The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_ntptime.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /***********************************************************************
    2  *                                                                     *
    3  * Copyright (c) David L. Mills 1993-1999                              *
    4  *                                                                     *
    5  * Permission to use, copy, modify, and distribute this software and   *
    6  * its documentation for any purpose and without fee is hereby         *
    7  * granted, provided that the above copyright notice appears in all    *
    8  * copies and that both the copyright notice and this permission       *
    9  * notice appear in supporting documentation, and that the name        *
   10  * University of Delaware not be used in advertising or publicity      *
   11  * pertaining to distribution of the software without specific,        *
   12  * written prior permission. The University of Delaware makes no       *
   13  * representations about the suitability this software for any         *
   14  * purpose. It is provided "as is" without express or implied          *
   15  * warranty.                                                           *
   16  *                                                                     *
   17  **********************************************************************/
   18 
   19 /*
   20  * Adapted from the original sources for FreeBSD and timecounters by:
   21  * Poul-Henning Kamp <phk@FreeBSD.org>.
   22  *
   23  * The 32bit version of the "LP" macros seems a bit past its "sell by" 
   24  * date so I have retained only the 64bit version and included it directly
   25  * in this file.
   26  *
   27  * Only minor changes done to interface with the timecounters over in
   28  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
   29  * confusing and/or plain wrong in that context.
   30  *
   31  * $FreeBSD$
   32  */
   33 
   34 #include "opt_ntp.h"
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/sysproto.h>
   39 #include <sys/kernel.h>
   40 #include <sys/proc.h>
   41 #include <sys/time.h>
   42 #include <sys/timex.h>
   43 #include <sys/timepps.h>
   44 #include <sys/sysctl.h>
   45 
   46 /*
   47  * Single-precision macros for 64-bit machines
   48  */
   49 typedef long long l_fp;
   50 #define L_ADD(v, u)     ((v) += (u))
   51 #define L_SUB(v, u)     ((v) -= (u))
   52 #define L_ADDHI(v, a)   ((v) += (long long)(a) << 32)
   53 #define L_NEG(v)        ((v) = -(v))
   54 #define L_RSHIFT(v, n) \
   55         do { \
   56                 if ((v) < 0) \
   57                         (v) = -(-(v) >> (n)); \
   58                 else \
   59                         (v) = (v) >> (n); \
   60         } while (0)
   61 #define L_MPY(v, a)     ((v) *= (a))
   62 #define L_CLR(v)        ((v) = 0)
   63 #define L_ISNEG(v)      ((v) < 0)
   64 #define L_LINT(v, a)    ((v) = (long long)(a) << 32)
   65 #define L_GINT(v)       ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
   66 
   67 /*
   68  * Generic NTP kernel interface
   69  *
   70  * These routines constitute the Network Time Protocol (NTP) interfaces
   71  * for user and daemon application programs. The ntp_gettime() routine
   72  * provides the time, maximum error (synch distance) and estimated error
   73  * (dispersion) to client user application programs. The ntp_adjtime()
   74  * routine is used by the NTP daemon to adjust the system clock to an
   75  * externally derived time. The time offset and related variables set by
   76  * this routine are used by other routines in this module to adjust the
   77  * phase and frequency of the clock discipline loop which controls the
   78  * system clock.
   79  *
   80  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
   81  * defined), the time at each tick interrupt is derived directly from
   82  * the kernel time variable. When the kernel time is reckoned in
   83  * microseconds, (NTP_NANO undefined), the time is derived from the
   84  * kernel time variable together with a variable representing the
   85  * leftover nanoseconds at the last tick interrupt. In either case, the
   86  * current nanosecond time is reckoned from these values plus an
   87  * interpolated value derived by the clock routines in another
   88  * architecture-specific module. The interpolation can use either a
   89  * dedicated counter or a processor cycle counter (PCC) implemented in
   90  * some architectures.
   91  *
   92  * Note that all routines must run at priority splclock or higher.
   93  */
   94 
   95 /*
   96  * Phase/frequency-lock loop (PLL/FLL) definitions
   97  *
   98  * The nanosecond clock discipline uses two variable types, time
   99  * variables and frequency variables. Both types are represented as 64-
  100  * bit fixed-point quantities with the decimal point between two 32-bit
  101  * halves. On a 32-bit machine, each half is represented as a single
  102  * word and mathematical operations are done using multiple-precision
  103  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
  104  * used.
  105  *
  106  * A time variable is a signed 64-bit fixed-point number in ns and
  107  * fraction. It represents the remaining time offset to be amortized
  108  * over succeeding tick interrupts. The maximum time offset is about
  109  * 0.5 s and the resolution is about 2.3e-10 ns.
  110  *
  111  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  112  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  113  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  114  * |s s s|                       ns                                |
  115  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  116  * |                        fraction                               |
  117  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  118  *
  119  * A frequency variable is a signed 64-bit fixed-point number in ns/s
  120  * and fraction. It represents the ns and fraction to be added to the
  121  * kernel time variable at each second. The maximum frequency offset is
  122  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
  123  *
  124  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  125  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  126  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  127  * |s s s s s s s s s s s s s|            ns/s                     |
  128  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  129  * |                        fraction                               |
  130  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  131  */
  132 /*
  133  * The following variables establish the state of the PLL/FLL and the
  134  * residual time and frequency offset of the local clock.
  135  */
  136 #define SHIFT_PLL       4               /* PLL loop gain (shift) */
  137 #define SHIFT_FLL       2               /* FLL loop gain (shift) */
  138 
  139 static int time_state = TIME_OK;        /* clock state */
  140 static int time_status = STA_UNSYNC;    /* clock status bits */
  141 static long time_constant;              /* poll interval (shift) (s) */
  142 static long time_precision = 1;         /* clock precision (ns) */
  143 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
  144 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
  145 static long time_reftime;               /* time at last adjustment (s) */
  146 static long time_tick;                  /* nanoseconds per tick (ns) */
  147 static l_fp time_offset;                /* time offset (ns) */
  148 static l_fp time_freq;                  /* frequency offset (ns/s) */
  149 
  150 #ifdef PPS_SYNC
  151 /*
  152  * The following variables are used when a pulse-per-second (PPS) signal
  153  * is available and connected via a modem control lead. They establish
  154  * the engineering parameters of the clock discipline loop when
  155  * controlled by the PPS signal.
  156  */
  157 #define PPS_FAVG        2               /* min freq avg interval (s) (shift) */
  158 #define PPS_FAVGDEF     7               /* default freq avg int (s) (shift) */
  159 #define PPS_FAVGMAX     15              /* max freq avg interval (s) (shift) */
  160 #define PPS_PAVG        4               /* phase avg interval (s) (shift) */
  161 #define PPS_VALID       120             /* PPS signal watchdog max (s) */
  162 #define PPS_MAXWANDER   100000          /* max PPS wander (ns/s) */
  163 #define PPS_POPCORN     2               /* popcorn spike threshold (shift) */
  164 
  165 static struct timespec pps_tf[3];       /* phase median filter */
  166 static l_fp pps_freq;                   /* scaled frequency offset (ns/s) */
  167 static long pps_fcount;                 /* frequency accumulator */
  168 static long pps_jitter;                 /* nominal jitter (ns) */
  169 static long pps_stabil;                 /* nominal stability (scaled ns/s) */
  170 static long pps_lastsec;                /* time at last calibration (s) */
  171 static int pps_valid;                   /* signal watchdog counter */
  172 static int pps_shift = PPS_FAVG;        /* interval duration (s) (shift) */
  173 static int pps_shiftmax = PPS_FAVGDEF;  /* max interval duration (s) (shift) */
  174 static int pps_intcnt;                  /* wander counter */
  175 
  176 /*
  177  * PPS signal quality monitors
  178  */
  179 static long pps_calcnt;                 /* calibration intervals */
  180 static long pps_jitcnt;                 /* jitter limit exceeded */
  181 static long pps_stbcnt;                 /* stability limit exceeded */
  182 static long pps_errcnt;                 /* calibration errors */
  183 #endif /* PPS_SYNC */
  184 /*
  185  * End of phase/frequency-lock loop (PLL/FLL) definitions
  186  */
  187 
  188 static void ntp_init(void);
  189 static void hardupdate(long offset);
  190 
  191 /*
  192  * ntp_gettime() - NTP user application interface
  193  *
  194  * See the timex.h header file for synopsis and API description.
  195  */
  196 static int
  197 ntp_sysctl SYSCTL_HANDLER_ARGS
  198 {
  199         struct ntptimeval ntv;  /* temporary structure */
  200         struct timespec atv;    /* nanosecond time */
  201 
  202         nanotime(&atv);
  203         ntv.time.tv_sec = atv.tv_sec;
  204         ntv.time.tv_nsec = atv.tv_nsec;
  205         ntv.maxerror = time_maxerror;
  206         ntv.esterror = time_esterror;
  207         ntv.time_state = time_state;
  208 
  209         /*
  210          * Status word error decode. If any of these conditions occur,
  211          * an error is returned, instead of the status word. Most
  212          * applications will care only about the fact the system clock
  213          * may not be trusted, not about the details.
  214          *
  215          * Hardware or software error
  216          */
  217         if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
  218 
  219         /*
  220          * PPS signal lost when either time or frequency synchronization
  221          * requested
  222          */
  223             (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
  224             !(time_status & STA_PPSSIGNAL)) ||
  225 
  226         /*
  227          * PPS jitter exceeded when time synchronization requested
  228          */
  229             (time_status & STA_PPSTIME &&
  230             time_status & STA_PPSJITTER) ||
  231 
  232         /*
  233          * PPS wander exceeded or calibration error when frequency
  234          * synchronization requested
  235          */
  236             (time_status & STA_PPSFREQ &&
  237             time_status & (STA_PPSWANDER | STA_PPSERROR)))
  238                 ntv.time_state = TIME_ERROR;
  239         return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
  240 }
  241 
  242 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
  243 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
  244         0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
  245 
  246 #ifdef PPS_SYNC
  247 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
  248 #endif
  249 /*
  250  * ntp_adjtime() - NTP daemon application interface
  251  *
  252  * See the timex.h header file for synopsis and API description.
  253  */
  254 #ifndef _SYS_SYSPROTO_H_
  255 struct ntp_adjtime_args {
  256         struct timex *tp;
  257 };
  258 #endif
  259 
  260 int
  261 ntp_adjtime(struct proc *p, struct ntp_adjtime_args *uap)
  262 {
  263         struct timex ntv;       /* temporary structure */
  264         long freq;              /* frequency ns/s) */
  265         int modes;              /* mode bits from structure */
  266         int s;                  /* caller priority */
  267         int error;
  268 
  269         error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
  270         if (error)
  271                 return(error);
  272 
  273         /*
  274          * Update selected clock variables - only the superuser can
  275          * change anything. Note that there is no error checking here on
  276          * the assumption the superuser should know what it is doing.
  277          */
  278         modes = ntv.modes;
  279         if (modes)
  280                 error = suser(p->p_cred->pc_ucred, &p->p_acflag);
  281         if (error)
  282                 return (error);
  283         s = splclock();
  284         if (modes & MOD_FREQUENCY) {
  285                 freq = (ntv.freq * 1000LL) >> 16;
  286                 if (freq > MAXFREQ)
  287                         L_LINT(time_freq, MAXFREQ);
  288                 else if (freq < -MAXFREQ)
  289                         L_LINT(time_freq, -MAXFREQ);
  290                 else
  291                         L_LINT(time_freq, freq);
  292 
  293 #ifdef PPS_SYNC
  294                 pps_freq = time_freq;
  295 #endif /* PPS_SYNC */
  296         }
  297         if (modes & MOD_MAXERROR)
  298                 time_maxerror = ntv.maxerror;
  299         if (modes & MOD_ESTERROR)
  300                 time_esterror = ntv.esterror;
  301         if (modes & MOD_STATUS) {
  302                 time_status &= STA_RONLY;
  303                 time_status |= ntv.status & ~STA_RONLY;
  304         }
  305         if (modes & MOD_TIMECONST) {
  306                 if (ntv.constant < 0)
  307                         time_constant = 0;
  308                 else if (ntv.constant > MAXTC)
  309                         time_constant = MAXTC;
  310                 else
  311                         time_constant = ntv.constant;
  312         }
  313 #ifdef PPS_SYNC
  314         if (modes & MOD_PPSMAX) {
  315                 if (ntv.shift < PPS_FAVG)
  316                         pps_shiftmax = PPS_FAVG;
  317                 else if (ntv.shift > PPS_FAVGMAX)
  318                         pps_shiftmax = PPS_FAVGMAX;
  319                 else
  320                         pps_shiftmax = ntv.shift;
  321         }
  322 #endif /* PPS_SYNC */
  323         if (modes & MOD_NANO)
  324                 time_status |= STA_NANO;
  325         if (modes & MOD_MICRO)
  326                 time_status &= ~STA_NANO;
  327         if (modes & MOD_CLKB)
  328                 time_status |= STA_CLK;
  329         if (modes & MOD_CLKA)
  330                 time_status &= ~STA_CLK;
  331         if (modes & MOD_OFFSET) {
  332                 if (time_status & STA_NANO)
  333                         hardupdate(ntv.offset);
  334                 else
  335                         hardupdate(ntv.offset * 1000);
  336         }
  337 
  338         /*
  339          * Retrieve all clock variables
  340          */
  341         if (time_status & STA_NANO)
  342                 ntv.offset = L_GINT(time_offset);
  343         else
  344                 ntv.offset = L_GINT(time_offset) / 1000;
  345         ntv.freq = L_GINT((time_freq / 1000LL) << 16);
  346         ntv.maxerror = time_maxerror;
  347         ntv.esterror = time_esterror;
  348         ntv.status = time_status;
  349         ntv.constant = time_constant;
  350         if (time_status & STA_NANO)
  351                 ntv.precision = time_precision;
  352         else
  353                 ntv.precision = time_precision / 1000;
  354         ntv.tolerance = MAXFREQ * SCALE_PPM;
  355 #ifdef PPS_SYNC
  356         ntv.shift = pps_shift;
  357         ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
  358         if (time_status & STA_NANO)
  359                 ntv.jitter = pps_jitter;
  360         else
  361                 ntv.jitter = pps_jitter / 1000;
  362         ntv.stabil = pps_stabil;
  363         ntv.calcnt = pps_calcnt;
  364         ntv.errcnt = pps_errcnt;
  365         ntv.jitcnt = pps_jitcnt;
  366         ntv.stbcnt = pps_stbcnt;
  367 #endif /* PPS_SYNC */
  368         splx(s);
  369 
  370         error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
  371         if (error)
  372                 return (error);
  373 
  374         /*
  375          * Status word error decode. See comments in
  376          * ntp_gettime() routine.
  377          */
  378         if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
  379             (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
  380             !(time_status & STA_PPSSIGNAL)) ||
  381             (time_status & STA_PPSTIME &&
  382             time_status & STA_PPSJITTER) ||
  383             (time_status & STA_PPSFREQ &&
  384             time_status & (STA_PPSWANDER | STA_PPSERROR)))
  385                 p->p_retval[0] = TIME_ERROR;
  386         else
  387                 p->p_retval[0] = time_state;
  388         return (error);
  389 }
  390 
  391 /*
  392  * second_overflow() - called after ntp_tick_adjust()
  393  *
  394  * This routine is ordinarily called immediately following the above
  395  * routine ntp_tick_adjust(). While these two routines are normally
  396  * combined, they are separated here only for the purposes of
  397  * simulation.
  398  */
  399 void
  400 ntp_update_second(struct timecounter *tcp)
  401 {
  402         u_int32_t *newsec;
  403         l_fp ftemp, time_adj;           /* 32/64-bit temporaries */
  404 
  405         newsec = &tcp->tc_offset_sec;
  406         /*
  407          * On rollover of the second both the nanosecond and microsecond
  408          * clocks are updated and the state machine cranked as
  409          * necessary. The phase adjustment to be used for the next
  410          * second is calculated and the maximum error is increased by
  411          * the tolerance.
  412          */
  413         time_maxerror += MAXFREQ / 1000;
  414 
  415         /*
  416          * Leap second processing. If in leap-insert state at
  417          * the end of the day, the system clock is set back one
  418          * second; if in leap-delete state, the system clock is
  419          * set ahead one second. The nano_time() routine or
  420          * external clock driver will insure that reported time
  421          * is always monotonic.
  422          */
  423         switch (time_state) {
  424 
  425                 /*
  426                  * No warning.
  427                  */
  428                 case TIME_OK:
  429                 if (time_status & STA_INS)
  430                         time_state = TIME_INS;
  431                 else if (time_status & STA_DEL)
  432                         time_state = TIME_DEL;
  433                 break;
  434 
  435                 /*
  436                  * Insert second 23:59:60 following second
  437                  * 23:59:59.
  438                  */
  439                 case TIME_INS:
  440                 if (!(time_status & STA_INS))
  441                         time_state = TIME_OK;
  442                 else if ((*newsec) % 86400 == 0) {
  443                         (*newsec)--;
  444                         time_state = TIME_OOP;
  445                 }
  446                 break;
  447 
  448                 /*
  449                  * Delete second 23:59:59.
  450                  */
  451                 case TIME_DEL:
  452                 if (!(time_status & STA_DEL))
  453                         time_state = TIME_OK;
  454                 else if (((*newsec) + 1) % 86400 == 0) {
  455                         (*newsec)++;
  456                         time_state = TIME_WAIT;
  457                 }
  458                 break;
  459 
  460                 /*
  461                  * Insert second in progress.
  462                  */
  463                 case TIME_OOP:
  464                 time_state = TIME_WAIT;
  465                 break;
  466 
  467                 /*
  468                  * Wait for status bits to clear.
  469                  */
  470                 case TIME_WAIT:
  471                 if (!(time_status & (STA_INS | STA_DEL)))
  472                         time_state = TIME_OK;
  473         }
  474 
  475         /*
  476          * Compute the total time adjustment for the next second
  477          * in ns. The offset is reduced by a factor depending on
  478          * whether the PPS signal is operating. Note that the
  479          * value is in effect scaled by the clock frequency,
  480          * since the adjustment is added at each tick interrupt.
  481          */
  482         ftemp = time_offset;
  483 #ifdef PPS_SYNC
  484         if (time_status & STA_PPSTIME && time_status &
  485             STA_PPSSIGNAL)
  486                 L_RSHIFT(ftemp, PPS_FAVG);
  487         else
  488                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  489 #else
  490                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  491 #endif /* PPS_SYNC */
  492         time_adj = ftemp;
  493         L_SUB(time_offset, ftemp);
  494         L_ADD(time_adj, time_freq);
  495         tcp->tc_adjustment = time_adj;
  496 #ifdef PPS_SYNC
  497         if (pps_valid > 0)
  498                 pps_valid--;
  499         else
  500                 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
  501                     STA_PPSWANDER | STA_PPSERROR);
  502 #endif /* PPS_SYNC */
  503 }
  504 
  505 /*
  506  * ntp_init() - initialize variables and structures
  507  *
  508  * This routine must be called after the kernel variables hz and tick
  509  * are set or changed and before the next tick interrupt. In this
  510  * particular implementation, these values are assumed set elsewhere in
  511  * the kernel. The design allows the clock frequency and tick interval
  512  * to be changed while the system is running. So, this routine should
  513  * probably be integrated with the code that does that.
  514  */
  515 static void
  516 ntp_init()
  517 {
  518 
  519         /*
  520          * The following variable must be initialized any time the
  521          * kernel variable hz is changed.
  522          */
  523         time_tick = NANOSECOND / hz;
  524 
  525         /*
  526          * The following variables are initialized only at startup. Only
  527          * those structures not cleared by the compiler need to be
  528          * initialized, and these only in the simulator. In the actual
  529          * kernel, any nonzero values here will quickly evaporate.
  530          */
  531         L_CLR(time_offset);
  532         L_CLR(time_freq);
  533 #ifdef PPS_SYNC
  534         pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
  535         pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
  536         pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
  537         pps_fcount = 0;
  538         L_CLR(pps_freq);
  539 #endif /* PPS_SYNC */      
  540 }
  541 
  542 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, ntp_init, NULL)
  543 
  544 /*
  545  * hardupdate() - local clock update
  546  *
  547  * This routine is called by ntp_adjtime() to update the local clock
  548  * phase and frequency. The implementation is of an adaptive-parameter,
  549  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
  550  * time and frequency offset estimates for each call. If the kernel PPS
  551  * discipline code is configured (PPS_SYNC), the PPS signal itself
  552  * determines the new time offset, instead of the calling argument.
  553  * Presumably, calls to ntp_adjtime() occur only when the caller
  554  * believes the local clock is valid within some bound (+-128 ms with
  555  * NTP). If the caller's time is far different than the PPS time, an
  556  * argument will ensue, and it's not clear who will lose.
  557  *
  558  * For uncompensated quartz crystal oscillators and nominal update
  559  * intervals less than 256 s, operation should be in phase-lock mode,
  560  * where the loop is disciplined to phase. For update intervals greater
  561  * than 1024 s, operation should be in frequency-lock mode, where the
  562  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
  563  * is selected by the STA_MODE status bit.
  564  */
  565 static void
  566 hardupdate(offset)
  567         long offset;            /* clock offset (ns) */
  568 {
  569         long ltemp, mtemp;
  570         l_fp ftemp;
  571 
  572         /*
  573          * Select how the phase is to be controlled and from which
  574          * source. If the PPS signal is present and enabled to
  575          * discipline the time, the PPS offset is used; otherwise, the
  576          * argument offset is used.
  577          */
  578         if (!(time_status & STA_PLL))
  579                 return;
  580         ltemp = offset;
  581         if (ltemp > MAXPHASE)
  582                 ltemp = MAXPHASE;
  583         else if (ltemp < -MAXPHASE)
  584                 ltemp = -MAXPHASE;
  585         if (!(time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL))
  586                 L_LINT(time_offset, ltemp);
  587 
  588         /*
  589          * Select how the frequency is to be controlled and in which
  590          * mode (PLL or FLL). If the PPS signal is present and enabled
  591          * to discipline the frequency, the PPS frequency is used;
  592          * otherwise, the argument offset is used to compute it.
  593          */
  594         if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
  595                 time_reftime = time_second;
  596                 return;
  597         }
  598         if (time_status & STA_FREQHOLD || time_reftime == 0)
  599                 time_reftime = time_second;
  600         mtemp = time_second - time_reftime;
  601         L_LINT(ftemp, ltemp);
  602         L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
  603         L_MPY(ftemp, mtemp);
  604         L_ADD(time_freq, ftemp);
  605         time_status &= ~STA_MODE;
  606         if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
  607                 L_LINT(ftemp, (ltemp << 4) / mtemp);
  608                 L_RSHIFT(ftemp, SHIFT_FLL + 4);
  609                 L_ADD(time_freq, ftemp);
  610                 time_status |= STA_MODE;
  611         }
  612         time_reftime = time_second;
  613         if (L_GINT(time_freq) > MAXFREQ)
  614                 L_LINT(time_freq, MAXFREQ);
  615         else if (L_GINT(time_freq) < -MAXFREQ)
  616                 L_LINT(time_freq, -MAXFREQ);
  617 }
  618 
  619 #ifdef PPS_SYNC
  620 /*
  621  * hardpps() - discipline CPU clock oscillator to external PPS signal
  622  *
  623  * This routine is called at each PPS interrupt in order to discipline
  624  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
  625  * and leaves it in a handy spot for the hardclock() routine. It
  626  * integrates successive PPS phase differences and calculates the
  627  * frequency offset. This is used in hardclock() to discipline the CPU
  628  * clock oscillator so that the intrinsic frequency error is cancelled
  629  * out. The code requires the caller to capture the time and
  630  * architecture-dependent hardware counter values in nanoseconds at the
  631  * on-time PPS signal transition.
  632  *
  633  * Note that, on some Unix systems this routine runs at an interrupt
  634  * priority level higher than the timer interrupt routine hardclock().
  635  * Therefore, the variables used are distinct from the hardclock()
  636  * variables, except for the actual time and frequency variables, which
  637  * are determined by this routine and updated atomically.
  638  */
  639 void
  640 hardpps(tsp, nsec)
  641         struct timespec *tsp;   /* time at PPS */
  642         long nsec;              /* hardware counter at PPS */
  643 {
  644         long u_sec, u_nsec, v_nsec; /* temps */
  645         l_fp ftemp;
  646 
  647         /*
  648          * The signal is first processed by a frequency discriminator
  649          * which rejects noise and input signals with frequencies
  650          * outside the range 1 +-MAXFREQ PPS. If two hits occur in the
  651          * same second, we ignore the later hit; if not and a hit occurs
  652          * outside the range gate, keep the later hit but do not
  653          * process it.
  654          */
  655         time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
  656         time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
  657         pps_valid = PPS_VALID;
  658         u_sec = tsp->tv_sec;
  659         u_nsec = tsp->tv_nsec;
  660         if (u_nsec >= (NANOSECOND >> 1)) {
  661                 u_nsec -= NANOSECOND;
  662                 u_sec++;
  663         }
  664         v_nsec = u_nsec - pps_tf[0].tv_nsec;
  665         if (u_sec == pps_tf[0].tv_sec && v_nsec < -MAXFREQ) {
  666                 return;
  667         }
  668         pps_tf[2] = pps_tf[1];
  669         pps_tf[1] = pps_tf[0];
  670         pps_tf[0].tv_sec = u_sec;
  671         pps_tf[0].tv_nsec = u_nsec;
  672 
  673         /*
  674          * Compute the difference between the current and previous
  675          * counter values. If the difference exceeds 0.5 s, assume it
  676          * has wrapped around, so correct 1.0 s. If the result exceeds
  677          * the tick interval, the sample point has crossed a tick
  678          * boundary during the last second, so correct the tick. Very
  679          * intricate.
  680          */
  681         u_nsec = nsec;
  682         if (u_nsec > (NANOSECOND >> 1))
  683                 u_nsec -= NANOSECOND;
  684         else if (u_nsec < -(NANOSECOND >> 1))
  685                 u_nsec += NANOSECOND;
  686         pps_fcount += u_nsec;
  687         if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ) {
  688                 return;
  689         }
  690         time_status &= ~STA_PPSJITTER;
  691 
  692         /*
  693          * A three-stage median filter is used to help denoise the PPS
  694          * time. The median sample becomes the time offset estimate; the
  695          * difference between the other two samples becomes the time
  696          * dispersion (jitter) estimate.
  697          */
  698         if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
  699                 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
  700                         v_nsec = pps_tf[1].tv_nsec;     /* 0 1 2 */
  701                         u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
  702                 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
  703                         v_nsec = pps_tf[0].tv_nsec;     /* 2 0 1 */
  704                         u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
  705                 } else {
  706                         v_nsec = pps_tf[2].tv_nsec;     /* 0 2 1 */
  707                         u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
  708                 }
  709         } else {
  710                 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
  711                         v_nsec = pps_tf[1].tv_nsec;     /* 2 1 0 */
  712                         u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
  713                 } else  if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
  714                         v_nsec = pps_tf[0].tv_nsec;     /* 1 0 2 */
  715                         u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
  716                 } else {
  717                         v_nsec = pps_tf[2].tv_nsec;     /* 1 2 0 */
  718                         u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
  719                 }
  720         }
  721 
  722         /*
  723          * Nominal jitter is due to PPS signal noise and  interrupt
  724          * latency. If it exceeds the popcorn threshold,
  725          * the sample is discarded. otherwise, if so enabled, the time
  726          * offset is updated. We can tolerate a modest loss of data here
  727          * without degrading time accuracy.
  728          */
  729         if (u_nsec > (pps_jitter << PPS_POPCORN)) {
  730                 time_status |= STA_PPSJITTER;
  731                 pps_jitcnt++;
  732         } else if (time_status & STA_PPSTIME) {
  733                 L_LINT(ftemp, v_nsec);
  734                 L_SUB(ftemp, time_offset);
  735                 L_RSHIFT(ftemp, pps_shift);
  736                 L_SUB(time_offset, ftemp);
  737         }
  738         pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
  739         u_sec = pps_tf[0].tv_sec - pps_lastsec;
  740         if (u_sec < (1 << pps_shift))
  741                 return;
  742 
  743         /*
  744          * At the end of the calibration interval the difference between
  745          * the first and last counter values becomes the scaled
  746          * frequency. It will later be divided by the length of the
  747          * interval to determine the frequency update. If the frequency
  748          * exceeds a sanity threshold, or if the actual calibration
  749          * interval is not equal to the expected length, the data are
  750          * discarded. We can tolerate a modest loss of data here without
  751          * degrading frequency ccuracy.
  752          */
  753         pps_calcnt++;
  754         v_nsec = -pps_fcount;
  755         pps_lastsec = pps_tf[0].tv_sec;
  756         pps_fcount = 0;
  757         u_nsec = MAXFREQ << pps_shift;
  758         if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
  759             pps_shift)) {
  760                 time_status |= STA_PPSERROR;
  761                 pps_errcnt++;
  762                 return;
  763         }
  764 
  765         /*
  766          * Here the raw frequency offset and wander (stability) is
  767          * calculated. If the wander is less than the wander threshold
  768          * for four consecutive averaging intervals, the interval is
  769          * doubled; if it is greater than the threshold for four
  770          * consecutive intervals, the interval is halved. The scaled
  771          * frequency offset is converted to frequency offset. The
  772          * stability metric is calculated as the average of recent
  773          * frequency changes, but is used only for performance
  774          * monitoring.
  775          */
  776         L_LINT(ftemp, v_nsec);
  777         L_RSHIFT(ftemp, pps_shift);
  778         L_SUB(ftemp, pps_freq);
  779         u_nsec = L_GINT(ftemp);
  780         if (u_nsec > PPS_MAXWANDER) {
  781                 L_LINT(ftemp, PPS_MAXWANDER);
  782                 pps_intcnt--;
  783                 time_status |= STA_PPSWANDER;
  784                 pps_stbcnt++;
  785         } else if (u_nsec < -PPS_MAXWANDER) {
  786                 L_LINT(ftemp, -PPS_MAXWANDER);
  787                 pps_intcnt--;
  788                 time_status |= STA_PPSWANDER;
  789                 pps_stbcnt++;
  790         } else {
  791                 pps_intcnt++;
  792         }
  793         if (pps_intcnt >= 4) {
  794                 pps_intcnt = 4;
  795                 if (pps_shift < pps_shiftmax) {
  796                         pps_shift++;
  797                         pps_intcnt = 0;
  798                 }
  799         } else if (pps_intcnt <= -4) {
  800                 pps_intcnt = -4;
  801                 if (pps_shift > PPS_FAVG) {
  802                         pps_shift--;
  803                         pps_intcnt = 0;
  804                 }
  805         }
  806         if (u_nsec < 0)
  807                 u_nsec = -u_nsec;
  808         pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
  809 
  810         /*
  811          * The PPS frequency is recalculated and clamped to the maximum
  812          * MAXFREQ. If enabled, the system clock frequency is updated as
  813          * well.
  814          */
  815         L_ADD(pps_freq, ftemp);
  816         u_nsec = L_GINT(pps_freq);
  817         if (u_nsec > MAXFREQ)
  818                 L_LINT(pps_freq, MAXFREQ);
  819         else if (u_nsec < -MAXFREQ)
  820                 L_LINT(pps_freq, -MAXFREQ);
  821         if (time_status & STA_PPSFREQ)
  822                 time_freq = pps_freq;
  823 }
  824 #endif /* PPS_SYNC */

Cache object: 2d743630f5df79d707af98a23bdd1997


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.