The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_ntptime.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  ***********************************************************************
    3  *                                                                     *
    4  * Copyright (c) David L. Mills 1993-2001                              *
    5  *                                                                     *
    6  * Permission to use, copy, modify, and distribute this software and   *
    7  * its documentation for any purpose and without fee is hereby         *
    8  * granted, provided that the above copyright notice appears in all    *
    9  * copies and that both the copyright notice and this permission       *
   10  * notice appear in supporting documentation, and that the name        *
   11  * University of Delaware not be used in advertising or publicity      *
   12  * pertaining to distribution of the software without specific,        *
   13  * written prior permission. The University of Delaware makes no       *
   14  * representations about the suitability this software for any         *
   15  * purpose. It is provided "as is" without express or implied          *
   16  * warranty.                                                           *
   17  *                                                                     *
   18  **********************************************************************/
   19 
   20 /*
   21  * Adapted from the original sources for FreeBSD and timecounters by:
   22  * Poul-Henning Kamp <phk@FreeBSD.org>.
   23  *
   24  * The 32bit version of the "LP" macros seems a bit past its "sell by" 
   25  * date so I have retained only the 64bit version and included it directly
   26  * in this file.
   27  *
   28  * Only minor changes done to interface with the timecounters over in
   29  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
   30  * confusing and/or plain wrong in that context.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 #include "opt_ntp.h"
   37 
   38 #include <sys/param.h>
   39 #include <sys/systm.h>
   40 #include <sys/sysproto.h>
   41 #include <sys/eventhandler.h>
   42 #include <sys/kernel.h>
   43 #include <sys/priv.h>
   44 #include <sys/proc.h>
   45 #include <sys/lock.h>
   46 #include <sys/mutex.h>
   47 #include <sys/time.h>
   48 #include <sys/timex.h>
   49 #include <sys/timetc.h>
   50 #include <sys/timepps.h>
   51 #include <sys/syscallsubr.h>
   52 #include <sys/sysctl.h>
   53 
   54 #ifdef PPS_SYNC
   55 FEATURE(pps_sync, "Support usage of external PPS signal by kernel PLL");
   56 #endif
   57 
   58 /*
   59  * Single-precision macros for 64-bit machines
   60  */
   61 typedef int64_t l_fp;
   62 #define L_ADD(v, u)     ((v) += (u))
   63 #define L_SUB(v, u)     ((v) -= (u))
   64 #define L_ADDHI(v, a)   ((v) += (int64_t)(a) << 32)
   65 #define L_NEG(v)        ((v) = -(v))
   66 #define L_RSHIFT(v, n) \
   67         do { \
   68                 if ((v) < 0) \
   69                         (v) = -(-(v) >> (n)); \
   70                 else \
   71                         (v) = (v) >> (n); \
   72         } while (0)
   73 #define L_MPY(v, a)     ((v) *= (a))
   74 #define L_CLR(v)        ((v) = 0)
   75 #define L_ISNEG(v)      ((v) < 0)
   76 #define L_LINT(v, a)    ((v) = (int64_t)(a) << 32)
   77 #define L_GINT(v)       ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
   78 
   79 /*
   80  * Generic NTP kernel interface
   81  *
   82  * These routines constitute the Network Time Protocol (NTP) interfaces
   83  * for user and daemon application programs. The ntp_gettime() routine
   84  * provides the time, maximum error (synch distance) and estimated error
   85  * (dispersion) to client user application programs. The ntp_adjtime()
   86  * routine is used by the NTP daemon to adjust the system clock to an
   87  * externally derived time. The time offset and related variables set by
   88  * this routine are used by other routines in this module to adjust the
   89  * phase and frequency of the clock discipline loop which controls the
   90  * system clock.
   91  *
   92  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
   93  * defined), the time at each tick interrupt is derived directly from
   94  * the kernel time variable. When the kernel time is reckoned in
   95  * microseconds, (NTP_NANO undefined), the time is derived from the
   96  * kernel time variable together with a variable representing the
   97  * leftover nanoseconds at the last tick interrupt. In either case, the
   98  * current nanosecond time is reckoned from these values plus an
   99  * interpolated value derived by the clock routines in another
  100  * architecture-specific module. The interpolation can use either a
  101  * dedicated counter or a processor cycle counter (PCC) implemented in
  102  * some architectures.
  103  *
  104  * Note that all routines must run at priority splclock or higher.
  105  */
  106 /*
  107  * Phase/frequency-lock loop (PLL/FLL) definitions
  108  *
  109  * The nanosecond clock discipline uses two variable types, time
  110  * variables and frequency variables. Both types are represented as 64-
  111  * bit fixed-point quantities with the decimal point between two 32-bit
  112  * halves. On a 32-bit machine, each half is represented as a single
  113  * word and mathematical operations are done using multiple-precision
  114  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
  115  * used.
  116  *
  117  * A time variable is a signed 64-bit fixed-point number in ns and
  118  * fraction. It represents the remaining time offset to be amortized
  119  * over succeeding tick interrupts. The maximum time offset is about
  120  * 0.5 s and the resolution is about 2.3e-10 ns.
  121  *
  122  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  123  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  124  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  125  * |s s s|                       ns                                |
  126  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  127  * |                        fraction                               |
  128  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  129  *
  130  * A frequency variable is a signed 64-bit fixed-point number in ns/s
  131  * and fraction. It represents the ns and fraction to be added to the
  132  * kernel time variable at each second. The maximum frequency offset is
  133  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
  134  *
  135  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  136  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  137  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  138  * |s s s s s s s s s s s s s|            ns/s                     |
  139  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  140  * |                        fraction                               |
  141  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  142  */
  143 /*
  144  * The following variables establish the state of the PLL/FLL and the
  145  * residual time and frequency offset of the local clock.
  146  */
  147 #define SHIFT_PLL       4               /* PLL loop gain (shift) */
  148 #define SHIFT_FLL       2               /* FLL loop gain (shift) */
  149 
  150 static int time_state = TIME_OK;        /* clock state */
  151 int time_status = STA_UNSYNC;   /* clock status bits */
  152 static long time_tai;                   /* TAI offset (s) */
  153 static long time_monitor;               /* last time offset scaled (ns) */
  154 static long time_constant;              /* poll interval (shift) (s) */
  155 static long time_precision = 1;         /* clock precision (ns) */
  156 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
  157 long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
  158 static long time_reftime;               /* uptime at last adjustment (s) */
  159 static l_fp time_offset;                /* time offset (ns) */
  160 static l_fp time_freq;                  /* frequency offset (ns/s) */
  161 static l_fp time_adj;                   /* tick adjust (ns/s) */
  162 
  163 static int64_t time_adjtime;            /* correction from adjtime(2) (usec) */
  164 
  165 static struct mtx ntp_lock;
  166 MTX_SYSINIT(ntp, &ntp_lock, "ntp", MTX_SPIN);
  167 
  168 #define NTP_LOCK()              mtx_lock_spin(&ntp_lock)
  169 #define NTP_UNLOCK()            mtx_unlock_spin(&ntp_lock)
  170 #define NTP_ASSERT_LOCKED()     mtx_assert(&ntp_lock, MA_OWNED)
  171 
  172 #ifdef PPS_SYNC
  173 /*
  174  * The following variables are used when a pulse-per-second (PPS) signal
  175  * is available and connected via a modem control lead. They establish
  176  * the engineering parameters of the clock discipline loop when
  177  * controlled by the PPS signal.
  178  */
  179 #define PPS_FAVG        2               /* min freq avg interval (s) (shift) */
  180 #define PPS_FAVGDEF     8               /* default freq avg int (s) (shift) */
  181 #define PPS_FAVGMAX     15              /* max freq avg interval (s) (shift) */
  182 #define PPS_PAVG        4               /* phase avg interval (s) (shift) */
  183 #define PPS_VALID       120             /* PPS signal watchdog max (s) */
  184 #define PPS_MAXWANDER   100000          /* max PPS wander (ns/s) */
  185 #define PPS_POPCORN     2               /* popcorn spike threshold (shift) */
  186 
  187 static struct timespec pps_tf[3];       /* phase median filter */
  188 static l_fp pps_freq;                   /* scaled frequency offset (ns/s) */
  189 static long pps_fcount;                 /* frequency accumulator */
  190 static long pps_jitter;                 /* nominal jitter (ns) */
  191 static long pps_stabil;                 /* nominal stability (scaled ns/s) */
  192 static long pps_lastsec;                /* time at last calibration (s) */
  193 static int pps_valid;                   /* signal watchdog counter */
  194 static int pps_shift = PPS_FAVG;        /* interval duration (s) (shift) */
  195 static int pps_shiftmax = PPS_FAVGDEF;  /* max interval duration (s) (shift) */
  196 static int pps_intcnt;                  /* wander counter */
  197 
  198 /*
  199  * PPS signal quality monitors
  200  */
  201 static long pps_calcnt;                 /* calibration intervals */
  202 static long pps_jitcnt;                 /* jitter limit exceeded */
  203 static long pps_stbcnt;                 /* stability limit exceeded */
  204 static long pps_errcnt;                 /* calibration errors */
  205 #endif /* PPS_SYNC */
  206 /*
  207  * End of phase/frequency-lock loop (PLL/FLL) definitions
  208  */
  209 
  210 static void ntp_init(void);
  211 static void hardupdate(long offset);
  212 static void ntp_gettime1(struct ntptimeval *ntvp);
  213 static bool ntp_is_time_error(int tsl);
  214 
  215 static bool
  216 ntp_is_time_error(int tsl)
  217 {
  218 
  219         /*
  220          * Status word error decode. If any of these conditions occur,
  221          * an error is returned, instead of the status word. Most
  222          * applications will care only about the fact the system clock
  223          * may not be trusted, not about the details.
  224          *
  225          * Hardware or software error
  226          */
  227         if ((tsl & (STA_UNSYNC | STA_CLOCKERR)) ||
  228 
  229         /*
  230          * PPS signal lost when either time or frequency synchronization
  231          * requested
  232          */
  233             (tsl & (STA_PPSFREQ | STA_PPSTIME) &&
  234             !(tsl & STA_PPSSIGNAL)) ||
  235 
  236         /*
  237          * PPS jitter exceeded when time synchronization requested
  238          */
  239             (tsl & STA_PPSTIME && tsl & STA_PPSJITTER) ||
  240 
  241         /*
  242          * PPS wander exceeded or calibration error when frequency
  243          * synchronization requested
  244          */
  245             (tsl & STA_PPSFREQ &&
  246             tsl & (STA_PPSWANDER | STA_PPSERROR)))
  247                 return (true);
  248 
  249         return (false);
  250 }
  251 
  252 static void
  253 ntp_gettime1(struct ntptimeval *ntvp)
  254 {
  255         struct timespec atv;    /* nanosecond time */
  256 
  257         NTP_ASSERT_LOCKED();
  258 
  259         nanotime(&atv);
  260         ntvp->time.tv_sec = atv.tv_sec;
  261         ntvp->time.tv_nsec = atv.tv_nsec;
  262         ntvp->maxerror = time_maxerror;
  263         ntvp->esterror = time_esterror;
  264         ntvp->tai = time_tai;
  265         ntvp->time_state = time_state;
  266 
  267         if (ntp_is_time_error(time_status))
  268                 ntvp->time_state = TIME_ERROR;
  269 }
  270 
  271 /*
  272  * ntp_gettime() - NTP user application interface
  273  *
  274  * See the timex.h header file for synopsis and API description.  Note that
  275  * the TAI offset is returned in the ntvtimeval.tai structure member.
  276  */
  277 #ifndef _SYS_SYSPROTO_H_
  278 struct ntp_gettime_args {
  279         struct ntptimeval *ntvp;
  280 };
  281 #endif
  282 /* ARGSUSED */
  283 int
  284 sys_ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
  285 {       
  286         struct ntptimeval ntv;
  287 
  288         memset(&ntv, 0, sizeof(ntv));
  289 
  290         NTP_LOCK();
  291         ntp_gettime1(&ntv);
  292         NTP_UNLOCK();
  293 
  294         td->td_retval[0] = ntv.time_state;
  295         return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
  296 }
  297 
  298 static int
  299 ntp_sysctl(SYSCTL_HANDLER_ARGS)
  300 {
  301         struct ntptimeval ntv;  /* temporary structure */
  302 
  303         memset(&ntv, 0, sizeof(ntv));
  304 
  305         NTP_LOCK();
  306         ntp_gettime1(&ntv);
  307         NTP_UNLOCK();
  308 
  309         return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
  310 }
  311 
  312 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
  313 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE | CTLFLAG_RD |
  314     CTLFLAG_MPSAFE, 0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval",
  315     "");
  316 
  317 #ifdef PPS_SYNC
  318 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW,
  319     &pps_shiftmax, 0, "Max interval duration (sec) (shift)");
  320 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW,
  321     &pps_shift, 0, "Interval duration (sec) (shift)");
  322 SYSCTL_LONG(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD,
  323     &time_monitor, 0, "Last time offset scaled (ns)");
  324 
  325 SYSCTL_S64(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD | CTLFLAG_MPSAFE,
  326     &pps_freq, 0,
  327     "Scaled frequency offset (ns/sec)");
  328 SYSCTL_S64(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD | CTLFLAG_MPSAFE,
  329     &time_freq, 0,
  330     "Frequency offset (ns/sec)");
  331 #endif
  332 
  333 /*
  334  * ntp_adjtime() - NTP daemon application interface
  335  *
  336  * See the timex.h header file for synopsis and API description.  Note that
  337  * the timex.constant structure member has a dual purpose to set the time
  338  * constant and to set the TAI offset.
  339  */
  340 int
  341 kern_ntp_adjtime(struct thread *td, struct timex *ntv, int *retvalp)
  342 {
  343         long freq;              /* frequency ns/s) */
  344         int modes;              /* mode bits from structure */
  345         int error, retval;
  346 
  347         /*
  348          * Update selected clock variables - only the superuser can
  349          * change anything. Note that there is no error checking here on
  350          * the assumption the superuser should know what it is doing.
  351          * Note that either the time constant or TAI offset are loaded
  352          * from the ntv.constant member, depending on the mode bits. If
  353          * the STA_PLL bit in the status word is cleared, the state and
  354          * status words are reset to the initial values at boot.
  355          */
  356         modes = ntv->modes;
  357         error = 0;
  358         if (modes)
  359                 error = priv_check(td, PRIV_NTP_ADJTIME);
  360         if (error != 0)
  361                 return (error);
  362         NTP_LOCK();
  363         if (modes & MOD_MAXERROR)
  364                 time_maxerror = ntv->maxerror;
  365         if (modes & MOD_ESTERROR)
  366                 time_esterror = ntv->esterror;
  367         if (modes & MOD_STATUS) {
  368                 if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
  369                         time_state = TIME_OK;
  370                         time_status = STA_UNSYNC;
  371 #ifdef PPS_SYNC
  372                         pps_shift = PPS_FAVG;
  373 #endif /* PPS_SYNC */
  374                 }
  375                 time_status &= STA_RONLY;
  376                 time_status |= ntv->status & ~STA_RONLY;
  377         }
  378         if (modes & MOD_TIMECONST) {
  379                 if (ntv->constant < 0)
  380                         time_constant = 0;
  381                 else if (ntv->constant > MAXTC)
  382                         time_constant = MAXTC;
  383                 else
  384                         time_constant = ntv->constant;
  385         }
  386         if (modes & MOD_TAI) {
  387                 if (ntv->constant > 0) /* XXX zero & negative numbers ? */
  388                         time_tai = ntv->constant;
  389         }
  390 #ifdef PPS_SYNC
  391         if (modes & MOD_PPSMAX) {
  392                 if (ntv->shift < PPS_FAVG)
  393                         pps_shiftmax = PPS_FAVG;
  394                 else if (ntv->shift > PPS_FAVGMAX)
  395                         pps_shiftmax = PPS_FAVGMAX;
  396                 else
  397                         pps_shiftmax = ntv->shift;
  398         }
  399 #endif /* PPS_SYNC */
  400         if (modes & MOD_NANO)
  401                 time_status |= STA_NANO;
  402         if (modes & MOD_MICRO)
  403                 time_status &= ~STA_NANO;
  404         if (modes & MOD_CLKB)
  405                 time_status |= STA_CLK;
  406         if (modes & MOD_CLKA)
  407                 time_status &= ~STA_CLK;
  408         if (modes & MOD_FREQUENCY) {
  409                 freq = (ntv->freq * 1000LL) >> 16;
  410                 if (freq > MAXFREQ)
  411                         L_LINT(time_freq, MAXFREQ);
  412                 else if (freq < -MAXFREQ)
  413                         L_LINT(time_freq, -MAXFREQ);
  414                 else {
  415                         /*
  416                          * ntv->freq is [PPM * 2^16] = [us/s * 2^16]
  417                          * time_freq is [ns/s * 2^32]
  418                          */
  419                         time_freq = ntv->freq * 1000LL * 65536LL;
  420                 }
  421 #ifdef PPS_SYNC
  422                 pps_freq = time_freq;
  423 #endif /* PPS_SYNC */
  424         }
  425         if (modes & MOD_OFFSET) {
  426                 if (time_status & STA_NANO)
  427                         hardupdate(ntv->offset);
  428                 else
  429                         hardupdate(ntv->offset * 1000);
  430         }
  431 
  432         /*
  433          * Retrieve all clock variables. Note that the TAI offset is
  434          * returned only by ntp_gettime();
  435          */
  436         if (time_status & STA_NANO)
  437                 ntv->offset = L_GINT(time_offset);
  438         else
  439                 ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
  440         ntv->freq = L_GINT((time_freq / 1000LL) << 16);
  441         ntv->maxerror = time_maxerror;
  442         ntv->esterror = time_esterror;
  443         ntv->status = time_status;
  444         ntv->constant = time_constant;
  445         if (time_status & STA_NANO)
  446                 ntv->precision = time_precision;
  447         else
  448                 ntv->precision = time_precision / 1000;
  449         ntv->tolerance = MAXFREQ * SCALE_PPM;
  450 #ifdef PPS_SYNC
  451         ntv->shift = pps_shift;
  452         ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
  453         if (time_status & STA_NANO)
  454                 ntv->jitter = pps_jitter;
  455         else
  456                 ntv->jitter = pps_jitter / 1000;
  457         ntv->stabil = pps_stabil;
  458         ntv->calcnt = pps_calcnt;
  459         ntv->errcnt = pps_errcnt;
  460         ntv->jitcnt = pps_jitcnt;
  461         ntv->stbcnt = pps_stbcnt;
  462 #endif /* PPS_SYNC */
  463         retval = ntp_is_time_error(time_status) ? TIME_ERROR : time_state;
  464         NTP_UNLOCK();
  465 
  466         *retvalp = retval;
  467         return (0);
  468 }
  469 
  470 #ifndef _SYS_SYSPROTO_H_
  471 struct ntp_adjtime_args {
  472         struct timex *tp;
  473 };
  474 #endif
  475 
  476 int
  477 sys_ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
  478 {
  479         struct timex ntv;
  480         int error, retval;
  481 
  482         error = copyin(uap->tp, &ntv, sizeof(ntv));
  483         if (error == 0) {
  484                 error = kern_ntp_adjtime(td, &ntv, &retval);
  485                 if (error == 0) {
  486                         error = copyout(&ntv, uap->tp, sizeof(ntv));
  487                         if (error == 0)
  488                                 td->td_retval[0] = retval;
  489                 }
  490         }
  491         return (error);
  492 }
  493 
  494 /*
  495  * second_overflow() - called after ntp_tick_adjust()
  496  *
  497  * This routine is ordinarily called immediately following the above
  498  * routine ntp_tick_adjust(). While these two routines are normally
  499  * combined, they are separated here only for the purposes of
  500  * simulation.
  501  */
  502 void
  503 ntp_update_second(int64_t *adjustment, time_t *newsec)
  504 {
  505         int tickrate;
  506         l_fp ftemp;             /* 32/64-bit temporary */
  507 
  508         NTP_LOCK();
  509 
  510         /*
  511          * On rollover of the second both the nanosecond and microsecond
  512          * clocks are updated and the state machine cranked as
  513          * necessary. The phase adjustment to be used for the next
  514          * second is calculated and the maximum error is increased by
  515          * the tolerance.
  516          */
  517         time_maxerror += MAXFREQ / 1000;
  518 
  519         /*
  520          * Leap second processing. If in leap-insert state at
  521          * the end of the day, the system clock is set back one
  522          * second; if in leap-delete state, the system clock is
  523          * set ahead one second. The nano_time() routine or
  524          * external clock driver will insure that reported time
  525          * is always monotonic.
  526          */
  527         switch (time_state) {
  528 
  529                 /*
  530                  * No warning.
  531                  */
  532                 case TIME_OK:
  533                 if (time_status & STA_INS)
  534                         time_state = TIME_INS;
  535                 else if (time_status & STA_DEL)
  536                         time_state = TIME_DEL;
  537                 break;
  538 
  539                 /*
  540                  * Insert second 23:59:60 following second
  541                  * 23:59:59.
  542                  */
  543                 case TIME_INS:
  544                 if (!(time_status & STA_INS))
  545                         time_state = TIME_OK;
  546                 else if ((*newsec) % 86400 == 0) {
  547                         (*newsec)--;
  548                         time_state = TIME_OOP;
  549                         time_tai++;
  550                 }
  551                 break;
  552 
  553                 /*
  554                  * Delete second 23:59:59.
  555                  */
  556                 case TIME_DEL:
  557                 if (!(time_status & STA_DEL))
  558                         time_state = TIME_OK;
  559                 else if (((*newsec) + 1) % 86400 == 0) {
  560                         (*newsec)++;
  561                         time_tai--;
  562                         time_state = TIME_WAIT;
  563                 }
  564                 break;
  565 
  566                 /*
  567                  * Insert second in progress.
  568                  */
  569                 case TIME_OOP:
  570                         time_state = TIME_WAIT;
  571                 break;
  572 
  573                 /*
  574                  * Wait for status bits to clear.
  575                  */
  576                 case TIME_WAIT:
  577                 if (!(time_status & (STA_INS | STA_DEL)))
  578                         time_state = TIME_OK;
  579         }
  580 
  581         /*
  582          * Compute the total time adjustment for the next second
  583          * in ns. The offset is reduced by a factor depending on
  584          * whether the PPS signal is operating. Note that the
  585          * value is in effect scaled by the clock frequency,
  586          * since the adjustment is added at each tick interrupt.
  587          */
  588         ftemp = time_offset;
  589 #ifdef PPS_SYNC
  590         /* XXX even if PPS signal dies we should finish adjustment ? */
  591         if (time_status & STA_PPSTIME && time_status &
  592             STA_PPSSIGNAL)
  593                 L_RSHIFT(ftemp, pps_shift);
  594         else
  595                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  596 #else
  597                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  598 #endif /* PPS_SYNC */
  599         time_adj = ftemp;
  600         L_SUB(time_offset, ftemp);
  601         L_ADD(time_adj, time_freq);
  602         
  603         /*
  604          * Apply any correction from adjtime(2).  If more than one second
  605          * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500 PPM)
  606          * until the last second is slewed the final < 500 usecs.
  607          */
  608         if (time_adjtime != 0) {
  609                 if (time_adjtime > 1000000)
  610                         tickrate = 5000;
  611                 else if (time_adjtime < -1000000)
  612                         tickrate = -5000;
  613                 else if (time_adjtime > 500)
  614                         tickrate = 500;
  615                 else if (time_adjtime < -500)
  616                         tickrate = -500;
  617                 else
  618                         tickrate = time_adjtime;
  619                 time_adjtime -= tickrate;
  620                 L_LINT(ftemp, tickrate * 1000);
  621                 L_ADD(time_adj, ftemp);
  622         }
  623         *adjustment = time_adj;
  624                 
  625 #ifdef PPS_SYNC
  626         if (pps_valid > 0)
  627                 pps_valid--;
  628         else
  629                 time_status &= ~STA_PPSSIGNAL;
  630 #endif /* PPS_SYNC */
  631 
  632         NTP_UNLOCK();
  633 }
  634 
  635 /*
  636  * ntp_init() - initialize variables and structures
  637  *
  638  * This routine must be called after the kernel variables hz and tick
  639  * are set or changed and before the next tick interrupt. In this
  640  * particular implementation, these values are assumed set elsewhere in
  641  * the kernel. The design allows the clock frequency and tick interval
  642  * to be changed while the system is running. So, this routine should
  643  * probably be integrated with the code that does that.
  644  */
  645 static void
  646 ntp_init(void)
  647 {
  648 
  649         /*
  650          * The following variables are initialized only at startup. Only
  651          * those structures not cleared by the compiler need to be
  652          * initialized, and these only in the simulator. In the actual
  653          * kernel, any nonzero values here will quickly evaporate.
  654          */
  655         L_CLR(time_offset);
  656         L_CLR(time_freq);
  657 #ifdef PPS_SYNC
  658         pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
  659         pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
  660         pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
  661         pps_fcount = 0;
  662         L_CLR(pps_freq);
  663 #endif /* PPS_SYNC */      
  664 }
  665 
  666 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);
  667 
  668 /*
  669  * hardupdate() - local clock update
  670  *
  671  * This routine is called by ntp_adjtime() to update the local clock
  672  * phase and frequency. The implementation is of an adaptive-parameter,
  673  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
  674  * time and frequency offset estimates for each call. If the kernel PPS
  675  * discipline code is configured (PPS_SYNC), the PPS signal itself
  676  * determines the new time offset, instead of the calling argument.
  677  * Presumably, calls to ntp_adjtime() occur only when the caller
  678  * believes the local clock is valid within some bound (+-128 ms with
  679  * NTP). If the caller's time is far different than the PPS time, an
  680  * argument will ensue, and it's not clear who will lose.
  681  *
  682  * For uncompensated quartz crystal oscillators and nominal update
  683  * intervals less than 256 s, operation should be in phase-lock mode,
  684  * where the loop is disciplined to phase. For update intervals greater
  685  * than 1024 s, operation should be in frequency-lock mode, where the
  686  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
  687  * is selected by the STA_MODE status bit.
  688  */
  689 static void
  690 hardupdate(offset)
  691         long offset;            /* clock offset (ns) */
  692 {
  693         long mtemp;
  694         l_fp ftemp;
  695 
  696         NTP_ASSERT_LOCKED();
  697 
  698         /*
  699          * Select how the phase is to be controlled and from which
  700          * source. If the PPS signal is present and enabled to
  701          * discipline the time, the PPS offset is used; otherwise, the
  702          * argument offset is used.
  703          */
  704         if (!(time_status & STA_PLL))
  705                 return;
  706         if (!(time_status & STA_PPSTIME && time_status &
  707             STA_PPSSIGNAL)) {
  708                 if (offset > MAXPHASE)
  709                         time_monitor = MAXPHASE;
  710                 else if (offset < -MAXPHASE)
  711                         time_monitor = -MAXPHASE;
  712                 else
  713                         time_monitor = offset;
  714                 L_LINT(time_offset, time_monitor);
  715         }
  716 
  717         /*
  718          * Select how the frequency is to be controlled and in which
  719          * mode (PLL or FLL). If the PPS signal is present and enabled
  720          * to discipline the frequency, the PPS frequency is used;
  721          * otherwise, the argument offset is used to compute it.
  722          */
  723         if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
  724                 time_reftime = time_uptime;
  725                 return;
  726         }
  727         if (time_status & STA_FREQHOLD || time_reftime == 0)
  728                 time_reftime = time_uptime;
  729         mtemp = time_uptime - time_reftime;
  730         L_LINT(ftemp, time_monitor);
  731         L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
  732         L_MPY(ftemp, mtemp);
  733         L_ADD(time_freq, ftemp);
  734         time_status &= ~STA_MODE;
  735         if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
  736             MAXSEC)) {
  737                 L_LINT(ftemp, (time_monitor << 4) / mtemp);
  738                 L_RSHIFT(ftemp, SHIFT_FLL + 4);
  739                 L_ADD(time_freq, ftemp);
  740                 time_status |= STA_MODE;
  741         }
  742         time_reftime = time_uptime;
  743         if (L_GINT(time_freq) > MAXFREQ)
  744                 L_LINT(time_freq, MAXFREQ);
  745         else if (L_GINT(time_freq) < -MAXFREQ)
  746                 L_LINT(time_freq, -MAXFREQ);
  747 }
  748 
  749 #ifdef PPS_SYNC
  750 /*
  751  * hardpps() - discipline CPU clock oscillator to external PPS signal
  752  *
  753  * This routine is called at each PPS interrupt in order to discipline
  754  * the CPU clock oscillator to the PPS signal. There are two independent
  755  * first-order feedback loops, one for the phase, the other for the
  756  * frequency. The phase loop measures and grooms the PPS phase offset
  757  * and leaves it in a handy spot for the seconds overflow routine. The
  758  * frequency loop averages successive PPS phase differences and
  759  * calculates the PPS frequency offset, which is also processed by the
  760  * seconds overflow routine. The code requires the caller to capture the
  761  * time and architecture-dependent hardware counter values in
  762  * nanoseconds at the on-time PPS signal transition.
  763  *
  764  * Note that, on some Unix systems this routine runs at an interrupt
  765  * priority level higher than the timer interrupt routine hardclock().
  766  * Therefore, the variables used are distinct from the hardclock()
  767  * variables, except for the actual time and frequency variables, which
  768  * are determined by this routine and updated atomically.
  769  *
  770  * tsp  - time at PPS
  771  * nsec - hardware counter at PPS
  772  */
  773 void
  774 hardpps(struct timespec *tsp, long nsec)
  775 {
  776         long u_sec, u_nsec, v_nsec; /* temps */
  777         l_fp ftemp;
  778 
  779         NTP_LOCK();
  780 
  781         /*
  782          * The signal is first processed by a range gate and frequency
  783          * discriminator. The range gate rejects noise spikes outside
  784          * the range +-500 us. The frequency discriminator rejects input
  785          * signals with apparent frequency outside the range 1 +-500
  786          * PPM. If two hits occur in the same second, we ignore the
  787          * later hit; if not and a hit occurs outside the range gate,
  788          * keep the later hit for later comparison, but do not process
  789          * it.
  790          */
  791         time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
  792         time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
  793         pps_valid = PPS_VALID;
  794         u_sec = tsp->tv_sec;
  795         u_nsec = tsp->tv_nsec;
  796         if (u_nsec >= (NANOSECOND >> 1)) {
  797                 u_nsec -= NANOSECOND;
  798                 u_sec++;
  799         }
  800         v_nsec = u_nsec - pps_tf[0].tv_nsec;
  801         if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND - MAXFREQ)
  802                 goto out;
  803         pps_tf[2] = pps_tf[1];
  804         pps_tf[1] = pps_tf[0];
  805         pps_tf[0].tv_sec = u_sec;
  806         pps_tf[0].tv_nsec = u_nsec;
  807 
  808         /*
  809          * Compute the difference between the current and previous
  810          * counter values. If the difference exceeds 0.5 s, assume it
  811          * has wrapped around, so correct 1.0 s. If the result exceeds
  812          * the tick interval, the sample point has crossed a tick
  813          * boundary during the last second, so correct the tick. Very
  814          * intricate.
  815          */
  816         u_nsec = nsec;
  817         if (u_nsec > (NANOSECOND >> 1))
  818                 u_nsec -= NANOSECOND;
  819         else if (u_nsec < -(NANOSECOND >> 1))
  820                 u_nsec += NANOSECOND;
  821         pps_fcount += u_nsec;
  822         if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
  823                 goto out;
  824         time_status &= ~STA_PPSJITTER;
  825 
  826         /*
  827          * A three-stage median filter is used to help denoise the PPS
  828          * time. The median sample becomes the time offset estimate; the
  829          * difference between the other two samples becomes the time
  830          * dispersion (jitter) estimate.
  831          */
  832         if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
  833                 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
  834                         v_nsec = pps_tf[1].tv_nsec;     /* 0 1 2 */
  835                         u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
  836                 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
  837                         v_nsec = pps_tf[0].tv_nsec;     /* 2 0 1 */
  838                         u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
  839                 } else {
  840                         v_nsec = pps_tf[2].tv_nsec;     /* 0 2 1 */
  841                         u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
  842                 }
  843         } else {
  844                 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
  845                         v_nsec = pps_tf[1].tv_nsec;     /* 2 1 0 */
  846                         u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
  847                 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
  848                         v_nsec = pps_tf[0].tv_nsec;     /* 1 0 2 */
  849                         u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
  850                 } else {
  851                         v_nsec = pps_tf[2].tv_nsec;     /* 1 2 0 */
  852                         u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
  853                 }
  854         }
  855 
  856         /*
  857          * Nominal jitter is due to PPS signal noise and interrupt
  858          * latency. If it exceeds the popcorn threshold, the sample is
  859          * discarded. otherwise, if so enabled, the time offset is
  860          * updated. We can tolerate a modest loss of data here without
  861          * much degrading time accuracy.
  862          *
  863          * The measurements being checked here were made with the system
  864          * timecounter, so the popcorn threshold is not allowed to fall below
  865          * the number of nanoseconds in two ticks of the timecounter.  For a
  866          * timecounter running faster than 1 GHz the lower bound is 2ns, just
  867          * to avoid a nonsensical threshold of zero.
  868         */
  869         if (u_nsec > lmax(pps_jitter << PPS_POPCORN,
  870             2 * (NANOSECOND / (long)qmin(NANOSECOND, tc_getfrequency())))) {
  871                 time_status |= STA_PPSJITTER;
  872                 pps_jitcnt++;
  873         } else if (time_status & STA_PPSTIME) {
  874                 time_monitor = -v_nsec;
  875                 L_LINT(time_offset, time_monitor);
  876         }
  877         pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
  878         u_sec = pps_tf[0].tv_sec - pps_lastsec;
  879         if (u_sec < (1 << pps_shift))
  880                 goto out;
  881 
  882         /*
  883          * At the end of the calibration interval the difference between
  884          * the first and last counter values becomes the scaled
  885          * frequency. It will later be divided by the length of the
  886          * interval to determine the frequency update. If the frequency
  887          * exceeds a sanity threshold, or if the actual calibration
  888          * interval is not equal to the expected length, the data are
  889          * discarded. We can tolerate a modest loss of data here without
  890          * much degrading frequency accuracy.
  891          */
  892         pps_calcnt++;
  893         v_nsec = -pps_fcount;
  894         pps_lastsec = pps_tf[0].tv_sec;
  895         pps_fcount = 0;
  896         u_nsec = MAXFREQ << pps_shift;
  897         if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 << pps_shift)) {
  898                 time_status |= STA_PPSERROR;
  899                 pps_errcnt++;
  900                 goto out;
  901         }
  902 
  903         /*
  904          * Here the raw frequency offset and wander (stability) is
  905          * calculated. If the wander is less than the wander threshold
  906          * for four consecutive averaging intervals, the interval is
  907          * doubled; if it is greater than the threshold for four
  908          * consecutive intervals, the interval is halved. The scaled
  909          * frequency offset is converted to frequency offset. The
  910          * stability metric is calculated as the average of recent
  911          * frequency changes, but is used only for performance
  912          * monitoring.
  913          */
  914         L_LINT(ftemp, v_nsec);
  915         L_RSHIFT(ftemp, pps_shift);
  916         L_SUB(ftemp, pps_freq);
  917         u_nsec = L_GINT(ftemp);
  918         if (u_nsec > PPS_MAXWANDER) {
  919                 L_LINT(ftemp, PPS_MAXWANDER);
  920                 pps_intcnt--;
  921                 time_status |= STA_PPSWANDER;
  922                 pps_stbcnt++;
  923         } else if (u_nsec < -PPS_MAXWANDER) {
  924                 L_LINT(ftemp, -PPS_MAXWANDER);
  925                 pps_intcnt--;
  926                 time_status |= STA_PPSWANDER;
  927                 pps_stbcnt++;
  928         } else {
  929                 pps_intcnt++;
  930         }
  931         if (pps_intcnt >= 4) {
  932                 pps_intcnt = 4;
  933                 if (pps_shift < pps_shiftmax) {
  934                         pps_shift++;
  935                         pps_intcnt = 0;
  936                 }
  937         } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
  938                 pps_intcnt = -4;
  939                 if (pps_shift > PPS_FAVG) {
  940                         pps_shift--;
  941                         pps_intcnt = 0;
  942                 }
  943         }
  944         if (u_nsec < 0)
  945                 u_nsec = -u_nsec;
  946         pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
  947 
  948         /*
  949          * The PPS frequency is recalculated and clamped to the maximum
  950          * MAXFREQ. If enabled, the system clock frequency is updated as
  951          * well.
  952          */
  953         L_ADD(pps_freq, ftemp);
  954         u_nsec = L_GINT(pps_freq);
  955         if (u_nsec > MAXFREQ)
  956                 L_LINT(pps_freq, MAXFREQ);
  957         else if (u_nsec < -MAXFREQ)
  958                 L_LINT(pps_freq, -MAXFREQ);
  959         if (time_status & STA_PPSFREQ)
  960                 time_freq = pps_freq;
  961 
  962 out:
  963         NTP_UNLOCK();
  964 }
  965 #endif /* PPS_SYNC */
  966 
  967 #ifndef _SYS_SYSPROTO_H_
  968 struct adjtime_args {
  969         struct timeval *delta;
  970         struct timeval *olddelta;
  971 };
  972 #endif
  973 /* ARGSUSED */
  974 int
  975 sys_adjtime(struct thread *td, struct adjtime_args *uap)
  976 {
  977         struct timeval delta, olddelta, *deltap;
  978         int error;
  979 
  980         if (uap->delta) {
  981                 error = copyin(uap->delta, &delta, sizeof(delta));
  982                 if (error)
  983                         return (error);
  984                 deltap = &delta;
  985         } else
  986                 deltap = NULL;
  987         error = kern_adjtime(td, deltap, &olddelta);
  988         if (uap->olddelta && error == 0)
  989                 error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
  990         return (error);
  991 }
  992 
  993 int
  994 kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
  995 {
  996         struct timeval atv;
  997         int64_t ltr, ltw;
  998         int error;
  999 
 1000         if (delta != NULL) {
 1001                 error = priv_check(td, PRIV_ADJTIME);
 1002                 if (error != 0)
 1003                         return (error);
 1004                 ltw = (int64_t)delta->tv_sec * 1000000 + delta->tv_usec;
 1005         }
 1006         NTP_LOCK();
 1007         ltr = time_adjtime;
 1008         if (delta != NULL)
 1009                 time_adjtime = ltw;
 1010         NTP_UNLOCK();
 1011         if (olddelta != NULL) {
 1012                 atv.tv_sec = ltr / 1000000;
 1013                 atv.tv_usec = ltr % 1000000;
 1014                 if (atv.tv_usec < 0) {
 1015                         atv.tv_usec += 1000000;
 1016                         atv.tv_sec--;
 1017                 }
 1018                 *olddelta = atv;
 1019         }
 1020         return (0);
 1021 }
 1022 
 1023 static struct callout resettodr_callout;
 1024 static int resettodr_period = 1800;
 1025 
 1026 static void
 1027 periodic_resettodr(void *arg __unused)
 1028 {
 1029 
 1030         /*
 1031          * Read of time_status is lock-less, which is fine since
 1032          * ntp_is_time_error() operates on the consistent read value.
 1033          */
 1034         if (!ntp_is_time_error(time_status))
 1035                 resettodr();
 1036         if (resettodr_period > 0)
 1037                 callout_schedule(&resettodr_callout, resettodr_period * hz);
 1038 }
 1039 
 1040 static void
 1041 shutdown_resettodr(void *arg __unused, int howto __unused)
 1042 {
 1043 
 1044         callout_drain(&resettodr_callout);
 1045         /* Another unlocked read of time_status */
 1046         if (resettodr_period > 0 && !ntp_is_time_error(time_status))
 1047                 resettodr();
 1048 }
 1049 
 1050 static int
 1051 sysctl_resettodr_period(SYSCTL_HANDLER_ARGS)
 1052 {
 1053         int error;
 1054 
 1055         error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
 1056         if (error || !req->newptr)
 1057                 return (error);
 1058         if (cold)
 1059                 goto done;
 1060         if (resettodr_period == 0)
 1061                 callout_stop(&resettodr_callout);
 1062         else
 1063                 callout_reset(&resettodr_callout, resettodr_period * hz,
 1064                     periodic_resettodr, NULL);
 1065 done:
 1066         return (0);
 1067 }
 1068 
 1069 SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT | CTLFLAG_RWTUN |
 1070     CTLFLAG_MPSAFE, &resettodr_period, 1800, sysctl_resettodr_period, "I",
 1071     "Save system time to RTC with this period (in seconds)");
 1072 
 1073 static void
 1074 start_periodic_resettodr(void *arg __unused)
 1075 {
 1076 
 1077         EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL,
 1078             SHUTDOWN_PRI_FIRST);
 1079         callout_init(&resettodr_callout, 1);
 1080         if (resettodr_period == 0)
 1081                 return;
 1082         callout_reset(&resettodr_callout, resettodr_period * hz,
 1083             periodic_resettodr, NULL);
 1084 }
 1085 
 1086 SYSINIT(periodic_resettodr, SI_SUB_LAST, SI_ORDER_MIDDLE,
 1087         start_periodic_resettodr, NULL);

Cache object: a11fa26cd1b368ca64fd338992a5eeea


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.