The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_mutex.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 3. Berkeley Software Design Inc's name may not be used to endorse or
   15  *    promote products derived from this software without specific prior
   16  *    written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
   31  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
   32  */
   33 
   34 /*
   35  * Machine independent bits of mutex implementation.
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD: releng/12.0/sys/kern/kern_mutex.c 340269 2018-11-08 22:39:38Z jhb $");
   40 
   41 #include "opt_adaptive_mutexes.h"
   42 #include "opt_ddb.h"
   43 #include "opt_hwpmc_hooks.h"
   44 #include "opt_sched.h"
   45 
   46 #include <sys/param.h>
   47 #include <sys/systm.h>
   48 #include <sys/bus.h>
   49 #include <sys/conf.h>
   50 #include <sys/kdb.h>
   51 #include <sys/kernel.h>
   52 #include <sys/ktr.h>
   53 #include <sys/lock.h>
   54 #include <sys/malloc.h>
   55 #include <sys/mutex.h>
   56 #include <sys/proc.h>
   57 #include <sys/resourcevar.h>
   58 #include <sys/sched.h>
   59 #include <sys/sbuf.h>
   60 #include <sys/smp.h>
   61 #include <sys/sysctl.h>
   62 #include <sys/turnstile.h>
   63 #include <sys/vmmeter.h>
   64 #include <sys/lock_profile.h>
   65 
   66 #include <machine/atomic.h>
   67 #include <machine/bus.h>
   68 #include <machine/cpu.h>
   69 
   70 #include <ddb/ddb.h>
   71 
   72 #include <fs/devfs/devfs_int.h>
   73 
   74 #include <vm/vm.h>
   75 #include <vm/vm_extern.h>
   76 
   77 #if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
   78 #define ADAPTIVE_MUTEXES
   79 #endif
   80 
   81 #ifdef HWPMC_HOOKS
   82 #include <sys/pmckern.h>
   83 PMC_SOFT_DEFINE( , , lock, failed);
   84 #endif
   85 
   86 /*
   87  * Return the mutex address when the lock cookie address is provided.
   88  * This functionality assumes that struct mtx* have a member named mtx_lock.
   89  */
   90 #define mtxlock2mtx(c)  (__containerof(c, struct mtx, mtx_lock))
   91 
   92 /*
   93  * Internal utility macros.
   94  */
   95 #define mtx_unowned(m)  ((m)->mtx_lock == MTX_UNOWNED)
   96 
   97 #define mtx_destroyed(m) ((m)->mtx_lock == MTX_DESTROYED)
   98 
   99 static void     assert_mtx(const struct lock_object *lock, int what);
  100 #ifdef DDB
  101 static void     db_show_mtx(const struct lock_object *lock);
  102 #endif
  103 static void     lock_mtx(struct lock_object *lock, uintptr_t how);
  104 static void     lock_spin(struct lock_object *lock, uintptr_t how);
  105 #ifdef KDTRACE_HOOKS
  106 static int      owner_mtx(const struct lock_object *lock,
  107                     struct thread **owner);
  108 #endif
  109 static uintptr_t unlock_mtx(struct lock_object *lock);
  110 static uintptr_t unlock_spin(struct lock_object *lock);
  111 
  112 /*
  113  * Lock classes for sleep and spin mutexes.
  114  */
  115 struct lock_class lock_class_mtx_sleep = {
  116         .lc_name = "sleep mutex",
  117         .lc_flags = LC_SLEEPLOCK | LC_RECURSABLE,
  118         .lc_assert = assert_mtx,
  119 #ifdef DDB
  120         .lc_ddb_show = db_show_mtx,
  121 #endif
  122         .lc_lock = lock_mtx,
  123         .lc_unlock = unlock_mtx,
  124 #ifdef KDTRACE_HOOKS
  125         .lc_owner = owner_mtx,
  126 #endif
  127 };
  128 struct lock_class lock_class_mtx_spin = {
  129         .lc_name = "spin mutex",
  130         .lc_flags = LC_SPINLOCK | LC_RECURSABLE,
  131         .lc_assert = assert_mtx,
  132 #ifdef DDB
  133         .lc_ddb_show = db_show_mtx,
  134 #endif
  135         .lc_lock = lock_spin,
  136         .lc_unlock = unlock_spin,
  137 #ifdef KDTRACE_HOOKS
  138         .lc_owner = owner_mtx,
  139 #endif
  140 };
  141 
  142 #ifdef ADAPTIVE_MUTEXES
  143 static SYSCTL_NODE(_debug, OID_AUTO, mtx, CTLFLAG_RD, NULL, "mtx debugging");
  144 
  145 static struct lock_delay_config __read_frequently mtx_delay;
  146 
  147 SYSCTL_INT(_debug_mtx, OID_AUTO, delay_base, CTLFLAG_RW, &mtx_delay.base,
  148     0, "");
  149 SYSCTL_INT(_debug_mtx, OID_AUTO, delay_max, CTLFLAG_RW, &mtx_delay.max,
  150     0, "");
  151 
  152 LOCK_DELAY_SYSINIT_DEFAULT(mtx_delay);
  153 #endif
  154 
  155 static SYSCTL_NODE(_debug, OID_AUTO, mtx_spin, CTLFLAG_RD, NULL,
  156     "mtx spin debugging");
  157 
  158 static struct lock_delay_config __read_frequently mtx_spin_delay;
  159 
  160 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_base, CTLFLAG_RW,
  161     &mtx_spin_delay.base, 0, "");
  162 SYSCTL_INT(_debug_mtx_spin, OID_AUTO, delay_max, CTLFLAG_RW,
  163     &mtx_spin_delay.max, 0, "");
  164 
  165 LOCK_DELAY_SYSINIT_DEFAULT(mtx_spin_delay);
  166 
  167 /*
  168  * System-wide mutexes
  169  */
  170 struct mtx blocked_lock;
  171 struct mtx __exclusive_cache_line Giant;
  172 
  173 static void _mtx_lock_indefinite_check(struct mtx *, struct lock_delay_arg *);
  174 
  175 void
  176 assert_mtx(const struct lock_object *lock, int what)
  177 {
  178 
  179         mtx_assert((const struct mtx *)lock, what);
  180 }
  181 
  182 void
  183 lock_mtx(struct lock_object *lock, uintptr_t how)
  184 {
  185 
  186         mtx_lock((struct mtx *)lock);
  187 }
  188 
  189 void
  190 lock_spin(struct lock_object *lock, uintptr_t how)
  191 {
  192 
  193         panic("spin locks can only use msleep_spin");
  194 }
  195 
  196 uintptr_t
  197 unlock_mtx(struct lock_object *lock)
  198 {
  199         struct mtx *m;
  200 
  201         m = (struct mtx *)lock;
  202         mtx_assert(m, MA_OWNED | MA_NOTRECURSED);
  203         mtx_unlock(m);
  204         return (0);
  205 }
  206 
  207 uintptr_t
  208 unlock_spin(struct lock_object *lock)
  209 {
  210 
  211         panic("spin locks can only use msleep_spin");
  212 }
  213 
  214 #ifdef KDTRACE_HOOKS
  215 int
  216 owner_mtx(const struct lock_object *lock, struct thread **owner)
  217 {
  218         const struct mtx *m;
  219         uintptr_t x;
  220 
  221         m = (const struct mtx *)lock;
  222         x = m->mtx_lock;
  223         *owner = (struct thread *)(x & ~MTX_FLAGMASK);
  224         return (*owner != NULL);
  225 }
  226 #endif
  227 
  228 /*
  229  * Function versions of the inlined __mtx_* macros.  These are used by
  230  * modules and can also be called from assembly language if needed.
  231  */
  232 void
  233 __mtx_lock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
  234 {
  235         struct mtx *m;
  236         uintptr_t tid, v;
  237 
  238         m = mtxlock2mtx(c);
  239 
  240         KASSERT(kdb_active != 0 || SCHEDULER_STOPPED() ||
  241             !TD_IS_IDLETHREAD(curthread),
  242             ("mtx_lock() by idle thread %p on sleep mutex %s @ %s:%d",
  243             curthread, m->lock_object.lo_name, file, line));
  244         KASSERT(m->mtx_lock != MTX_DESTROYED,
  245             ("mtx_lock() of destroyed mutex @ %s:%d", file, line));
  246         KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
  247             ("mtx_lock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
  248             file, line));
  249         WITNESS_CHECKORDER(&m->lock_object, (opts & ~MTX_RECURSE) |
  250             LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
  251 
  252         tid = (uintptr_t)curthread;
  253         v = MTX_UNOWNED;
  254         if (!_mtx_obtain_lock_fetch(m, &v, tid))
  255                 _mtx_lock_sleep(m, v, opts, file, line);
  256         else
  257                 LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
  258                     m, 0, 0, file, line);
  259         LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
  260             line);
  261         WITNESS_LOCK(&m->lock_object, (opts & ~MTX_RECURSE) | LOP_EXCLUSIVE,
  262             file, line);
  263         TD_LOCKS_INC(curthread);
  264 }
  265 
  266 void
  267 __mtx_unlock_flags(volatile uintptr_t *c, int opts, const char *file, int line)
  268 {
  269         struct mtx *m;
  270 
  271         m = mtxlock2mtx(c);
  272 
  273         KASSERT(m->mtx_lock != MTX_DESTROYED,
  274             ("mtx_unlock() of destroyed mutex @ %s:%d", file, line));
  275         KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
  276             ("mtx_unlock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
  277             file, line));
  278         WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
  279         LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
  280             line);
  281         mtx_assert(m, MA_OWNED);
  282 
  283 #ifdef LOCK_PROFILING
  284         __mtx_unlock_sleep(c, (uintptr_t)curthread, opts, file, line);
  285 #else
  286         __mtx_unlock(m, curthread, opts, file, line);
  287 #endif
  288         TD_LOCKS_DEC(curthread);
  289 }
  290 
  291 void
  292 __mtx_lock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
  293     int line)
  294 {
  295         struct mtx *m;
  296 #ifdef SMP
  297         uintptr_t tid, v;
  298 #endif
  299 
  300         m = mtxlock2mtx(c);
  301 
  302         KASSERT(m->mtx_lock != MTX_DESTROYED,
  303             ("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line));
  304         KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
  305             ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
  306             m->lock_object.lo_name, file, line));
  307         if (mtx_owned(m))
  308                 KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
  309                     (opts & MTX_RECURSE) != 0,
  310             ("mtx_lock_spin: recursed on non-recursive mutex %s @ %s:%d\n",
  311                     m->lock_object.lo_name, file, line));
  312         opts &= ~MTX_RECURSE;
  313         WITNESS_CHECKORDER(&m->lock_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
  314             file, line, NULL);
  315 #ifdef SMP
  316         spinlock_enter();
  317         tid = (uintptr_t)curthread;
  318         v = MTX_UNOWNED;
  319         if (!_mtx_obtain_lock_fetch(m, &v, tid))
  320                 _mtx_lock_spin(m, v, opts, file, line);
  321         else
  322                 LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire,
  323                     m, 0, 0, file, line);
  324 #else
  325         __mtx_lock_spin(m, curthread, opts, file, line);
  326 #endif
  327         LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
  328             line);
  329         WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
  330 }
  331 
  332 int
  333 __mtx_trylock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
  334     int line)
  335 {
  336         struct mtx *m;
  337 
  338         if (SCHEDULER_STOPPED())
  339                 return (1);
  340 
  341         m = mtxlock2mtx(c);
  342 
  343         KASSERT(m->mtx_lock != MTX_DESTROYED,
  344             ("mtx_trylock_spin() of destroyed mutex @ %s:%d", file, line));
  345         KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
  346             ("mtx_trylock_spin() of sleep mutex %s @ %s:%d",
  347             m->lock_object.lo_name, file, line));
  348         KASSERT((opts & MTX_RECURSE) == 0,
  349             ("mtx_trylock_spin: unsupp. opt MTX_RECURSE on mutex %s @ %s:%d\n",
  350             m->lock_object.lo_name, file, line));
  351         if (__mtx_trylock_spin(m, curthread, opts, file, line)) {
  352                 LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 1, file, line);
  353                 WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
  354                 return (1);
  355         }
  356         LOCK_LOG_TRY("LOCK", &m->lock_object, opts, 0, file, line);
  357         return (0);
  358 }
  359 
  360 void
  361 __mtx_unlock_spin_flags(volatile uintptr_t *c, int opts, const char *file,
  362     int line)
  363 {
  364         struct mtx *m;
  365 
  366         m = mtxlock2mtx(c);
  367 
  368         KASSERT(m->mtx_lock != MTX_DESTROYED,
  369             ("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line));
  370         KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
  371             ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
  372             m->lock_object.lo_name, file, line));
  373         WITNESS_UNLOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
  374         LOCK_LOG_LOCK("UNLOCK", &m->lock_object, opts, m->mtx_recurse, file,
  375             line);
  376         mtx_assert(m, MA_OWNED);
  377 
  378         __mtx_unlock_spin(m);
  379 }
  380 
  381 /*
  382  * The important part of mtx_trylock{,_flags}()
  383  * Tries to acquire lock `m.'  If this function is called on a mutex that
  384  * is already owned, it will recursively acquire the lock.
  385  */
  386 int
  387 _mtx_trylock_flags_int(struct mtx *m, int opts LOCK_FILE_LINE_ARG_DEF)
  388 {
  389         struct thread *td;
  390         uintptr_t tid, v;
  391 #ifdef LOCK_PROFILING
  392         uint64_t waittime = 0;
  393         int contested = 0;
  394 #endif
  395         int rval;
  396         bool recursed;
  397 
  398         td = curthread;
  399         tid = (uintptr_t)td;
  400         if (SCHEDULER_STOPPED_TD(td))
  401                 return (1);
  402 
  403         KASSERT(kdb_active != 0 || !TD_IS_IDLETHREAD(td),
  404             ("mtx_trylock() by idle thread %p on sleep mutex %s @ %s:%d",
  405             curthread, m->lock_object.lo_name, file, line));
  406         KASSERT(m->mtx_lock != MTX_DESTROYED,
  407             ("mtx_trylock() of destroyed mutex @ %s:%d", file, line));
  408         KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_sleep,
  409             ("mtx_trylock() of spin mutex %s @ %s:%d", m->lock_object.lo_name,
  410             file, line));
  411 
  412         rval = 1;
  413         recursed = false;
  414         v = MTX_UNOWNED;
  415         for (;;) {
  416                 if (_mtx_obtain_lock_fetch(m, &v, tid))
  417                         break;
  418                 if (v == MTX_UNOWNED)
  419                         continue;
  420                 if (v == tid &&
  421                     ((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
  422                     (opts & MTX_RECURSE) != 0)) {
  423                         m->mtx_recurse++;
  424                         atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
  425                         recursed = true;
  426                         break;
  427                 }
  428                 rval = 0;
  429                 break;
  430         }
  431 
  432         opts &= ~MTX_RECURSE;
  433 
  434         LOCK_LOG_TRY("LOCK", &m->lock_object, opts, rval, file, line);
  435         if (rval) {
  436                 WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
  437                     file, line);
  438                 TD_LOCKS_INC(curthread);
  439                 if (!recursed)
  440                         LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire,
  441                             m, contested, waittime, file, line);
  442         }
  443 
  444         return (rval);
  445 }
  446 
  447 int
  448 _mtx_trylock_flags_(volatile uintptr_t *c, int opts, const char *file, int line)
  449 {
  450         struct mtx *m;
  451 
  452         m = mtxlock2mtx(c);
  453         return (_mtx_trylock_flags_int(m, opts LOCK_FILE_LINE_ARG));
  454 }
  455 
  456 /*
  457  * __mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
  458  *
  459  * We call this if the lock is either contested (i.e. we need to go to
  460  * sleep waiting for it), or if we need to recurse on it.
  461  */
  462 #if LOCK_DEBUG > 0
  463 void
  464 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v, int opts, const char *file,
  465     int line)
  466 #else
  467 void
  468 __mtx_lock_sleep(volatile uintptr_t *c, uintptr_t v)
  469 #endif
  470 {
  471         struct thread *td;
  472         struct mtx *m;
  473         struct turnstile *ts;
  474         uintptr_t tid;
  475         struct thread *owner;
  476 #ifdef LOCK_PROFILING
  477         int contested = 0;
  478         uint64_t waittime = 0;
  479 #endif
  480 #if defined(ADAPTIVE_MUTEXES) || defined(KDTRACE_HOOKS)
  481         struct lock_delay_arg lda;
  482 #endif
  483 #ifdef KDTRACE_HOOKS
  484         u_int sleep_cnt = 0;
  485         int64_t sleep_time = 0;
  486         int64_t all_time = 0;
  487 #endif
  488 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
  489         int doing_lockprof;
  490 #endif
  491 
  492         td = curthread;
  493         tid = (uintptr_t)td;
  494         m = mtxlock2mtx(c);
  495 
  496 #ifdef KDTRACE_HOOKS
  497         if (LOCKSTAT_PROFILE_ENABLED(adaptive__acquire)) {
  498                 while (v == MTX_UNOWNED) {
  499                         if (_mtx_obtain_lock_fetch(m, &v, tid))
  500                                 goto out_lockstat;
  501                 }
  502                 doing_lockprof = 1;
  503                 all_time -= lockstat_nsecs(&m->lock_object);
  504         }
  505 #endif
  506 #ifdef LOCK_PROFILING
  507         doing_lockprof = 1;
  508 #endif
  509 
  510         if (SCHEDULER_STOPPED_TD(td))
  511                 return;
  512 
  513 #if defined(ADAPTIVE_MUTEXES)
  514         lock_delay_arg_init(&lda, &mtx_delay);
  515 #elif defined(KDTRACE_HOOKS)
  516         lock_delay_arg_init(&lda, NULL);
  517 #endif
  518 
  519         if (__predict_false(v == MTX_UNOWNED))
  520                 v = MTX_READ_VALUE(m);
  521 
  522         if (__predict_false(lv_mtx_owner(v) == td)) {
  523                 KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0 ||
  524                     (opts & MTX_RECURSE) != 0,
  525             ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n",
  526                     m->lock_object.lo_name, file, line));
  527 #if LOCK_DEBUG > 0
  528                 opts &= ~MTX_RECURSE;
  529 #endif
  530                 m->mtx_recurse++;
  531                 atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
  532                 if (LOCK_LOG_TEST(&m->lock_object, opts))
  533                         CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
  534                 return;
  535         }
  536 #if LOCK_DEBUG > 0
  537         opts &= ~MTX_RECURSE;
  538 #endif
  539 
  540 #ifdef HWPMC_HOOKS
  541         PMC_SOFT_CALL( , , lock, failed);
  542 #endif
  543         lock_profile_obtain_lock_failed(&m->lock_object,
  544                     &contested, &waittime);
  545         if (LOCK_LOG_TEST(&m->lock_object, opts))
  546                 CTR4(KTR_LOCK,
  547                     "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
  548                     m->lock_object.lo_name, (void *)m->mtx_lock, file, line);
  549 
  550         for (;;) {
  551                 if (v == MTX_UNOWNED) {
  552                         if (_mtx_obtain_lock_fetch(m, &v, tid))
  553                                 break;
  554                         continue;
  555                 }
  556 #ifdef KDTRACE_HOOKS
  557                 lda.spin_cnt++;
  558 #endif
  559 #ifdef ADAPTIVE_MUTEXES
  560                 /*
  561                  * If the owner is running on another CPU, spin until the
  562                  * owner stops running or the state of the lock changes.
  563                  */
  564                 owner = lv_mtx_owner(v);
  565                 if (TD_IS_RUNNING(owner)) {
  566                         if (LOCK_LOG_TEST(&m->lock_object, 0))
  567                                 CTR3(KTR_LOCK,
  568                                     "%s: spinning on %p held by %p",
  569                                     __func__, m, owner);
  570                         KTR_STATE1(KTR_SCHED, "thread",
  571                             sched_tdname((struct thread *)tid),
  572                             "spinning", "lockname:\"%s\"",
  573                             m->lock_object.lo_name);
  574                         do {
  575                                 lock_delay(&lda);
  576                                 v = MTX_READ_VALUE(m);
  577                                 owner = lv_mtx_owner(v);
  578                         } while (v != MTX_UNOWNED && TD_IS_RUNNING(owner));
  579                         KTR_STATE0(KTR_SCHED, "thread",
  580                             sched_tdname((struct thread *)tid),
  581                             "running");
  582                         continue;
  583                 }
  584 #endif
  585 
  586                 ts = turnstile_trywait(&m->lock_object);
  587                 v = MTX_READ_VALUE(m);
  588 retry_turnstile:
  589 
  590                 /*
  591                  * Check if the lock has been released while spinning for
  592                  * the turnstile chain lock.
  593                  */
  594                 if (v == MTX_UNOWNED) {
  595                         turnstile_cancel(ts);
  596                         continue;
  597                 }
  598 
  599 #ifdef ADAPTIVE_MUTEXES
  600                 /*
  601                  * The current lock owner might have started executing
  602                  * on another CPU (or the lock could have changed
  603                  * owners) while we were waiting on the turnstile
  604                  * chain lock.  If so, drop the turnstile lock and try
  605                  * again.
  606                  */
  607                 owner = lv_mtx_owner(v);
  608                 if (TD_IS_RUNNING(owner)) {
  609                         turnstile_cancel(ts);
  610                         continue;
  611                 }
  612 #endif
  613 
  614                 /*
  615                  * If the mutex isn't already contested and a failure occurs
  616                  * setting the contested bit, the mutex was either released
  617                  * or the state of the MTX_RECURSED bit changed.
  618                  */
  619                 if ((v & MTX_CONTESTED) == 0 &&
  620                     !atomic_fcmpset_ptr(&m->mtx_lock, &v, v | MTX_CONTESTED)) {
  621                         goto retry_turnstile;
  622                 }
  623 
  624                 /*
  625                  * We definitely must sleep for this lock.
  626                  */
  627                 mtx_assert(m, MA_NOTOWNED);
  628 
  629                 /*
  630                  * Block on the turnstile.
  631                  */
  632 #ifdef KDTRACE_HOOKS
  633                 sleep_time -= lockstat_nsecs(&m->lock_object);
  634 #endif
  635 #ifndef ADAPTIVE_MUTEXES
  636                 owner = mtx_owner(m);
  637 #endif
  638                 MPASS(owner == mtx_owner(m));
  639                 turnstile_wait(ts, owner, TS_EXCLUSIVE_QUEUE);
  640 #ifdef KDTRACE_HOOKS
  641                 sleep_time += lockstat_nsecs(&m->lock_object);
  642                 sleep_cnt++;
  643 #endif
  644                 v = MTX_READ_VALUE(m);
  645         }
  646 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
  647         if (__predict_true(!doing_lockprof))
  648                 return;
  649 #endif
  650 #ifdef KDTRACE_HOOKS
  651         all_time += lockstat_nsecs(&m->lock_object);
  652         if (sleep_time)
  653                 LOCKSTAT_RECORD1(adaptive__block, m, sleep_time);
  654 
  655         /*
  656          * Only record the loops spinning and not sleeping.
  657          */
  658         if (lda.spin_cnt > sleep_cnt)
  659                 LOCKSTAT_RECORD1(adaptive__spin, m, all_time - sleep_time);
  660 out_lockstat:
  661 #endif
  662         LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(adaptive__acquire, m, contested,
  663             waittime, file, line);
  664 }
  665 
  666 #ifdef SMP
  667 /*
  668  * _mtx_lock_spin_cookie: the tougher part of acquiring an MTX_SPIN lock.
  669  *
  670  * This is only called if we need to actually spin for the lock. Recursion
  671  * is handled inline.
  672  */
  673 #if LOCK_DEBUG > 0
  674 void
  675 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v, int opts,
  676     const char *file, int line)
  677 #else
  678 void
  679 _mtx_lock_spin_cookie(volatile uintptr_t *c, uintptr_t v)
  680 #endif
  681 {
  682         struct mtx *m;
  683         struct lock_delay_arg lda;
  684         uintptr_t tid;
  685 #ifdef LOCK_PROFILING
  686         int contested = 0;
  687         uint64_t waittime = 0;
  688 #endif
  689 #ifdef KDTRACE_HOOKS
  690         int64_t spin_time = 0;
  691 #endif
  692 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
  693         int doing_lockprof;
  694 #endif
  695 
  696         tid = (uintptr_t)curthread;
  697         m = mtxlock2mtx(c);
  698 
  699 #ifdef KDTRACE_HOOKS
  700         if (LOCKSTAT_PROFILE_ENABLED(adaptive__acquire)) {
  701                 while (v == MTX_UNOWNED) {
  702                         if (_mtx_obtain_lock_fetch(m, &v, tid))
  703                                 goto out_lockstat;
  704                 }
  705                 doing_lockprof = 1;
  706                 spin_time -= lockstat_nsecs(&m->lock_object);
  707         }
  708 #endif
  709 #ifdef LOCK_PROFILING
  710         doing_lockprof = 1;
  711 #endif
  712 
  713         if (__predict_false(v == MTX_UNOWNED))
  714                 v = MTX_READ_VALUE(m);
  715 
  716         if (__predict_false(v == tid)) {
  717                 m->mtx_recurse++;
  718                 return;
  719         }
  720 
  721         if (SCHEDULER_STOPPED())
  722                 return;
  723 
  724         lock_delay_arg_init(&lda, &mtx_spin_delay);
  725 
  726         if (LOCK_LOG_TEST(&m->lock_object, opts))
  727                 CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
  728         KTR_STATE1(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
  729             "spinning", "lockname:\"%s\"", m->lock_object.lo_name);
  730 
  731 #ifdef HWPMC_HOOKS
  732         PMC_SOFT_CALL( , , lock, failed);
  733 #endif
  734         lock_profile_obtain_lock_failed(&m->lock_object, &contested, &waittime);
  735 
  736         for (;;) {
  737                 if (v == MTX_UNOWNED) {
  738                         if (_mtx_obtain_lock_fetch(m, &v, tid))
  739                                 break;
  740                         continue;
  741                 }
  742                 /* Give interrupts a chance while we spin. */
  743                 spinlock_exit();
  744                 do {
  745                         if (__predict_true(lda.spin_cnt < 10000000)) {
  746                                 lock_delay(&lda);
  747                         } else {
  748                                 _mtx_lock_indefinite_check(m, &lda);
  749                         }
  750                         v = MTX_READ_VALUE(m);
  751                 } while (v != MTX_UNOWNED);
  752                 spinlock_enter();
  753         }
  754 
  755         if (LOCK_LOG_TEST(&m->lock_object, opts))
  756                 CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
  757         KTR_STATE0(KTR_SCHED, "thread", sched_tdname((struct thread *)tid),
  758             "running");
  759 
  760 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
  761         if (__predict_true(!doing_lockprof))
  762                 return;
  763 #endif
  764 #ifdef KDTRACE_HOOKS
  765         spin_time += lockstat_nsecs(&m->lock_object);
  766         if (lda.spin_cnt != 0)
  767                 LOCKSTAT_RECORD1(spin__spin, m, spin_time);
  768 out_lockstat:
  769 #endif
  770         LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m,
  771             contested, waittime, file, line);
  772 }
  773 #endif /* SMP */
  774 
  775 #ifdef INVARIANTS
  776 static void
  777 thread_lock_validate(struct mtx *m, int opts, const char *file, int line)
  778 {
  779 
  780         KASSERT(m->mtx_lock != MTX_DESTROYED,
  781             ("thread_lock() of destroyed mutex @ %s:%d", file, line));
  782         KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
  783             ("thread_lock() of sleep mutex %s @ %s:%d",
  784             m->lock_object.lo_name, file, line));
  785         if (mtx_owned(m))
  786                 KASSERT((m->lock_object.lo_flags & LO_RECURSABLE) != 0,
  787                     ("thread_lock: recursed on non-recursive mutex %s @ %s:%d\n",
  788                     m->lock_object.lo_name, file, line));
  789         WITNESS_CHECKORDER(&m->lock_object,
  790             opts | LOP_NEWORDER | LOP_EXCLUSIVE, file, line, NULL);
  791 }
  792 #else
  793 #define thread_lock_validate(m, opts, file, line) do { } while (0)
  794 #endif
  795 
  796 #ifndef LOCK_PROFILING
  797 #if LOCK_DEBUG > 0
  798 void
  799 _thread_lock(struct thread *td, int opts, const char *file, int line)
  800 #else
  801 void
  802 _thread_lock(struct thread *td)
  803 #endif
  804 {
  805         struct mtx *m;
  806         uintptr_t tid, v;
  807 
  808         tid = (uintptr_t)curthread;
  809 
  810         if (__predict_false(LOCKSTAT_PROFILE_ENABLED(spin__acquire)))
  811                 goto slowpath_noirq;
  812         spinlock_enter();
  813         m = td->td_lock;
  814         thread_lock_validate(m, 0, file, line);
  815         v = MTX_READ_VALUE(m);
  816         if (__predict_true(v == MTX_UNOWNED)) {
  817                 if (__predict_false(!_mtx_obtain_lock(m, tid)))
  818                         goto slowpath_unlocked;
  819         } else if (v == tid) {
  820                 m->mtx_recurse++;
  821         } else
  822                 goto slowpath_unlocked;
  823         if (__predict_true(m == td->td_lock)) {
  824                 WITNESS_LOCK(&m->lock_object, LOP_EXCLUSIVE, file, line);
  825                 return;
  826         }
  827         MPASS(m->mtx_recurse == 0);
  828         _mtx_release_lock_quick(m);
  829 slowpath_unlocked:
  830         spinlock_exit();
  831 slowpath_noirq:
  832 #if LOCK_DEBUG > 0
  833         thread_lock_flags_(td, opts, file, line);
  834 #else
  835         thread_lock_flags_(td, 0, 0, 0);
  836 #endif
  837 }
  838 #endif
  839 
  840 void
  841 thread_lock_flags_(struct thread *td, int opts, const char *file, int line)
  842 {
  843         struct mtx *m;
  844         uintptr_t tid, v;
  845         struct lock_delay_arg lda;
  846 #ifdef LOCK_PROFILING
  847         int contested = 0;
  848         uint64_t waittime = 0;
  849 #endif
  850 #ifdef KDTRACE_HOOKS
  851         int64_t spin_time = 0;
  852 #endif
  853 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
  854         int doing_lockprof = 1;
  855 #endif
  856 
  857         tid = (uintptr_t)curthread;
  858 
  859         if (SCHEDULER_STOPPED()) {
  860                 /*
  861                  * Ensure that spinlock sections are balanced even when the
  862                  * scheduler is stopped, since we may otherwise inadvertently
  863                  * re-enable interrupts while dumping core.
  864                  */
  865                 spinlock_enter();
  866                 return;
  867         }
  868 
  869         lock_delay_arg_init(&lda, &mtx_spin_delay);
  870 
  871 #ifdef HWPMC_HOOKS
  872         PMC_SOFT_CALL( , , lock, failed);
  873 #endif
  874 
  875 #ifdef LOCK_PROFILING
  876         doing_lockprof = 1;
  877 #elif defined(KDTRACE_HOOKS)
  878         doing_lockprof = lockstat_enabled;
  879         if (__predict_false(doing_lockprof))
  880                 spin_time -= lockstat_nsecs(&td->td_lock->lock_object);
  881 #endif
  882         spinlock_enter();
  883 
  884         for (;;) {
  885 retry:
  886                 m = td->td_lock;
  887                 thread_lock_validate(m, opts, file, line);
  888                 v = MTX_READ_VALUE(m);
  889                 for (;;) {
  890                         if (v == MTX_UNOWNED) {
  891                                 if (_mtx_obtain_lock_fetch(m, &v, tid))
  892                                         break;
  893                                 continue;
  894                         }
  895                         if (v == tid) {
  896                                 m->mtx_recurse++;
  897                                 MPASS(m == td->td_lock);
  898                                 break;
  899                         }
  900                         lock_profile_obtain_lock_failed(&m->lock_object,
  901                             &contested, &waittime);
  902                         /* Give interrupts a chance while we spin. */
  903                         spinlock_exit();
  904                         do {
  905                                 if (__predict_true(lda.spin_cnt < 10000000)) {
  906                                         lock_delay(&lda);
  907                                 } else {
  908                                         _mtx_lock_indefinite_check(m, &lda);
  909                                 }
  910                                 if (m != td->td_lock) {
  911                                         spinlock_enter();
  912                                         goto retry;
  913                                 }
  914                                 v = MTX_READ_VALUE(m);
  915                         } while (v != MTX_UNOWNED);
  916                         spinlock_enter();
  917                 }
  918                 if (m == td->td_lock)
  919                         break;
  920                 MPASS(m->mtx_recurse == 0);
  921                 _mtx_release_lock_quick(m);
  922         }
  923         LOCK_LOG_LOCK("LOCK", &m->lock_object, opts, m->mtx_recurse, file,
  924             line);
  925         WITNESS_LOCK(&m->lock_object, opts | LOP_EXCLUSIVE, file, line);
  926 
  927 #if defined(KDTRACE_HOOKS) || defined(LOCK_PROFILING)
  928         if (__predict_true(!doing_lockprof))
  929                 return;
  930 #endif
  931 #ifdef KDTRACE_HOOKS
  932         spin_time += lockstat_nsecs(&m->lock_object);
  933 #endif
  934         if (m->mtx_recurse == 0)
  935                 LOCKSTAT_PROFILE_OBTAIN_LOCK_SUCCESS(spin__acquire, m,
  936                     contested, waittime, file, line);
  937 #ifdef KDTRACE_HOOKS
  938         if (lda.spin_cnt != 0)
  939                 LOCKSTAT_RECORD1(thread__spin, m, spin_time);
  940 #endif
  941 }
  942 
  943 struct mtx *
  944 thread_lock_block(struct thread *td)
  945 {
  946         struct mtx *lock;
  947 
  948         THREAD_LOCK_ASSERT(td, MA_OWNED);
  949         lock = td->td_lock;
  950         td->td_lock = &blocked_lock;
  951         mtx_unlock_spin(lock);
  952 
  953         return (lock);
  954 }
  955 
  956 void
  957 thread_lock_unblock(struct thread *td, struct mtx *new)
  958 {
  959         mtx_assert(new, MA_OWNED);
  960         MPASS(td->td_lock == &blocked_lock);
  961         atomic_store_rel_ptr((volatile void *)&td->td_lock, (uintptr_t)new);
  962 }
  963 
  964 void
  965 thread_lock_set(struct thread *td, struct mtx *new)
  966 {
  967         struct mtx *lock;
  968 
  969         mtx_assert(new, MA_OWNED);
  970         THREAD_LOCK_ASSERT(td, MA_OWNED);
  971         lock = td->td_lock;
  972         td->td_lock = new;
  973         mtx_unlock_spin(lock);
  974 }
  975 
  976 /*
  977  * __mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
  978  *
  979  * We are only called here if the lock is recursed, contested (i.e. we
  980  * need to wake up a blocked thread) or lockstat probe is active.
  981  */
  982 #if LOCK_DEBUG > 0
  983 void
  984 __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v, int opts,
  985     const char *file, int line)
  986 #else
  987 void
  988 __mtx_unlock_sleep(volatile uintptr_t *c, uintptr_t v)
  989 #endif
  990 {
  991         struct mtx *m;
  992         struct turnstile *ts;
  993         uintptr_t tid;
  994 
  995         if (SCHEDULER_STOPPED())
  996                 return;
  997 
  998         tid = (uintptr_t)curthread;
  999         m = mtxlock2mtx(c);
 1000 
 1001         if (__predict_false(v == tid))
 1002                 v = MTX_READ_VALUE(m);
 1003 
 1004         if (__predict_false(v & MTX_RECURSED)) {
 1005                 if (--(m->mtx_recurse) == 0)
 1006                         atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
 1007                 if (LOCK_LOG_TEST(&m->lock_object, opts))
 1008                         CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
 1009                 return;
 1010         }
 1011 
 1012         LOCKSTAT_PROFILE_RELEASE_LOCK(adaptive__release, m);
 1013         if (v == tid && _mtx_release_lock(m, tid))
 1014                 return;
 1015 
 1016         /*
 1017          * We have to lock the chain before the turnstile so this turnstile
 1018          * can be removed from the hash list if it is empty.
 1019          */
 1020         turnstile_chain_lock(&m->lock_object);
 1021         _mtx_release_lock_quick(m);
 1022         ts = turnstile_lookup(&m->lock_object);
 1023         MPASS(ts != NULL);
 1024         if (LOCK_LOG_TEST(&m->lock_object, opts))
 1025                 CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
 1026         turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE);
 1027 
 1028         /*
 1029          * This turnstile is now no longer associated with the mutex.  We can
 1030          * unlock the chain lock so a new turnstile may take it's place.
 1031          */
 1032         turnstile_unpend(ts);
 1033         turnstile_chain_unlock(&m->lock_object);
 1034 }
 1035 
 1036 /*
 1037  * All the unlocking of MTX_SPIN locks is done inline.
 1038  * See the __mtx_unlock_spin() macro for the details.
 1039  */
 1040 
 1041 /*
 1042  * The backing function for the INVARIANTS-enabled mtx_assert()
 1043  */
 1044 #ifdef INVARIANT_SUPPORT
 1045 void
 1046 __mtx_assert(const volatile uintptr_t *c, int what, const char *file, int line)
 1047 {
 1048         const struct mtx *m;
 1049 
 1050         if (panicstr != NULL || dumping || SCHEDULER_STOPPED())
 1051                 return;
 1052 
 1053         m = mtxlock2mtx(c);
 1054 
 1055         switch (what) {
 1056         case MA_OWNED:
 1057         case MA_OWNED | MA_RECURSED:
 1058         case MA_OWNED | MA_NOTRECURSED:
 1059                 if (!mtx_owned(m))
 1060                         panic("mutex %s not owned at %s:%d",
 1061                             m->lock_object.lo_name, file, line);
 1062                 if (mtx_recursed(m)) {
 1063                         if ((what & MA_NOTRECURSED) != 0)
 1064                                 panic("mutex %s recursed at %s:%d",
 1065                                     m->lock_object.lo_name, file, line);
 1066                 } else if ((what & MA_RECURSED) != 0) {
 1067                         panic("mutex %s unrecursed at %s:%d",
 1068                             m->lock_object.lo_name, file, line);
 1069                 }
 1070                 break;
 1071         case MA_NOTOWNED:
 1072                 if (mtx_owned(m))
 1073                         panic("mutex %s owned at %s:%d",
 1074                             m->lock_object.lo_name, file, line);
 1075                 break;
 1076         default:
 1077                 panic("unknown mtx_assert at %s:%d", file, line);
 1078         }
 1079 }
 1080 #endif
 1081 
 1082 /*
 1083  * General init routine used by the MTX_SYSINIT() macro.
 1084  */
 1085 void
 1086 mtx_sysinit(void *arg)
 1087 {
 1088         struct mtx_args *margs = arg;
 1089 
 1090         mtx_init((struct mtx *)margs->ma_mtx, margs->ma_desc, NULL,
 1091             margs->ma_opts);
 1092 }
 1093 
 1094 /*
 1095  * Mutex initialization routine; initialize lock `m' of type contained in
 1096  * `opts' with options contained in `opts' and name `name.'  The optional
 1097  * lock type `type' is used as a general lock category name for use with
 1098  * witness.
 1099  */
 1100 void
 1101 _mtx_init(volatile uintptr_t *c, const char *name, const char *type, int opts)
 1102 {
 1103         struct mtx *m;
 1104         struct lock_class *class;
 1105         int flags;
 1106 
 1107         m = mtxlock2mtx(c);
 1108 
 1109         MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
 1110             MTX_NOWITNESS | MTX_DUPOK | MTX_NOPROFILE | MTX_NEW)) == 0);
 1111         ASSERT_ATOMIC_LOAD_PTR(m->mtx_lock,
 1112             ("%s: mtx_lock not aligned for %s: %p", __func__, name,
 1113             &m->mtx_lock));
 1114 
 1115         /* Determine lock class and lock flags. */
 1116         if (opts & MTX_SPIN)
 1117                 class = &lock_class_mtx_spin;
 1118         else
 1119                 class = &lock_class_mtx_sleep;
 1120         flags = 0;
 1121         if (opts & MTX_QUIET)
 1122                 flags |= LO_QUIET;
 1123         if (opts & MTX_RECURSE)
 1124                 flags |= LO_RECURSABLE;
 1125         if ((opts & MTX_NOWITNESS) == 0)
 1126                 flags |= LO_WITNESS;
 1127         if (opts & MTX_DUPOK)
 1128                 flags |= LO_DUPOK;
 1129         if (opts & MTX_NOPROFILE)
 1130                 flags |= LO_NOPROFILE;
 1131         if (opts & MTX_NEW)
 1132                 flags |= LO_NEW;
 1133 
 1134         /* Initialize mutex. */
 1135         lock_init(&m->lock_object, class, name, type, flags);
 1136 
 1137         m->mtx_lock = MTX_UNOWNED;
 1138         m->mtx_recurse = 0;
 1139 }
 1140 
 1141 /*
 1142  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
 1143  * passed in as a flag here because if the corresponding mtx_init() was
 1144  * called with MTX_QUIET set, then it will already be set in the mutex's
 1145  * flags.
 1146  */
 1147 void
 1148 _mtx_destroy(volatile uintptr_t *c)
 1149 {
 1150         struct mtx *m;
 1151 
 1152         m = mtxlock2mtx(c);
 1153 
 1154         if (!mtx_owned(m))
 1155                 MPASS(mtx_unowned(m));
 1156         else {
 1157                 MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
 1158 
 1159                 /* Perform the non-mtx related part of mtx_unlock_spin(). */
 1160                 if (LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin)
 1161                         spinlock_exit();
 1162                 else
 1163                         TD_LOCKS_DEC(curthread);
 1164 
 1165                 lock_profile_release_lock(&m->lock_object);
 1166                 /* Tell witness this isn't locked to make it happy. */
 1167                 WITNESS_UNLOCK(&m->lock_object, LOP_EXCLUSIVE, __FILE__,
 1168                     __LINE__);
 1169         }
 1170 
 1171         m->mtx_lock = MTX_DESTROYED;
 1172         lock_destroy(&m->lock_object);
 1173 }
 1174 
 1175 /*
 1176  * Intialize the mutex code and system mutexes.  This is called from the MD
 1177  * startup code prior to mi_startup().  The per-CPU data space needs to be
 1178  * setup before this is called.
 1179  */
 1180 void
 1181 mutex_init(void)
 1182 {
 1183 
 1184         /* Setup turnstiles so that sleep mutexes work. */
 1185         init_turnstiles();
 1186 
 1187         /*
 1188          * Initialize mutexes.
 1189          */
 1190         mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
 1191         mtx_init(&blocked_lock, "blocked lock", NULL, MTX_SPIN);
 1192         blocked_lock.mtx_lock = 0xdeadc0de;     /* Always blocked. */
 1193         mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
 1194         mtx_init(&proc0.p_slock, "process slock", NULL, MTX_SPIN);
 1195         mtx_init(&proc0.p_statmtx, "pstatl", NULL, MTX_SPIN);
 1196         mtx_init(&proc0.p_itimmtx, "pitiml", NULL, MTX_SPIN);
 1197         mtx_init(&proc0.p_profmtx, "pprofl", NULL, MTX_SPIN);
 1198         mtx_init(&devmtx, "cdev", NULL, MTX_DEF);
 1199         mtx_lock(&Giant);
 1200 }
 1201 
 1202 static void __noinline
 1203 _mtx_lock_indefinite_check(struct mtx *m, struct lock_delay_arg *ldap)
 1204 {
 1205         struct thread *td;
 1206 
 1207         ldap->spin_cnt++;
 1208         if (ldap->spin_cnt < 60000000 || kdb_active || panicstr != NULL)
 1209                 cpu_lock_delay();
 1210         else {
 1211                 td = mtx_owner(m);
 1212 
 1213                 /* If the mutex is unlocked, try again. */
 1214                 if (td == NULL)
 1215                         return;
 1216 
 1217                 printf( "spin lock %p (%s) held by %p (tid %d) too long\n",
 1218                     m, m->lock_object.lo_name, td, td->td_tid);
 1219 #ifdef WITNESS
 1220                 witness_display_spinlock(&m->lock_object, td, printf);
 1221 #endif
 1222                 panic("spin lock held too long");
 1223         }
 1224         cpu_spinwait();
 1225 }
 1226 
 1227 void
 1228 mtx_spin_wait_unlocked(struct mtx *m)
 1229 {
 1230         struct lock_delay_arg lda;
 1231 
 1232         KASSERT(m->mtx_lock != MTX_DESTROYED,
 1233             ("%s() of destroyed mutex %p", __func__, m));
 1234         KASSERT(LOCK_CLASS(&m->lock_object) == &lock_class_mtx_spin,
 1235             ("%s() of sleep mutex %p (%s)", __func__, m,
 1236             m->lock_object.lo_name));
 1237         KASSERT(!mtx_owned(m), ("%s() waiting on myself on lock %p (%s)", __func__, m,
 1238             m->lock_object.lo_name));
 1239 
 1240         lda.spin_cnt = 0;
 1241 
 1242         while (atomic_load_acq_ptr(&m->mtx_lock) != MTX_UNOWNED) {
 1243                 if (__predict_true(lda.spin_cnt < 10000000)) {
 1244                         cpu_spinwait();
 1245                         lda.spin_cnt++;
 1246                 } else {
 1247                         _mtx_lock_indefinite_check(m, &lda);
 1248                 }
 1249         }
 1250 }
 1251 
 1252 #ifdef DDB
 1253 void
 1254 db_show_mtx(const struct lock_object *lock)
 1255 {
 1256         struct thread *td;
 1257         const struct mtx *m;
 1258 
 1259         m = (const struct mtx *)lock;
 1260 
 1261         db_printf(" flags: {");
 1262         if (LOCK_CLASS(lock) == &lock_class_mtx_spin)
 1263                 db_printf("SPIN");
 1264         else
 1265                 db_printf("DEF");
 1266         if (m->lock_object.lo_flags & LO_RECURSABLE)
 1267                 db_printf(", RECURSE");
 1268         if (m->lock_object.lo_flags & LO_DUPOK)
 1269                 db_printf(", DUPOK");
 1270         db_printf("}\n");
 1271         db_printf(" state: {");
 1272         if (mtx_unowned(m))
 1273                 db_printf("UNOWNED");
 1274         else if (mtx_destroyed(m))
 1275                 db_printf("DESTROYED");
 1276         else {
 1277                 db_printf("OWNED");
 1278                 if (m->mtx_lock & MTX_CONTESTED)
 1279                         db_printf(", CONTESTED");
 1280                 if (m->mtx_lock & MTX_RECURSED)
 1281                         db_printf(", RECURSED");
 1282         }
 1283         db_printf("}\n");
 1284         if (!mtx_unowned(m) && !mtx_destroyed(m)) {
 1285                 td = mtx_owner(m);
 1286                 db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td,
 1287                     td->td_tid, td->td_proc->p_pid, td->td_name);
 1288                 if (mtx_recursed(m))
 1289                         db_printf(" recursed: %d\n", m->mtx_recurse);
 1290         }
 1291 }
 1292 #endif

Cache object: 7c34e6615895a55e321550398d751464


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.