  530                 }
  531                 doing_lockprof = 1;
  532                 all_time -= lockstat_nsecs(&m->lock_object);
  533         }
  534 #endif
  535 #ifdef LOCK_PROFILING
  536         doing_lockprof = 1;
  537 #endif
  538 
  539         if (SCHEDULER_STOPPED_TD(td))
  540                 return;
  541 
  542         if (__predict_false(v == MTX_UNOWNED))
  543                 v = MTX_READ_VALUE(m);
  544 
  545         if (__predict_false(lv_mtx_owner(v) == td)) {
  546                 KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
  547                     (opts & MTX_RECURSE) != 0,
  548             ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n",
  549                     m->lock_object.lo_name, file, line));
  550 #if LOCK_DEBUG > 0
  551                 opts &= ~MTX_RECURSE;
  552 #endif
  553                 m->mtx_recurse++;
  554                 atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
  555                 if (LOCK_LOG_TEST(&m->lock_object, opts))
  556                         CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
  557                 return;
  558         }
  559 #if LOCK_DEBUG > 0
  560         opts &= ~MTX_RECURSE;
  561 #endif
  562 
  563 #if defined(ADAPTIVE_MUTEXES)
  564         lock_delay_arg_init(&lda, &mtx_delay);
  565 #elif defined(KDTRACE_HOOKS)
  566         lock_delay_arg_init_noadapt(&lda);
  567 #endif
  568 
  569 #ifdef HWPMC_HOOKS
  570         PMC_SOFT_CALL( , , lock, failed);
  571 #endif
  572         lock_profile_obtain_lock_failed(&m->lock_object, false,
  573                     &contested, &waittime);
  574         if (LOCK_LOG_TEST(&m->lock_object, opts))
  575                 CTR4(KTR_LOCK,
  576                     "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
  577                     m->lock_object.lo_name, (void *)m->mtx_lock, file, line);
  578 
  579         for (;;) {
  580                 if (v == MTX_UNOWNED) {
  581                         if (_mtx_obtain_lock_fetch(m, &v, tid))
  582                                 break;
  583                         continue;
  584                 }
  585 #ifdef KDTRACE_HOOKS
  586                 lda.spin_cnt++;
  587 #endif
  588 #ifdef ADAPTIVE_MUTEXES
  589                 /*
  590                  * If the owner is running on another CPU, spin until the
  591                  * owner stops running or the state of the lock changes.
  592                  */
  593                 owner = lv_mtx_owner(v);
  594                 if (TD_IS_RUNNING(owner)) {
  595                         if (LOCK_LOG_TEST(&m->lock_object, 0))
  596                                 CTR3(KTR_LOCK,
  597                                     "%s: spinning on %p held by %p",
  598                                     __func__, m, owner);
  599                         KTR_STATE1(KTR_SCHED, "thread",
  600                             sched_tdname((struct thread *)tid),
  601                             "spinning", "lockname:\"%s\"",
  602                             m->lock_object.lo_name);
  603                         do {
  604                                 lock_delay(&lda);
  605                                 v = MTX_READ_VALUE(m);
  606                                 owner = lv_mtx_owner(v);
  607                         } while (v != MTX_UNOWNED && TD_IS_RUNNING(owner));
  608                         KTR_STATE0(KTR_SCHED, "thread",
  609                             sched_tdname((struct thread *)tid),
  610                             "running");
  611                         continue;
  612                 }
  613 #endif
  614 
  615                 ts = turnstile_trywait(&m->lock_object);
  616                 v = MTX_READ_VALUE(m);
  617 retry_turnstile:
  618 
  619                 /*
  620                  * Check if the lock has been released while spinning for
  621                  * the turnstile chain lock.
  622                  */
  623                 if (v == MTX_UNOWNED) {
  624                         turnstile_cancel(ts);
  625                         continue;
  626                 }
  627 
  628 #ifdef ADAPTIVE_MUTEXES
  629                 /*
  630                  * The current lock owner might have started executing
  631                  * on another CPU (or the lock could have changed
  632                  * owners) while we were waiting on the turnstile
  633                  * chain lock.  If so, drop the turnstile lock and try
  634                  * again.
  635                  */
  636                 owner = lv_mtx_owner(v);
  637                 if (TD_IS_RUNNING(owner)) {
  638                         turnstile_cancel(ts);
  639                         continue;
  640                 }
  641 #endif
  642 
  643                 /*
  644                  * If the mutex isn't already contested and a failure occurs
  645                  * setting the contested bit, the mutex was either released
  646                  * or the state of the MTX_RECURSED bit changed.
  647                  */
  648                 if ((v & MTX_CONTESTED) == 0 &&
  649                     !atomic_fcmpset_ptr(&m->mtx_lock, &v, v | MTX_CONTESTED)) {
  650                         goto retry_turnstile;
  651                 }
  652 
  653                 /*
  654                  * We definitely must sleep for this lock.
  655                  */
  656                 mtx_assert(m, MA_NOTOWNED);
  657 
  658                 /*
  659                  * Block on the turnstile.
  660                  */
  661 #ifdef KDTRACE_HOOKS
  662                 sleep_time -= lockstat_nsecs(&m->lock_object);
  663 #endif
  664 #ifndef ADAPTIVE_MUTEXES
  665                 owner = mtx_owner(m);
  666 #endif
  667                 MPASS(owner == mtx_owner(m));
  668                 turnstile_wait(ts, owner, TS_EXCLUSIVE_QUEUE);
  669 #ifdef KDTRACE_HOOKS
  670                 sleep_time += lockstat_nsecs(&m->lock_object);
  671                 sleep_cnt++;
  672 #endif
  673                 v = MTX_READ_VALUE(m);
  674         }
  675 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
  676         if (__predict_true(!doing_lockprof))
  677                 return;
  678 #endif
  679 #ifdef KDTRACE_HOOKS
  680         all_time += lockstat_nsecs(&m->lock_object);
  681         if (sleep_time)
  682                 LOCKSTAT_RECORD1(adaptive__block, m, sleep_time);
  683 
  684         /*
  685          * Only record the loops spinning and not sleeping.
  686          */
  687         if (lda.spin_cnt > sleep_cnt)
  688                 LOCKSTAT_RECORD1(adaptive__spin, m, all_time - sleep_time);
  689 out_lockstat:
  690 #endif
  691         LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, m, contested,
  692             waittime, file, line);
  693 }
  694 
  695 #ifdef SMP
  696 /*
  697  * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock.
  698  *
  699  * This is only called if we need to actually spin for the lock. Recursion
  700  * is handled inline.
  701  */
  702 #if LOCK_DEBUG > 0
  703 void
  704 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v, int opts,
  705     const char *file, int line)
  706 #else
  707 void
  708 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v)
  709 #endif
  710 {
  711         struct mtx *m;
  712         struct lock_delay_arg lda;
  713         uintptr_t tid;
  714 #ifdef LOCK_PROFILING
  715         int contested = 0;
  716         uint64_t waittime = 0;
  717 #endif
  718 #ifdef KDTRACE_HOOKS
  719         int64_t spin_time = 0;
  720 #endif
  721 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
  722         int doing_lockprof = 0;
  723 #endif
  724 
  725         tid = (uintptr_t)curthread;
  726         m = mtxlock2mtx(c);
  727 
  728 #ifdef KDTRACE_HOOKS
  729         if (LOCKSTAT_PROFILE_ENABLED(adaptive__acquire)) {
  730                 while (v == MTX_UNOWNED) {
  731                         if (_mtx_obtain_lock_fetch(m, &v, tid))
  732                                 goto out_lockstat;
  733                 }
  734                 doing_lockprof = 1;
  735                 spin_time -= lockstat_nsecs(&m->lock_object);
  736         }
  737 #endif
  738 #ifdef LOCK_PROFILING
  739         doing_lockprof = 1;
  740 #endif
  741 
  742         if (__predict_false(v == MTX_UNOWNED))
  743                 v = MTX_READ_VALUE(m);
  744 
  745         if (__predict_false(v == tid)) {
  746                 m->mtx_recurse++;
  747                 return;
  748         }
  749 
  750         if (SCHEDULER_STOPPED())
  751                 return;
  752 
  753         if (LOCK_LOG_TEST(&m->lock_object, opts))
  754                 CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
  755         KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
  756             "spinning", "lockname:\"%s\"", m->lock_object.lo_name);
  757 
  758         lock_delay_arg_init(&lda, &mtx_spin_delay);
  759 
  760 #ifdef HWPMC_HOOKS
  761         PMC_SOFT_CALL( , , lock, failed);
  762 #endif
  763         lock_profile_obtain_lock_failed(&m->lock_object, true, &contested, &waittime);
  764 
  765         for (;;) {
  766                 if (v == MTX_UNOWNED) {
  767                         if (_mtx_obtain_lock_fetch(m, &v, tid))
  768                                 break;
  769                         continue;
  770                 }
  771                 /* Give interrupts a chance while we spin. */
  772                 spinlock_exit();
  773                 do {
  774                         if (__predict_true(lda.spin_cnt < 10000000)) {
  775                                 lock_delay(&lda);
  776                         } else {
  777                                 _mtx_lock_indefinite_check(m, &lda);
  778                         }
  779                         v = MTX_READ_VALUE(m);
  780                 } while (v != MTX_UNOWNED);
  781                 spinlock_enter();
  782         }
  783 
  784         if (LOCK_LOG_TEST(&m->lock_object, opts))
  785                 CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
  786         KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
  787             "running");
  788 
  789 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
  790         if (__predict_true(!doing_lockprof))
  791                 return;
  792 #endif
  793 #ifdef KDTRACE_HOOKS
  794         spin_time += lockstat_nsecs(&m->lock_object);
  795         if (lda.spin_cnt != 0)
  796                 LOCKSTAT_RECORD1(spin__spin, m, spin_time);
  797 out_lockstat:
  798 #endif
  799         LOCKSTAT_PROFILE_OBTAIN_SPIN_LOCK_SUCCESS(spin__acquire, m,
  800             contested, waittime, file, line);
  801 }
  802 #endif /* SMP */
  803 
  804 #ifdef INVARIANTS
  805 static void
  806 thread_lock_validate(struct mtx *m, int opts, const char *file, int line)
  807 {
  808 
  809         KASSERT(m->mtx_lock != MTX_DESTROYED,
  810             ("thread_lock() of destroyed mutex @ %s:%d", file, line));
  811         KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
  812             ("thread_lock() of sleep mutex %s @ %s:%d",
  813             m->lock_object.lo_name, file, line));
  814         KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) == 0,
  815             ("thread_lock: got a recursive mutex %s @ %s:%d\n",
  816             m->lock_object.lo_name, file, line));
  817         WITNESS_CHECKORDER(&m->lock_object,
  818             opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
  819 }
  820 #else
  821 #define thread_lock_validate(m, opts, file, line) do { } while (0)
  822 #endif
  823 
  824 #ifndef LOCK_PROFILING
  825 #if LOCK_DEBUG > 0
  826 void
  827 _thread_lock(struct thread *td, int opts, const char *file, int line)
  828 #else
  829 void
  830 _thread_lock(struct thread *td)
  831 #endif
  832 {
  833         struct mtx *m;
  834         uintptr_t tid;
  835 
  836         tid = (uintptr_t)curthread;
  837 
  838         if (__predict_false(LOCKSTAT_PROFILE_ENABLED(spin__acquire)))
  839                 goto slowpath_noirq;
  840         spinlock_enter();
  841         m = td->td_lock;
  842         thread_lock_validate(m, 0, file, line);
  843         if (__predict_false(m == &blocked_lock))
  844                 goto slowpath_unlocked;
  845         if (__predict_false(!_mtx_obtain_lock(m, tid)))
  846                 goto slowpath_unlocked;
  847         if (__predict_true(m == td->td_lock)) {
  848                 WITNESS_LOCK(&m->lock_object, LOP_EXCLUSIVE, file, line);
  849                 return;
  850         }
  851         _mtx_release_lock_quick(m);
  852 slowpath_unlocked:
  853         spinlock_exit();
  854 slowpath_noirq:
  855 #if LOCK_DEBUG > 0
  856         thread_lock_flags_(td, opts, file, line);
  857 #else
  858         thread_lock_flags_(td, 0, 0, 0);
  859 #endif
  860 }
  861 #endif
  862 
  863 void
  864 thread_lock_flags_(struct thread *td, int opts, const char *file, int line)
  865 {
  866         struct mtx *m;
  867         uintptr_t tid, v;
  868         struct lock_delay_arg lda;
  869 #ifdef LOCK_PROFILING
  870         int contested = 0;
  871         uint64_t waittime = 0;
  872 #endif
  873 #ifdef KDTRACE_HOOKS
  874         int64_t spin_time = 0;
  875 #endif
  876 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
  877         int doing_lockprof = 1;
  878 #endif
  879 
  880         tid = (uintptr_t)curthread;
  881 
  882         if (SCHEDULER_STOPPED()) {
  883                 /*
  884                  * Ensure that spinlock sections are balanced even when the
  885                  * scheduler is stopped, since we may otherwise inadvertently
  886                  * re-enable interrupts while dumping core.
  887                  */
  888                 spinlock_enter();
  889                 return;
  890         }
  891 
  892         lock_delay_arg_init(&lda, &mtx_spin_delay);
  893 
  894 #ifdef HWPMC_HOOKS
  895         PMC_SOFT_CALL( , , lock, failed);
  896 #endif
  897 
  898 #ifdef LOCK_PROFILING
  899         doing_lockprof = 1;
  900 #elif defined(KDTRACE_HOOKS)
  901         doing_lockprof = lockstat_enabled;
  902 #endif
  903 #ifdef KDTRACE_HOOKS
  904         if (__predict_false(doing_lockprof))
  905                 spin_time -= lockstat_nsecs(&td->td_lock->lock_object);
  906 #endif
  907         spinlock_enter();
  908 
  909         for (;;) {
  910 retry:
  911                 m = td->td_lock;
  912                 thread_lock_validate(m, opts, file, line);
  913                 v = MTX_READ_VALUE(m);
  914                 for (;;) {
  915                         if (v == MTX_UNOWNED) {
  916                                 if (_mtx_obtain_lock_fetch(m, &v, tid))
  917                                         break;
  918                                 continue;
  919                         }
  920                         MPASS(v != tid);
  921                         lock_profile_obtain_lock_failed(&m->lock_object, true,
  922                             &contested, &waittime);
  923                         /* Give interrupts a chance while we spin. */
  924                         spinlock_exit();
  925                         do {
  926                                 if (__predict_true(lda.spin_cnt < 10000000)) {
  927                                         lock_delay(&lda);
  928                                 } else {
  929                                         _mtx_lock_indefinite_check(m, &lda);
  930                                 }
  931                                 if (m != td->td_lock) {
  932                                         spinlock_enter();
  933                                         goto retry;
  934                                 }
  935                                 v = MTX_READ_VALUE(m);
  936                         } while (v != MTX_UNOWNED);
  937                         spinlock_enter();
  938                 }
  939                 if (m == td->td_lock)
  940                         break;
  941                 _mtx_release_lock_quick(m);
  942         }
  943         LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
  944             line);
  945         WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
  946 
  947 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
  948         if (__predict_true(!doing_lockprof))
  949                 return;
  950 #endif
  951 #ifdef KDTRACE_HOOKS
  952         spin_time += lockstat_nsecs(&m->lock_object);
  953 #endif
  954         LOCKSTAT_PROFILE_OBTAIN_SPIN_LOCK_SUCCESS(spin__acquire, m, contested,
  955             waittime, file, line);
  956 #ifdef KDTRACE_HOOKS
  957         if (lda.spin_cnt != 0)
  958                 LOCKSTAT_RECORD1(thread__spin, m, spin_time);
  959 #endif
  960 }
  961 
  962 struct mtx *
  963 thread_lock_block(struct thread *td)
  964 {
  965         struct mtx *lock;
  966 
  967         lock = td->td_lock;
  968         mtx_assert(lock, MA_OWNED);
  969         td->td_lock = &blocked_lock;
  970 
  971         return (lock);
  972 }
  973 
  974 void
  975 thread_lock_unblock(struct thread *td, struct mtx *new)
  976 {
  977 
  978         mtx_assert(new, MA_OWNED);
  979         KASSERT(td->td_lock == &blocked_lock,
  980             ("thread %p lock %p not blocked_lock %p",
  981             td, td->td_lock, &blocked_lock));
  982         atomic_store_rel_ptr((volatile void *)&td->td_lock, (uintptr_t)new);
  983 }
  984 
  985 void
  986 thread_lock_block_wait(struct thread *td)
  987 {
  988 
  989         while (td->td_lock == &blocked_lock)
  990                 cpu_spinwait();
  991 
  992         /* Acquire fence to be certain that all thread state is visible. */
  993         atomic_thread_fence_acq();
  994 }
  995 
  996 void
  997 thread_lock_set(struct thread *td, struct mtx *new)
  998 {
  999         struct mtx *lock;
 1000 
 1001         mtx_assert(new, MA_OWNED);
 1002         lock = td->td_lock;
 1003         mtx_assert(lock, MA_OWNED);
 1004         td->td_lock = new;
 1005         mtx_unlock_spin(lock);
 1006 }
 1007 
 1008 /*
 1009  * __mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
 1010  *
 1011  * We are only called here if the lock is recursed, contested (i.e. we
 1012  * need to wake up a blocked thread) or lockstat probe is active.
 1013  */
 1014 #if LOCK_DEBUG > 0
 1015 void
 1016 __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v, int opts,
 1017     const char *file, int line)
 1018 #else
 1019 void
 1020 __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v)
 1021 #endif
 1022 {
 1023         struct mtx *m;
 1024         struct turnstile *ts;
 1025         uintptr_t tid;
 1026 
 1027         if (SCHEDULER_STOPPED())
 1028                 return;
 1029 
 1030         tid = (uintptr_t)curthread;
 1031         m = mtxlock2mtx(c);
 1032 
 1033         if (__predict_false(v == tid))
 1034                 v = MTX_READ_VALUE(m);
 1035 
 1036         if (__predict_false(v & MTX_RECURSED)) {
 1037                 if (--(m->mtx_recurse) == 0)
 1038                         atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
 1039                 if (LOCK_LOG_TEST(&m->lock_object, opts))
 1040                         CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
 1041                 return;
 1042         }
 1043 
 1044         LOCKSTAT_PROFILE_RELEASE_LOCK(adaptive__release, m);
 1045         if (v == tid && _mtx_release_lock(m, tid))
 1046                 return;
 1047 
 1048         /*
 1049          * We have to lock the chain before the turnstile so this turnstile
 1050          * can be removed from the hash list if it is empty.
 1051          */
 1052         turnstile_chain_lock(&m->lock_object);
 1053         _mtx_release_lock_quick(m);
 1054         ts = turnstile_lookup(&m->lock_object);
 1055         MPASS(ts != NULL);
 1056         if (LOCK_LOG_TEST(&m->lock_object, opts))
 1057                 CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
 1058         turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE);
 1059 
 1060         /*
 1061          * This turnstile is now no longer associated with the mutex.  We can
 1062          * unlock the chain lock so a new turnstile may take it's place.
 1063          */
 1064         turnstile_unpend(ts);
 1065         turnstile_chain_unlock(&m->lock_object);
 1066 }
 1067 
 1068 /*
 1069  * All the unlocking of MTX_SPIN locks is done inline.
 1070  * See the __mtx_unlock_spin() macro for the details.
 1071  */
 1072 
 1073 /*
 1074  * The backing function for the INVARIANTS-enabled mtx_assert()
 1075  */
 1076 #ifdef INVARIANT_SUPPORT
 1077 void
 1078 __mtx_assert(const volatile uintptr_t *c, int what, const char *file, int line)
 1079 {
 1080         const struct mtx *m;
 1081 
 1082         if (KERNEL_PANICKED() || dumping || SCHEDULER_STOPPED())
 1083                 return;
 1084 
 1085         m = mtxlock2mtx(c);
 1086 
 1087         switch (what) {
 1088         case MA_OWNED:
 1089         case MA_OWNED | MA_RECURSED:
 1090         case MA_OWNED | MA_NOTRECURSED:
 1091                 if (!mtx_owned(m))
 1092                         panic("mutex %s not owned at %s:%d",
 1093                             m->lock_object.lo_name, file, line);
 1094                 if (mtx_recursed(m)) {
 1095                         if ((what & MA_NOTRECURSED) != 0)
 1096                                 panic("mutex %s recursed at %s:%d",
 1097                                     m->lock_object.lo_name, file, line);
 1098                 } else if ((what & MA_RECURSED) != 0) {
 1099                         panic("mutex %s unrecursed at %s:%d",
 1100                             m->lock_object.lo_name, file, line);
 1101                 }
 1102                 break;
 1103         case MA_NOTOWNED:
 1104                 if (mtx_owned(m))
 1105                         panic("mutex %s owned at %s:%d",
 1106                             m->lock_object.lo_name, file, line);
 1107                 break;
 1108         default:
 1109                 panic("unknown mtx_assert at %s:%d", file, line);
 1110         }
 1111 }
 1112 #endif
 1113 
 1114 /*
 1115  * General init routine used by the MTX_SYSINIT() macro.
 1116  */
 1117 void
 1118 mtx_sysinit(void *arg)
 1119 {
 1120         struct mtx_args *margs = arg;
 1121 
 1122         mtx_init((struct mtx *)margs->ma_mtx, margs->ma_desc, NULL,
 1123             margs->ma_opts);
 1124 }
 1125 
 1126 /*
 1127  * Mutex initialization routine; initialize lock `m' of type contained in
 1128  * `opts' with options contained in `opts' and name `name.'  The optional
 1129  * lock type `type' is used as a general lock category name for use with
 1130  * witness.
 1131  */
 1132 void
 1133 _mtx_init(volatile uintptr_t *c, const char *name, const char *type, int opts)
 1134 {
 1135         struct mtx *m;
 1136         struct lock_class *class;
 1137         int flags;
 1138 
 1139         m = mtxlock2mtx(c);
 1140 
 1141         MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
 1142             MTX_NOWITNESS | MTX_DUPOK | MTX_NOPROFILE | MTX_NEW)) == 0);
 1143         ASSERT_ATOMIC_LOAD_PTR(m->mtx_lock,
 1144             ("%s: mtx_lock not aligned for %s: %p", __func__, name,
 1145             &m->mtx_lock));
 1146 
 1147         /* Determine lock class and lock flags. */
 1148         if (opts & MTX_SPIN)
 1149                 class = &lock_class_mtx_spin;
 1150         else
 1151                 class = &lock_class_mtx_sleep;
 1152         flags = 0;
 1153         if (opts & MTX_QUIET)
 1154                 flags |= LO_QUIET;
 1155         if (opts & MTX_RECURSE)
 1156                 flags |= LO_RECURSABLE;
 1157         if ((opts & MTX_NOWITNESS) == 0)
 1158                 flags |= LO_WITNESS;
 1159         if (opts & MTX_DUPOK)
 1160                 flags |= LO_DUPOK;
 1161         if (opts & MTX_NOPROFILE)
 1162                 flags |= LO_NOPROFILE;
 1163         if (opts & MTX_NEW)
 1164                 flags |= LO_NEW;
 1165 
 1166         /* Initialize mutex. */
 1167         lock_init(&m->lock_object, class, name, type, flags);
 1168 
 1169         m->mtx_lock = MTX_UNOWNED;
 1170         m->mtx_recurse = 0;
 1171 }
 1172 
 1173 /*
 1174  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
 1175  * passed in as a flag here because if the corresponding mtx_init() was
 1176  * called with MTX_QUIET set, then it will already be set in the mutex's
 1177  * flags.
 1178  */
 1179 void
 1180 _mtx_destroy(volatile uintptr_t *c)
 1181 {
 1182         struct mtx *m;
 1183 
 1184         m = mtxlock2mtx(c);
 1185 
 1186         if (!mtx_owned(m))
 1187                 MPASS(mtx_unowned(m));
 1188         else {
 1189                 MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
 1190 
 1191                 /* Perform the non-mtx related part of mtx_unlock_spin(). */
 1192                 if (LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin) {
 1193                         lock_profile_release_lock(&m->lock_object, true);
 1194                         spinlock_exit();
 1195                 } else {
 1196                         TD_LOCKS_DEC(curthread);
 1197                         lock_profile_release_lock(&m->lock_object, false);
 1198                 }
 1199 
 1200                 /* Tell witness this isn't locked to make it happy. */
 1201                 WITNESS_UNLOCK(&m->lock_object, LOP_EXCLUSIVE, __FILE__,
 1202                     __LINE__);
 1203         }
 1204 
 1205         m->mtx_lock = MTX_DESTROYED;
 1206         lock_destroy(&m->lock_object);
 1207 }
 1208 
 1209 /*
 1210  * Intialize the mutex code and system mutexes.  This is called from the MD
 1211  * startup code prior to mi_startup().  The per-CPU data space needs to be
 1212  * setup before this is called.
 1213  */
 1214 void
 1215 mutex_init(void)
 1216 {
 1217 
 1218         /* Setup turnstiles so that sleep mutexes work. */
 1219         init_turnstiles();
 1220 
 1221         /*
 1222          * Initialize mutexes.
 1223          */
 1224         mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
 1225         mtx_init(&blocked_lock, "blocked lock", NULL, MTX_SPIN);
 1226         blocked_lock.mtx_lock = 0xdeadc0de;     /* Always blocked. */
 1227         mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
 1228         mtx_init(&proc0.p_slock, "process slock", NULL, MTX_SPIN);
 1229         mtx_init(&proc0.p_statmtx, "pstatl", NULL, MTX_SPIN);
 1230         mtx_init(&proc0.p_itimmtx, "pitiml", NULL, MTX_SPIN);
 1231         mtx_init(&proc0.p_profmtx, "pprofl", NULL, MTX_SPIN);
 1232         mtx_init(&devmtx, "cdev", NULL, MTX_DEF);
 1233         mtx_lock(&Giant);
 1234 }
 1235 
 1236 static void __noinline
 1237 _mtx_lock_indefinite_check(struct mtx *m, struct lock_delay_arg *ldap)
 1238 {
 1239         struct thread *td;
 1240 
 1241         ldap->spin_cnt++;
 1242         if (ldap->spin_cnt < 60000000 || kdb_active || KERNEL_PANICKED())
 1243                 cpu_lock_delay();
 1244         else {
 1245                 td = mtx_owner(m);
 1246 
 1247                 /* If the mutex is unlocked, try again. */
 1248                 if (td == NULL)
 1249                         return;
 1250 
 1251                 printf( "spin lock %p (%s) held by %p (tid %d) too long\n",
 1252                     m, m->lock_object.lo_name, td, td->td_tid);
 1253 #ifdef WITNESS
 1254                 witness_display_spinlock(&m->lock_object, td, printf);
 1255 #endif
 1256                 panic("spin lock held too long");
 1257         }
 1258         cpu_spinwait();
 1259 }
 1260 
 1261 void
 1262 mtx_spin_wait_unlocked(struct mtx *m)
 1263 {
 1264         struct lock_delay_arg lda;
 1265 
 1266         KASSERT(m->mtx_lock != MTX_DESTROYED,
 1267             ("%s() of destroyed mutex %p", __func__, m));
 1268         KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
 1269             ("%s() of sleep mutex %p (%s)", __func__, m,
 1270             m->lock_object.lo_name));
 1271         KASSERT(!mtx_owned(m), ("%s() waiting on myself on lock %p (%s)", __func__, m,
 1272             m->lock_object.lo_name));
 1273 
 1274         lda.spin_cnt = 0;
 1275 
 1276         while (atomic_load_acq_ptr(&m->mtx_lock) != MTX_UNOWNED) {
 1277                 if (__predict_true(lda.spin_cnt < 10000000)) {
 1278                         cpu_spinwait();
 1279                         lda.spin_cnt++;
 1280                 } else {
 1281                         _mtx_lock_indefinite_check(m, &lda);
 1282                 }
 1283         }
 1284 }
 1285 
 1286 void
 1287 mtx_wait_unlocked(struct mtx *m)
 1288 {
 1289         struct thread *owner;
 1290         uintptr_t v;
 1291 
 1292         KASSERT(m->mtx_lock != MTX_DESTROYED,
 1293             ("%s() of destroyed mutex %p", __func__, m));
 1294         KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
 1295             ("%s() not a sleep mutex %p (%s)", __func__, m,
 1296             m->lock_object.lo_name));
 1297         KASSERT(!mtx_owned(m), ("%s() waiting on myself on lock %p (%s)", __func__, m,
 1298             m->lock_object.lo_name));
 1299 
 1300         for (;;) {
 1301                 v = atomic_load_acq_ptr(&m->mtx_lock);
 1302                 if (v == MTX_UNOWNED) {
 1303                         break;
 1304                 }
 1305                 owner = lv_mtx_owner(v);
 1306                 if (!TD_IS_RUNNING(owner)) {
 1307                         mtx_lock(m);
 1308                         mtx_unlock(m);
 1309                         break;
 1310                 }
 1311                 cpu_spinwait();
 1312         }
 1313 }
 1314 
 1315 #ifdef DDB
 1316 void
 1317 db_show_mtx(const struct lock_object *lock)
 1318 {
 1319         struct thread *td;
 1320         const struct mtx *m;
 1321 
 1322         m = (const struct mtx *)lock;
 1323 
 1324         db_printf(" flags: {");
 1325         if (LOCK_CLASS(lock) == &lock_class_mtx_spin)
 1326                 db_printf("SPIN");
 1327         else
 1328                 db_printf("DEF");
 1329         if (m->lock_object.lo_flags & LO_RECURSABLE)
 1330                 db_printf(", RECURSE");
 1331         if (m->lock_object.lo_flags & LO_DUPOK)
 1332                 db_printf(", DUPOK");
 1333         db_printf("}\n");
 1334         db_printf(" state: {");
 1335         if (mtx_unowned(m))
 1336                 db_printf("UNOWNED");
 1337         else if (mtx_destroyed(m))
 1338                 db_printf("DESTROYED");
 1339         else {
 1340                 db_printf("OWNED");
 1341                 if (m->mtx_lock & MTX_CONTESTED)
 1342                         db_printf(", CONTESTED");
 1343                 if (m->mtx_lock & MTX_RECURSED)
 1344                         db_printf(", RECURSED");
 1345         }
 1346         db_printf("}\n");
 1347         if (!mtx_unowned(m) && !mtx_destroyed(m)) {
 1348                 td = mtx_owner(m);
 1349                 db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td,
 1350                     td->td_tid, td->td_proc->p_pid, td->td_name);
 1351                 if (mtx_recursed(m))
 1352                         db_printf(" recursed: %d\n", m->mtx_recurse);
 1353         }
 1354 }
 1355 #endif

Cache object: cb8cb310ef4bc444fe7ea863bcf33aa8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.