The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_ntptime.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /***********************************************************************
    2  *                                                                     *
    3  * Copyright (c) David L. Mills 1993-2001                              *
    4  *                                                                     *
    5  * Permission to use, copy, modify, and distribute this software and   *
    6  * its documentation for any purpose and without fee is hereby         *
    7  * granted, provided that the above copyright notice appears in all    *
    8  * copies and that both the copyright notice and this permission       *
    9  * notice appear in supporting documentation, and that the name        *
   10  * University of Delaware not be used in advertising or publicity      *
   11  * pertaining to distribution of the software without specific,        *
   12  * written prior permission. The University of Delaware makes no       *
   13  * representations about the suitability this software for any         *
   14  * purpose. It is provided "as is" without express or implied          *
   15  * warranty.                                                           *
   16  *                                                                     *
   17  **********************************************************************/
   18 
   19 /*
   20  * Adapted from the original sources for FreeBSD and timecounters by:
   21  * Poul-Henning Kamp <phk@FreeBSD.org>.
   22  *
   23  * The 32bit version of the "LP" macros seems a bit past its "sell by" 
   24  * date so I have retained only the 64bit version and included it directly
   25  * in this file.
   26  *
   27  * Only minor changes done to interface with the timecounters over in
   28  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
   29  * confusing and/or plain wrong in that context.
   30  *
   31  * $FreeBSD: src/sys/kern/kern_ntptime.c,v 1.32.2.2 2001/04/22 11:19:46 jhay Exp $
   32  */
   33 
   34 #include "opt_ntp.h"
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/sysproto.h>
   39 #include <sys/kernel.h>
   40 #include <sys/proc.h>
   41 #include <sys/priv.h>
   42 #include <sys/time.h>
   43 #include <sys/timex.h>
   44 #include <sys/timepps.h>
   45 #include <sys/sysctl.h>
   46 
   47 #include <sys/thread2.h>
   48 #include <sys/mplock2.h>
   49 
   50 /*
   51  * Single-precision macros for 64-bit machines
   52  */
   53 typedef long long l_fp;
   54 #define L_ADD(v, u)     ((v) += (u))
   55 #define L_SUB(v, u)     ((v) -= (u))
   56 #define L_ADDHI(v, a)   ((v) += (long long)(a) << 32)
   57 #define L_NEG(v)        ((v) = -(v))
   58 #define L_RSHIFT(v, n) \
   59         do { \
   60                 if ((v) < 0) \
   61                         (v) = -(-(v) >> (n)); \
   62                 else \
   63                         (v) = (v) >> (n); \
   64         } while (0)
   65 #define L_MPY(v, a)     ((v) *= (a))
   66 #define L_CLR(v)        ((v) = 0)
   67 #define L_ISNEG(v)      ((v) < 0)
   68 #define L_LINT(v, a)    ((v) = (long long)(a) << 32)
   69 #define L_GINT(v)       ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
   70 
   71 /*
   72  * Generic NTP kernel interface
   73  *
   74  * These routines constitute the Network Time Protocol (NTP) interfaces
   75  * for user and daemon application programs. The ntp_gettime() routine
   76  * provides the time, maximum error (synch distance) and estimated error
   77  * (dispersion) to client user application programs. The ntp_adjtime()
   78  * routine is used by the NTP daemon to adjust the system clock to an
   79  * externally derived time. The time offset and related variables set by
   80  * this routine are used by other routines in this module to adjust the
   81  * phase and frequency of the clock discipline loop which controls the
   82  * system clock.
   83  *
   84  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
   85  * defined), the time at each tick interrupt is derived directly from
   86  * the kernel time variable. When the kernel time is reckoned in
   87  * microseconds, (NTP_NANO undefined), the time is derived from the
   88  * kernel time variable together with a variable representing the
   89  * leftover nanoseconds at the last tick interrupt. In either case, the
   90  * current nanosecond time is reckoned from these values plus an
   91  * interpolated value derived by the clock routines in another
   92  * architecture-specific module. The interpolation can use either a
   93  * dedicated counter or a processor cycle counter (PCC) implemented in
   94  * some architectures.
   95  *
   96  * Note that all routines must run at priority splclock or higher.
   97  */
   98 /*
   99  * Phase/frequency-lock loop (PLL/FLL) definitions
  100  *
  101  * The nanosecond clock discipline uses two variable types, time
  102  * variables and frequency variables. Both types are represented as 64-
  103  * bit fixed-point quantities with the decimal point between two 32-bit
  104  * halves. On a 32-bit machine, each half is represented as a single
  105  * word and mathematical operations are done using multiple-precision
  106  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
  107  * used.
  108  *
  109  * A time variable is a signed 64-bit fixed-point number in ns and
  110  * fraction. It represents the remaining time offset to be amortized
  111  * over succeeding tick interrupts. The maximum time offset is about
  112  * 0.5 s and the resolution is about 2.3e-10 ns.
  113  *
  114  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  115  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  116  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  117  * |s s s|                       ns                                |
  118  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  119  * |                        fraction                               |
  120  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  121  *
  122  * A frequency variable is a signed 64-bit fixed-point number in ns/s
  123  * and fraction. It represents the ns and fraction to be added to the
  124  * kernel time variable at each second. The maximum frequency offset is
  125  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
  126  *
  127  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  128  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  129  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  130  * |s s s s s s s s s s s s s|            ns/s                     |
  131  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  132  * |                        fraction                               |
  133  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  134  */
  135 /*
  136  * The following variables establish the state of the PLL/FLL and the
  137  * residual time and frequency offset of the local clock.
  138  */
  139 #define SHIFT_PLL       4               /* PLL loop gain (shift) */
  140 #define SHIFT_FLL       2               /* FLL loop gain (shift) */
  141 
  142 static int time_state = TIME_OK;        /* clock state */
  143 static int time_status = STA_UNSYNC;    /* clock status bits */
  144 static long time_tai;                   /* TAI offset (s) */
  145 static long time_monitor;               /* last time offset scaled (ns) */
  146 static long time_constant;              /* poll interval (shift) (s) */
  147 static long time_precision = 1;         /* clock precision (ns) */
  148 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
  149 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
  150 static time_t time_reftime;             /* time at last adjustment (s) */
  151 static long time_tick;                  /* nanoseconds per tick (ns) */
  152 static l_fp time_offset;                /* time offset (ns) */
  153 static l_fp time_freq;                  /* frequency offset (ns/s) */
  154 static l_fp time_adj;                   /* tick adjust (ns/s) */
  155 
  156 #ifdef PPS_SYNC
  157 /*
  158  * The following variables are used when a pulse-per-second (PPS) signal
  159  * is available and connected via a modem control lead. They establish
  160  * the engineering parameters of the clock discipline loop when
  161  * controlled by the PPS signal.
  162  */
  163 #define PPS_FAVG        2               /* min freq avg interval (s) (shift) */
  164 #define PPS_FAVGDEF     8               /* default freq avg int (s) (shift) */
  165 #define PPS_FAVGMAX     15              /* max freq avg interval (s) (shift) */
  166 #define PPS_PAVG        4               /* phase avg interval (s) (shift) */
  167 #define PPS_VALID       120             /* PPS signal watchdog max (s) */
  168 #define PPS_MAXWANDER   100000          /* max PPS wander (ns/s) */
  169 #define PPS_POPCORN     2               /* popcorn spike threshold (shift) */
  170 
  171 static struct timespec pps_tf[3];       /* phase median filter */
  172 static l_fp pps_freq;                   /* scaled frequency offset (ns/s) */
  173 static long pps_fcount;                 /* frequency accumulator */
  174 static long pps_jitter;                 /* nominal jitter (ns) */
  175 static long pps_stabil;                 /* nominal stability (scaled ns/s) */
  176 static long pps_lastsec;                /* time at last calibration (s) */
  177 static int pps_valid;                   /* signal watchdog counter */
  178 static int pps_shift = PPS_FAVG;        /* interval duration (s) (shift) */
  179 static int pps_shiftmax = PPS_FAVGDEF;  /* max interval duration (s) (shift) */
  180 static int pps_intcnt;                  /* wander counter */
  181 
  182 /*
  183  * PPS signal quality monitors
  184  */
  185 static long pps_calcnt;                 /* calibration intervals */
  186 static long pps_jitcnt;                 /* jitter limit exceeded */
  187 static long pps_stbcnt;                 /* stability limit exceeded */
  188 static long pps_errcnt;                 /* calibration errors */
  189 #endif /* PPS_SYNC */
  190 /*
  191  * End of phase/frequency-lock loop (PLL/FLL) definitions
  192  */
  193 
  194 static void ntp_init(void);
  195 static void hardupdate(long offset);
  196 
  197 /*
  198  * ntp_gettime() - NTP user application interface
  199  *
  200  * See the timex.h header file for synopsis and API description. Note
  201  * that the TAI offset is returned in the ntvtimeval.tai structure
  202  * member.
  203  */
  204 static int
  205 ntp_sysctl(SYSCTL_HANDLER_ARGS)
  206 {
  207         struct ntptimeval ntv;  /* temporary structure */
  208         struct timespec atv;    /* nanosecond time */
  209 
  210         nanotime(&atv);
  211         ntv.time.tv_sec = atv.tv_sec;
  212         ntv.time.tv_nsec = atv.tv_nsec;
  213         ntv.maxerror = time_maxerror;
  214         ntv.esterror = time_esterror;
  215         ntv.tai = time_tai;
  216         ntv.time_state = time_state;
  217 
  218         /*
  219          * Status word error decode. If any of these conditions occur,
  220          * an error is returned, instead of the status word. Most
  221          * applications will care only about the fact the system clock
  222          * may not be trusted, not about the details.
  223          *
  224          * Hardware or software error
  225          */
  226         if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
  227 
  228         /*
  229          * PPS signal lost when either time or frequency synchronization
  230          * requested
  231          */
  232             (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
  233             !(time_status & STA_PPSSIGNAL)) ||
  234 
  235         /*
  236          * PPS jitter exceeded when time synchronization requested
  237          */
  238             (time_status & STA_PPSTIME &&
  239             time_status & STA_PPSJITTER) ||
  240 
  241         /*
  242          * PPS wander exceeded or calibration error when frequency
  243          * synchronization requested
  244          */
  245             (time_status & STA_PPSFREQ &&
  246             time_status & (STA_PPSWANDER | STA_PPSERROR)))
  247                 ntv.time_state = TIME_ERROR;
  248         return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
  249 }
  250 
  251 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
  252 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
  253         0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
  254 
  255 #ifdef PPS_SYNC
  256 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
  257 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
  258 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
  259 
  260 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
  261 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
  262 #endif
  263 /*
  264  * ntp_adjtime() - NTP daemon application interface
  265  *
  266  * See the timex.h header file for synopsis and API description. Note
  267  * that the timex.constant structure member has a dual purpose to set
  268  * the time constant and to set the TAI offset.
  269  *
  270  * MPALMOSTSAFE
  271  */
  272 int
  273 sys_ntp_adjtime(struct ntp_adjtime_args *uap)
  274 {
  275         struct thread *td = curthread;
  276         struct timex ntv;       /* temporary structure */
  277         long freq;              /* frequency ns/s) */
  278         int modes;              /* mode bits from structure */
  279         int error;
  280 
  281         error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
  282         if (error)
  283                 return(error);
  284 
  285         /*
  286          * Update selected clock variables - only the superuser can
  287          * change anything. Note that there is no error checking here on
  288          * the assumption the superuser should know what it is doing.
  289          * Note that either the time constant or TAI offset are loaded
  290          * from the ntv.constant member, depending on the mode bits. If
  291          * the STA_PLL bit in the status word is cleared, the state and
  292          * status words are reset to the initial values at boot.
  293          */
  294         modes = ntv.modes;
  295         if (modes)
  296                 error = priv_check(td, PRIV_NTP_ADJTIME);
  297         if (error)
  298                 return (error);
  299 
  300         get_mplock();
  301         crit_enter();
  302         if (modes & MOD_MAXERROR)
  303                 time_maxerror = ntv.maxerror;
  304         if (modes & MOD_ESTERROR)
  305                 time_esterror = ntv.esterror;
  306         if (modes & MOD_STATUS) {
  307                 if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
  308                         time_state = TIME_OK;
  309                         time_status = STA_UNSYNC;
  310 #ifdef PPS_SYNC
  311                         pps_shift = PPS_FAVG;
  312 #endif /* PPS_SYNC */
  313                 }
  314                 time_status &= STA_RONLY;
  315                 time_status |= ntv.status & ~STA_RONLY;
  316         }
  317         if (modes & MOD_TIMECONST) {
  318                 if (ntv.constant < 0)
  319                         time_constant = 0;
  320                 else if (ntv.constant > MAXTC)
  321                         time_constant = MAXTC;
  322                 else
  323                         time_constant = ntv.constant;
  324         }
  325         if (modes & MOD_TAI) {
  326                 if (ntv.constant > 0) /* XXX zero & negative numbers ? */
  327                         time_tai = ntv.constant;
  328         }
  329 #ifdef PPS_SYNC
  330         if (modes & MOD_PPSMAX) {
  331                 if (ntv.shift < PPS_FAVG)
  332                         pps_shiftmax = PPS_FAVG;
  333                 else if (ntv.shift > PPS_FAVGMAX)
  334                         pps_shiftmax = PPS_FAVGMAX;
  335                 else
  336                         pps_shiftmax = ntv.shift;
  337         }
  338 #endif /* PPS_SYNC */
  339         if (modes & MOD_NANO)
  340                 time_status |= STA_NANO;
  341         if (modes & MOD_MICRO)
  342                 time_status &= ~STA_NANO;
  343         if (modes & MOD_CLKB)
  344                 time_status |= STA_CLK;
  345         if (modes & MOD_CLKA)
  346                 time_status &= ~STA_CLK;
  347         if (modes & MOD_OFFSET) {
  348                 if (time_status & STA_NANO)
  349                         hardupdate(ntv.offset);
  350                 else
  351                         hardupdate(ntv.offset * 1000);
  352         }
  353         /*
  354          * Note: the userland specified frequency is in seconds per second
  355          * times 65536e+6.  Multiply by a thousand and divide by 65336 to
  356          * get nanoseconds.
  357          */
  358         if (modes & MOD_FREQUENCY) {
  359                 freq = (ntv.freq * 1000LL) >> 16;
  360                 if (freq > MAXFREQ)
  361                         L_LINT(time_freq, MAXFREQ);
  362                 else if (freq < -MAXFREQ)
  363                         L_LINT(time_freq, -MAXFREQ);
  364                 else
  365                         L_LINT(time_freq, freq);
  366 #ifdef PPS_SYNC
  367                 pps_freq = time_freq;
  368 #endif /* PPS_SYNC */
  369         }
  370 
  371         /*
  372          * Retrieve all clock variables. Note that the TAI offset is
  373          * returned only by ntp_gettime();
  374          */
  375         if (time_status & STA_NANO)
  376                 ntv.offset = time_monitor;
  377         else
  378                 ntv.offset = time_monitor / 1000; /* XXX rounding ? */
  379         ntv.freq = L_GINT((time_freq / 1000LL) << 16);
  380         ntv.maxerror = time_maxerror;
  381         ntv.esterror = time_esterror;
  382         ntv.status = time_status;
  383         ntv.constant = time_constant;
  384         if (time_status & STA_NANO)
  385                 ntv.precision = time_precision;
  386         else
  387                 ntv.precision = time_precision / 1000;
  388         ntv.tolerance = MAXFREQ * SCALE_PPM;
  389 #ifdef PPS_SYNC
  390         ntv.shift = pps_shift;
  391         ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
  392         if (time_status & STA_NANO)
  393                 ntv.jitter = pps_jitter;
  394         else
  395                 ntv.jitter = pps_jitter / 1000;
  396         ntv.stabil = pps_stabil;
  397         ntv.calcnt = pps_calcnt;
  398         ntv.errcnt = pps_errcnt;
  399         ntv.jitcnt = pps_jitcnt;
  400         ntv.stbcnt = pps_stbcnt;
  401 #endif /* PPS_SYNC */
  402         crit_exit();
  403         rel_mplock();
  404 
  405         error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
  406         if (error)
  407                 return (error);
  408 
  409         /*
  410          * Status word error decode. See comments in
  411          * ntp_gettime() routine.
  412          */
  413         if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
  414             (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
  415             !(time_status & STA_PPSSIGNAL)) ||
  416             (time_status & STA_PPSTIME &&
  417             time_status & STA_PPSJITTER) ||
  418             (time_status & STA_PPSFREQ &&
  419             time_status & (STA_PPSWANDER | STA_PPSERROR))) {
  420                 uap->sysmsg_result = TIME_ERROR;
  421         } else {
  422                 uap->sysmsg_result = time_state;
  423         }
  424         return (error);
  425 }
  426 
  427 /*
  428  * second_overflow() - called after ntp_tick_adjust()
  429  *
  430  * This routine is ordinarily called from hardclock() whenever the seconds
  431  * hand rolls over.  It returns leap seconds to add or drop, and sets nsec_adj
  432  * to the total adjustment to make over the next second in (ns << 32).
  433  *
  434  * This routine is only called by cpu #0.
  435  */
  436 int
  437 ntp_update_second(time_t newsec, int64_t *nsec_adj)
  438 {
  439         l_fp ftemp;             /* 32/64-bit temporary */
  440         int  adjsec = 0;
  441 
  442         /*
  443          * On rollover of the second both the nanosecond and microsecond
  444          * clocks are updated and the state machine cranked as
  445          * necessary. The phase adjustment to be used for the next
  446          * second is calculated and the maximum error is increased by
  447          * the tolerance.
  448          */
  449         time_maxerror += MAXFREQ / 1000;
  450 
  451         /*
  452          * Leap second processing. If in leap-insert state at
  453          * the end of the day, the system clock is set back one
  454          * second; if in leap-delete state, the system clock is
  455          * set ahead one second. The nano_time() routine or
  456          * external clock driver will insure that reported time
  457          * is always monotonic.
  458          */
  459         switch (time_state) {
  460 
  461                 /*
  462                  * No warning.
  463                  */
  464                 case TIME_OK:
  465                 if (time_status & STA_INS)
  466                         time_state = TIME_INS;
  467                 else if (time_status & STA_DEL)
  468                         time_state = TIME_DEL;
  469                 break;
  470 
  471                 /*
  472                  * Insert second 23:59:60 following second
  473                  * 23:59:59.
  474                  */
  475                 case TIME_INS:
  476                 if (!(time_status & STA_INS))
  477                         time_state = TIME_OK;
  478                 else if ((newsec) % 86400 == 0) {
  479                         --adjsec;
  480                         time_state = TIME_OOP;
  481                 }
  482                 break;
  483 
  484                 /*
  485                  * Delete second 23:59:59.
  486                  */
  487                 case TIME_DEL:
  488                 if (!(time_status & STA_DEL))
  489                         time_state = TIME_OK;
  490                 else if (((newsec) + 1) % 86400 == 0) {
  491                         ++adjsec;
  492                         time_tai--;
  493                         time_state = TIME_WAIT;
  494                 }
  495                 break;
  496 
  497                 /*
  498                  * Insert second in progress.
  499                  */
  500                 case TIME_OOP:
  501                         time_tai++;
  502                         time_state = TIME_WAIT;
  503                 break;
  504 
  505                 /*
  506                  * Wait for status bits to clear.
  507                  */
  508                 case TIME_WAIT:
  509                 if (!(time_status & (STA_INS | STA_DEL)))
  510                         time_state = TIME_OK;
  511         }
  512 
  513         /*
  514          * time_offset represents the total time adjustment we wish to
  515          * make (over no particular period of time).  time_freq represents
  516          * the frequency compensation we wish to apply.
  517          *
  518          * time_adj represents the total adjustment we wish to make over
  519          * one full second.  hardclock usually applies this adjustment in
  520          * time_adj / hz jumps, hz times a second.
  521          */
  522         ftemp = time_offset;
  523 #ifdef PPS_SYNC
  524         /* XXX even if PPS signal dies we should finish adjustment ? */
  525         if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
  526                 L_RSHIFT(ftemp, pps_shift);
  527         else
  528                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  529 #else
  530                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  531 #endif /* PPS_SYNC */
  532         time_adj = ftemp;               /* adjustment for part of the offset */
  533         L_SUB(time_offset, ftemp);
  534         L_ADD(time_adj, time_freq);     /* add frequency correction */
  535         *nsec_adj = time_adj;
  536 #ifdef PPS_SYNC
  537         if (pps_valid > 0)
  538                 pps_valid--;
  539         else
  540                 time_status &= ~STA_PPSSIGNAL;
  541 #endif /* PPS_SYNC */
  542         return(adjsec);
  543 }
  544 
  545 /*
  546  * ntp_init() - initialize variables and structures
  547  *
  548  * This routine must be called after the kernel variables hz and tick
  549  * are set or changed and before the next tick interrupt. In this
  550  * particular implementation, these values are assumed set elsewhere in
  551  * the kernel. The design allows the clock frequency and tick interval
  552  * to be changed while the system is running. So, this routine should
  553  * probably be integrated with the code that does that.
  554  */
  555 static void
  556 ntp_init(void)
  557 {
  558 
  559         /*
  560          * The following variable must be initialized any time the
  561          * kernel variable hz is changed.
  562          */
  563         time_tick = NANOSECOND / hz;
  564 
  565         /*
  566          * The following variables are initialized only at startup. Only
  567          * those structures not cleared by the compiler need to be
  568          * initialized, and these only in the simulator. In the actual
  569          * kernel, any nonzero values here will quickly evaporate.
  570          */
  571         L_CLR(time_offset);
  572         L_CLR(time_freq);
  573 #ifdef PPS_SYNC
  574         pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
  575         pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
  576         pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
  577         pps_fcount = 0;
  578         L_CLR(pps_freq);
  579 #endif /* PPS_SYNC */      
  580 }
  581 
  582 SYSINIT(ntpclocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, ntp_init, NULL)
  583 
  584 /*
  585  * hardupdate() - local clock update
  586  *
  587  * This routine is called by ntp_adjtime() to update the local clock
  588  * phase and frequency. The implementation is of an adaptive-parameter,
  589  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
  590  * time and frequency offset estimates for each call. If the kernel PPS
  591  * discipline code is configured (PPS_SYNC), the PPS signal itself
  592  * determines the new time offset, instead of the calling argument.
  593  * Presumably, calls to ntp_adjtime() occur only when the caller
  594  * believes the local clock is valid within some bound (+-128 ms with
  595  * NTP). If the caller's time is far different than the PPS time, an
  596  * argument will ensue, and it's not clear who will lose.
  597  *
  598  * For uncompensated quartz crystal oscillators and nominal update
  599  * intervals less than 256 s, operation should be in phase-lock mode,
  600  * where the loop is disciplined to phase. For update intervals greater
  601  * than 1024 s, operation should be in frequency-lock mode, where the
  602  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
  603  * is selected by the STA_MODE status bit.
  604  */
  605 static void
  606 hardupdate(long offset)
  607 {
  608         long mtemp;
  609         l_fp ftemp;
  610 
  611         /*
  612          * Select how the phase is to be controlled and from which
  613          * source. If the PPS signal is present and enabled to
  614          * discipline the time, the PPS offset is used; otherwise, the
  615          * argument offset is used.
  616          */
  617         if (!(time_status & STA_PLL))
  618                 return;
  619         if (!((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))) {
  620                 if (offset > MAXPHASE)
  621                         time_monitor = MAXPHASE;
  622                 else if (offset < -MAXPHASE)
  623                         time_monitor = -MAXPHASE;
  624                 else
  625                         time_monitor = offset;
  626                 L_LINT(time_offset, time_monitor);
  627         }
  628 
  629         /*
  630          * Select how the frequency is to be controlled and in which
  631          * mode (PLL or FLL). If the PPS signal is present and enabled
  632          * to discipline the frequency, the PPS frequency is used;
  633          * otherwise, the argument offset is used to compute it.
  634          */
  635         if ((time_status & STA_PPSFREQ) && time_status & STA_PPSSIGNAL) {
  636                 time_reftime = time_uptime;
  637                 return;
  638         }
  639         if ((time_status & STA_FREQHOLD) || time_reftime == 0)
  640                 time_reftime = time_uptime;
  641         mtemp = time_uptime - time_reftime;
  642         L_LINT(ftemp, time_monitor);
  643         L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
  644         L_MPY(ftemp, mtemp);
  645         L_ADD(time_freq, ftemp);
  646         time_status &= ~STA_MODE;
  647         if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
  648                 L_LINT(ftemp, (time_monitor << 4) / mtemp);
  649                 L_RSHIFT(ftemp, SHIFT_FLL + 4);
  650                 L_ADD(time_freq, ftemp);
  651                 time_status |= STA_MODE;
  652         }
  653         time_reftime = time_uptime;
  654         if (L_GINT(time_freq) > MAXFREQ)
  655                 L_LINT(time_freq, MAXFREQ);
  656         else if (L_GINT(time_freq) < -MAXFREQ)
  657                 L_LINT(time_freq, -MAXFREQ);
  658 }
  659 
  660 #ifdef PPS_SYNC
  661 /*
  662  * hardpps() - discipline CPU clock oscillator to external PPS signal
  663  *
  664  * This routine is called at each PPS interrupt in order to discipline
  665  * the CPU clock oscillator to the PPS signal. There are two independent
  666  * first-order feedback loops, one for the phase, the other for the
  667  * frequency. The phase loop measures and grooms the PPS phase offset
  668  * and leaves it in a handy spot for the seconds overflow routine. The
  669  * frequency loop averages successive PPS phase differences and
  670  * calculates the PPS frequency offset, which is also processed by the
  671  * seconds overflow routine. The code requires the caller to capture the
  672  * time and architecture-dependent hardware counter values in
  673  * nanoseconds at the on-time PPS signal transition.
  674  *
  675  * Note that, on some Unix systems this routine runs at an interrupt
  676  * priority level higher than the timer interrupt routine hardclock().
  677  * Therefore, the variables used are distinct from the hardclock()
  678  * variables, except for the actual time and frequency variables, which
  679  * are determined by this routine and updated atomically.
  680  */
  681 void
  682 hardpps(struct timespec *tsp, long nsec)
  683 {
  684         long u_sec, u_nsec, v_nsec; /* temps */
  685         l_fp ftemp;
  686 
  687         /*
  688          * The signal is first processed by a range gate and frequency
  689          * discriminator. The range gate rejects noise spikes outside
  690          * the range +-500 us. The frequency discriminator rejects input
  691          * signals with apparent frequency outside the range 1 +-500
  692          * PPM. If two hits occur in the same second, we ignore the
  693          * later hit; if not and a hit occurs outside the range gate,
  694          * keep the later hit for later comparison, but do not process
  695          * it.
  696          */
  697         time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
  698         time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
  699         pps_valid = PPS_VALID;
  700         u_sec = tsp->tv_sec;
  701         u_nsec = tsp->tv_nsec;
  702         if (u_nsec >= (NANOSECOND >> 1)) {
  703                 u_nsec -= NANOSECOND;
  704                 u_sec++;
  705         }
  706         v_nsec = u_nsec - pps_tf[0].tv_nsec;
  707         if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
  708             MAXFREQ)
  709                 return;
  710         pps_tf[2] = pps_tf[1];
  711         pps_tf[1] = pps_tf[0];
  712         pps_tf[0].tv_sec = u_sec;
  713         pps_tf[0].tv_nsec = u_nsec;
  714 
  715         /*
  716          * Compute the difference between the current and previous
  717          * counter values. If the difference exceeds 0.5 s, assume it
  718          * has wrapped around, so correct 1.0 s. If the result exceeds
  719          * the tick interval, the sample point has crossed a tick
  720          * boundary during the last second, so correct the tick. Very
  721          * intricate.
  722          */
  723         u_nsec = nsec;
  724         if (u_nsec > (NANOSECOND >> 1))
  725                 u_nsec -= NANOSECOND;
  726         else if (u_nsec < -(NANOSECOND >> 1))
  727                 u_nsec += NANOSECOND;
  728         pps_fcount += u_nsec;
  729         if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
  730                 return;
  731         time_status &= ~STA_PPSJITTER;
  732 
  733         /*
  734          * A three-stage median filter is used to help denoise the PPS
  735          * time. The median sample becomes the time offset estimate; the
  736          * difference between the other two samples becomes the time
  737          * dispersion (jitter) estimate.
  738          */
  739         if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
  740                 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
  741                         v_nsec = pps_tf[1].tv_nsec;     /* 0 1 2 */
  742                         u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
  743                 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
  744                         v_nsec = pps_tf[0].tv_nsec;     /* 2 0 1 */
  745                         u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
  746                 } else {
  747                         v_nsec = pps_tf[2].tv_nsec;     /* 0 2 1 */
  748                         u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
  749                 }
  750         } else {
  751                 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
  752                         v_nsec = pps_tf[1].tv_nsec;     /* 2 1 0 */
  753                         u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
  754                 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
  755                         v_nsec = pps_tf[0].tv_nsec;     /* 1 0 2 */
  756                         u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
  757                 } else {
  758                         v_nsec = pps_tf[2].tv_nsec;     /* 1 2 0 */
  759                         u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
  760                 }
  761         }
  762 
  763         /*
  764          * Nominal jitter is due to PPS signal noise and interrupt
  765          * latency. If it exceeds the popcorn threshold, the sample is
  766          * discarded. otherwise, if so enabled, the time offset is
  767          * updated. We can tolerate a modest loss of data here without
  768          * much degrading time accuracy.
  769          */
  770         if (u_nsec > (pps_jitter << PPS_POPCORN)) {
  771                 time_status |= STA_PPSJITTER;
  772                 pps_jitcnt++;
  773         } else if (time_status & STA_PPSTIME) {
  774                 time_monitor = -v_nsec;
  775                 L_LINT(time_offset, time_monitor);
  776         }
  777         pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
  778         u_sec = pps_tf[0].tv_sec - pps_lastsec;
  779         if (u_sec < (1 << pps_shift))
  780                 return;
  781 
  782         /*
  783          * At the end of the calibration interval the difference between
  784          * the first and last counter values becomes the scaled
  785          * frequency. It will later be divided by the length of the
  786          * interval to determine the frequency update. If the frequency
  787          * exceeds a sanity threshold, or if the actual calibration
  788          * interval is not equal to the expected length, the data are
  789          * discarded. We can tolerate a modest loss of data here without
  790          * much degrading frequency accuracy.
  791          */
  792         pps_calcnt++;
  793         v_nsec = -pps_fcount;
  794         pps_lastsec = pps_tf[0].tv_sec;
  795         pps_fcount = 0;
  796         u_nsec = MAXFREQ << pps_shift;
  797         if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
  798             pps_shift)) {
  799                 time_status |= STA_PPSERROR;
  800                 pps_errcnt++;
  801                 return;
  802         }
  803 
  804         /*
  805          * Here the raw frequency offset and wander (stability) is
  806          * calculated. If the wander is less than the wander threshold
  807          * for four consecutive averaging intervals, the interval is
  808          * doubled; if it is greater than the threshold for four
  809          * consecutive intervals, the interval is halved. The scaled
  810          * frequency offset is converted to frequency offset. The
  811          * stability metric is calculated as the average of recent
  812          * frequency changes, but is used only for performance
  813          * monitoring.
  814          */
  815         L_LINT(ftemp, v_nsec);
  816         L_RSHIFT(ftemp, pps_shift);
  817         L_SUB(ftemp, pps_freq);
  818         u_nsec = L_GINT(ftemp);
  819         if (u_nsec > PPS_MAXWANDER) {
  820                 L_LINT(ftemp, PPS_MAXWANDER);
  821                 pps_intcnt--;
  822                 time_status |= STA_PPSWANDER;
  823                 pps_stbcnt++;
  824         } else if (u_nsec < -PPS_MAXWANDER) {
  825                 L_LINT(ftemp, -PPS_MAXWANDER);
  826                 pps_intcnt--;
  827                 time_status |= STA_PPSWANDER;
  828                 pps_stbcnt++;
  829         } else {
  830                 pps_intcnt++;
  831         }
  832         if (pps_intcnt >= 4) {
  833                 pps_intcnt = 4;
  834                 if (pps_shift < pps_shiftmax) {
  835                         pps_shift++;
  836                         pps_intcnt = 0;
  837                 }
  838         } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
  839                 pps_intcnt = -4;
  840                 if (pps_shift > PPS_FAVG) {
  841                         pps_shift--;
  842                         pps_intcnt = 0;
  843                 }
  844         }
  845         if (u_nsec < 0)
  846                 u_nsec = -u_nsec;
  847         pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
  848 
  849         /*
  850          * The PPS frequency is recalculated and clamped to the maximum
  851          * MAXFREQ. If enabled, the system clock frequency is updated as
  852          * well.
  853          */
  854         L_ADD(pps_freq, ftemp);
  855         u_nsec = L_GINT(pps_freq);
  856         if (u_nsec > MAXFREQ)
  857                 L_LINT(pps_freq, MAXFREQ);
  858         else if (u_nsec < -MAXFREQ)
  859                 L_LINT(pps_freq, -MAXFREQ);
  860         if (time_status & STA_PPSFREQ)
  861                 time_freq = pps_freq;
  862 }
  863 #endif /* PPS_SYNC */

Cache object: f546bd3acbd8045e307a856d507f223e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.