The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_ntptime.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  ***********************************************************************
    3  *                                                                     *
    4  * Copyright (c) David L. Mills 1993-2001                              *
    5  *                                                                     *
    6  * Permission to use, copy, modify, and distribute this software and   *
    7  * its documentation for any purpose and without fee is hereby         *
    8  * granted, provided that the above copyright notice appears in all    *
    9  * copies and that both the copyright notice and this permission       *
   10  * notice appear in supporting documentation, and that the name        *
   11  * University of Delaware not be used in advertising or publicity      *
   12  * pertaining to distribution of the software without specific,        *
   13  * written prior permission. The University of Delaware makes no       *
   14  * representations about the suitability this software for any         *
   15  * purpose. It is provided "as is" without express or implied          *
   16  * warranty.                                                           *
   17  *                                                                     *
   18  **********************************************************************/
   19 
   20 /*
   21  * Adapted from the original sources for FreeBSD and timecounters by:
   22  * Poul-Henning Kamp <phk@FreeBSD.org>.
   23  *
   24  * The 32bit version of the "LP" macros seems a bit past its "sell by" 
   25  * date so I have retained only the 64bit version and included it directly
   26  * in this file.
   27  *
   28  * Only minor changes done to interface with the timecounters over in
   29  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
   30  * confusing and/or plain wrong in that context.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/11.0/sys/kern/kern_ntptime.c 302252 2016-06-28 16:43:23Z kib $");
   35 
   36 #include "opt_ntp.h"
   37 
   38 #include <sys/param.h>
   39 #include <sys/systm.h>
   40 #include <sys/sysproto.h>
   41 #include <sys/eventhandler.h>
   42 #include <sys/kernel.h>
   43 #include <sys/priv.h>
   44 #include <sys/proc.h>
   45 #include <sys/lock.h>
   46 #include <sys/mutex.h>
   47 #include <sys/time.h>
   48 #include <sys/timex.h>
   49 #include <sys/timetc.h>
   50 #include <sys/timepps.h>
   51 #include <sys/syscallsubr.h>
   52 #include <sys/sysctl.h>
   53 
   54 #ifdef PPS_SYNC
   55 FEATURE(pps_sync, "Support usage of external PPS signal by kernel PLL");
   56 #endif
   57 
   58 /*
   59  * Single-precision macros for 64-bit machines
   60  */
   61 typedef int64_t l_fp;
   62 #define L_ADD(v, u)     ((v) += (u))
   63 #define L_SUB(v, u)     ((v) -= (u))
   64 #define L_ADDHI(v, a)   ((v) += (int64_t)(a) << 32)
   65 #define L_NEG(v)        ((v) = -(v))
   66 #define L_RSHIFT(v, n) \
   67         do { \
   68                 if ((v) < 0) \
   69                         (v) = -(-(v) >> (n)); \
   70                 else \
   71                         (v) = (v) >> (n); \
   72         } while (0)
   73 #define L_MPY(v, a)     ((v) *= (a))
   74 #define L_CLR(v)        ((v) = 0)
   75 #define L_ISNEG(v)      ((v) < 0)
   76 #define L_LINT(v, a)    ((v) = (int64_t)(a) << 32)
   77 #define L_GINT(v)       ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
   78 
   79 /*
   80  * Generic NTP kernel interface
   81  *
   82  * These routines constitute the Network Time Protocol (NTP) interfaces
   83  * for user and daemon application programs. The ntp_gettime() routine
   84  * provides the time, maximum error (synch distance) and estimated error
   85  * (dispersion) to client user application programs. The ntp_adjtime()
   86  * routine is used by the NTP daemon to adjust the system clock to an
   87  * externally derived time. The time offset and related variables set by
   88  * this routine are used by other routines in this module to adjust the
   89  * phase and frequency of the clock discipline loop which controls the
   90  * system clock.
   91  *
   92  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
   93  * defined), the time at each tick interrupt is derived directly from
   94  * the kernel time variable. When the kernel time is reckoned in
   95  * microseconds, (NTP_NANO undefined), the time is derived from the
   96  * kernel time variable together with a variable representing the
   97  * leftover nanoseconds at the last tick interrupt. In either case, the
   98  * current nanosecond time is reckoned from these values plus an
   99  * interpolated value derived by the clock routines in another
  100  * architecture-specific module. The interpolation can use either a
  101  * dedicated counter or a processor cycle counter (PCC) implemented in
  102  * some architectures.
  103  *
  104  * Note that all routines must run at priority splclock or higher.
  105  */
  106 /*
  107  * Phase/frequency-lock loop (PLL/FLL) definitions
  108  *
  109  * The nanosecond clock discipline uses two variable types, time
  110  * variables and frequency variables. Both types are represented as 64-
  111  * bit fixed-point quantities with the decimal point between two 32-bit
  112  * halves. On a 32-bit machine, each half is represented as a single
  113  * word and mathematical operations are done using multiple-precision
  114  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
  115  * used.
  116  *
  117  * A time variable is a signed 64-bit fixed-point number in ns and
  118  * fraction. It represents the remaining time offset to be amortized
  119  * over succeeding tick interrupts. The maximum time offset is about
  120  * 0.5 s and the resolution is about 2.3e-10 ns.
  121  *
  122  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  123  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  124  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  125  * |s s s|                       ns                                |
  126  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  127  * |                        fraction                               |
  128  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  129  *
  130  * A frequency variable is a signed 64-bit fixed-point number in ns/s
  131  * and fraction. It represents the ns and fraction to be added to the
  132  * kernel time variable at each second. The maximum frequency offset is
  133  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
  134  *
  135  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  136  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  137  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  138  * |s s s s s s s s s s s s s|            ns/s                     |
  139  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  140  * |                        fraction                               |
  141  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  142  */
  143 /*
  144  * The following variables establish the state of the PLL/FLL and the
  145  * residual time and frequency offset of the local clock.
  146  */
  147 #define SHIFT_PLL       4               /* PLL loop gain (shift) */
  148 #define SHIFT_FLL       2               /* FLL loop gain (shift) */
  149 
  150 static int time_state = TIME_OK;        /* clock state */
  151 int time_status = STA_UNSYNC;   /* clock status bits */
  152 static long time_tai;                   /* TAI offset (s) */
  153 static long time_monitor;               /* last time offset scaled (ns) */
  154 static long time_constant;              /* poll interval (shift) (s) */
  155 static long time_precision = 1;         /* clock precision (ns) */
  156 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
  157 long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
  158 static long time_reftime;               /* uptime at last adjustment (s) */
  159 static l_fp time_offset;                /* time offset (ns) */
  160 static l_fp time_freq;                  /* frequency offset (ns/s) */
  161 static l_fp time_adj;                   /* tick adjust (ns/s) */
  162 
  163 static int64_t time_adjtime;            /* correction from adjtime(2) (usec) */
  164 
  165 static struct mtx ntpadj_lock;
  166 MTX_SYSINIT(ntpadj, &ntpadj_lock, "ntpadj",
  167 #ifdef PPS_SYNC
  168     MTX_SPIN
  169 #else
  170     MTX_DEF
  171 #endif
  172 );
  173 
  174 /*
  175  * When PPS_SYNC is defined, hardpps() function is provided which can
  176  * be legitimately called from interrupt filters.  Due to this, use
  177  * spinlock for ntptime state protection, otherwise sleepable mutex is
  178  * adequate.
  179  */
  180 #ifdef PPS_SYNC
  181 #define NTPADJ_LOCK()           mtx_lock_spin(&ntpadj_lock)
  182 #define NTPADJ_UNLOCK()         mtx_unlock_spin(&ntpadj_lock)
  183 #else
  184 #define NTPADJ_LOCK()           mtx_lock(&ntpadj_lock)
  185 #define NTPADJ_UNLOCK()         mtx_unlock(&ntpadj_lock)
  186 #endif
  187 #define NTPADJ_ASSERT_LOCKED()  mtx_assert(&ntpadj_lock, MA_OWNED)
  188 
  189 #ifdef PPS_SYNC
  190 /*
  191  * The following variables are used when a pulse-per-second (PPS) signal
  192  * is available and connected via a modem control lead. They establish
  193  * the engineering parameters of the clock discipline loop when
  194  * controlled by the PPS signal.
  195  */
  196 #define PPS_FAVG        2               /* min freq avg interval (s) (shift) */
  197 #define PPS_FAVGDEF     8               /* default freq avg int (s) (shift) */
  198 #define PPS_FAVGMAX     15              /* max freq avg interval (s) (shift) */
  199 #define PPS_PAVG        4               /* phase avg interval (s) (shift) */
  200 #define PPS_VALID       120             /* PPS signal watchdog max (s) */
  201 #define PPS_MAXWANDER   100000          /* max PPS wander (ns/s) */
  202 #define PPS_POPCORN     2               /* popcorn spike threshold (shift) */
  203 
  204 static struct timespec pps_tf[3];       /* phase median filter */
  205 static l_fp pps_freq;                   /* scaled frequency offset (ns/s) */
  206 static long pps_fcount;                 /* frequency accumulator */
  207 static long pps_jitter;                 /* nominal jitter (ns) */
  208 static long pps_stabil;                 /* nominal stability (scaled ns/s) */
  209 static long pps_lastsec;                /* time at last calibration (s) */
  210 static int pps_valid;                   /* signal watchdog counter */
  211 static int pps_shift = PPS_FAVG;        /* interval duration (s) (shift) */
  212 static int pps_shiftmax = PPS_FAVGDEF;  /* max interval duration (s) (shift) */
  213 static int pps_intcnt;                  /* wander counter */
  214 
  215 /*
  216  * PPS signal quality monitors
  217  */
  218 static long pps_calcnt;                 /* calibration intervals */
  219 static long pps_jitcnt;                 /* jitter limit exceeded */
  220 static long pps_stbcnt;                 /* stability limit exceeded */
  221 static long pps_errcnt;                 /* calibration errors */
  222 #endif /* PPS_SYNC */
  223 /*
  224  * End of phase/frequency-lock loop (PLL/FLL) definitions
  225  */
  226 
  227 static void ntp_init(void);
  228 static void hardupdate(long offset);
  229 static void ntp_gettime1(struct ntptimeval *ntvp);
  230 static bool ntp_is_time_error(int tsl);
  231 
  232 static bool
  233 ntp_is_time_error(int tsl)
  234 {
  235 
  236         /*
  237          * Status word error decode. If any of these conditions occur,
  238          * an error is returned, instead of the status word. Most
  239          * applications will care only about the fact the system clock
  240          * may not be trusted, not about the details.
  241          *
  242          * Hardware or software error
  243          */
  244         if ((tsl & (STA_UNSYNC | STA_CLOCKERR)) ||
  245 
  246         /*
  247          * PPS signal lost when either time or frequency synchronization
  248          * requested
  249          */
  250             (tsl & (STA_PPSFREQ | STA_PPSTIME) &&
  251             !(tsl & STA_PPSSIGNAL)) ||
  252 
  253         /*
  254          * PPS jitter exceeded when time synchronization requested
  255          */
  256             (tsl & STA_PPSTIME && tsl & STA_PPSJITTER) ||
  257 
  258         /*
  259          * PPS wander exceeded or calibration error when frequency
  260          * synchronization requested
  261          */
  262             (tsl & STA_PPSFREQ &&
  263             tsl & (STA_PPSWANDER | STA_PPSERROR)))
  264                 return (true);
  265 
  266         return (false);
  267 }
  268 
  269 static void
  270 ntp_gettime1(struct ntptimeval *ntvp)
  271 {
  272         struct timespec atv;    /* nanosecond time */
  273 
  274         NTPADJ_ASSERT_LOCKED();
  275 
  276         nanotime(&atv);
  277         ntvp->time.tv_sec = atv.tv_sec;
  278         ntvp->time.tv_nsec = atv.tv_nsec;
  279         ntvp->maxerror = time_maxerror;
  280         ntvp->esterror = time_esterror;
  281         ntvp->tai = time_tai;
  282         ntvp->time_state = time_state;
  283 
  284         if (ntp_is_time_error(time_status))
  285                 ntvp->time_state = TIME_ERROR;
  286 }
  287 
  288 /*
  289  * ntp_gettime() - NTP user application interface
  290  *
  291  * See the timex.h header file for synopsis and API description.  Note that
  292  * the TAI offset is returned in the ntvtimeval.tai structure member.
  293  */
  294 #ifndef _SYS_SYSPROTO_H_
  295 struct ntp_gettime_args {
  296         struct ntptimeval *ntvp;
  297 };
  298 #endif
  299 /* ARGSUSED */
  300 int
  301 sys_ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
  302 {       
  303         struct ntptimeval ntv;
  304 
  305         NTPADJ_LOCK();
  306         ntp_gettime1(&ntv);
  307         NTPADJ_UNLOCK();
  308 
  309         td->td_retval[0] = ntv.time_state;
  310         return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
  311 }
  312 
  313 static int
  314 ntp_sysctl(SYSCTL_HANDLER_ARGS)
  315 {
  316         struct ntptimeval ntv;  /* temporary structure */
  317 
  318         NTPADJ_LOCK();
  319         ntp_gettime1(&ntv);
  320         NTPADJ_UNLOCK();
  321 
  322         return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
  323 }
  324 
  325 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
  326 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE | CTLFLAG_RD |
  327     CTLFLAG_MPSAFE, 0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval",
  328     "");
  329 
  330 #ifdef PPS_SYNC
  331 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW,
  332     &pps_shiftmax, 0, "Max interval duration (sec) (shift)");
  333 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW,
  334     &pps_shift, 0, "Interval duration (sec) (shift)");
  335 SYSCTL_LONG(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD,
  336     &time_monitor, 0, "Last time offset scaled (ns)");
  337 
  338 SYSCTL_S64(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD | CTLFLAG_MPSAFE,
  339     &pps_freq, 0,
  340     "Scaled frequency offset (ns/sec)");
  341 SYSCTL_S64(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD | CTLFLAG_MPSAFE,
  342     &time_freq, 0,
  343     "Frequency offset (ns/sec)");
  344 #endif
  345 
  346 /*
  347  * ntp_adjtime() - NTP daemon application interface
  348  *
  349  * See the timex.h header file for synopsis and API description.  Note that
  350  * the timex.constant structure member has a dual purpose to set the time
  351  * constant and to set the TAI offset.
  352  */
  353 #ifndef _SYS_SYSPROTO_H_
  354 struct ntp_adjtime_args {
  355         struct timex *tp;
  356 };
  357 #endif
  358 
  359 int
  360 sys_ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
  361 {
  362         struct timex ntv;       /* temporary structure */
  363         long freq;              /* frequency ns/s) */
  364         int modes;              /* mode bits from structure */
  365         int error, retval;
  366 
  367         error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
  368         if (error)
  369                 return (error);
  370 
  371         /*
  372          * Update selected clock variables - only the superuser can
  373          * change anything. Note that there is no error checking here on
  374          * the assumption the superuser should know what it is doing.
  375          * Note that either the time constant or TAI offset are loaded
  376          * from the ntv.constant member, depending on the mode bits. If
  377          * the STA_PLL bit in the status word is cleared, the state and
  378          * status words are reset to the initial values at boot.
  379          */
  380         modes = ntv.modes;
  381         if (modes)
  382                 error = priv_check(td, PRIV_NTP_ADJTIME);
  383         if (error != 0)
  384                 return (error);
  385         NTPADJ_LOCK();
  386         if (modes & MOD_MAXERROR)
  387                 time_maxerror = ntv.maxerror;
  388         if (modes & MOD_ESTERROR)
  389                 time_esterror = ntv.esterror;
  390         if (modes & MOD_STATUS) {
  391                 if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
  392                         time_state = TIME_OK;
  393                         time_status = STA_UNSYNC;
  394 #ifdef PPS_SYNC
  395                         pps_shift = PPS_FAVG;
  396 #endif /* PPS_SYNC */
  397                 }
  398                 time_status &= STA_RONLY;
  399                 time_status |= ntv.status & ~STA_RONLY;
  400         }
  401         if (modes & MOD_TIMECONST) {
  402                 if (ntv.constant < 0)
  403                         time_constant = 0;
  404                 else if (ntv.constant > MAXTC)
  405                         time_constant = MAXTC;
  406                 else
  407                         time_constant = ntv.constant;
  408         }
  409         if (modes & MOD_TAI) {
  410                 if (ntv.constant > 0) /* XXX zero & negative numbers ? */
  411                         time_tai = ntv.constant;
  412         }
  413 #ifdef PPS_SYNC
  414         if (modes & MOD_PPSMAX) {
  415                 if (ntv.shift < PPS_FAVG)
  416                         pps_shiftmax = PPS_FAVG;
  417                 else if (ntv.shift > PPS_FAVGMAX)
  418                         pps_shiftmax = PPS_FAVGMAX;
  419                 else
  420                         pps_shiftmax = ntv.shift;
  421         }
  422 #endif /* PPS_SYNC */
  423         if (modes & MOD_NANO)
  424                 time_status |= STA_NANO;
  425         if (modes & MOD_MICRO)
  426                 time_status &= ~STA_NANO;
  427         if (modes & MOD_CLKB)
  428                 time_status |= STA_CLK;
  429         if (modes & MOD_CLKA)
  430                 time_status &= ~STA_CLK;
  431         if (modes & MOD_FREQUENCY) {
  432                 freq = (ntv.freq * 1000LL) >> 16;
  433                 if (freq > MAXFREQ)
  434                         L_LINT(time_freq, MAXFREQ);
  435                 else if (freq < -MAXFREQ)
  436                         L_LINT(time_freq, -MAXFREQ);
  437                 else {
  438                         /*
  439                          * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
  440                          * time_freq is [ns/s * 2^32]
  441                          */
  442                         time_freq = ntv.freq * 1000LL * 65536LL;
  443                 }
  444 #ifdef PPS_SYNC
  445                 pps_freq = time_freq;
  446 #endif /* PPS_SYNC */
  447         }
  448         if (modes & MOD_OFFSET) {
  449                 if (time_status & STA_NANO)
  450                         hardupdate(ntv.offset);
  451                 else
  452                         hardupdate(ntv.offset * 1000);
  453         }
  454 
  455         /*
  456          * Retrieve all clock variables. Note that the TAI offset is
  457          * returned only by ntp_gettime();
  458          */
  459         if (time_status & STA_NANO)
  460                 ntv.offset = L_GINT(time_offset);
  461         else
  462                 ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
  463         ntv.freq = L_GINT((time_freq / 1000LL) << 16);
  464         ntv.maxerror = time_maxerror;
  465         ntv.esterror = time_esterror;
  466         ntv.status = time_status;
  467         ntv.constant = time_constant;
  468         if (time_status & STA_NANO)
  469                 ntv.precision = time_precision;
  470         else
  471                 ntv.precision = time_precision / 1000;
  472         ntv.tolerance = MAXFREQ * SCALE_PPM;
  473 #ifdef PPS_SYNC
  474         ntv.shift = pps_shift;
  475         ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
  476         if (time_status & STA_NANO)
  477                 ntv.jitter = pps_jitter;
  478         else
  479                 ntv.jitter = pps_jitter / 1000;
  480         ntv.stabil = pps_stabil;
  481         ntv.calcnt = pps_calcnt;
  482         ntv.errcnt = pps_errcnt;
  483         ntv.jitcnt = pps_jitcnt;
  484         ntv.stbcnt = pps_stbcnt;
  485 #endif /* PPS_SYNC */
  486         retval = ntp_is_time_error(time_status) ? TIME_ERROR : time_state;
  487         NTPADJ_UNLOCK();
  488 
  489         error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
  490         if (error == 0)
  491                 td->td_retval[0] = retval;
  492         return (error);
  493 }
  494 
  495 /*
  496  * second_overflow() - called after ntp_tick_adjust()
  497  *
  498  * This routine is ordinarily called immediately following the above
  499  * routine ntp_tick_adjust(). While these two routines are normally
  500  * combined, they are separated here only for the purposes of
  501  * simulation.
  502  */
  503 void
  504 ntp_update_second(int64_t *adjustment, time_t *newsec)
  505 {
  506         int tickrate;
  507         l_fp ftemp;             /* 32/64-bit temporary */
  508 
  509         /*
  510          * On rollover of the second both the nanosecond and microsecond
  511          * clocks are updated and the state machine cranked as
  512          * necessary. The phase adjustment to be used for the next
  513          * second is calculated and the maximum error is increased by
  514          * the tolerance.
  515          */
  516         time_maxerror += MAXFREQ / 1000;
  517 
  518         /*
  519          * Leap second processing. If in leap-insert state at
  520          * the end of the day, the system clock is set back one
  521          * second; if in leap-delete state, the system clock is
  522          * set ahead one second. The nano_time() routine or
  523          * external clock driver will insure that reported time
  524          * is always monotonic.
  525          */
  526         switch (time_state) {
  527 
  528                 /*
  529                  * No warning.
  530                  */
  531                 case TIME_OK:
  532                 if (time_status & STA_INS)
  533                         time_state = TIME_INS;
  534                 else if (time_status & STA_DEL)
  535                         time_state = TIME_DEL;
  536                 break;
  537 
  538                 /*
  539                  * Insert second 23:59:60 following second
  540                  * 23:59:59.
  541                  */
  542                 case TIME_INS:
  543                 if (!(time_status & STA_INS))
  544                         time_state = TIME_OK;
  545                 else if ((*newsec) % 86400 == 0) {
  546                         (*newsec)--;
  547                         time_state = TIME_OOP;
  548                         time_tai++;
  549                 }
  550                 break;
  551 
  552                 /*
  553                  * Delete second 23:59:59.
  554                  */
  555                 case TIME_DEL:
  556                 if (!(time_status & STA_DEL))
  557                         time_state = TIME_OK;
  558                 else if (((*newsec) + 1) % 86400 == 0) {
  559                         (*newsec)++;
  560                         time_tai--;
  561                         time_state = TIME_WAIT;
  562                 }
  563                 break;
  564 
  565                 /*
  566                  * Insert second in progress.
  567                  */
  568                 case TIME_OOP:
  569                         time_state = TIME_WAIT;
  570                 break;
  571 
  572                 /*
  573                  * Wait for status bits to clear.
  574                  */
  575                 case TIME_WAIT:
  576                 if (!(time_status & (STA_INS | STA_DEL)))
  577                         time_state = TIME_OK;
  578         }
  579 
  580         /*
  581          * Compute the total time adjustment for the next second
  582          * in ns. The offset is reduced by a factor depending on
  583          * whether the PPS signal is operating. Note that the
  584          * value is in effect scaled by the clock frequency,
  585          * since the adjustment is added at each tick interrupt.
  586          */
  587         ftemp = time_offset;
  588 #ifdef PPS_SYNC
  589         /* XXX even if PPS signal dies we should finish adjustment ? */
  590         if (time_status & STA_PPSTIME && time_status &
  591             STA_PPSSIGNAL)
  592                 L_RSHIFT(ftemp, pps_shift);
  593         else
  594                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  595 #else
  596                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  597 #endif /* PPS_SYNC */
  598         time_adj = ftemp;
  599         L_SUB(time_offset, ftemp);
  600         L_ADD(time_adj, time_freq);
  601         
  602         /*
  603          * Apply any correction from adjtime(2).  If more than one second
  604          * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
  605          * until the last second is slewed the final < 500 usecs.
  606          */
  607         if (time_adjtime != 0) {
  608                 if (time_adjtime > 1000000)
  609                         tickrate = 5000;
  610                 else if (time_adjtime < -1000000)
  611                         tickrate = -5000;
  612                 else if (time_adjtime > 500)
  613                         tickrate = 500;
  614                 else if (time_adjtime < -500)
  615                         tickrate = -500;
  616                 else
  617                         tickrate = time_adjtime;
  618                 time_adjtime -= tickrate;
  619                 L_LINT(ftemp, tickrate * 1000);
  620                 L_ADD(time_adj, ftemp);
  621         }
  622         *adjustment = time_adj;
  623                 
  624 #ifdef PPS_SYNC
  625         if (pps_valid > 0)
  626                 pps_valid--;
  627         else
  628                 time_status &= ~STA_PPSSIGNAL;
  629 #endif /* PPS_SYNC */
  630 }
  631 
  632 /*
  633  * ntp_init() - initialize variables and structures
  634  *
  635  * This routine must be called after the kernel variables hz and tick
  636  * are set or changed and before the next tick interrupt. In this
  637  * particular implementation, these values are assumed set elsewhere in
  638  * the kernel. The design allows the clock frequency and tick interval
  639  * to be changed while the system is running. So, this routine should
  640  * probably be integrated with the code that does that.
  641  */
  642 static void
  643 ntp_init(void)
  644 {
  645 
  646         /*
  647          * The following variables are initialized only at startup. Only
  648          * those structures not cleared by the compiler need to be
  649          * initialized, and these only in the simulator. In the actual
  650          * kernel, any nonzero values here will quickly evaporate.
  651          */
  652         L_CLR(time_offset);
  653         L_CLR(time_freq);
  654 #ifdef PPS_SYNC
  655         pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
  656         pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
  657         pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
  658         pps_fcount = 0;
  659         L_CLR(pps_freq);
  660 #endif /* PPS_SYNC */      
  661 }
  662 
  663 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);
  664 
  665 /*
  666  * hardupdate() - local clock update
  667  *
  668  * This routine is called by ntp_adjtime() to update the local clock
  669  * phase and frequency. The implementation is of an adaptive-parameter,
  670  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
  671  * time and frequency offset estimates for each call. If the kernel PPS
  672  * discipline code is configured (PPS_SYNC), the PPS signal itself
  673  * determines the new time offset, instead of the calling argument.
  674  * Presumably, calls to ntp_adjtime() occur only when the caller
  675  * believes the local clock is valid within some bound (+-128 ms with
  676  * NTP). If the caller's time is far different than the PPS time, an
  677  * argument will ensue, and it's not clear who will lose.
  678  *
  679  * For uncompensated quartz crystal oscillators and nominal update
  680  * intervals less than 256 s, operation should be in phase-lock mode,
  681  * where the loop is disciplined to phase. For update intervals greater
  682  * than 1024 s, operation should be in frequency-lock mode, where the
  683  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
  684  * is selected by the STA_MODE status bit.
  685  */
  686 static void
  687 hardupdate(offset)
  688         long offset;            /* clock offset (ns) */
  689 {
  690         long mtemp;
  691         l_fp ftemp;
  692 
  693         NTPADJ_ASSERT_LOCKED();
  694 
  695         /*
  696          * Select how the phase is to be controlled and from which
  697          * source. If the PPS signal is present and enabled to
  698          * discipline the time, the PPS offset is used; otherwise, the
  699          * argument offset is used.
  700          */
  701         if (!(time_status & STA_PLL))
  702                 return;
  703         if (!(time_status & STA_PPSTIME && time_status &
  704             STA_PPSSIGNAL)) {
  705                 if (offset > MAXPHASE)
  706                         time_monitor = MAXPHASE;
  707                 else if (offset < -MAXPHASE)
  708                         time_monitor = -MAXPHASE;
  709                 else
  710                         time_monitor = offset;
  711                 L_LINT(time_offset, time_monitor);
  712         }
  713 
  714         /*
  715          * Select how the frequency is to be controlled and in which
  716          * mode (PLL or FLL). If the PPS signal is present and enabled
  717          * to discipline the frequency, the PPS frequency is used;
  718          * otherwise, the argument offset is used to compute it.
  719          */
  720         if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
  721                 time_reftime = time_uptime;
  722                 return;
  723         }
  724         if (time_status & STA_FREQHOLD || time_reftime == 0)
  725                 time_reftime = time_uptime;
  726         mtemp = time_uptime - time_reftime;
  727         L_LINT(ftemp, time_monitor);
  728         L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
  729         L_MPY(ftemp, mtemp);
  730         L_ADD(time_freq, ftemp);
  731         time_status &= ~STA_MODE;
  732         if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
  733             MAXSEC)) {
  734                 L_LINT(ftemp, (time_monitor << 4) / mtemp);
  735                 L_RSHIFT(ftemp, SHIFT_FLL + 4);
  736                 L_ADD(time_freq, ftemp);
  737                 time_status |= STA_MODE;
  738         }
  739         time_reftime = time_uptime;
  740         if (L_GINT(time_freq) > MAXFREQ)
  741                 L_LINT(time_freq, MAXFREQ);
  742         else if (L_GINT(time_freq) < -MAXFREQ)
  743                 L_LINT(time_freq, -MAXFREQ);
  744 }
  745 
  746 #ifdef PPS_SYNC
  747 /*
  748  * hardpps() - discipline CPU clock oscillator to external PPS signal
  749  *
  750  * This routine is called at each PPS interrupt in order to discipline
  751  * the CPU clock oscillator to the PPS signal. There are two independent
  752  * first-order feedback loops, one for the phase, the other for the
  753  * frequency. The phase loop measures and grooms the PPS phase offset
  754  * and leaves it in a handy spot for the seconds overflow routine. The
  755  * frequency loop averages successive PPS phase differences and
  756  * calculates the PPS frequency offset, which is also processed by the
  757  * seconds overflow routine. The code requires the caller to capture the
  758  * time and architecture-dependent hardware counter values in
  759  * nanoseconds at the on-time PPS signal transition.
  760  *
  761  * Note that, on some Unix systems this routine runs at an interrupt
  762  * priority level higher than the timer interrupt routine hardclock().
  763  * Therefore, the variables used are distinct from the hardclock()
  764  * variables, except for the actual time and frequency variables, which
  765  * are determined by this routine and updated atomically.
  766  */
  767 void
  768 hardpps(tsp, nsec)
  769         struct timespec *tsp;   /* time at PPS */
  770         long nsec;              /* hardware counter at PPS */
  771 {
  772         long u_sec, u_nsec, v_nsec; /* temps */
  773         l_fp ftemp;
  774 
  775         NTPADJ_LOCK();
  776 
  777         /*
  778          * The signal is first processed by a range gate and frequency
  779          * discriminator. The range gate rejects noise spikes outside
  780          * the range +-500 us. The frequency discriminator rejects input
  781          * signals with apparent frequency outside the range 1 +-500
  782          * PPM. If two hits occur in the same second, we ignore the
  783          * later hit; if not and a hit occurs outside the range gate,
  784          * keep the later hit for later comparison, but do not process
  785          * it.
  786          */
  787         time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
  788         time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
  789         pps_valid = PPS_VALID;
  790         u_sec = tsp->tv_sec;
  791         u_nsec = tsp->tv_nsec;
  792         if (u_nsec >= (NANOSECOND >> 1)) {
  793                 u_nsec -= NANOSECOND;
  794                 u_sec++;
  795         }
  796         v_nsec = u_nsec - pps_tf[0].tv_nsec;
  797         if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND - MAXFREQ)
  798                 goto out;
  799         pps_tf[2] = pps_tf[1];
  800         pps_tf[1] = pps_tf[0];
  801         pps_tf[0].tv_sec = u_sec;
  802         pps_tf[0].tv_nsec = u_nsec;
  803 
  804         /*
  805          * Compute the difference between the current and previous
  806          * counter values. If the difference exceeds 0.5 s, assume it
  807          * has wrapped around, so correct 1.0 s. If the result exceeds
  808          * the tick interval, the sample point has crossed a tick
  809          * boundary during the last second, so correct the tick. Very
  810          * intricate.
  811          */
  812         u_nsec = nsec;
  813         if (u_nsec > (NANOSECOND >> 1))
  814                 u_nsec -= NANOSECOND;
  815         else if (u_nsec < -(NANOSECOND >> 1))
  816                 u_nsec += NANOSECOND;
  817         pps_fcount += u_nsec;
  818         if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
  819                 goto out;
  820         time_status &= ~STA_PPSJITTER;
  821 
  822         /*
  823          * A three-stage median filter is used to help denoise the PPS
  824          * time. The median sample becomes the time offset estimate; the
  825          * difference between the other two samples becomes the time
  826          * dispersion (jitter) estimate.
  827          */
  828         if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
  829                 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
  830                         v_nsec = pps_tf[1].tv_nsec;     /* 0 1 2 */
  831                         u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
  832                 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
  833                         v_nsec = pps_tf[0].tv_nsec;     /* 2 0 1 */
  834                         u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
  835                 } else {
  836                         v_nsec = pps_tf[2].tv_nsec;     /* 0 2 1 */
  837                         u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
  838                 }
  839         } else {
  840                 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
  841                         v_nsec = pps_tf[1].tv_nsec;     /* 2 1 0 */
  842                         u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
  843                 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
  844                         v_nsec = pps_tf[0].tv_nsec;     /* 1 0 2 */
  845                         u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
  846                 } else {
  847                         v_nsec = pps_tf[2].tv_nsec;     /* 1 2 0 */
  848                         u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
  849                 }
  850         }
  851 
  852         /*
  853          * Nominal jitter is due to PPS signal noise and interrupt
  854          * latency. If it exceeds the popcorn threshold, the sample is
  855          * discarded. otherwise, if so enabled, the time offset is
  856          * updated. We can tolerate a modest loss of data here without
  857          * much degrading time accuracy.
  858          *
  859          * The measurements being checked here were made with the system
  860          * timecounter, so the popcorn threshold is not allowed to fall below
  861          * the number of nanoseconds in two ticks of the timecounter.  For a
  862          * timecounter running faster than 1 GHz the lower bound is 2ns, just
  863          * to avoid a nonsensical threshold of zero.
  864         */
  865         if (u_nsec > lmax(pps_jitter << PPS_POPCORN,
  866             2 * (NANOSECOND / (long)qmin(NANOSECOND, tc_getfrequency())))) {
  867                 time_status |= STA_PPSJITTER;
  868                 pps_jitcnt++;
  869         } else if (time_status & STA_PPSTIME) {
  870                 time_monitor = -v_nsec;
  871                 L_LINT(time_offset, time_monitor);
  872         }
  873         pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
  874         u_sec = pps_tf[0].tv_sec - pps_lastsec;
  875         if (u_sec < (1 << pps_shift))
  876                 goto out;
  877 
  878         /*
  879          * At the end of the calibration interval the difference between
  880          * the first and last counter values becomes the scaled
  881          * frequency. It will later be divided by the length of the
  882          * interval to determine the frequency update. If the frequency
  883          * exceeds a sanity threshold, or if the actual calibration
  884          * interval is not equal to the expected length, the data are
  885          * discarded. We can tolerate a modest loss of data here without
  886          * much degrading frequency accuracy.
  887          */
  888         pps_calcnt++;
  889         v_nsec = -pps_fcount;
  890         pps_lastsec = pps_tf[0].tv_sec;
  891         pps_fcount = 0;
  892         u_nsec = MAXFREQ << pps_shift;
  893         if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 << pps_shift)) {
  894                 time_status |= STA_PPSERROR;
  895                 pps_errcnt++;
  896                 goto out;
  897         }
  898 
  899         /*
  900          * Here the raw frequency offset and wander (stability) is
  901          * calculated. If the wander is less than the wander threshold
  902          * for four consecutive averaging intervals, the interval is
  903          * doubled; if it is greater than the threshold for four
  904          * consecutive intervals, the interval is halved. The scaled
  905          * frequency offset is converted to frequency offset. The
  906          * stability metric is calculated as the average of recent
  907          * frequency changes, but is used only for performance
  908          * monitoring.
  909          */
  910         L_LINT(ftemp, v_nsec);
  911         L_RSHIFT(ftemp, pps_shift);
  912         L_SUB(ftemp, pps_freq);
  913         u_nsec = L_GINT(ftemp);
  914         if (u_nsec > PPS_MAXWANDER) {
  915                 L_LINT(ftemp, PPS_MAXWANDER);
  916                 pps_intcnt--;
  917                 time_status |= STA_PPSWANDER;
  918                 pps_stbcnt++;
  919         } else if (u_nsec < -PPS_MAXWANDER) {
  920                 L_LINT(ftemp, -PPS_MAXWANDER);
  921                 pps_intcnt--;
  922                 time_status |= STA_PPSWANDER;
  923                 pps_stbcnt++;
  924         } else {
  925                 pps_intcnt++;
  926         }
  927         if (pps_intcnt >= 4) {
  928                 pps_intcnt = 4;
  929                 if (pps_shift < pps_shiftmax) {
  930                         pps_shift++;
  931                         pps_intcnt = 0;
  932                 }
  933         } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
  934                 pps_intcnt = -4;
  935                 if (pps_shift > PPS_FAVG) {
  936                         pps_shift--;
  937                         pps_intcnt = 0;
  938                 }
  939         }
  940         if (u_nsec < 0)
  941                 u_nsec = -u_nsec;
  942         pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
  943 
  944         /*
  945          * The PPS frequency is recalculated and clamped to the maximum
  946          * MAXFREQ. If enabled, the system clock frequency is updated as
  947          * well.
  948          */
  949         L_ADD(pps_freq, ftemp);
  950         u_nsec = L_GINT(pps_freq);
  951         if (u_nsec > MAXFREQ)
  952                 L_LINT(pps_freq, MAXFREQ);
  953         else if (u_nsec < -MAXFREQ)
  954                 L_LINT(pps_freq, -MAXFREQ);
  955         if (time_status & STA_PPSFREQ)
  956                 time_freq = pps_freq;
  957 
  958 out:
  959         NTPADJ_UNLOCK();
  960 }
  961 #endif /* PPS_SYNC */
  962 
  963 #ifndef _SYS_SYSPROTO_H_
  964 struct adjtime_args {
  965         struct timeval *delta;
  966         struct timeval *olddelta;
  967 };
  968 #endif
  969 /* ARGSUSED */
  970 int
  971 sys_adjtime(struct thread *td, struct adjtime_args *uap)
  972 {
  973         struct timeval delta, olddelta, *deltap;
  974         int error;
  975 
  976         if (uap->delta) {
  977                 error = copyin(uap->delta, &delta, sizeof(delta));
  978                 if (error)
  979                         return (error);
  980                 deltap = &delta;
  981         } else
  982                 deltap = NULL;
  983         error = kern_adjtime(td, deltap, &olddelta);
  984         if (uap->olddelta && error == 0)
  985                 error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
  986         return (error);
  987 }
  988 
  989 int
  990 kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
  991 {
  992         struct timeval atv;
  993         int64_t ltr, ltw;
  994         int error;
  995 
  996         if (delta != NULL) {
  997                 error = priv_check(td, PRIV_ADJTIME);
  998                 if (error != 0)
  999                         return (error);
 1000                 ltw = (int64_t)delta->tv_sec * 1000000 + delta->tv_usec;
 1001         }
 1002         NTPADJ_LOCK();
 1003         ltr = time_adjtime;
 1004         if (delta != NULL)
 1005                 time_adjtime = ltw;
 1006         NTPADJ_UNLOCK();
 1007         if (olddelta != NULL) {
 1008                 atv.tv_sec = ltr / 1000000;
 1009                 atv.tv_usec = ltr % 1000000;
 1010                 if (atv.tv_usec < 0) {
 1011                         atv.tv_usec += 1000000;
 1012                         atv.tv_sec--;
 1013                 }
 1014                 *olddelta = atv;
 1015         }
 1016         return (0);
 1017 }
 1018 
 1019 static struct callout resettodr_callout;
 1020 static int resettodr_period = 1800;
 1021 
 1022 static void
 1023 periodic_resettodr(void *arg __unused)
 1024 {
 1025 
 1026         /*
 1027          * Read of time_status is lock-less, which is fine since
 1028          * ntp_is_time_error() operates on the consistent read value.
 1029          */
 1030         if (!ntp_is_time_error(time_status))
 1031                 resettodr();
 1032         if (resettodr_period > 0)
 1033                 callout_schedule(&resettodr_callout, resettodr_period * hz);
 1034 }
 1035 
 1036 static void
 1037 shutdown_resettodr(void *arg __unused, int howto __unused)
 1038 {
 1039 
 1040         callout_drain(&resettodr_callout);
 1041         /* Another unlocked read of time_status */
 1042         if (resettodr_period > 0 && !ntp_is_time_error(time_status))
 1043                 resettodr();
 1044 }
 1045 
 1046 static int
 1047 sysctl_resettodr_period(SYSCTL_HANDLER_ARGS)
 1048 {
 1049         int error;
 1050 
 1051         error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
 1052         if (error || !req->newptr)
 1053                 return (error);
 1054         if (cold)
 1055                 goto done;
 1056         if (resettodr_period == 0)
 1057                 callout_stop(&resettodr_callout);
 1058         else
 1059                 callout_reset(&resettodr_callout, resettodr_period * hz,
 1060                     periodic_resettodr, NULL);
 1061 done:
 1062         return (0);
 1063 }
 1064 
 1065 SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT | CTLFLAG_RWTUN |
 1066     CTLFLAG_MPSAFE, &resettodr_period, 1800, sysctl_resettodr_period, "I",
 1067     "Save system time to RTC with this period (in seconds)");
 1068 
 1069 static void
 1070 start_periodic_resettodr(void *arg __unused)
 1071 {
 1072 
 1073         EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL,
 1074             SHUTDOWN_PRI_FIRST);
 1075         callout_init(&resettodr_callout, 1);
 1076         if (resettodr_period == 0)
 1077                 return;
 1078         callout_reset(&resettodr_callout, resettodr_period * hz,
 1079             periodic_resettodr, NULL);
 1080 }
 1081 
 1082 SYSINIT(periodic_resettodr, SI_SUB_LAST, SI_ORDER_MIDDLE,
 1083         start_periodic_resettodr, NULL);

Cache object: 195f9f9d410408d87411284df81244ed


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.