The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_mutex.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. Redistributions in binary form must reproduce the above copyright
   10  *    notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
   13  *    promote products derived from this software without specific prior
   14  *    written permission.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
   17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
   20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   26  * SUCH DAMAGE.
   27  *
   28  *      from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
   29  *      and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
   30  */
   31 
   32 /*
   33  * Machine independent bits of mutex implementation.
   34  */
   35 
   36 #include <sys/cdefs.h>
   37 __FBSDID("$FreeBSD: releng/6.2/sys/kern/kern_mutex.c 164286 2006-11-14 20:42:41Z cvs2svn $");
   38 
   39 #include "opt_adaptive_mutexes.h"
   40 #include "opt_ddb.h"
   41 #include "opt_mprof.h"
   42 #include "opt_mutex_wake_all.h"
   43 #include "opt_sched.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/systm.h>
   47 #include <sys/bus.h>
   48 #include <sys/conf.h>
   49 #include <sys/kdb.h>
   50 #include <sys/kernel.h>
   51 #include <sys/ktr.h>
   52 #include <sys/lock.h>
   53 #include <sys/malloc.h>
   54 #include <sys/mutex.h>
   55 #include <sys/proc.h>
   56 #include <sys/resourcevar.h>
   57 #include <sys/sched.h>
   58 #include <sys/sbuf.h>
   59 #include <sys/sysctl.h>
   60 #include <sys/turnstile.h>
   61 #include <sys/vmmeter.h>
   62 
   63 #include <machine/atomic.h>
   64 #include <machine/bus.h>
   65 #include <machine/clock.h>
   66 #include <machine/cpu.h>
   67 
   68 #include <ddb/ddb.h>
   69 
   70 #include <fs/devfs/devfs_int.h>
   71 
   72 #include <vm/vm.h>
   73 #include <vm/vm_extern.h>
   74 
   75 /* 
   76  * Force MUTEX_WAKE_ALL for now.
   77  * single thread wakeup needs fixes to avoid race conditions with 
   78  * priority inheritance.
   79  */
   80 #ifndef MUTEX_WAKE_ALL
   81 #define MUTEX_WAKE_ALL
   82 #endif
   83 
   84 /*
   85  * Internal utility macros.
   86  */
   87 #define mtx_unowned(m)  ((m)->mtx_lock == MTX_UNOWNED)
   88 
   89 #define mtx_owner(m)    (mtx_unowned((m)) ? NULL \
   90         : (struct thread *)((m)->mtx_lock & MTX_FLAGMASK))
   91 
   92 #ifdef DDB
   93 static void     db_show_mtx(struct lock_object *lock);
   94 #endif
   95 
   96 /*
   97  * Lock classes for sleep and spin mutexes.
   98  */
   99 struct lock_class lock_class_mtx_sleep = {
  100         "sleep mutex",
  101         LC_SLEEPLOCK | LC_RECURSABLE,
  102 #ifdef DDB
  103         db_show_mtx
  104 #endif
  105 };
  106 struct lock_class lock_class_mtx_spin = {
  107         "spin mutex",
  108         LC_SPINLOCK | LC_RECURSABLE,
  109 #ifdef DDB
  110         db_show_mtx
  111 #endif
  112 };
  113 
  114 /*
  115  * System-wide mutexes
  116  */
  117 struct mtx sched_lock;
  118 struct mtx Giant;
  119 
  120 #ifdef MUTEX_PROFILING
  121 SYSCTL_NODE(_debug, OID_AUTO, mutex, CTLFLAG_RD, NULL, "mutex debugging");
  122 SYSCTL_NODE(_debug_mutex, OID_AUTO, prof, CTLFLAG_RD, NULL, "mutex profiling");
  123 static int mutex_prof_enable = 0;
  124 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, enable, CTLFLAG_RW,
  125     &mutex_prof_enable, 0, "Enable tracing of mutex holdtime");
  126 
  127 struct mutex_prof {
  128         const char      *name;
  129         const char      *file;
  130         int             line;
  131         uintmax_t       cnt_max;
  132         uintmax_t       cnt_tot;
  133         uintmax_t       cnt_cur;
  134         uintmax_t       cnt_contest_holding;
  135         uintmax_t       cnt_contest_locking;
  136         struct mutex_prof *next;
  137 };
  138 
  139 /*
  140  * mprof_buf is a static pool of profiling records to avoid possible
  141  * reentrance of the memory allocation functions.
  142  *
  143  * Note: NUM_MPROF_BUFFERS must be smaller than MPROF_HASH_SIZE.
  144  */
  145 #ifdef MPROF_BUFFERS
  146 #define NUM_MPROF_BUFFERS       MPROF_BUFFERS
  147 #else
  148 #define NUM_MPROF_BUFFERS       1000
  149 #endif
  150 static struct mutex_prof mprof_buf[NUM_MPROF_BUFFERS];
  151 static int first_free_mprof_buf;
  152 #ifndef MPROF_HASH_SIZE
  153 #define MPROF_HASH_SIZE         1009
  154 #endif
  155 #if NUM_MPROF_BUFFERS >= MPROF_HASH_SIZE
  156 #error MPROF_BUFFERS must be larger than MPROF_HASH_SIZE
  157 #endif
  158 static struct mutex_prof *mprof_hash[MPROF_HASH_SIZE];
  159 /* SWAG: sbuf size = avg stat. line size * number of locks */
  160 #define MPROF_SBUF_SIZE         256 * 400
  161 
  162 static int mutex_prof_acquisitions;
  163 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, acquisitions, CTLFLAG_RD,
  164     &mutex_prof_acquisitions, 0, "Number of mutex acquistions recorded");
  165 static int mutex_prof_records;
  166 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, records, CTLFLAG_RD,
  167     &mutex_prof_records, 0, "Number of profiling records");
  168 static int mutex_prof_maxrecords = NUM_MPROF_BUFFERS;
  169 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, maxrecords, CTLFLAG_RD,
  170     &mutex_prof_maxrecords, 0, "Maximum number of profiling records");
  171 static int mutex_prof_rejected;
  172 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, rejected, CTLFLAG_RD,
  173     &mutex_prof_rejected, 0, "Number of rejected profiling records");
  174 static int mutex_prof_hashsize = MPROF_HASH_SIZE;
  175 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, hashsize, CTLFLAG_RD,
  176     &mutex_prof_hashsize, 0, "Hash size");
  177 static int mutex_prof_collisions = 0;
  178 SYSCTL_INT(_debug_mutex_prof, OID_AUTO, collisions, CTLFLAG_RD,
  179     &mutex_prof_collisions, 0, "Number of hash collisions");
  180 
  181 /*
  182  * mprof_mtx protects the profiling buffers and the hash.
  183  */
  184 static struct mtx mprof_mtx;
  185 MTX_SYSINIT(mprof, &mprof_mtx, "mutex profiling lock", MTX_SPIN | MTX_QUIET);
  186 
  187 static u_int64_t
  188 nanoseconds(void)
  189 {
  190         struct timespec tv;
  191 
  192         nanotime(&tv);
  193         return (tv.tv_sec * (u_int64_t)1000000000 + tv.tv_nsec);
  194 }
  195 
  196 static int
  197 dump_mutex_prof_stats(SYSCTL_HANDLER_ARGS)
  198 {
  199         struct sbuf *sb;
  200         int error, i;
  201         static int multiplier = 1;
  202 
  203         if (first_free_mprof_buf == 0)
  204                 return (SYSCTL_OUT(req, "No locking recorded",
  205                     sizeof("No locking recorded")));
  206 
  207 retry_sbufops:
  208         sb = sbuf_new(NULL, NULL, MPROF_SBUF_SIZE * multiplier, SBUF_FIXEDLEN);
  209         sbuf_printf(sb, "\n%6s %12s %11s %5s %12s %12s %s\n",
  210             "max", "total", "count", "avg", "cnt_hold", "cnt_lock", "name");
  211         /*
  212          * XXX this spinlock seems to be by far the largest perpetrator
  213          * of spinlock latency (1.6 msec on an Athlon1600 was recorded
  214          * even before I pessimized it further by moving the average
  215          * computation here).
  216          */
  217         mtx_lock_spin(&mprof_mtx);
  218         for (i = 0; i < first_free_mprof_buf; ++i) {
  219                 sbuf_printf(sb, "%6ju %12ju %11ju %5ju %12ju %12ju %s:%d (%s)\n",
  220                     mprof_buf[i].cnt_max / 1000,
  221                     mprof_buf[i].cnt_tot / 1000,
  222                     mprof_buf[i].cnt_cur,
  223                     mprof_buf[i].cnt_cur == 0 ? (uintmax_t)0 :
  224                         mprof_buf[i].cnt_tot / (mprof_buf[i].cnt_cur * 1000),
  225                     mprof_buf[i].cnt_contest_holding,
  226                     mprof_buf[i].cnt_contest_locking,
  227                     mprof_buf[i].file, mprof_buf[i].line, mprof_buf[i].name);
  228                 if (sbuf_overflowed(sb)) {
  229                         mtx_unlock_spin(&mprof_mtx);
  230                         sbuf_delete(sb);
  231                         multiplier++;
  232                         goto retry_sbufops;
  233                 }
  234         }
  235         mtx_unlock_spin(&mprof_mtx);
  236         sbuf_finish(sb);
  237         error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
  238         sbuf_delete(sb);
  239         return (error);
  240 }
  241 SYSCTL_PROC(_debug_mutex_prof, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD,
  242     NULL, 0, dump_mutex_prof_stats, "A", "Mutex profiling statistics");
  243 
  244 static int
  245 reset_mutex_prof_stats(SYSCTL_HANDLER_ARGS)
  246 {
  247         int error, v;
  248 
  249         if (first_free_mprof_buf == 0)
  250                 return (0);
  251 
  252         v = 0;
  253         error = sysctl_handle_int(oidp, &v, 0, req);
  254         if (error)
  255                 return (error);
  256         if (req->newptr == NULL)
  257                 return (error);
  258         if (v == 0)
  259                 return (0);
  260 
  261         mtx_lock_spin(&mprof_mtx);
  262         bzero(mprof_buf, sizeof(*mprof_buf) * first_free_mprof_buf);
  263         bzero(mprof_hash, sizeof(struct mtx *) * MPROF_HASH_SIZE);
  264         first_free_mprof_buf = 0;
  265         mtx_unlock_spin(&mprof_mtx);
  266         return (0);
  267 }
  268 SYSCTL_PROC(_debug_mutex_prof, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW,
  269     NULL, 0, reset_mutex_prof_stats, "I", "Reset mutex profiling statistics");
  270 #endif
  271 
  272 /*
  273  * Function versions of the inlined __mtx_* macros.  These are used by
  274  * modules and can also be called from assembly language if needed.
  275  */
  276 void
  277 _mtx_lock_flags(struct mtx *m, int opts, const char *file, int line)
  278 {
  279 
  280         MPASS(curthread != NULL);
  281         KASSERT(m->mtx_lock != MTX_DESTROYED,
  282             ("mtx_lock() of destroyed mutex @ %s:%d", file, line));
  283         KASSERT(LOCK_CLASS(&m->mtx_object) == &lock_class_mtx_sleep,
  284             ("mtx_lock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
  285             file, line));
  286         WITNESS_CHECKORDER(&m->mtx_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
  287             file, line);
  288         _get_sleep_lock(m, curthread, opts, file, line);
  289         LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
  290             line);
  291         WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
  292         curthread->td_locks++;
  293 #ifdef MUTEX_PROFILING
  294         /* don't reset the timer when/if recursing */
  295         if (m->mtx_acqtime == 0) {
  296                 m->mtx_filename = file;
  297                 m->mtx_lineno = line;
  298                 m->mtx_acqtime = mutex_prof_enable ? nanoseconds() : 0;
  299                 ++mutex_prof_acquisitions;
  300         }
  301 #endif
  302 }
  303 
  304 void
  305 _mtx_unlock_flags(struct mtx *m, int opts, const char *file, int line)
  306 {
  307 
  308         MPASS(curthread != NULL);
  309         KASSERT(m->mtx_lock != MTX_DESTROYED,
  310             ("mtx_unlock() of destroyed mutex @ %s:%d", file, line));
  311         KASSERT(LOCK_CLASS(&m->mtx_object) == &lock_class_mtx_sleep,
  312             ("mtx_unlock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
  313             file, line));
  314         curthread->td_locks--;
  315         WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
  316         LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
  317             line);
  318         mtx_assert(m, MA_OWNED);
  319 #ifdef MUTEX_PROFILING
  320         if (m->mtx_acqtime != 0) {
  321                 static const char *unknown = "(unknown)";
  322                 struct mutex_prof *mpp;
  323                 u_int64_t acqtime, now;
  324                 const char *p, *q;
  325                 volatile u_int hash;
  326 
  327                 now = nanoseconds();
  328                 acqtime = m->mtx_acqtime;
  329                 m->mtx_acqtime = 0;
  330                 if (now <= acqtime)
  331                         goto out;
  332                 for (p = m->mtx_filename;
  333                     p != NULL && strncmp(p, "../", 3) == 0; p += 3)
  334                         /* nothing */ ;
  335                 if (p == NULL || *p == '\0')
  336                         p = unknown;
  337                 for (hash = m->mtx_lineno, q = p; *q != '\0'; ++q)
  338                         hash = (hash * 2 + *q) % MPROF_HASH_SIZE;
  339                 mtx_lock_spin(&mprof_mtx);
  340                 for (mpp = mprof_hash[hash]; mpp != NULL; mpp = mpp->next)
  341                         if (mpp->line == m->mtx_lineno &&
  342                             strcmp(mpp->file, p) == 0)
  343                                 break;
  344                 if (mpp == NULL) {
  345                         /* Just exit if we cannot get a trace buffer */
  346                         if (first_free_mprof_buf >= NUM_MPROF_BUFFERS) {
  347                                 ++mutex_prof_rejected;
  348                                 goto unlock;
  349                         }
  350                         mpp = &mprof_buf[first_free_mprof_buf++];
  351                         mpp->name = mtx_name(m);
  352                         mpp->file = p;
  353                         mpp->line = m->mtx_lineno;
  354                         mpp->next = mprof_hash[hash];
  355                         if (mprof_hash[hash] != NULL)
  356                                 ++mutex_prof_collisions;
  357                         mprof_hash[hash] = mpp;
  358                         ++mutex_prof_records;
  359                 }
  360                 /*
  361                  * Record if the mutex has been held longer now than ever
  362                  * before.
  363                  */
  364                 if (now - acqtime > mpp->cnt_max)
  365                         mpp->cnt_max = now - acqtime;
  366                 mpp->cnt_tot += now - acqtime;
  367                 mpp->cnt_cur++;
  368                 /*
  369                  * There's a small race, really we should cmpxchg
  370                  * 0 with the current value, but that would bill
  371                  * the contention to the wrong lock instance if
  372                  * it followed this also.
  373                  */
  374                 mpp->cnt_contest_holding += m->mtx_contest_holding;
  375                 m->mtx_contest_holding = 0;
  376                 mpp->cnt_contest_locking += m->mtx_contest_locking;
  377                 m->mtx_contest_locking = 0;
  378 unlock:
  379                 mtx_unlock_spin(&mprof_mtx);
  380         }
  381 out:
  382 #endif
  383         _rel_sleep_lock(m, curthread, opts, file, line);
  384 }
  385 
  386 void
  387 _mtx_lock_spin_flags(struct mtx *m, int opts, const char *file, int line)
  388 {
  389 
  390         MPASS(curthread != NULL);
  391         KASSERT(m->mtx_lock != MTX_DESTROYED,
  392             ("mtx_lock_spin() of destroyed mutex @ %s:%d", file, line));
  393         KASSERT(LOCK_CLASS(&m->mtx_object) == &lock_class_mtx_spin,
  394             ("mtx_lock_spin() of sleep mutex %s @ %s:%d",
  395             m->mtx_object.lo_name, file, line));
  396         WITNESS_CHECKORDER(&m->mtx_object, opts | LOP_NEWORDER | LOP_EXCLUSIVE,
  397             file, line);
  398         _get_spin_lock(m, curthread, opts, file, line);
  399         LOCK_LOG_LOCK("LOCK", &m->mtx_object, opts, m->mtx_recurse, file,
  400             line);
  401         WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
  402 }
  403 
  404 void
  405 _mtx_unlock_spin_flags(struct mtx *m, int opts, const char *file, int line)
  406 {
  407 
  408         MPASS(curthread != NULL);
  409         KASSERT(m->mtx_lock != MTX_DESTROYED,
  410             ("mtx_unlock_spin() of destroyed mutex @ %s:%d", file, line));
  411         KASSERT(LOCK_CLASS(&m->mtx_object) == &lock_class_mtx_spin,
  412             ("mtx_unlock_spin() of sleep mutex %s @ %s:%d",
  413             m->mtx_object.lo_name, file, line));
  414         WITNESS_UNLOCK(&m->mtx_object, opts | LOP_EXCLUSIVE, file, line);
  415         LOCK_LOG_LOCK("UNLOCK", &m->mtx_object, opts, m->mtx_recurse, file,
  416             line);
  417         mtx_assert(m, MA_OWNED);
  418         _rel_spin_lock(m);
  419 }
  420 
  421 /*
  422  * The important part of mtx_trylock{,_flags}()
  423  * Tries to acquire lock `m.'  If this function is called on a mutex that
  424  * is already owned, it will recursively acquire the lock.
  425  */
  426 int
  427 _mtx_trylock(struct mtx *m, int opts, const char *file, int line)
  428 {
  429         int rval;
  430 
  431         MPASS(curthread != NULL);
  432         KASSERT(m->mtx_lock != MTX_DESTROYED,
  433             ("mtx_trylock() of destroyed mutex @ %s:%d", file, line));
  434         KASSERT(LOCK_CLASS(&m->mtx_object) == &lock_class_mtx_sleep,
  435             ("mtx_trylock() of spin mutex %s @ %s:%d", m->mtx_object.lo_name,
  436             file, line));
  437 
  438         if (mtx_owned(m) && (m->mtx_object.lo_flags & LO_RECURSABLE) != 0) {
  439                 m->mtx_recurse++;
  440                 atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
  441                 rval = 1;
  442         } else
  443                 rval = _obtain_lock(m, (uintptr_t)curthread);
  444 
  445         LOCK_LOG_TRY("LOCK", &m->mtx_object, opts, rval, file, line);
  446         if (rval) {
  447                 WITNESS_LOCK(&m->mtx_object, opts | LOP_EXCLUSIVE | LOP_TRYLOCK,
  448                     file, line);
  449                 curthread->td_locks++;
  450         }
  451 
  452         return (rval);
  453 }
  454 
  455 /*
  456  * _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock.
  457  *
  458  * We call this if the lock is either contested (i.e. we need to go to
  459  * sleep waiting for it), or if we need to recurse on it.
  460  */
  461 void
  462 _mtx_lock_sleep(struct mtx *m, uintptr_t tid, int opts, const char *file,
  463     int line)
  464 {
  465 #if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
  466         volatile struct thread *owner;
  467 #endif
  468         uintptr_t v;
  469 #ifdef KTR
  470         int cont_logged = 0;
  471 #endif
  472 #ifdef MUTEX_PROFILING
  473         int contested;
  474 #endif
  475 
  476         if (mtx_owned(m)) {
  477                 KASSERT((m->mtx_object.lo_flags & LO_RECURSABLE) != 0,
  478             ("_mtx_lock_sleep: recursed on non-recursive mutex %s @ %s:%d\n",
  479                     m->mtx_object.lo_name, file, line));
  480                 m->mtx_recurse++;
  481                 atomic_set_ptr(&m->mtx_lock, MTX_RECURSED);
  482                 if (LOCK_LOG_TEST(&m->mtx_object, opts))
  483                         CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m);
  484                 return;
  485         }
  486 
  487         if (LOCK_LOG_TEST(&m->mtx_object, opts))
  488                 CTR4(KTR_LOCK,
  489                     "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d",
  490                     m->mtx_object.lo_name, (void *)m->mtx_lock, file, line);
  491 
  492 #ifdef MUTEX_PROFILING
  493         contested = 0;
  494 #endif
  495         while (!_obtain_lock(m, tid)) {
  496 #ifdef MUTEX_PROFILING
  497                 contested = 1;
  498                 atomic_add_int(&m->mtx_contest_holding, 1);
  499 #endif
  500                 turnstile_lock(&m->mtx_object);
  501                 v = m->mtx_lock;
  502 
  503                 /*
  504                  * Check if the lock has been released while spinning for
  505                  * the turnstile chain lock.
  506                  */
  507                 if (v == MTX_UNOWNED) {
  508                         turnstile_release(&m->mtx_object);
  509                         cpu_spinwait();
  510                         continue;
  511                 }
  512 
  513 #ifdef MUTEX_WAKE_ALL
  514                 MPASS(v != MTX_CONTESTED);
  515 #else
  516                 /*
  517                  * The mutex was marked contested on release. This means that
  518                  * there are other threads blocked on it.  Grab ownership of
  519                  * it and propagate its priority to the current thread if
  520                  * necessary.
  521                  */
  522                 if (v == MTX_CONTESTED) {
  523                         m->mtx_lock = tid | MTX_CONTESTED;
  524                         turnstile_claim(&m->mtx_object);
  525                         break;
  526                 }
  527 #endif
  528 
  529                 /*
  530                  * If the mutex isn't already contested and a failure occurs
  531                  * setting the contested bit, the mutex was either released
  532                  * or the state of the MTX_RECURSED bit changed.
  533                  */
  534                 if ((v & MTX_CONTESTED) == 0 &&
  535                     !atomic_cmpset_ptr(&m->mtx_lock, v, v | MTX_CONTESTED)) {
  536                         turnstile_release(&m->mtx_object);
  537                         cpu_spinwait();
  538                         continue;
  539                 }
  540 
  541 #if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
  542                 /*
  543                  * If the current owner of the lock is executing on another
  544                  * CPU, spin instead of blocking.
  545                  */
  546                 owner = (struct thread *)(v & MTX_FLAGMASK);
  547 #ifdef ADAPTIVE_GIANT
  548                 if (TD_IS_RUNNING(owner)) {
  549 #else
  550                 if (m != &Giant && TD_IS_RUNNING(owner)) {
  551 #endif
  552                         turnstile_release(&m->mtx_object);
  553                         while (mtx_owner(m) == owner && TD_IS_RUNNING(owner)) {
  554                                 cpu_spinwait();
  555                         }
  556                         continue;
  557                 }
  558 #endif  /* SMP && !NO_ADAPTIVE_MUTEXES */
  559 
  560                 /*
  561                  * We definitely must sleep for this lock.
  562                  */
  563                 mtx_assert(m, MA_NOTOWNED);
  564 
  565 #ifdef KTR
  566                 if (!cont_logged) {
  567                         CTR6(KTR_CONTENTION,
  568                             "contention: %p at %s:%d wants %s, taken by %s:%d",
  569                             (void *)tid, file, line, m->mtx_object.lo_name,
  570                             WITNESS_FILE(&m->mtx_object),
  571                             WITNESS_LINE(&m->mtx_object));
  572                         cont_logged = 1;
  573                 }
  574 #endif
  575 
  576                 /*
  577                  * Block on the turnstile.
  578                  */
  579                 turnstile_wait(&m->mtx_object, mtx_owner(m));
  580         }
  581 
  582 #ifdef KTR
  583         if (cont_logged) {
  584                 CTR4(KTR_CONTENTION,
  585                     "contention end: %s acquired by %p at %s:%d",
  586                     m->mtx_object.lo_name, (void *)tid, file, line);
  587         }
  588 #endif
  589 #ifdef MUTEX_PROFILING
  590         if (contested)
  591                 m->mtx_contest_locking++;
  592         m->mtx_contest_holding = 0;
  593 #endif
  594         return;
  595 }
  596 
  597 #ifdef SMP
  598 /*
  599  * _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock.
  600  *
  601  * This is only called if we need to actually spin for the lock. Recursion
  602  * is handled inline.
  603  */
  604 void
  605 _mtx_lock_spin(struct mtx *m, uintptr_t tid, int opts, const char *file,
  606     int line)
  607 {
  608         int i = 0;
  609 
  610         if (LOCK_LOG_TEST(&m->mtx_object, opts))
  611                 CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m);
  612 
  613         for (;;) {
  614                 if (_obtain_lock(m, tid))
  615                         break;
  616 
  617                 /* Give interrupts a chance while we spin. */
  618                 spinlock_exit();
  619                 while (m->mtx_lock != MTX_UNOWNED) {
  620                         if (i++ < 10000000) {
  621                                 cpu_spinwait();
  622                                 continue;
  623                         }
  624                         if (i < 60000000)
  625                                 DELAY(1);
  626                         else if (!kdb_active && !panicstr) {
  627                                 printf("spin lock %s held by %p for > 5 seconds\n",
  628                                     m->mtx_object.lo_name, (void *)m->mtx_lock);
  629 #ifdef WITNESS
  630                                 witness_display_spinlock(&m->mtx_object,
  631                                     mtx_owner(m));
  632 #endif
  633                                 panic("spin lock held too long");
  634                         }
  635                         cpu_spinwait();
  636                 }
  637                 spinlock_enter();
  638         }
  639 
  640         if (LOCK_LOG_TEST(&m->mtx_object, opts))
  641                 CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m);
  642 
  643         return;
  644 }
  645 #endif /* SMP */
  646 
  647 /*
  648  * _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock.
  649  *
  650  * We are only called here if the lock is recursed or contested (i.e. we
  651  * need to wake up a blocked thread).
  652  */
  653 void
  654 _mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line)
  655 {
  656         struct turnstile *ts;
  657 #ifndef PREEMPTION
  658         struct thread *td, *td1;
  659 #endif
  660 
  661         if (mtx_recursed(m)) {
  662                 if (--(m->mtx_recurse) == 0)
  663                         atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED);
  664                 if (LOCK_LOG_TEST(&m->mtx_object, opts))
  665                         CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m);
  666                 return;
  667         }
  668 
  669         turnstile_lock(&m->mtx_object);
  670         ts = turnstile_lookup(&m->mtx_object);
  671         if (LOCK_LOG_TEST(&m->mtx_object, opts))
  672                 CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m);
  673 
  674 #if defined(SMP) && !defined(NO_ADAPTIVE_MUTEXES)
  675         if (ts == NULL) {
  676                 _release_lock_quick(m);
  677                 if (LOCK_LOG_TEST(&m->mtx_object, opts))
  678                         CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p no sleepers", m);
  679                 turnstile_release(&m->mtx_object);
  680                 return;
  681         }
  682 #else
  683         MPASS(ts != NULL);
  684 #endif
  685 #ifndef PREEMPTION
  686         /* XXX */
  687         td1 = turnstile_head(ts);
  688 #endif
  689 #ifdef MUTEX_WAKE_ALL
  690         turnstile_broadcast(ts);
  691         _release_lock_quick(m);
  692 #else
  693         if (turnstile_signal(ts)) {
  694                 _release_lock_quick(m);
  695                 if (LOCK_LOG_TEST(&m->mtx_object, opts))
  696                         CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p not held", m);
  697         } else {
  698                 m->mtx_lock = MTX_CONTESTED;
  699                 if (LOCK_LOG_TEST(&m->mtx_object, opts))
  700                         CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p still contested",
  701                             m);
  702         }
  703 #endif
  704         turnstile_unpend(ts);
  705 
  706 #ifndef PREEMPTION
  707         /*
  708          * XXX: This is just a hack until preemption is done.  However,
  709          * once preemption is done we need to either wrap the
  710          * turnstile_signal() and release of the actual lock in an
  711          * extra critical section or change the preemption code to
  712          * always just set a flag and never do instant-preempts.
  713          */
  714         td = curthread;
  715         if (td->td_critnest > 0 || td1->td_priority >= td->td_priority)
  716                 return;
  717         mtx_lock_spin(&sched_lock);
  718         if (!TD_IS_RUNNING(td1)) {
  719 #ifdef notyet
  720                 if (td->td_ithd != NULL) {
  721                         struct ithd *it = td->td_ithd;
  722 
  723                         if (it->it_interrupted) {
  724                                 if (LOCK_LOG_TEST(&m->mtx_object, opts))
  725                                         CTR2(KTR_LOCK,
  726                                     "_mtx_unlock_sleep: %p interrupted %p",
  727                                             it, it->it_interrupted);
  728                                 intr_thd_fixup(it);
  729                         }
  730                 }
  731 #endif
  732                 if (LOCK_LOG_TEST(&m->mtx_object, opts))
  733                         CTR2(KTR_LOCK,
  734                             "_mtx_unlock_sleep: %p switching out lock=%p", m,
  735                             (void *)m->mtx_lock);
  736 
  737                 mi_switch(SW_INVOL, NULL);
  738                 if (LOCK_LOG_TEST(&m->mtx_object, opts))
  739                         CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p resuming lock=%p",
  740                             m, (void *)m->mtx_lock);
  741         }
  742         mtx_unlock_spin(&sched_lock);
  743 #endif
  744 
  745         return;
  746 }
  747 
  748 /*
  749  * All the unlocking of MTX_SPIN locks is done inline.
  750  * See the _rel_spin_lock() macro for the details.
  751  */
  752 
  753 /*
  754  * The backing function for the INVARIANTS-enabled mtx_assert()
  755  */
  756 #ifdef INVARIANT_SUPPORT
  757 void
  758 _mtx_assert(struct mtx *m, int what, const char *file, int line)
  759 {
  760 
  761         if (panicstr != NULL || dumping)
  762                 return;
  763         switch (what) {
  764         case MA_OWNED:
  765         case MA_OWNED | MA_RECURSED:
  766         case MA_OWNED | MA_NOTRECURSED:
  767                 if (!mtx_owned(m))
  768                         panic("mutex %s not owned at %s:%d",
  769                             m->mtx_object.lo_name, file, line);
  770                 if (mtx_recursed(m)) {
  771                         if ((what & MA_NOTRECURSED) != 0)
  772                                 panic("mutex %s recursed at %s:%d",
  773                                     m->mtx_object.lo_name, file, line);
  774                 } else if ((what & MA_RECURSED) != 0) {
  775                         panic("mutex %s unrecursed at %s:%d",
  776                             m->mtx_object.lo_name, file, line);
  777                 }
  778                 break;
  779         case MA_NOTOWNED:
  780                 if (mtx_owned(m))
  781                         panic("mutex %s owned at %s:%d",
  782                             m->mtx_object.lo_name, file, line);
  783                 break;
  784         default:
  785                 panic("unknown mtx_assert at %s:%d", file, line);
  786         }
  787 }
  788 #endif
  789 
  790 /*
  791  * The MUTEX_DEBUG-enabled mtx_validate()
  792  *
  793  * Most of these checks have been moved off into the LO_INITIALIZED flag
  794  * maintained by the witness code.
  795  */
  796 #ifdef MUTEX_DEBUG
  797 
  798 void    mtx_validate(struct mtx *);
  799 
  800 void
  801 mtx_validate(struct mtx *m)
  802 {
  803 
  804 /*
  805  * XXX: When kernacc() does not require Giant we can reenable this check
  806  */
  807 #ifdef notyet
  808 /*
  809  * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly
  810  * we can re-enable the kernacc() checks.
  811  */
  812 #ifndef __alpha__
  813         /*
  814          * Can't call kernacc() from early init386(), especially when
  815          * initializing Giant mutex, because some stuff in kernacc()
  816          * requires Giant itself.
  817          */
  818         if (!cold)
  819                 if (!kernacc((caddr_t)m, sizeof(m),
  820                     VM_PROT_READ | VM_PROT_WRITE))
  821                         panic("Can't read and write to mutex %p", m);
  822 #endif
  823 #endif
  824 }
  825 #endif
  826 
  827 /*
  828  * General init routine used by the MTX_SYSINIT() macro.
  829  */
  830 void
  831 mtx_sysinit(void *arg)
  832 {
  833         struct mtx_args *margs = arg;
  834 
  835         mtx_init(margs->ma_mtx, margs->ma_desc, NULL, margs->ma_opts);
  836 }
  837 
  838 /*
  839  * Mutex initialization routine; initialize lock `m' of type contained in
  840  * `opts' with options contained in `opts' and name `name.'  The optional
  841  * lock type `type' is used as a general lock category name for use with
  842  * witness.
  843  */
  844 void
  845 mtx_init(struct mtx *m, const char *name, const char *type, int opts)
  846 {
  847         struct lock_class *class;
  848         int flags;
  849 
  850         MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE |
  851             MTX_NOWITNESS | MTX_DUPOK)) == 0);
  852 
  853 #ifdef MUTEX_DEBUG
  854         /* Diagnostic and error correction */
  855         mtx_validate(m);
  856 #endif
  857 
  858         /* Determine lock class and lock flags. */
  859         if (opts & MTX_SPIN)
  860                 class = &lock_class_mtx_spin;
  861         else
  862                 class = &lock_class_mtx_sleep;
  863         flags = 0;
  864         if (opts & MTX_QUIET)
  865                 flags |= LO_QUIET;
  866         if (opts & MTX_RECURSE)
  867                 flags |= LO_RECURSABLE;
  868         if ((opts & MTX_NOWITNESS) == 0)
  869                 flags |= LO_WITNESS;
  870         if (opts & MTX_DUPOK)
  871                 flags |= LO_DUPOK;
  872 
  873         /* Initialize mutex. */
  874         m->mtx_lock = MTX_UNOWNED;
  875         m->mtx_recurse = 0;
  876 #ifdef MUTEX_PROFILING
  877         m->mtx_acqtime = 0;
  878         m->mtx_filename = NULL;
  879         m->mtx_lineno = 0;
  880         m->mtx_contest_holding = 0;
  881         m->mtx_contest_locking = 0;
  882 #endif
  883 
  884         lock_init(&m->mtx_object, class, name, type, flags);
  885 }
  886 
  887 /*
  888  * Remove lock `m' from all_mtx queue.  We don't allow MTX_QUIET to be
  889  * passed in as a flag here because if the corresponding mtx_init() was
  890  * called with MTX_QUIET set, then it will already be set in the mutex's
  891  * flags.
  892  */
  893 void
  894 mtx_destroy(struct mtx *m)
  895 {
  896 
  897         if (!mtx_owned(m))
  898                 MPASS(mtx_unowned(m));
  899         else {
  900                 MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0);
  901 
  902                 /* Perform the non-mtx related part of mtx_unlock_spin(). */
  903                 if (LOCK_CLASS(&m->mtx_object) == &lock_class_mtx_spin)
  904                         spinlock_exit();
  905                 else
  906                         curthread->td_locks--;
  907 
  908                 /* Tell witness this isn't locked to make it happy. */
  909                 WITNESS_UNLOCK(&m->mtx_object, LOP_EXCLUSIVE, __FILE__,
  910                     __LINE__);
  911         }
  912 
  913         m->mtx_lock = MTX_DESTROYED;
  914         lock_destroy(&m->mtx_object);
  915 }
  916 
  917 /*
  918  * Intialize the mutex code and system mutexes.  This is called from the MD
  919  * startup code prior to mi_startup().  The per-CPU data space needs to be
  920  * setup before this is called.
  921  */
  922 void
  923 mutex_init(void)
  924 {
  925 
  926         /* Setup turnstiles so that sleep mutexes work. */
  927         init_turnstiles();
  928 
  929         /*
  930          * Initialize mutexes.
  931          */
  932         mtx_init(&Giant, "Giant", NULL, MTX_DEF | MTX_RECURSE);
  933         mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE);
  934         mtx_init(&proc0.p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
  935         mtx_init(&devmtx, "cdev", NULL, MTX_DEF);
  936         mtx_lock(&Giant);
  937 }
  938 
  939 #ifdef DDB
  940 void
  941 db_show_mtx(struct lock_object *lock)
  942 {
  943         struct thread *td;
  944         struct mtx *m;
  945 
  946         m = (struct mtx *)lock;
  947 
  948         db_printf(" flags: {");
  949         if (LOCK_CLASS(lock) == &lock_class_mtx_spin)
  950                 db_printf("SPIN");
  951         else
  952                 db_printf("DEF");
  953         if (m->mtx_object.lo_flags & LO_RECURSABLE)
  954                 db_printf(", RECURSE");
  955         if (m->mtx_object.lo_flags & LO_DUPOK)
  956                 db_printf(", DUPOK");
  957         db_printf("}\n");
  958         db_printf(" state: {");
  959         if (mtx_unowned(m))
  960                 db_printf("UNOWNED");
  961         else {
  962                 db_printf("OWNED");
  963                 if (m->mtx_lock & MTX_CONTESTED)
  964                         db_printf(", CONTESTED");
  965                 if (m->mtx_lock & MTX_RECURSED)
  966                         db_printf(", RECURSED");
  967         }
  968         db_printf("}\n");
  969         if (!mtx_unowned(m)) {
  970                 td = mtx_owner(m);
  971                 db_printf(" owner: %p (tid %d, pid %d, \"%s\")\n", td,
  972                     td->td_tid, td->td_proc->p_pid, td->td_proc->p_comm);
  973                 if (mtx_recursed(m))
  974                         db_printf(" recursed: %d\n", m->mtx_recurse);
  975         }
  976 }
  977 #endif

Cache object: 892b47bdbbca71fc6157399abc1f4613


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.