The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_ntptime.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /***********************************************************************
    2  *                                                                     *
    3  * Copyright (c) David L. Mills 1993-2001                              *
    4  *                                                                     *
    5  * Permission to use, copy, modify, and distribute this software and   *
    6  * its documentation for any purpose and without fee is hereby         *
    7  * granted, provided that the above copyright notice appears in all    *
    8  * copies and that both the copyright notice and this permission       *
    9  * notice appear in supporting documentation, and that the name        *
   10  * University of Delaware not be used in advertising or publicity      *
   11  * pertaining to distribution of the software without specific,        *
   12  * written prior permission. The University of Delaware makes no       *
   13  * representations about the suitability this software for any         *
   14  * purpose. It is provided "as is" without express or implied          *
   15  * warranty.                                                           *
   16  *                                                                     *
   17  **********************************************************************/
   18 
   19 /*
   20  * Adapted from the original sources for FreeBSD and timecounters by:
   21  * Poul-Henning Kamp <phk@FreeBSD.org>.
   22  *
   23  * The 32bit version of the "LP" macros seems a bit past its "sell by" 
   24  * date so I have retained only the 64bit version and included it directly
   25  * in this file.
   26  *
   27  * Only minor changes done to interface with the timecounters over in
   28  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
   29  * confusing and/or plain wrong in that context.
   30  *
   31  * $FreeBSD: releng/5.0/sys/kern/kern_ntptime.c 108837 2003-01-06 22:47:16Z peter $
   32  */
   33 
   34 #include "opt_ntp.h"
   35 
   36 #include <sys/param.h>
   37 #include <sys/systm.h>
   38 #include <sys/sysproto.h>
   39 #include <sys/kernel.h>
   40 #include <sys/proc.h>
   41 #include <sys/lock.h>
   42 #include <sys/mutex.h>
   43 #include <sys/time.h>
   44 #include <sys/timex.h>
   45 #include <sys/timetc.h>
   46 #include <sys/timepps.h>
   47 #include <sys/sysctl.h>
   48 
   49 /*
   50  * Single-precision macros for 64-bit machines
   51  */
   52 typedef long long l_fp;
   53 #define L_ADD(v, u)     ((v) += (u))
   54 #define L_SUB(v, u)     ((v) -= (u))
   55 #define L_ADDHI(v, a)   ((v) += (long long)(a) << 32)
   56 #define L_NEG(v)        ((v) = -(v))
   57 #define L_RSHIFT(v, n) \
   58         do { \
   59                 if ((v) < 0) \
   60                         (v) = -(-(v) >> (n)); \
   61                 else \
   62                         (v) = (v) >> (n); \
   63         } while (0)
   64 #define L_MPY(v, a)     ((v) *= (a))
   65 #define L_CLR(v)        ((v) = 0)
   66 #define L_ISNEG(v)      ((v) < 0)
   67 #define L_LINT(v, a)    ((v) = (long long)(a) << 32)
   68 #define L_GINT(v)       ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
   69 
   70 /*
   71  * Generic NTP kernel interface
   72  *
   73  * These routines constitute the Network Time Protocol (NTP) interfaces
   74  * for user and daemon application programs. The ntp_gettime() routine
   75  * provides the time, maximum error (synch distance) and estimated error
   76  * (dispersion) to client user application programs. The ntp_adjtime()
   77  * routine is used by the NTP daemon to adjust the system clock to an
   78  * externally derived time. The time offset and related variables set by
   79  * this routine are used by other routines in this module to adjust the
   80  * phase and frequency of the clock discipline loop which controls the
   81  * system clock.
   82  *
   83  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
   84  * defined), the time at each tick interrupt is derived directly from
   85  * the kernel time variable. When the kernel time is reckoned in
   86  * microseconds, (NTP_NANO undefined), the time is derived from the
   87  * kernel time variable together with a variable representing the
   88  * leftover nanoseconds at the last tick interrupt. In either case, the
   89  * current nanosecond time is reckoned from these values plus an
   90  * interpolated value derived by the clock routines in another
   91  * architecture-specific module. The interpolation can use either a
   92  * dedicated counter or a processor cycle counter (PCC) implemented in
   93  * some architectures.
   94  *
   95  * Note that all routines must run at priority splclock or higher.
   96  */
   97 /*
   98  * Phase/frequency-lock loop (PLL/FLL) definitions
   99  *
  100  * The nanosecond clock discipline uses two variable types, time
  101  * variables and frequency variables. Both types are represented as 64-
  102  * bit fixed-point quantities with the decimal point between two 32-bit
  103  * halves. On a 32-bit machine, each half is represented as a single
  104  * word and mathematical operations are done using multiple-precision
  105  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
  106  * used.
  107  *
  108  * A time variable is a signed 64-bit fixed-point number in ns and
  109  * fraction. It represents the remaining time offset to be amortized
  110  * over succeeding tick interrupts. The maximum time offset is about
  111  * 0.5 s and the resolution is about 2.3e-10 ns.
  112  *
  113  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  114  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  115  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  116  * |s s s|                       ns                                |
  117  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  118  * |                        fraction                               |
  119  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  120  *
  121  * A frequency variable is a signed 64-bit fixed-point number in ns/s
  122  * and fraction. It represents the ns and fraction to be added to the
  123  * kernel time variable at each second. The maximum frequency offset is
  124  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
  125  *
  126  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  127  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  128  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  129  * |s s s s s s s s s s s s s|            ns/s                     |
  130  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  131  * |                        fraction                               |
  132  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  133  */
  134 /*
  135  * The following variables establish the state of the PLL/FLL and the
  136  * residual time and frequency offset of the local clock.
  137  */
  138 #define SHIFT_PLL       4               /* PLL loop gain (shift) */
  139 #define SHIFT_FLL       2               /* FLL loop gain (shift) */
  140 
  141 static int time_state = TIME_OK;        /* clock state */
  142 static int time_status = STA_UNSYNC;    /* clock status bits */
  143 static long time_tai;                   /* TAI offset (s) */
  144 static long time_monitor;               /* last time offset scaled (ns) */
  145 static long time_constant;              /* poll interval (shift) (s) */
  146 static long time_precision = 1;         /* clock precision (ns) */
  147 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
  148 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
  149 static long time_reftime;               /* time at last adjustment (s) */
  150 static l_fp time_offset;                /* time offset (ns) */
  151 static l_fp time_freq;                  /* frequency offset (ns/s) */
  152 static l_fp time_adj;                   /* tick adjust (ns/s) */
  153 
  154 static int64_t time_adjtime;            /* correction from adjtime(2) (usec) */
  155 
  156 #ifdef PPS_SYNC
  157 /*
  158  * The following variables are used when a pulse-per-second (PPS) signal
  159  * is available and connected via a modem control lead. They establish
  160  * the engineering parameters of the clock discipline loop when
  161  * controlled by the PPS signal.
  162  */
  163 #define PPS_FAVG        2               /* min freq avg interval (s) (shift) */
  164 #define PPS_FAVGDEF     8               /* default freq avg int (s) (shift) */
  165 #define PPS_FAVGMAX     15              /* max freq avg interval (s) (shift) */
  166 #define PPS_PAVG        4               /* phase avg interval (s) (shift) */
  167 #define PPS_VALID       120             /* PPS signal watchdog max (s) */
  168 #define PPS_MAXWANDER   100000          /* max PPS wander (ns/s) */
  169 #define PPS_POPCORN     2               /* popcorn spike threshold (shift) */
  170 
  171 static struct timespec pps_tf[3];       /* phase median filter */
  172 static l_fp pps_freq;                   /* scaled frequency offset (ns/s) */
  173 static long pps_fcount;                 /* frequency accumulator */
  174 static long pps_jitter;                 /* nominal jitter (ns) */
  175 static long pps_stabil;                 /* nominal stability (scaled ns/s) */
  176 static long pps_lastsec;                /* time at last calibration (s) */
  177 static int pps_valid;                   /* signal watchdog counter */
  178 static int pps_shift = PPS_FAVG;        /* interval duration (s) (shift) */
  179 static int pps_shiftmax = PPS_FAVGDEF;  /* max interval duration (s) (shift) */
  180 static int pps_intcnt;                  /* wander counter */
  181 
  182 /*
  183  * PPS signal quality monitors
  184  */
  185 static long pps_calcnt;                 /* calibration intervals */
  186 static long pps_jitcnt;                 /* jitter limit exceeded */
  187 static long pps_stbcnt;                 /* stability limit exceeded */
  188 static long pps_errcnt;                 /* calibration errors */
  189 #endif /* PPS_SYNC */
  190 /*
  191  * End of phase/frequency-lock loop (PLL/FLL) definitions
  192  */
  193 
  194 static void ntp_init(void);
  195 static void hardupdate(long offset);
  196 
  197 /*
  198  * ntp_gettime() - NTP user application interface
  199  *
  200  * See the timex.h header file for synopsis and API description. Note
  201  * that the TAI offset is returned in the ntvtimeval.tai structure
  202  * member.
  203  */
  204 static int
  205 ntp_sysctl(SYSCTL_HANDLER_ARGS)
  206 {
  207         struct ntptimeval ntv;  /* temporary structure */
  208         struct timespec atv;    /* nanosecond time */
  209 
  210         nanotime(&atv);
  211         ntv.time.tv_sec = atv.tv_sec;
  212         ntv.time.tv_nsec = atv.tv_nsec;
  213         ntv.maxerror = time_maxerror;
  214         ntv.esterror = time_esterror;
  215         ntv.tai = time_tai;
  216         ntv.time_state = time_state;
  217 
  218         /*
  219          * Status word error decode. If any of these conditions occur,
  220          * an error is returned, instead of the status word. Most
  221          * applications will care only about the fact the system clock
  222          * may not be trusted, not about the details.
  223          *
  224          * Hardware or software error
  225          */
  226         if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
  227 
  228         /*
  229          * PPS signal lost when either time or frequency synchronization
  230          * requested
  231          */
  232             (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
  233             !(time_status & STA_PPSSIGNAL)) ||
  234 
  235         /*
  236          * PPS jitter exceeded when time synchronization requested
  237          */
  238             (time_status & STA_PPSTIME &&
  239             time_status & STA_PPSJITTER) ||
  240 
  241         /*
  242          * PPS wander exceeded or calibration error when frequency
  243          * synchronization requested
  244          */
  245             (time_status & STA_PPSFREQ &&
  246             time_status & (STA_PPSWANDER | STA_PPSERROR)))
  247                 ntv.time_state = TIME_ERROR;
  248         return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
  249 }
  250 
  251 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
  252 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
  253         0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
  254 
  255 #ifdef PPS_SYNC
  256 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
  257 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
  258 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
  259 
  260 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
  261 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
  262 #endif
  263 /*
  264  * ntp_adjtime() - NTP daemon application interface
  265  *
  266  * See the timex.h header file for synopsis and API description. Note
  267  * that the timex.constant structure member has a dual purpose to set
  268  * the time constant and to set the TAI offset.
  269  */
  270 #ifndef _SYS_SYSPROTO_H_
  271 struct ntp_adjtime_args {
  272         struct timex *tp;
  273 };
  274 #endif
  275 
  276 /*
  277  * MPSAFE
  278  */
  279 int
  280 ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
  281 {
  282         struct timex ntv;       /* temporary structure */
  283         long freq;              /* frequency ns/s) */
  284         int modes;              /* mode bits from structure */
  285         int s;                  /* caller priority */
  286         int error;
  287 
  288         error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
  289         if (error)
  290                 return(error);
  291 
  292         /*
  293          * Update selected clock variables - only the superuser can
  294          * change anything. Note that there is no error checking here on
  295          * the assumption the superuser should know what it is doing.
  296          * Note that either the time constant or TAI offset are loaded
  297          * from the ntv.constant member, depending on the mode bits. If
  298          * the STA_PLL bit in the status word is cleared, the state and
  299          * status words are reset to the initial values at boot.
  300          */
  301         mtx_lock(&Giant);
  302         modes = ntv.modes;
  303         if (modes)
  304                 error = suser(td);
  305         if (error)
  306                 goto done2;
  307         s = splclock();
  308         if (modes & MOD_MAXERROR)
  309                 time_maxerror = ntv.maxerror;
  310         if (modes & MOD_ESTERROR)
  311                 time_esterror = ntv.esterror;
  312         if (modes & MOD_STATUS) {
  313                 if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
  314                         time_state = TIME_OK;
  315                         time_status = STA_UNSYNC;
  316 #ifdef PPS_SYNC
  317                         pps_shift = PPS_FAVG;
  318 #endif /* PPS_SYNC */
  319                 }
  320                 time_status &= STA_RONLY;
  321                 time_status |= ntv.status & ~STA_RONLY;
  322         }
  323         if (modes & MOD_TIMECONST) {
  324                 if (ntv.constant < 0)
  325                         time_constant = 0;
  326                 else if (ntv.constant > MAXTC)
  327                         time_constant = MAXTC;
  328                 else
  329                         time_constant = ntv.constant;
  330         }
  331         if (modes & MOD_TAI) {
  332                 if (ntv.constant > 0) /* XXX zero & negative numbers ? */
  333                         time_tai = ntv.constant;
  334         }
  335 #ifdef PPS_SYNC
  336         if (modes & MOD_PPSMAX) {
  337                 if (ntv.shift < PPS_FAVG)
  338                         pps_shiftmax = PPS_FAVG;
  339                 else if (ntv.shift > PPS_FAVGMAX)
  340                         pps_shiftmax = PPS_FAVGMAX;
  341                 else
  342                         pps_shiftmax = ntv.shift;
  343         }
  344 #endif /* PPS_SYNC */
  345         if (modes & MOD_NANO)
  346                 time_status |= STA_NANO;
  347         if (modes & MOD_MICRO)
  348                 time_status &= ~STA_NANO;
  349         if (modes & MOD_CLKB)
  350                 time_status |= STA_CLK;
  351         if (modes & MOD_CLKA)
  352                 time_status &= ~STA_CLK;
  353         if (modes & MOD_OFFSET) {
  354                 if (time_status & STA_NANO)
  355                         hardupdate(ntv.offset);
  356                 else
  357                         hardupdate(ntv.offset * 1000);
  358         }
  359         if (modes & MOD_FREQUENCY) {
  360                 freq = (ntv.freq * 1000LL) >> 16;
  361                 if (freq > MAXFREQ)
  362                         L_LINT(time_freq, MAXFREQ);
  363                 else if (freq < -MAXFREQ)
  364                         L_LINT(time_freq, -MAXFREQ);
  365                 else
  366                         L_LINT(time_freq, freq);
  367 #ifdef PPS_SYNC
  368                 pps_freq = time_freq;
  369 #endif /* PPS_SYNC */
  370         }
  371 
  372         /*
  373          * Retrieve all clock variables. Note that the TAI offset is
  374          * returned only by ntp_gettime();
  375          */
  376         if (time_status & STA_NANO)
  377                 ntv.offset = L_GINT(time_offset);
  378         else
  379                 ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
  380         ntv.freq = L_GINT((time_freq / 1000LL) << 16);
  381         ntv.maxerror = time_maxerror;
  382         ntv.esterror = time_esterror;
  383         ntv.status = time_status;
  384         ntv.constant = time_constant;
  385         if (time_status & STA_NANO)
  386                 ntv.precision = time_precision;
  387         else
  388                 ntv.precision = time_precision / 1000;
  389         ntv.tolerance = MAXFREQ * SCALE_PPM;
  390 #ifdef PPS_SYNC
  391         ntv.shift = pps_shift;
  392         ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
  393         if (time_status & STA_NANO)
  394                 ntv.jitter = pps_jitter;
  395         else
  396                 ntv.jitter = pps_jitter / 1000;
  397         ntv.stabil = pps_stabil;
  398         ntv.calcnt = pps_calcnt;
  399         ntv.errcnt = pps_errcnt;
  400         ntv.jitcnt = pps_jitcnt;
  401         ntv.stbcnt = pps_stbcnt;
  402 #endif /* PPS_SYNC */
  403         splx(s);
  404 
  405         error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
  406         if (error)
  407                 goto done2;
  408 
  409         /*
  410          * Status word error decode. See comments in
  411          * ntp_gettime() routine.
  412          */
  413         if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
  414             (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
  415             !(time_status & STA_PPSSIGNAL)) ||
  416             (time_status & STA_PPSTIME &&
  417             time_status & STA_PPSJITTER) ||
  418             (time_status & STA_PPSFREQ &&
  419             time_status & (STA_PPSWANDER | STA_PPSERROR))) {
  420                 td->td_retval[0] = TIME_ERROR;
  421         } else {
  422                 td->td_retval[0] = time_state;
  423         }
  424 done2:
  425         mtx_unlock(&Giant);
  426         return (error);
  427 }
  428 
  429 /*
  430  * second_overflow() - called after ntp_tick_adjust()
  431  *
  432  * This routine is ordinarily called immediately following the above
  433  * routine ntp_tick_adjust(). While these two routines are normally
  434  * combined, they are separated here only for the purposes of
  435  * simulation.
  436  */
  437 void
  438 ntp_update_second(int64_t *adjustment, time_t *newsec)
  439 {
  440         int tickrate;
  441         l_fp ftemp;             /* 32/64-bit temporary */
  442 
  443         /*
  444          * On rollover of the second both the nanosecond and microsecond
  445          * clocks are updated and the state machine cranked as
  446          * necessary. The phase adjustment to be used for the next
  447          * second is calculated and the maximum error is increased by
  448          * the tolerance.
  449          */
  450         time_maxerror += MAXFREQ / 1000;
  451 
  452         /*
  453          * Leap second processing. If in leap-insert state at
  454          * the end of the day, the system clock is set back one
  455          * second; if in leap-delete state, the system clock is
  456          * set ahead one second. The nano_time() routine or
  457          * external clock driver will insure that reported time
  458          * is always monotonic.
  459          */
  460         switch (time_state) {
  461 
  462                 /*
  463                  * No warning.
  464                  */
  465                 case TIME_OK:
  466                 if (time_status & STA_INS)
  467                         time_state = TIME_INS;
  468                 else if (time_status & STA_DEL)
  469                         time_state = TIME_DEL;
  470                 break;
  471 
  472                 /*
  473                  * Insert second 23:59:60 following second
  474                  * 23:59:59.
  475                  */
  476                 case TIME_INS:
  477                 if (!(time_status & STA_INS))
  478                         time_state = TIME_OK;
  479                 else if ((*newsec) % 86400 == 0) {
  480                         (*newsec)--;
  481                         time_state = TIME_OOP;
  482                 }
  483                 break;
  484 
  485                 /*
  486                  * Delete second 23:59:59.
  487                  */
  488                 case TIME_DEL:
  489                 if (!(time_status & STA_DEL))
  490                         time_state = TIME_OK;
  491                 else if (((*newsec) + 1) % 86400 == 0) {
  492                         (*newsec)++;
  493                         time_tai--;
  494                         time_state = TIME_WAIT;
  495                 }
  496                 break;
  497 
  498                 /*
  499                  * Insert second in progress.
  500                  */
  501                 case TIME_OOP:
  502                         time_tai++;
  503                         time_state = TIME_WAIT;
  504                 break;
  505 
  506                 /*
  507                  * Wait for status bits to clear.
  508                  */
  509                 case TIME_WAIT:
  510                 if (!(time_status & (STA_INS | STA_DEL)))
  511                         time_state = TIME_OK;
  512         }
  513 
  514         /*
  515          * Compute the total time adjustment for the next second
  516          * in ns. The offset is reduced by a factor depending on
  517          * whether the PPS signal is operating. Note that the
  518          * value is in effect scaled by the clock frequency,
  519          * since the adjustment is added at each tick interrupt.
  520          */
  521         ftemp = time_offset;
  522 #ifdef PPS_SYNC
  523         /* XXX even if PPS signal dies we should finish adjustment ? */
  524         if (time_status & STA_PPSTIME && time_status &
  525             STA_PPSSIGNAL)
  526                 L_RSHIFT(ftemp, pps_shift);
  527         else
  528                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  529 #else
  530                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  531 #endif /* PPS_SYNC */
  532         time_adj = ftemp;
  533         L_SUB(time_offset, ftemp);
  534         L_ADD(time_adj, time_freq);
  535         
  536         /*
  537          * Apply any correction from adjtime(2).  If more than one second
  538          * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
  539          * until the last second is slewed the final < 500 usecs.
  540          */
  541         if (time_adjtime != 0) {
  542                 if (time_adjtime > 1000000)
  543                         tickrate = 5000;
  544                 else if (time_adjtime < -1000000)
  545                         tickrate = -5000;
  546                 else if (time_adjtime > 500)
  547                         tickrate = 500;
  548                 else if (time_adjtime < -500)
  549                         tickrate = -500;
  550                 else if (time_adjtime != 0)
  551                         tickrate = time_adjtime;
  552                 else
  553                         tickrate = 0;   /* GCC sucks! */
  554                 time_adjtime -= tickrate;
  555                 L_LINT(ftemp, tickrate * 1000);
  556                 L_ADD(time_adj, ftemp);
  557         }
  558         *adjustment = time_adj;
  559                 
  560 #ifdef PPS_SYNC
  561         if (pps_valid > 0)
  562                 pps_valid--;
  563         else
  564                 time_status &= ~STA_PPSSIGNAL;
  565 #endif /* PPS_SYNC */
  566 }
  567 
  568 /*
  569  * ntp_init() - initialize variables and structures
  570  *
  571  * This routine must be called after the kernel variables hz and tick
  572  * are set or changed and before the next tick interrupt. In this
  573  * particular implementation, these values are assumed set elsewhere in
  574  * the kernel. The design allows the clock frequency and tick interval
  575  * to be changed while the system is running. So, this routine should
  576  * probably be integrated with the code that does that.
  577  */
  578 static void
  579 ntp_init()
  580 {
  581 
  582         /*
  583          * The following variables are initialized only at startup. Only
  584          * those structures not cleared by the compiler need to be
  585          * initialized, and these only in the simulator. In the actual
  586          * kernel, any nonzero values here will quickly evaporate.
  587          */
  588         L_CLR(time_offset);
  589         L_CLR(time_freq);
  590 #ifdef PPS_SYNC
  591         pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
  592         pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
  593         pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
  594         pps_fcount = 0;
  595         L_CLR(pps_freq);
  596 #endif /* PPS_SYNC */      
  597 }
  598 
  599 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL)
  600 
  601 /*
  602  * hardupdate() - local clock update
  603  *
  604  * This routine is called by ntp_adjtime() to update the local clock
  605  * phase and frequency. The implementation is of an adaptive-parameter,
  606  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
  607  * time and frequency offset estimates for each call. If the kernel PPS
  608  * discipline code is configured (PPS_SYNC), the PPS signal itself
  609  * determines the new time offset, instead of the calling argument.
  610  * Presumably, calls to ntp_adjtime() occur only when the caller
  611  * believes the local clock is valid within some bound (+-128 ms with
  612  * NTP). If the caller's time is far different than the PPS time, an
  613  * argument will ensue, and it's not clear who will lose.
  614  *
  615  * For uncompensated quartz crystal oscillators and nominal update
  616  * intervals less than 256 s, operation should be in phase-lock mode,
  617  * where the loop is disciplined to phase. For update intervals greater
  618  * than 1024 s, operation should be in frequency-lock mode, where the
  619  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
  620  * is selected by the STA_MODE status bit.
  621  */
  622 static void
  623 hardupdate(offset)
  624         long offset;            /* clock offset (ns) */
  625 {
  626         long mtemp;
  627         l_fp ftemp;
  628 
  629         /*
  630          * Select how the phase is to be controlled and from which
  631          * source. If the PPS signal is present and enabled to
  632          * discipline the time, the PPS offset is used; otherwise, the
  633          * argument offset is used.
  634          */
  635         if (!(time_status & STA_PLL))
  636                 return;
  637         if (!(time_status & STA_PPSTIME && time_status &
  638             STA_PPSSIGNAL)) {
  639                 if (offset > MAXPHASE)
  640                         time_monitor = MAXPHASE;
  641                 else if (offset < -MAXPHASE)
  642                         time_monitor = -MAXPHASE;
  643                 else
  644                         time_monitor = offset;
  645                 L_LINT(time_offset, time_monitor);
  646         }
  647 
  648         /*
  649          * Select how the frequency is to be controlled and in which
  650          * mode (PLL or FLL). If the PPS signal is present and enabled
  651          * to discipline the frequency, the PPS frequency is used;
  652          * otherwise, the argument offset is used to compute it.
  653          */
  654         if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
  655                 time_reftime = time_second;
  656                 return;
  657         }
  658         if (time_status & STA_FREQHOLD || time_reftime == 0)
  659                 time_reftime = time_second;
  660         mtemp = time_second - time_reftime;
  661         L_LINT(ftemp, time_monitor);
  662         L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
  663         L_MPY(ftemp, mtemp);
  664         L_ADD(time_freq, ftemp);
  665         time_status &= ~STA_MODE;
  666         if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
  667             MAXSEC)) {
  668                 L_LINT(ftemp, (time_monitor << 4) / mtemp);
  669                 L_RSHIFT(ftemp, SHIFT_FLL + 4);
  670                 L_ADD(time_freq, ftemp);
  671                 time_status |= STA_MODE;
  672         }
  673         time_reftime = time_second;
  674         if (L_GINT(time_freq) > MAXFREQ)
  675                 L_LINT(time_freq, MAXFREQ);
  676         else if (L_GINT(time_freq) < -MAXFREQ)
  677                 L_LINT(time_freq, -MAXFREQ);
  678 }
  679 
  680 #ifdef PPS_SYNC
  681 /*
  682  * hardpps() - discipline CPU clock oscillator to external PPS signal
  683  *
  684  * This routine is called at each PPS interrupt in order to discipline
  685  * the CPU clock oscillator to the PPS signal. There are two independent
  686  * first-order feedback loops, one for the phase, the other for the
  687  * frequency. The phase loop measures and grooms the PPS phase offset
  688  * and leaves it in a handy spot for the seconds overflow routine. The
  689  * frequency loop averages successive PPS phase differences and
  690  * calculates the PPS frequency offset, which is also processed by the
  691  * seconds overflow routine. The code requires the caller to capture the
  692  * time and architecture-dependent hardware counter values in
  693  * nanoseconds at the on-time PPS signal transition.
  694  *
  695  * Note that, on some Unix systems this routine runs at an interrupt
  696  * priority level higher than the timer interrupt routine hardclock().
  697  * Therefore, the variables used are distinct from the hardclock()
  698  * variables, except for the actual time and frequency variables, which
  699  * are determined by this routine and updated atomically.
  700  */
  701 void
  702 hardpps(tsp, nsec)
  703         struct timespec *tsp;   /* time at PPS */
  704         long nsec;              /* hardware counter at PPS */
  705 {
  706         long u_sec, u_nsec, v_nsec; /* temps */
  707         l_fp ftemp;
  708 
  709         /*
  710          * The signal is first processed by a range gate and frequency
  711          * discriminator. The range gate rejects noise spikes outside
  712          * the range +-500 us. The frequency discriminator rejects input
  713          * signals with apparent frequency outside the range 1 +-500
  714          * PPM. If two hits occur in the same second, we ignore the
  715          * later hit; if not and a hit occurs outside the range gate,
  716          * keep the later hit for later comparison, but do not process
  717          * it.
  718          */
  719         time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
  720         time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
  721         pps_valid = PPS_VALID;
  722         u_sec = tsp->tv_sec;
  723         u_nsec = tsp->tv_nsec;
  724         if (u_nsec >= (NANOSECOND >> 1)) {
  725                 u_nsec -= NANOSECOND;
  726                 u_sec++;
  727         }
  728         v_nsec = u_nsec - pps_tf[0].tv_nsec;
  729         if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
  730             MAXFREQ)
  731                 return;
  732         pps_tf[2] = pps_tf[1];
  733         pps_tf[1] = pps_tf[0];
  734         pps_tf[0].tv_sec = u_sec;
  735         pps_tf[0].tv_nsec = u_nsec;
  736 
  737         /*
  738          * Compute the difference between the current and previous
  739          * counter values. If the difference exceeds 0.5 s, assume it
  740          * has wrapped around, so correct 1.0 s. If the result exceeds
  741          * the tick interval, the sample point has crossed a tick
  742          * boundary during the last second, so correct the tick. Very
  743          * intricate.
  744          */
  745         u_nsec = nsec;
  746         if (u_nsec > (NANOSECOND >> 1))
  747                 u_nsec -= NANOSECOND;
  748         else if (u_nsec < -(NANOSECOND >> 1))
  749                 u_nsec += NANOSECOND;
  750         pps_fcount += u_nsec;
  751         if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
  752                 return;
  753         time_status &= ~STA_PPSJITTER;
  754 
  755         /*
  756          * A three-stage median filter is used to help denoise the PPS
  757          * time. The median sample becomes the time offset estimate; the
  758          * difference between the other two samples becomes the time
  759          * dispersion (jitter) estimate.
  760          */
  761         if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
  762                 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
  763                         v_nsec = pps_tf[1].tv_nsec;     /* 0 1 2 */
  764                         u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
  765                 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
  766                         v_nsec = pps_tf[0].tv_nsec;     /* 2 0 1 */
  767                         u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
  768                 } else {
  769                         v_nsec = pps_tf[2].tv_nsec;     /* 0 2 1 */
  770                         u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
  771                 }
  772         } else {
  773                 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
  774                         v_nsec = pps_tf[1].tv_nsec;     /* 2 1 0 */
  775                         u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
  776                 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
  777                         v_nsec = pps_tf[0].tv_nsec;     /* 1 0 2 */
  778                         u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
  779                 } else {
  780                         v_nsec = pps_tf[2].tv_nsec;     /* 1 2 0 */
  781                         u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
  782                 }
  783         }
  784 
  785         /*
  786          * Nominal jitter is due to PPS signal noise and interrupt
  787          * latency. If it exceeds the popcorn threshold, the sample is
  788          * discarded. otherwise, if so enabled, the time offset is
  789          * updated. We can tolerate a modest loss of data here without
  790          * much degrading time accuracy.
  791          */
  792         if (u_nsec > (pps_jitter << PPS_POPCORN)) {
  793                 time_status |= STA_PPSJITTER;
  794                 pps_jitcnt++;
  795         } else if (time_status & STA_PPSTIME) {
  796                 time_monitor = -v_nsec;
  797                 L_LINT(time_offset, time_monitor);
  798         }
  799         pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
  800         u_sec = pps_tf[0].tv_sec - pps_lastsec;
  801         if (u_sec < (1 << pps_shift))
  802                 return;
  803 
  804         /*
  805          * At the end of the calibration interval the difference between
  806          * the first and last counter values becomes the scaled
  807          * frequency. It will later be divided by the length of the
  808          * interval to determine the frequency update. If the frequency
  809          * exceeds a sanity threshold, or if the actual calibration
  810          * interval is not equal to the expected length, the data are
  811          * discarded. We can tolerate a modest loss of data here without
  812          * much degrading frequency accuracy.
  813          */
  814         pps_calcnt++;
  815         v_nsec = -pps_fcount;
  816         pps_lastsec = pps_tf[0].tv_sec;
  817         pps_fcount = 0;
  818         u_nsec = MAXFREQ << pps_shift;
  819         if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
  820             pps_shift)) {
  821                 time_status |= STA_PPSERROR;
  822                 pps_errcnt++;
  823                 return;
  824         }
  825 
  826         /*
  827          * Here the raw frequency offset and wander (stability) is
  828          * calculated. If the wander is less than the wander threshold
  829          * for four consecutive averaging intervals, the interval is
  830          * doubled; if it is greater than the threshold for four
  831          * consecutive intervals, the interval is halved. The scaled
  832          * frequency offset is converted to frequency offset. The
  833          * stability metric is calculated as the average of recent
  834          * frequency changes, but is used only for performance
  835          * monitoring.
  836          */
  837         L_LINT(ftemp, v_nsec);
  838         L_RSHIFT(ftemp, pps_shift);
  839         L_SUB(ftemp, pps_freq);
  840         u_nsec = L_GINT(ftemp);
  841         if (u_nsec > PPS_MAXWANDER) {
  842                 L_LINT(ftemp, PPS_MAXWANDER);
  843                 pps_intcnt--;
  844                 time_status |= STA_PPSWANDER;
  845                 pps_stbcnt++;
  846         } else if (u_nsec < -PPS_MAXWANDER) {
  847                 L_LINT(ftemp, -PPS_MAXWANDER);
  848                 pps_intcnt--;
  849                 time_status |= STA_PPSWANDER;
  850                 pps_stbcnt++;
  851         } else {
  852                 pps_intcnt++;
  853         }
  854         if (pps_intcnt >= 4) {
  855                 pps_intcnt = 4;
  856                 if (pps_shift < pps_shiftmax) {
  857                         pps_shift++;
  858                         pps_intcnt = 0;
  859                 }
  860         } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
  861                 pps_intcnt = -4;
  862                 if (pps_shift > PPS_FAVG) {
  863                         pps_shift--;
  864                         pps_intcnt = 0;
  865                 }
  866         }
  867         if (u_nsec < 0)
  868                 u_nsec = -u_nsec;
  869         pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
  870 
  871         /*
  872          * The PPS frequency is recalculated and clamped to the maximum
  873          * MAXFREQ. If enabled, the system clock frequency is updated as
  874          * well.
  875          */
  876         L_ADD(pps_freq, ftemp);
  877         u_nsec = L_GINT(pps_freq);
  878         if (u_nsec > MAXFREQ)
  879                 L_LINT(pps_freq, MAXFREQ);
  880         else if (u_nsec < -MAXFREQ)
  881                 L_LINT(pps_freq, -MAXFREQ);
  882         if (time_status & STA_PPSFREQ)
  883                 time_freq = pps_freq;
  884 }
  885 #endif /* PPS_SYNC */
  886 
  887 #ifndef _SYS_SYSPROTO_H_
  888 struct adjtime_args {
  889         struct timeval *delta;
  890         struct timeval *olddelta;
  891 };
  892 #endif
  893 /*
  894  * MPSAFE
  895  */
  896 /* ARGSUSED */
  897 int
  898 adjtime(struct thread *td, struct adjtime_args *uap)
  899 {
  900         struct timeval atv;
  901         int error;
  902 
  903         if ((error = suser(td)))
  904                 return (error);
  905 
  906         mtx_lock(&Giant);
  907         if (uap->olddelta) {
  908                 atv.tv_sec = time_adjtime / 1000000;
  909                 atv.tv_usec = time_adjtime % 1000000;
  910                 if (atv.tv_usec < 0) {
  911                         atv.tv_usec += 1000000;
  912                         atv.tv_sec--;
  913                 }
  914                 error = copyout(&atv, uap->olddelta, sizeof(atv));
  915                 if (error)
  916                         goto done2;
  917         }
  918         if (uap->delta) {
  919                 error = copyin(uap->delta, &atv, sizeof(atv));
  920                 if (error)
  921                         goto done2;
  922                 time_adjtime = (int64_t)atv.tv_sec * 1000000 + atv.tv_usec;
  923         }
  924 done2:
  925         mtx_unlock(&Giant);
  926         return (error);
  927 }
  928 

Cache object: 924693a8c772671ed1a6f7cf5e69c7ee


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.