The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_ntptime.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  ***********************************************************************
    3  *                                                                     *
    4  * Copyright (c) David L. Mills 1993-2001                              *
    5  *                                                                     *
    6  * Permission to use, copy, modify, and distribute this software and   *
    7  * its documentation for any purpose and without fee is hereby         *
    8  * granted, provided that the above copyright notice appears in all    *
    9  * copies and that both the copyright notice and this permission       *
   10  * notice appear in supporting documentation, and that the name        *
   11  * University of Delaware not be used in advertising or publicity      *
   12  * pertaining to distribution of the software without specific,        *
   13  * written prior permission. The University of Delaware makes no       *
   14  * representations about the suitability this software for any         *
   15  * purpose. It is provided "as is" without express or implied          *
   16  * warranty.                                                           *
   17  *                                                                     *
   18  **********************************************************************/
   19 
   20 /*
   21  * Adapted from the original sources for FreeBSD and timecounters by:
   22  * Poul-Henning Kamp <phk@FreeBSD.org>.
   23  *
   24  * The 32bit version of the "LP" macros seems a bit past its "sell by" 
   25  * date so I have retained only the 64bit version and included it directly
   26  * in this file.
   27  *
   28  * Only minor changes done to interface with the timecounters over in
   29  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
   30  * confusing and/or plain wrong in that context.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 #include "opt_ntp.h"
   37 
   38 #include <sys/param.h>
   39 #include <sys/systm.h>
   40 #include <sys/sysproto.h>
   41 #include <sys/eventhandler.h>
   42 #include <sys/kernel.h>
   43 #include <sys/priv.h>
   44 #include <sys/proc.h>
   45 #include <sys/lock.h>
   46 #include <sys/mutex.h>
   47 #include <sys/time.h>
   48 #include <sys/timex.h>
   49 #include <sys/timetc.h>
   50 #include <sys/timepps.h>
   51 #include <sys/syscallsubr.h>
   52 #include <sys/sysctl.h>
   53 
   54 #ifdef PPS_SYNC
   55 FEATURE(pps_sync, "Support usage of external PPS signal by kernel PLL");
   56 #endif
   57 
   58 /*
   59  * Single-precision macros for 64-bit machines
   60  */
   61 typedef int64_t l_fp;
   62 #define L_ADD(v, u)     ((v) += (u))
   63 #define L_SUB(v, u)     ((v) -= (u))
   64 #define L_ADDHI(v, a)   ((v) += (int64_t)(a) << 32)
   65 #define L_NEG(v)        ((v) = -(v))
   66 #define L_RSHIFT(v, n) \
   67         do { \
   68                 if ((v) < 0) \
   69                         (v) = -(-(v) >> (n)); \
   70                 else \
   71                         (v) = (v) >> (n); \
   72         } while (0)
   73 #define L_MPY(v, a)     ((v) *= (a))
   74 #define L_CLR(v)        ((v) = 0)
   75 #define L_ISNEG(v)      ((v) < 0)
   76 #define L_LINT(v, a)    ((v) = (int64_t)(a) << 32)
   77 #define L_GINT(v)       ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
   78 
   79 /*
   80  * Generic NTP kernel interface
   81  *
   82  * These routines constitute the Network Time Protocol (NTP) interfaces
   83  * for user and daemon application programs. The ntp_gettime() routine
   84  * provides the time, maximum error (synch distance) and estimated error
   85  * (dispersion) to client user application programs. The ntp_adjtime()
   86  * routine is used by the NTP daemon to adjust the system clock to an
   87  * externally derived time. The time offset and related variables set by
   88  * this routine are used by other routines in this module to adjust the
   89  * phase and frequency of the clock discipline loop which controls the
   90  * system clock.
   91  *
   92  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
   93  * defined), the time at each tick interrupt is derived directly from
   94  * the kernel time variable. When the kernel time is reckoned in
   95  * microseconds, (NTP_NANO undefined), the time is derived from the
   96  * kernel time variable together with a variable representing the
   97  * leftover nanoseconds at the last tick interrupt. In either case, the
   98  * current nanosecond time is reckoned from these values plus an
   99  * interpolated value derived by the clock routines in another
  100  * architecture-specific module. The interpolation can use either a
  101  * dedicated counter or a processor cycle counter (PCC) implemented in
  102  * some architectures.
  103  *
  104  * Note that all routines must run at priority splclock or higher.
  105  */
  106 /*
  107  * Phase/frequency-lock loop (PLL/FLL) definitions
  108  *
  109  * The nanosecond clock discipline uses two variable types, time
  110  * variables and frequency variables. Both types are represented as 64-
  111  * bit fixed-point quantities with the decimal point between two 32-bit
  112  * halves. On a 32-bit machine, each half is represented as a single
  113  * word and mathematical operations are done using multiple-precision
  114  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
  115  * used.
  116  *
  117  * A time variable is a signed 64-bit fixed-point number in ns and
  118  * fraction. It represents the remaining time offset to be amortized
  119  * over succeeding tick interrupts. The maximum time offset is about
  120  * 0.5 s and the resolution is about 2.3e-10 ns.
  121  *
  122  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  123  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  124  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  125  * |s s s|                       ns                                |
  126  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  127  * |                        fraction                               |
  128  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  129  *
  130  * A frequency variable is a signed 64-bit fixed-point number in ns/s
  131  * and fraction. It represents the ns and fraction to be added to the
  132  * kernel time variable at each second. The maximum frequency offset is
  133  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
  134  *
  135  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  136  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  137  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  138  * |s s s s s s s s s s s s s|            ns/s                     |
  139  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  140  * |                        fraction                               |
  141  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  142  */
  143 /*
  144  * The following variables establish the state of the PLL/FLL and the
  145  * residual time and frequency offset of the local clock.
  146  */
  147 #define SHIFT_PLL       4               /* PLL loop gain (shift) */
  148 #define SHIFT_FLL       2               /* FLL loop gain (shift) */
  149 
  150 static int time_state = TIME_OK;        /* clock state */
  151 int time_status = STA_UNSYNC;   /* clock status bits */
  152 static long time_tai;                   /* TAI offset (s) */
  153 static long time_monitor;               /* last time offset scaled (ns) */
  154 static long time_constant;              /* poll interval (shift) (s) */
  155 static long time_precision = 1;         /* clock precision (ns) */
  156 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
  157 long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
  158 static long time_reftime;               /* uptime at last adjustment (s) */
  159 static l_fp time_offset;                /* time offset (ns) */
  160 static l_fp time_freq;                  /* frequency offset (ns/s) */
  161 static l_fp time_adj;                   /* tick adjust (ns/s) */
  162 
  163 static int64_t time_adjtime;            /* correction from adjtime(2) (usec) */
  164 
  165 static struct mtx ntp_lock;
  166 MTX_SYSINIT(ntp, &ntp_lock, "ntp", MTX_SPIN);
  167 
  168 #define NTP_LOCK()              mtx_lock_spin(&ntp_lock)
  169 #define NTP_UNLOCK()            mtx_unlock_spin(&ntp_lock)
  170 #define NTP_ASSERT_LOCKED()     mtx_assert(&ntp_lock, MA_OWNED)
  171 
  172 #ifdef PPS_SYNC
  173 /*
  174  * The following variables are used when a pulse-per-second (PPS) signal
  175  * is available and connected via a modem control lead. They establish
  176  * the engineering parameters of the clock discipline loop when
  177  * controlled by the PPS signal.
  178  */
  179 #define PPS_FAVG        2               /* min freq avg interval (s) (shift) */
  180 #define PPS_FAVGDEF     8               /* default freq avg int (s) (shift) */
  181 #define PPS_FAVGMAX     15              /* max freq avg interval (s) (shift) */
  182 #define PPS_PAVG        4               /* phase avg interval (s) (shift) */
  183 #define PPS_VALID       120             /* PPS signal watchdog max (s) */
  184 #define PPS_MAXWANDER   100000          /* max PPS wander (ns/s) */
  185 #define PPS_POPCORN     2               /* popcorn spike threshold (shift) */
  186 
  187 static struct timespec pps_tf[3];       /* phase median filter */
  188 static l_fp pps_freq;                   /* scaled frequency offset (ns/s) */
  189 static long pps_fcount;                 /* frequency accumulator */
  190 static long pps_jitter;                 /* nominal jitter (ns) */
  191 static long pps_stabil;                 /* nominal stability (scaled ns/s) */
  192 static long pps_lastsec;                /* time at last calibration (s) */
  193 static int pps_valid;                   /* signal watchdog counter */
  194 static int pps_shift = PPS_FAVG;        /* interval duration (s) (shift) */
  195 static int pps_shiftmax = PPS_FAVGDEF;  /* max interval duration (s) (shift) */
  196 static int pps_intcnt;                  /* wander counter */
  197 
  198 /*
  199  * PPS signal quality monitors
  200  */
  201 static long pps_calcnt;                 /* calibration intervals */
  202 static long pps_jitcnt;                 /* jitter limit exceeded */
  203 static long pps_stbcnt;                 /* stability limit exceeded */
  204 static long pps_errcnt;                 /* calibration errors */
  205 #endif /* PPS_SYNC */
  206 /*
  207  * End of phase/frequency-lock loop (PLL/FLL) definitions
  208  */
  209 
  210 static void ntp_init(void);
  211 static void hardupdate(long offset);
  212 static void ntp_gettime1(struct ntptimeval *ntvp);
  213 static bool ntp_is_time_error(int tsl);
  214 
  215 static bool
  216 ntp_is_time_error(int tsl)
  217 {
  218 
  219         /*
  220          * Status word error decode. If any of these conditions occur,
  221          * an error is returned, instead of the status word. Most
  222          * applications will care only about the fact the system clock
  223          * may not be trusted, not about the details.
  224          *
  225          * Hardware or software error
  226          */
  227         if ((tsl & (STA_UNSYNC | STA_CLOCKERR)) ||
  228 
  229         /*
  230          * PPS signal lost when either time or frequency synchronization
  231          * requested
  232          */
  233             (tsl & (STA_PPSFREQ | STA_PPSTIME) &&
  234             !(tsl & STA_PPSSIGNAL)) ||
  235 
  236         /*
  237          * PPS jitter exceeded when time synchronization requested
  238          */
  239             (tsl & STA_PPSTIME && tsl & STA_PPSJITTER) ||
  240 
  241         /*
  242          * PPS wander exceeded or calibration error when frequency
  243          * synchronization requested
  244          */
  245             (tsl & STA_PPSFREQ &&
  246             tsl & (STA_PPSWANDER | STA_PPSERROR)))
  247                 return (true);
  248 
  249         return (false);
  250 }
  251 
  252 static void
  253 ntp_gettime1(struct ntptimeval *ntvp)
  254 {
  255         struct timespec atv;    /* nanosecond time */
  256 
  257         NTP_ASSERT_LOCKED();
  258 
  259         nanotime(&atv);
  260         ntvp->time.tv_sec = atv.tv_sec;
  261         ntvp->time.tv_nsec = atv.tv_nsec;
  262         ntvp->maxerror = time_maxerror;
  263         ntvp->esterror = time_esterror;
  264         ntvp->tai = time_tai;
  265         ntvp->time_state = time_state;
  266 
  267         if (ntp_is_time_error(time_status))
  268                 ntvp->time_state = TIME_ERROR;
  269 }
  270 
  271 /*
  272  * ntp_gettime() - NTP user application interface
  273  *
  274  * See the timex.h header file for synopsis and API description.  Note that
  275  * the TAI offset is returned in the ntvtimeval.tai structure member.
  276  */
  277 #ifndef _SYS_SYSPROTO_H_
  278 struct ntp_gettime_args {
  279         struct ntptimeval *ntvp;
  280 };
  281 #endif
  282 /* ARGSUSED */
  283 int
  284 sys_ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
  285 {       
  286         struct ntptimeval ntv;
  287 
  288         memset(&ntv, 0, sizeof(ntv));
  289 
  290         NTP_LOCK();
  291         ntp_gettime1(&ntv);
  292         NTP_UNLOCK();
  293 
  294         td->td_retval[0] = ntv.time_state;
  295         return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
  296 }
  297 
  298 static int
  299 ntp_sysctl(SYSCTL_HANDLER_ARGS)
  300 {
  301         struct ntptimeval ntv;  /* temporary structure */
  302 
  303         memset(&ntv, 0, sizeof(ntv));
  304 
  305         NTP_LOCK();
  306         ntp_gettime1(&ntv);
  307         NTP_UNLOCK();
  308 
  309         return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
  310 }
  311 
  312 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
  313 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE | CTLFLAG_RD |
  314     CTLFLAG_MPSAFE, 0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval",
  315     "");
  316 
  317 #ifdef PPS_SYNC
  318 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW,
  319     &pps_shiftmax, 0, "Max interval duration (sec) (shift)");
  320 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW,
  321     &pps_shift, 0, "Interval duration (sec) (shift)");
  322 SYSCTL_LONG(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD,
  323     &time_monitor, 0, "Last time offset scaled (ns)");
  324 
  325 SYSCTL_S64(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD | CTLFLAG_MPSAFE,
  326     &pps_freq, 0,
  327     "Scaled frequency offset (ns/sec)");
  328 SYSCTL_S64(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD | CTLFLAG_MPSAFE,
  329     &time_freq, 0,
  330     "Frequency offset (ns/sec)");
  331 #endif
  332 
  333 /*
  334  * ntp_adjtime() - NTP daemon application interface
  335  *
  336  * See the timex.h header file for synopsis and API description.  Note that
  337  * the timex.constant structure member has a dual purpose to set the time
  338  * constant and to set the TAI offset.
  339  */
  340 #ifndef _SYS_SYSPROTO_H_
  341 struct ntp_adjtime_args {
  342         struct timex *tp;
  343 };
  344 #endif
  345 
  346 int
  347 sys_ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
  348 {
  349         struct timex ntv;       /* temporary structure */
  350         long freq;              /* frequency ns/s) */
  351         int modes;              /* mode bits from structure */
  352         int error, retval;
  353 
  354         error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
  355         if (error)
  356                 return (error);
  357 
  358         /*
  359          * Update selected clock variables - only the superuser can
  360          * change anything. Note that there is no error checking here on
  361          * the assumption the superuser should know what it is doing.
  362          * Note that either the time constant or TAI offset are loaded
  363          * from the ntv.constant member, depending on the mode bits. If
  364          * the STA_PLL bit in the status word is cleared, the state and
  365          * status words are reset to the initial values at boot.
  366          */
  367         modes = ntv.modes;
  368         if (modes)
  369                 error = priv_check(td, PRIV_NTP_ADJTIME);
  370         if (error != 0)
  371                 return (error);
  372         NTP_LOCK();
  373         if (modes & MOD_MAXERROR)
  374                 time_maxerror = ntv.maxerror;
  375         if (modes & MOD_ESTERROR)
  376                 time_esterror = ntv.esterror;
  377         if (modes & MOD_STATUS) {
  378                 if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
  379                         time_state = TIME_OK;
  380                         time_status = STA_UNSYNC;
  381 #ifdef PPS_SYNC
  382                         pps_shift = PPS_FAVG;
  383 #endif /* PPS_SYNC */
  384                 }
  385                 time_status &= STA_RONLY;
  386                 time_status |= ntv.status & ~STA_RONLY;
  387         }
  388         if (modes & MOD_TIMECONST) {
  389                 if (ntv.constant < 0)
  390                         time_constant = 0;
  391                 else if (ntv.constant > MAXTC)
  392                         time_constant = MAXTC;
  393                 else
  394                         time_constant = ntv.constant;
  395         }
  396         if (modes & MOD_TAI) {
  397                 if (ntv.constant > 0) /* XXX zero & negative numbers ? */
  398                         time_tai = ntv.constant;
  399         }
  400 #ifdef PPS_SYNC
  401         if (modes & MOD_PPSMAX) {
  402                 if (ntv.shift < PPS_FAVG)
  403                         pps_shiftmax = PPS_FAVG;
  404                 else if (ntv.shift > PPS_FAVGMAX)
  405                         pps_shiftmax = PPS_FAVGMAX;
  406                 else
  407                         pps_shiftmax = ntv.shift;
  408         }
  409 #endif /* PPS_SYNC */
  410         if (modes & MOD_NANO)
  411                 time_status |= STA_NANO;
  412         if (modes & MOD_MICRO)
  413                 time_status &= ~STA_NANO;
  414         if (modes & MOD_CLKB)
  415                 time_status |= STA_CLK;
  416         if (modes & MOD_CLKA)
  417                 time_status &= ~STA_CLK;
  418         if (modes & MOD_FREQUENCY) {
  419                 freq = (ntv.freq * 1000LL) >> 16;
  420                 if (freq > MAXFREQ)
  421                         L_LINT(time_freq, MAXFREQ);
  422                 else if (freq < -MAXFREQ)
  423                         L_LINT(time_freq, -MAXFREQ);
  424                 else {
  425                         /*
  426                          * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
  427                          * time_freq is [ns/s * 2^32]
  428                          */
  429                         time_freq = ntv.freq * 1000LL * 65536LL;
  430                 }
  431 #ifdef PPS_SYNC
  432                 pps_freq = time_freq;
  433 #endif /* PPS_SYNC */
  434         }
  435         if (modes & MOD_OFFSET) {
  436                 if (time_status & STA_NANO)
  437                         hardupdate(ntv.offset);
  438                 else
  439                         hardupdate(ntv.offset * 1000);
  440         }
  441 
  442         /*
  443          * Retrieve all clock variables. Note that the TAI offset is
  444          * returned only by ntp_gettime();
  445          */
  446         if (time_status & STA_NANO)
  447                 ntv.offset = L_GINT(time_offset);
  448         else
  449                 ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
  450         ntv.freq = L_GINT((time_freq / 1000LL) << 16);
  451         ntv.maxerror = time_maxerror;
  452         ntv.esterror = time_esterror;
  453         ntv.status = time_status;
  454         ntv.constant = time_constant;
  455         if (time_status & STA_NANO)
  456                 ntv.precision = time_precision;
  457         else
  458                 ntv.precision = time_precision / 1000;
  459         ntv.tolerance = MAXFREQ * SCALE_PPM;
  460 #ifdef PPS_SYNC
  461         ntv.shift = pps_shift;
  462         ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
  463         if (time_status & STA_NANO)
  464                 ntv.jitter = pps_jitter;
  465         else
  466                 ntv.jitter = pps_jitter / 1000;
  467         ntv.stabil = pps_stabil;
  468         ntv.calcnt = pps_calcnt;
  469         ntv.errcnt = pps_errcnt;
  470         ntv.jitcnt = pps_jitcnt;
  471         ntv.stbcnt = pps_stbcnt;
  472 #endif /* PPS_SYNC */
  473         retval = ntp_is_time_error(time_status) ? TIME_ERROR : time_state;
  474         NTP_UNLOCK();
  475 
  476         error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
  477         if (error == 0)
  478                 td->td_retval[0] = retval;
  479         return (error);
  480 }
  481 
  482 /*
  483  * second_overflow() - called after ntp_tick_adjust()
  484  *
  485  * This routine is ordinarily called immediately following the above
  486  * routine ntp_tick_adjust(). While these two routines are normally
  487  * combined, they are separated here only for the purposes of
  488  * simulation.
  489  */
  490 void
  491 ntp_update_second(int64_t *adjustment, time_t *newsec)
  492 {
  493         int tickrate;
  494         l_fp ftemp;             /* 32/64-bit temporary */
  495 
  496         NTP_LOCK();
  497 
  498         /*
  499          * On rollover of the second both the nanosecond and microsecond
  500          * clocks are updated and the state machine cranked as
  501          * necessary. The phase adjustment to be used for the next
  502          * second is calculated and the maximum error is increased by
  503          * the tolerance.
  504          */
  505         time_maxerror += MAXFREQ / 1000;
  506 
  507         /*
  508          * Leap second processing. If in leap-insert state at
  509          * the end of the day, the system clock is set back one
  510          * second; if in leap-delete state, the system clock is
  511          * set ahead one second. The nano_time() routine or
  512          * external clock driver will insure that reported time
  513          * is always monotonic.
  514          */
  515         switch (time_state) {
  516 
  517                 /*
  518                  * No warning.
  519                  */
  520                 case TIME_OK:
  521                 if (time_status & STA_INS)
  522                         time_state = TIME_INS;
  523                 else if (time_status & STA_DEL)
  524                         time_state = TIME_DEL;
  525                 break;
  526 
  527                 /*
  528                  * Insert second 23:59:60 following second
  529                  * 23:59:59.
  530                  */
  531                 case TIME_INS:
  532                 if (!(time_status & STA_INS))
  533                         time_state = TIME_OK;
  534                 else if ((*newsec) % 86400 == 0) {
  535                         (*newsec)--;
  536                         time_state = TIME_OOP;
  537                         time_tai++;
  538                 }
  539                 break;
  540 
  541                 /*
  542                  * Delete second 23:59:59.
  543                  */
  544                 case TIME_DEL:
  545                 if (!(time_status & STA_DEL))
  546                         time_state = TIME_OK;
  547                 else if (((*newsec) + 1) % 86400 == 0) {
  548                         (*newsec)++;
  549                         time_tai--;
  550                         time_state = TIME_WAIT;
  551                 }
  552                 break;
  553 
  554                 /*
  555                  * Insert second in progress.
  556                  */
  557                 case TIME_OOP:
  558                         time_state = TIME_WAIT;
  559                 break;
  560 
  561                 /*
  562                  * Wait for status bits to clear.
  563                  */
  564                 case TIME_WAIT:
  565                 if (!(time_status & (STA_INS | STA_DEL)))
  566                         time_state = TIME_OK;
  567         }
  568 
  569         /*
  570          * Compute the total time adjustment for the next second
  571          * in ns. The offset is reduced by a factor depending on
  572          * whether the PPS signal is operating. Note that the
  573          * value is in effect scaled by the clock frequency,
  574          * since the adjustment is added at each tick interrupt.
  575          */
  576         ftemp = time_offset;
  577 #ifdef PPS_SYNC
  578         /* XXX even if PPS signal dies we should finish adjustment ? */
  579         if (time_status & STA_PPSTIME && time_status &
  580             STA_PPSSIGNAL)
  581                 L_RSHIFT(ftemp, pps_shift);
  582         else
  583                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  584 #else
  585                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  586 #endif /* PPS_SYNC */
  587         time_adj = ftemp;
  588         L_SUB(time_offset, ftemp);
  589         L_ADD(time_adj, time_freq);
  590         
  591         /*
  592          * Apply any correction from adjtime(2).  If more than one second
  593          * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500 PPM)
  594          * until the last second is slewed the final < 500 usecs.
  595          */
  596         if (time_adjtime != 0) {
  597                 if (time_adjtime > 1000000)
  598                         tickrate = 5000;
  599                 else if (time_adjtime < -1000000)
  600                         tickrate = -5000;
  601                 else if (time_adjtime > 500)
  602                         tickrate = 500;
  603                 else if (time_adjtime < -500)
  604                         tickrate = -500;
  605                 else
  606                         tickrate = time_adjtime;
  607                 time_adjtime -= tickrate;
  608                 L_LINT(ftemp, tickrate * 1000);
  609                 L_ADD(time_adj, ftemp);
  610         }
  611         *adjustment = time_adj;
  612                 
  613 #ifdef PPS_SYNC
  614         if (pps_valid > 0)
  615                 pps_valid--;
  616         else
  617                 time_status &= ~STA_PPSSIGNAL;
  618 #endif /* PPS_SYNC */
  619 
  620         NTP_UNLOCK();
  621 }
  622 
  623 /*
  624  * ntp_init() - initialize variables and structures
  625  *
  626  * This routine must be called after the kernel variables hz and tick
  627  * are set or changed and before the next tick interrupt. In this
  628  * particular implementation, these values are assumed set elsewhere in
  629  * the kernel. The design allows the clock frequency and tick interval
  630  * to be changed while the system is running. So, this routine should
  631  * probably be integrated with the code that does that.
  632  */
  633 static void
  634 ntp_init(void)
  635 {
  636 
  637         /*
  638          * The following variables are initialized only at startup. Only
  639          * those structures not cleared by the compiler need to be
  640          * initialized, and these only in the simulator. In the actual
  641          * kernel, any nonzero values here will quickly evaporate.
  642          */
  643         L_CLR(time_offset);
  644         L_CLR(time_freq);
  645 #ifdef PPS_SYNC
  646         pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
  647         pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
  648         pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
  649         pps_fcount = 0;
  650         L_CLR(pps_freq);
  651 #endif /* PPS_SYNC */      
  652 }
  653 
  654 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);
  655 
  656 /*
  657  * hardupdate() - local clock update
  658  *
  659  * This routine is called by ntp_adjtime() to update the local clock
  660  * phase and frequency. The implementation is of an adaptive-parameter,
  661  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
  662  * time and frequency offset estimates for each call. If the kernel PPS
  663  * discipline code is configured (PPS_SYNC), the PPS signal itself
  664  * determines the new time offset, instead of the calling argument.
  665  * Presumably, calls to ntp_adjtime() occur only when the caller
  666  * believes the local clock is valid within some bound (+-128 ms with
  667  * NTP). If the caller's time is far different than the PPS time, an
  668  * argument will ensue, and it's not clear who will lose.
  669  *
  670  * For uncompensated quartz crystal oscillators and nominal update
  671  * intervals less than 256 s, operation should be in phase-lock mode,
  672  * where the loop is disciplined to phase. For update intervals greater
  673  * than 1024 s, operation should be in frequency-lock mode, where the
  674  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
  675  * is selected by the STA_MODE status bit.
  676  */
  677 static void
  678 hardupdate(offset)
  679         long offset;            /* clock offset (ns) */
  680 {
  681         long mtemp;
  682         l_fp ftemp;
  683 
  684         NTP_ASSERT_LOCKED();
  685 
  686         /*
  687          * Select how the phase is to be controlled and from which
  688          * source. If the PPS signal is present and enabled to
  689          * discipline the time, the PPS offset is used; otherwise, the
  690          * argument offset is used.
  691          */
  692         if (!(time_status & STA_PLL))
  693                 return;
  694         if (!(time_status & STA_PPSTIME && time_status &
  695             STA_PPSSIGNAL)) {
  696                 if (offset > MAXPHASE)
  697                         time_monitor = MAXPHASE;
  698                 else if (offset < -MAXPHASE)
  699                         time_monitor = -MAXPHASE;
  700                 else
  701                         time_monitor = offset;
  702                 L_LINT(time_offset, time_monitor);
  703         }
  704 
  705         /*
  706          * Select how the frequency is to be controlled and in which
  707          * mode (PLL or FLL). If the PPS signal is present and enabled
  708          * to discipline the frequency, the PPS frequency is used;
  709          * otherwise, the argument offset is used to compute it.
  710          */
  711         if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
  712                 time_reftime = time_uptime;
  713                 return;
  714         }
  715         if (time_status & STA_FREQHOLD || time_reftime == 0)
  716                 time_reftime = time_uptime;
  717         mtemp = time_uptime - time_reftime;
  718         L_LINT(ftemp, time_monitor);
  719         L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
  720         L_MPY(ftemp, mtemp);
  721         L_ADD(time_freq, ftemp);
  722         time_status &= ~STA_MODE;
  723         if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
  724             MAXSEC)) {
  725                 L_LINT(ftemp, (time_monitor << 4) / mtemp);
  726                 L_RSHIFT(ftemp, SHIFT_FLL + 4);
  727                 L_ADD(time_freq, ftemp);
  728                 time_status |= STA_MODE;
  729         }
  730         time_reftime = time_uptime;
  731         if (L_GINT(time_freq) > MAXFREQ)
  732                 L_LINT(time_freq, MAXFREQ);
  733         else if (L_GINT(time_freq) < -MAXFREQ)
  734                 L_LINT(time_freq, -MAXFREQ);
  735 }
  736 
  737 #ifdef PPS_SYNC
  738 /*
  739  * hardpps() - discipline CPU clock oscillator to external PPS signal
  740  *
  741  * This routine is called at each PPS interrupt in order to discipline
  742  * the CPU clock oscillator to the PPS signal. There are two independent
  743  * first-order feedback loops, one for the phase, the other for the
  744  * frequency. The phase loop measures and grooms the PPS phase offset
  745  * and leaves it in a handy spot for the seconds overflow routine. The
  746  * frequency loop averages successive PPS phase differences and
  747  * calculates the PPS frequency offset, which is also processed by the
  748  * seconds overflow routine. The code requires the caller to capture the
  749  * time and architecture-dependent hardware counter values in
  750  * nanoseconds at the on-time PPS signal transition.
  751  *
  752  * Note that, on some Unix systems this routine runs at an interrupt
  753  * priority level higher than the timer interrupt routine hardclock().
  754  * Therefore, the variables used are distinct from the hardclock()
  755  * variables, except for the actual time and frequency variables, which
  756  * are determined by this routine and updated atomically.
  757  */
  758 void
  759 hardpps(tsp, nsec)
  760         struct timespec *tsp;   /* time at PPS */
  761         long nsec;              /* hardware counter at PPS */
  762 {
  763         long u_sec, u_nsec, v_nsec; /* temps */
  764         l_fp ftemp;
  765 
  766         NTP_LOCK();
  767 
  768         /*
  769          * The signal is first processed by a range gate and frequency
  770          * discriminator. The range gate rejects noise spikes outside
  771          * the range +-500 us. The frequency discriminator rejects input
  772          * signals with apparent frequency outside the range 1 +-500
  773          * PPM. If two hits occur in the same second, we ignore the
  774          * later hit; if not and a hit occurs outside the range gate,
  775          * keep the later hit for later comparison, but do not process
  776          * it.
  777          */
  778         time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
  779         time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
  780         pps_valid = PPS_VALID;
  781         u_sec = tsp->tv_sec;
  782         u_nsec = tsp->tv_nsec;
  783         if (u_nsec >= (NANOSECOND >> 1)) {
  784                 u_nsec -= NANOSECOND;
  785                 u_sec++;
  786         }
  787         v_nsec = u_nsec - pps_tf[0].tv_nsec;
  788         if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND - MAXFREQ)
  789                 goto out;
  790         pps_tf[2] = pps_tf[1];
  791         pps_tf[1] = pps_tf[0];
  792         pps_tf[0].tv_sec = u_sec;
  793         pps_tf[0].tv_nsec = u_nsec;
  794 
  795         /*
  796          * Compute the difference between the current and previous
  797          * counter values. If the difference exceeds 0.5 s, assume it
  798          * has wrapped around, so correct 1.0 s. If the result exceeds
  799          * the tick interval, the sample point has crossed a tick
  800          * boundary during the last second, so correct the tick. Very
  801          * intricate.
  802          */
  803         u_nsec = nsec;
  804         if (u_nsec > (NANOSECOND >> 1))
  805                 u_nsec -= NANOSECOND;
  806         else if (u_nsec < -(NANOSECOND >> 1))
  807                 u_nsec += NANOSECOND;
  808         pps_fcount += u_nsec;
  809         if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
  810                 goto out;
  811         time_status &= ~STA_PPSJITTER;
  812 
  813         /*
  814          * A three-stage median filter is used to help denoise the PPS
  815          * time. The median sample becomes the time offset estimate; the
  816          * difference between the other two samples becomes the time
  817          * dispersion (jitter) estimate.
  818          */
  819         if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
  820                 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
  821                         v_nsec = pps_tf[1].tv_nsec;     /* 0 1 2 */
  822                         u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
  823                 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
  824                         v_nsec = pps_tf[0].tv_nsec;     /* 2 0 1 */
  825                         u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
  826                 } else {
  827                         v_nsec = pps_tf[2].tv_nsec;     /* 0 2 1 */
  828                         u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
  829                 }
  830         } else {
  831                 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
  832                         v_nsec = pps_tf[1].tv_nsec;     /* 2 1 0 */
  833                         u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
  834                 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
  835                         v_nsec = pps_tf[0].tv_nsec;     /* 1 0 2 */
  836                         u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
  837                 } else {
  838                         v_nsec = pps_tf[2].tv_nsec;     /* 1 2 0 */
  839                         u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
  840                 }
  841         }
  842 
  843         /*
  844          * Nominal jitter is due to PPS signal noise and interrupt
  845          * latency. If it exceeds the popcorn threshold, the sample is
  846          * discarded. otherwise, if so enabled, the time offset is
  847          * updated. We can tolerate a modest loss of data here without
  848          * much degrading time accuracy.
  849          *
  850          * The measurements being checked here were made with the system
  851          * timecounter, so the popcorn threshold is not allowed to fall below
  852          * the number of nanoseconds in two ticks of the timecounter.  For a
  853          * timecounter running faster than 1 GHz the lower bound is 2ns, just
  854          * to avoid a nonsensical threshold of zero.
  855         */
  856         if (u_nsec > lmax(pps_jitter << PPS_POPCORN,
  857             2 * (NANOSECOND / (long)qmin(NANOSECOND, tc_getfrequency())))) {
  858                 time_status |= STA_PPSJITTER;
  859                 pps_jitcnt++;
  860         } else if (time_status & STA_PPSTIME) {
  861                 time_monitor = -v_nsec;
  862                 L_LINT(time_offset, time_monitor);
  863         }
  864         pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
  865         u_sec = pps_tf[0].tv_sec - pps_lastsec;
  866         if (u_sec < (1 << pps_shift))
  867                 goto out;
  868 
  869         /*
  870          * At the end of the calibration interval the difference between
  871          * the first and last counter values becomes the scaled
  872          * frequency. It will later be divided by the length of the
  873          * interval to determine the frequency update. If the frequency
  874          * exceeds a sanity threshold, or if the actual calibration
  875          * interval is not equal to the expected length, the data are
  876          * discarded. We can tolerate a modest loss of data here without
  877          * much degrading frequency accuracy.
  878          */
  879         pps_calcnt++;
  880         v_nsec = -pps_fcount;
  881         pps_lastsec = pps_tf[0].tv_sec;
  882         pps_fcount = 0;
  883         u_nsec = MAXFREQ << pps_shift;
  884         if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 << pps_shift)) {
  885                 time_status |= STA_PPSERROR;
  886                 pps_errcnt++;
  887                 goto out;
  888         }
  889 
  890         /*
  891          * Here the raw frequency offset and wander (stability) is
  892          * calculated. If the wander is less than the wander threshold
  893          * for four consecutive averaging intervals, the interval is
  894          * doubled; if it is greater than the threshold for four
  895          * consecutive intervals, the interval is halved. The scaled
  896          * frequency offset is converted to frequency offset. The
  897          * stability metric is calculated as the average of recent
  898          * frequency changes, but is used only for performance
  899          * monitoring.
  900          */
  901         L_LINT(ftemp, v_nsec);
  902         L_RSHIFT(ftemp, pps_shift);
  903         L_SUB(ftemp, pps_freq);
  904         u_nsec = L_GINT(ftemp);
  905         if (u_nsec > PPS_MAXWANDER) {
  906                 L_LINT(ftemp, PPS_MAXWANDER);
  907                 pps_intcnt--;
  908                 time_status |= STA_PPSWANDER;
  909                 pps_stbcnt++;
  910         } else if (u_nsec < -PPS_MAXWANDER) {
  911                 L_LINT(ftemp, -PPS_MAXWANDER);
  912                 pps_intcnt--;
  913                 time_status |= STA_PPSWANDER;
  914                 pps_stbcnt++;
  915         } else {
  916                 pps_intcnt++;
  917         }
  918         if (pps_intcnt >= 4) {
  919                 pps_intcnt = 4;
  920                 if (pps_shift < pps_shiftmax) {
  921                         pps_shift++;
  922                         pps_intcnt = 0;
  923                 }
  924         } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
  925                 pps_intcnt = -4;
  926                 if (pps_shift > PPS_FAVG) {
  927                         pps_shift--;
  928                         pps_intcnt = 0;
  929                 }
  930         }
  931         if (u_nsec < 0)
  932                 u_nsec = -u_nsec;
  933         pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
  934 
  935         /*
  936          * The PPS frequency is recalculated and clamped to the maximum
  937          * MAXFREQ. If enabled, the system clock frequency is updated as
  938          * well.
  939          */
  940         L_ADD(pps_freq, ftemp);
  941         u_nsec = L_GINT(pps_freq);
  942         if (u_nsec > MAXFREQ)
  943                 L_LINT(pps_freq, MAXFREQ);
  944         else if (u_nsec < -MAXFREQ)
  945                 L_LINT(pps_freq, -MAXFREQ);
  946         if (time_status & STA_PPSFREQ)
  947                 time_freq = pps_freq;
  948 
  949 out:
  950         NTP_UNLOCK();
  951 }
  952 #endif /* PPS_SYNC */
  953 
  954 #ifndef _SYS_SYSPROTO_H_
  955 struct adjtime_args {
  956         struct timeval *delta;
  957         struct timeval *olddelta;
  958 };
  959 #endif
  960 /* ARGSUSED */
  961 int
  962 sys_adjtime(struct thread *td, struct adjtime_args *uap)
  963 {
  964         struct timeval delta, olddelta, *deltap;
  965         int error;
  966 
  967         if (uap->delta) {
  968                 error = copyin(uap->delta, &delta, sizeof(delta));
  969                 if (error)
  970                         return (error);
  971                 deltap = &delta;
  972         } else
  973                 deltap = NULL;
  974         error = kern_adjtime(td, deltap, &olddelta);
  975         if (uap->olddelta && error == 0)
  976                 error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
  977         return (error);
  978 }
  979 
  980 int
  981 kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
  982 {
  983         struct timeval atv;
  984         int64_t ltr, ltw;
  985         int error;
  986 
  987         if (delta != NULL) {
  988                 error = priv_check(td, PRIV_ADJTIME);
  989                 if (error != 0)
  990                         return (error);
  991                 ltw = (int64_t)delta->tv_sec * 1000000 + delta->tv_usec;
  992         }
  993         NTP_LOCK();
  994         ltr = time_adjtime;
  995         if (delta != NULL)
  996                 time_adjtime = ltw;
  997         NTP_UNLOCK();
  998         if (olddelta != NULL) {
  999                 atv.tv_sec = ltr / 1000000;
 1000                 atv.tv_usec = ltr % 1000000;
 1001                 if (atv.tv_usec < 0) {
 1002                         atv.tv_usec += 1000000;
 1003                         atv.tv_sec--;
 1004                 }
 1005                 *olddelta = atv;
 1006         }
 1007         return (0);
 1008 }
 1009 
 1010 static struct callout resettodr_callout;
 1011 static int resettodr_period = 1800;
 1012 
 1013 static void
 1014 periodic_resettodr(void *arg __unused)
 1015 {
 1016 
 1017         /*
 1018          * Read of time_status is lock-less, which is fine since
 1019          * ntp_is_time_error() operates on the consistent read value.
 1020          */
 1021         if (!ntp_is_time_error(time_status))
 1022                 resettodr();
 1023         if (resettodr_period > 0)
 1024                 callout_schedule(&resettodr_callout, resettodr_period * hz);
 1025 }
 1026 
 1027 static void
 1028 shutdown_resettodr(void *arg __unused, int howto __unused)
 1029 {
 1030 
 1031         callout_drain(&resettodr_callout);
 1032         /* Another unlocked read of time_status */
 1033         if (resettodr_period > 0 && !ntp_is_time_error(time_status))
 1034                 resettodr();
 1035 }
 1036 
 1037 static int
 1038 sysctl_resettodr_period(SYSCTL_HANDLER_ARGS)
 1039 {
 1040         int error;
 1041 
 1042         error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
 1043         if (error || !req->newptr)
 1044                 return (error);
 1045         if (cold)
 1046                 goto done;
 1047         if (resettodr_period == 0)
 1048                 callout_stop(&resettodr_callout);
 1049         else
 1050                 callout_reset(&resettodr_callout, resettodr_period * hz,
 1051                     periodic_resettodr, NULL);
 1052 done:
 1053         return (0);
 1054 }
 1055 
 1056 SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT | CTLFLAG_RWTUN |
 1057     CTLFLAG_MPSAFE, &resettodr_period, 1800, sysctl_resettodr_period, "I",
 1058     "Save system time to RTC with this period (in seconds)");
 1059 
 1060 static void
 1061 start_periodic_resettodr(void *arg __unused)
 1062 {
 1063 
 1064         EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL,
 1065             SHUTDOWN_PRI_FIRST);
 1066         callout_init(&resettodr_callout, 1);
 1067         if (resettodr_period == 0)
 1068                 return;
 1069         callout_reset(&resettodr_callout, resettodr_period * hz,
 1070             periodic_resettodr, NULL);
 1071 }
 1072 
 1073 SYSINIT(periodic_resettodr, SI_SUB_LAST, SI_ORDER_MIDDLE,
 1074         start_periodic_resettodr, NULL);

Cache object: a8774b5678b12a12c28feee830dd8d8f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.