The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_ntptime.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  ***********************************************************************
    3  *                                                                     *
    4  * Copyright (c) David L. Mills 1993-2001                              *
    5  *                                                                     *
    6  * Permission to use, copy, modify, and distribute this software and   *
    7  * its documentation for any purpose and without fee is hereby         *
    8  * granted, provided that the above copyright notice appears in all    *
    9  * copies and that both the copyright notice and this permission       *
   10  * notice appear in supporting documentation, and that the name        *
   11  * University of Delaware not be used in advertising or publicity      *
   12  * pertaining to distribution of the software without specific,        *
   13  * written prior permission. The University of Delaware makes no       *
   14  * representations about the suitability this software for any         *
   15  * purpose. It is provided "as is" without express or implied          *
   16  * warranty.                                                           *
   17  *                                                                     *
   18  **********************************************************************/
   19 
   20 /*
   21  * Adapted from the original sources for FreeBSD and timecounters by:
   22  * Poul-Henning Kamp <phk@FreeBSD.org>.
   23  *
   24  * The 32bit version of the "LP" macros seems a bit past its "sell by" 
   25  * date so I have retained only the 64bit version and included it directly
   26  * in this file.
   27  *
   28  * Only minor changes done to interface with the timecounters over in
   29  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
   30  * confusing and/or plain wrong in that context.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/5.4/sys/kern/kern_ntptime.c 145335 2005-04-20 19:11:07Z cvs2svn $");
   35 
   36 #include "opt_ntp.h"
   37 
   38 #include <sys/param.h>
   39 #include <sys/systm.h>
   40 #include <sys/sysproto.h>
   41 #include <sys/kernel.h>
   42 #include <sys/proc.h>
   43 #include <sys/lock.h>
   44 #include <sys/mutex.h>
   45 #include <sys/time.h>
   46 #include <sys/timex.h>
   47 #include <sys/timetc.h>
   48 #include <sys/timepps.h>
   49 #include <sys/sysctl.h>
   50 
   51 /*
   52  * Single-precision macros for 64-bit machines
   53  */
   54 typedef int64_t l_fp;
   55 #define L_ADD(v, u)     ((v) += (u))
   56 #define L_SUB(v, u)     ((v) -= (u))
   57 #define L_ADDHI(v, a)   ((v) += (int64_t)(a) << 32)
   58 #define L_NEG(v)        ((v) = -(v))
   59 #define L_RSHIFT(v, n) \
   60         do { \
   61                 if ((v) < 0) \
   62                         (v) = -(-(v) >> (n)); \
   63                 else \
   64                         (v) = (v) >> (n); \
   65         } while (0)
   66 #define L_MPY(v, a)     ((v) *= (a))
   67 #define L_CLR(v)        ((v) = 0)
   68 #define L_ISNEG(v)      ((v) < 0)
   69 #define L_LINT(v, a)    ((v) = (int64_t)(a) << 32)
   70 #define L_GINT(v)       ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
   71 
   72 /*
   73  * Generic NTP kernel interface
   74  *
   75  * These routines constitute the Network Time Protocol (NTP) interfaces
   76  * for user and daemon application programs. The ntp_gettime() routine
   77  * provides the time, maximum error (synch distance) and estimated error
   78  * (dispersion) to client user application programs. The ntp_adjtime()
   79  * routine is used by the NTP daemon to adjust the system clock to an
   80  * externally derived time. The time offset and related variables set by
   81  * this routine are used by other routines in this module to adjust the
   82  * phase and frequency of the clock discipline loop which controls the
   83  * system clock.
   84  *
   85  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
   86  * defined), the time at each tick interrupt is derived directly from
   87  * the kernel time variable. When the kernel time is reckoned in
   88  * microseconds, (NTP_NANO undefined), the time is derived from the
   89  * kernel time variable together with a variable representing the
   90  * leftover nanoseconds at the last tick interrupt. In either case, the
   91  * current nanosecond time is reckoned from these values plus an
   92  * interpolated value derived by the clock routines in another
   93  * architecture-specific module. The interpolation can use either a
   94  * dedicated counter or a processor cycle counter (PCC) implemented in
   95  * some architectures.
   96  *
   97  * Note that all routines must run at priority splclock or higher.
   98  */
   99 /*
  100  * Phase/frequency-lock loop (PLL/FLL) definitions
  101  *
  102  * The nanosecond clock discipline uses two variable types, time
  103  * variables and frequency variables. Both types are represented as 64-
  104  * bit fixed-point quantities with the decimal point between two 32-bit
  105  * halves. On a 32-bit machine, each half is represented as a single
  106  * word and mathematical operations are done using multiple-precision
  107  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
  108  * used.
  109  *
  110  * A time variable is a signed 64-bit fixed-point number in ns and
  111  * fraction. It represents the remaining time offset to be amortized
  112  * over succeeding tick interrupts. The maximum time offset is about
  113  * 0.5 s and the resolution is about 2.3e-10 ns.
  114  *
  115  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  116  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  117  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  118  * |s s s|                       ns                                |
  119  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  120  * |                        fraction                               |
  121  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  122  *
  123  * A frequency variable is a signed 64-bit fixed-point number in ns/s
  124  * and fraction. It represents the ns and fraction to be added to the
  125  * kernel time variable at each second. The maximum frequency offset is
  126  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
  127  *
  128  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  129  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  130  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  131  * |s s s s s s s s s s s s s|            ns/s                     |
  132  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  133  * |                        fraction                               |
  134  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  135  */
  136 /*
  137  * The following variables establish the state of the PLL/FLL and the
  138  * residual time and frequency offset of the local clock.
  139  */
  140 #define SHIFT_PLL       4               /* PLL loop gain (shift) */
  141 #define SHIFT_FLL       2               /* FLL loop gain (shift) */
  142 
  143 static int time_state = TIME_OK;        /* clock state */
  144 static int time_status = STA_UNSYNC;    /* clock status bits */
  145 static long time_tai;                   /* TAI offset (s) */
  146 static long time_monitor;               /* last time offset scaled (ns) */
  147 static long time_constant;              /* poll interval (shift) (s) */
  148 static long time_precision = 1;         /* clock precision (ns) */
  149 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
  150 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
  151 static long time_reftime;               /* time at last adjustment (s) */
  152 static l_fp time_offset;                /* time offset (ns) */
  153 static l_fp time_freq;                  /* frequency offset (ns/s) */
  154 static l_fp time_adj;                   /* tick adjust (ns/s) */
  155 
  156 static int64_t time_adjtime;            /* correction from adjtime(2) (usec) */
  157 
  158 #ifdef PPS_SYNC
  159 /*
  160  * The following variables are used when a pulse-per-second (PPS) signal
  161  * is available and connected via a modem control lead. They establish
  162  * the engineering parameters of the clock discipline loop when
  163  * controlled by the PPS signal.
  164  */
  165 #define PPS_FAVG        2               /* min freq avg interval (s) (shift) */
  166 #define PPS_FAVGDEF     8               /* default freq avg int (s) (shift) */
  167 #define PPS_FAVGMAX     15              /* max freq avg interval (s) (shift) */
  168 #define PPS_PAVG        4               /* phase avg interval (s) (shift) */
  169 #define PPS_VALID       120             /* PPS signal watchdog max (s) */
  170 #define PPS_MAXWANDER   100000          /* max PPS wander (ns/s) */
  171 #define PPS_POPCORN     2               /* popcorn spike threshold (shift) */
  172 
  173 static struct timespec pps_tf[3];       /* phase median filter */
  174 static l_fp pps_freq;                   /* scaled frequency offset (ns/s) */
  175 static long pps_fcount;                 /* frequency accumulator */
  176 static long pps_jitter;                 /* nominal jitter (ns) */
  177 static long pps_stabil;                 /* nominal stability (scaled ns/s) */
  178 static long pps_lastsec;                /* time at last calibration (s) */
  179 static int pps_valid;                   /* signal watchdog counter */
  180 static int pps_shift = PPS_FAVG;        /* interval duration (s) (shift) */
  181 static int pps_shiftmax = PPS_FAVGDEF;  /* max interval duration (s) (shift) */
  182 static int pps_intcnt;                  /* wander counter */
  183 
  184 /*
  185  * PPS signal quality monitors
  186  */
  187 static long pps_calcnt;                 /* calibration intervals */
  188 static long pps_jitcnt;                 /* jitter limit exceeded */
  189 static long pps_stbcnt;                 /* stability limit exceeded */
  190 static long pps_errcnt;                 /* calibration errors */
  191 #endif /* PPS_SYNC */
  192 /*
  193  * End of phase/frequency-lock loop (PLL/FLL) definitions
  194  */
  195 
  196 static void ntp_init(void);
  197 static void hardupdate(long offset);
  198 
  199 /*
  200  * ntp_gettime() - NTP user application interface
  201  *
  202  * See the timex.h header file for synopsis and API description. Note
  203  * that the TAI offset is returned in the ntvtimeval.tai structure
  204  * member.
  205  */
  206 static int
  207 ntp_sysctl(SYSCTL_HANDLER_ARGS)
  208 {
  209         struct ntptimeval ntv;  /* temporary structure */
  210         struct timespec atv;    /* nanosecond time */
  211 
  212         nanotime(&atv);
  213         ntv.time.tv_sec = atv.tv_sec;
  214         ntv.time.tv_nsec = atv.tv_nsec;
  215         ntv.maxerror = time_maxerror;
  216         ntv.esterror = time_esterror;
  217         ntv.tai = time_tai;
  218         ntv.time_state = time_state;
  219 
  220         /*
  221          * Status word error decode. If any of these conditions occur,
  222          * an error is returned, instead of the status word. Most
  223          * applications will care only about the fact the system clock
  224          * may not be trusted, not about the details.
  225          *
  226          * Hardware or software error
  227          */
  228         if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
  229 
  230         /*
  231          * PPS signal lost when either time or frequency synchronization
  232          * requested
  233          */
  234             (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
  235             !(time_status & STA_PPSSIGNAL)) ||
  236 
  237         /*
  238          * PPS jitter exceeded when time synchronization requested
  239          */
  240             (time_status & STA_PPSTIME &&
  241             time_status & STA_PPSJITTER) ||
  242 
  243         /*
  244          * PPS wander exceeded or calibration error when frequency
  245          * synchronization requested
  246          */
  247             (time_status & STA_PPSFREQ &&
  248             time_status & (STA_PPSWANDER | STA_PPSERROR)))
  249                 ntv.time_state = TIME_ERROR;
  250         return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
  251 }
  252 
  253 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
  254 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
  255         0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
  256 
  257 #ifdef PPS_SYNC
  258 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
  259 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
  260 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
  261 
  262 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
  263 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
  264 #endif
  265 /*
  266  * ntp_adjtime() - NTP daemon application interface
  267  *
  268  * See the timex.h header file for synopsis and API description. Note
  269  * that the timex.constant structure member has a dual purpose to set
  270  * the time constant and to set the TAI offset.
  271  */
  272 #ifndef _SYS_SYSPROTO_H_
  273 struct ntp_adjtime_args {
  274         struct timex *tp;
  275 };
  276 #endif
  277 
  278 /*
  279  * MPSAFE
  280  */
  281 int
  282 ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
  283 {
  284         struct timex ntv;       /* temporary structure */
  285         long freq;              /* frequency ns/s) */
  286         int modes;              /* mode bits from structure */
  287         int s;                  /* caller priority */
  288         int error;
  289 
  290         error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
  291         if (error)
  292                 return(error);
  293 
  294         /*
  295          * Update selected clock variables - only the superuser can
  296          * change anything. Note that there is no error checking here on
  297          * the assumption the superuser should know what it is doing.
  298          * Note that either the time constant or TAI offset are loaded
  299          * from the ntv.constant member, depending on the mode bits. If
  300          * the STA_PLL bit in the status word is cleared, the state and
  301          * status words are reset to the initial values at boot.
  302          */
  303         mtx_lock(&Giant);
  304         modes = ntv.modes;
  305         if (modes)
  306                 error = suser(td);
  307         if (error)
  308                 goto done2;
  309         s = splclock();
  310         if (modes & MOD_MAXERROR)
  311                 time_maxerror = ntv.maxerror;
  312         if (modes & MOD_ESTERROR)
  313                 time_esterror = ntv.esterror;
  314         if (modes & MOD_STATUS) {
  315                 if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
  316                         time_state = TIME_OK;
  317                         time_status = STA_UNSYNC;
  318 #ifdef PPS_SYNC
  319                         pps_shift = PPS_FAVG;
  320 #endif /* PPS_SYNC */
  321                 }
  322                 time_status &= STA_RONLY;
  323                 time_status |= ntv.status & ~STA_RONLY;
  324         }
  325         if (modes & MOD_TIMECONST) {
  326                 if (ntv.constant < 0)
  327                         time_constant = 0;
  328                 else if (ntv.constant > MAXTC)
  329                         time_constant = MAXTC;
  330                 else
  331                         time_constant = ntv.constant;
  332         }
  333         if (modes & MOD_TAI) {
  334                 if (ntv.constant > 0) /* XXX zero & negative numbers ? */
  335                         time_tai = ntv.constant;
  336         }
  337 #ifdef PPS_SYNC
  338         if (modes & MOD_PPSMAX) {
  339                 if (ntv.shift < PPS_FAVG)
  340                         pps_shiftmax = PPS_FAVG;
  341                 else if (ntv.shift > PPS_FAVGMAX)
  342                         pps_shiftmax = PPS_FAVGMAX;
  343                 else
  344                         pps_shiftmax = ntv.shift;
  345         }
  346 #endif /* PPS_SYNC */
  347         if (modes & MOD_NANO)
  348                 time_status |= STA_NANO;
  349         if (modes & MOD_MICRO)
  350                 time_status &= ~STA_NANO;
  351         if (modes & MOD_CLKB)
  352                 time_status |= STA_CLK;
  353         if (modes & MOD_CLKA)
  354                 time_status &= ~STA_CLK;
  355         if (modes & MOD_FREQUENCY) {
  356                 freq = (ntv.freq * 1000LL) >> 16;
  357                 if (freq > MAXFREQ)
  358                         L_LINT(time_freq, MAXFREQ);
  359                 else if (freq < -MAXFREQ)
  360                         L_LINT(time_freq, -MAXFREQ);
  361                 else {
  362                         /*
  363                          * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
  364                          * time_freq is [ns/s * 2^32]
  365                          */
  366                         time_freq = ntv.freq * 1000LL * 65536LL;
  367                 }
  368 #ifdef PPS_SYNC
  369                 pps_freq = time_freq;
  370 #endif /* PPS_SYNC */
  371         }
  372         if (modes & MOD_OFFSET) {
  373                 if (time_status & STA_NANO)
  374                         hardupdate(ntv.offset);
  375                 else
  376                         hardupdate(ntv.offset * 1000);
  377         }
  378 
  379         /*
  380          * Retrieve all clock variables. Note that the TAI offset is
  381          * returned only by ntp_gettime();
  382          */
  383         if (time_status & STA_NANO)
  384                 ntv.offset = L_GINT(time_offset);
  385         else
  386                 ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
  387         ntv.freq = L_GINT((time_freq / 1000LL) << 16);
  388         ntv.maxerror = time_maxerror;
  389         ntv.esterror = time_esterror;
  390         ntv.status = time_status;
  391         ntv.constant = time_constant;
  392         if (time_status & STA_NANO)
  393                 ntv.precision = time_precision;
  394         else
  395                 ntv.precision = time_precision / 1000;
  396         ntv.tolerance = MAXFREQ * SCALE_PPM;
  397 #ifdef PPS_SYNC
  398         ntv.shift = pps_shift;
  399         ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
  400         if (time_status & STA_NANO)
  401                 ntv.jitter = pps_jitter;
  402         else
  403                 ntv.jitter = pps_jitter / 1000;
  404         ntv.stabil = pps_stabil;
  405         ntv.calcnt = pps_calcnt;
  406         ntv.errcnt = pps_errcnt;
  407         ntv.jitcnt = pps_jitcnt;
  408         ntv.stbcnt = pps_stbcnt;
  409 #endif /* PPS_SYNC */
  410         splx(s);
  411 
  412         error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
  413         if (error)
  414                 goto done2;
  415 
  416         /*
  417          * Status word error decode. See comments in
  418          * ntp_gettime() routine.
  419          */
  420         if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
  421             (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
  422             !(time_status & STA_PPSSIGNAL)) ||
  423             (time_status & STA_PPSTIME &&
  424             time_status & STA_PPSJITTER) ||
  425             (time_status & STA_PPSFREQ &&
  426             time_status & (STA_PPSWANDER | STA_PPSERROR))) {
  427                 td->td_retval[0] = TIME_ERROR;
  428         } else {
  429                 td->td_retval[0] = time_state;
  430         }
  431 done2:
  432         mtx_unlock(&Giant);
  433         return (error);
  434 }
  435 
  436 /*
  437  * second_overflow() - called after ntp_tick_adjust()
  438  *
  439  * This routine is ordinarily called immediately following the above
  440  * routine ntp_tick_adjust(). While these two routines are normally
  441  * combined, they are separated here only for the purposes of
  442  * simulation.
  443  */
  444 void
  445 ntp_update_second(int64_t *adjustment, time_t *newsec)
  446 {
  447         int tickrate;
  448         l_fp ftemp;             /* 32/64-bit temporary */
  449 
  450         /*
  451          * On rollover of the second both the nanosecond and microsecond
  452          * clocks are updated and the state machine cranked as
  453          * necessary. The phase adjustment to be used for the next
  454          * second is calculated and the maximum error is increased by
  455          * the tolerance.
  456          */
  457         time_maxerror += MAXFREQ / 1000;
  458 
  459         /*
  460          * Leap second processing. If in leap-insert state at
  461          * the end of the day, the system clock is set back one
  462          * second; if in leap-delete state, the system clock is
  463          * set ahead one second. The nano_time() routine or
  464          * external clock driver will insure that reported time
  465          * is always monotonic.
  466          */
  467         switch (time_state) {
  468 
  469                 /*
  470                  * No warning.
  471                  */
  472                 case TIME_OK:
  473                 if (time_status & STA_INS)
  474                         time_state = TIME_INS;
  475                 else if (time_status & STA_DEL)
  476                         time_state = TIME_DEL;
  477                 break;
  478 
  479                 /*
  480                  * Insert second 23:59:60 following second
  481                  * 23:59:59.
  482                  */
  483                 case TIME_INS:
  484                 if (!(time_status & STA_INS))
  485                         time_state = TIME_OK;
  486                 else if ((*newsec) % 86400 == 0) {
  487                         (*newsec)--;
  488                         time_state = TIME_OOP;
  489                         time_tai++;
  490                 }
  491                 break;
  492 
  493                 /*
  494                  * Delete second 23:59:59.
  495                  */
  496                 case TIME_DEL:
  497                 if (!(time_status & STA_DEL))
  498                         time_state = TIME_OK;
  499                 else if (((*newsec) + 1) % 86400 == 0) {
  500                         (*newsec)++;
  501                         time_tai--;
  502                         time_state = TIME_WAIT;
  503                 }
  504                 break;
  505 
  506                 /*
  507                  * Insert second in progress.
  508                  */
  509                 case TIME_OOP:
  510                         time_state = TIME_WAIT;
  511                 break;
  512 
  513                 /*
  514                  * Wait for status bits to clear.
  515                  */
  516                 case TIME_WAIT:
  517                 if (!(time_status & (STA_INS | STA_DEL)))
  518                         time_state = TIME_OK;
  519         }
  520 
  521         /*
  522          * Compute the total time adjustment for the next second
  523          * in ns. The offset is reduced by a factor depending on
  524          * whether the PPS signal is operating. Note that the
  525          * value is in effect scaled by the clock frequency,
  526          * since the adjustment is added at each tick interrupt.
  527          */
  528         ftemp = time_offset;
  529 #ifdef PPS_SYNC
  530         /* XXX even if PPS signal dies we should finish adjustment ? */
  531         if (time_status & STA_PPSTIME && time_status &
  532             STA_PPSSIGNAL)
  533                 L_RSHIFT(ftemp, pps_shift);
  534         else
  535                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  536 #else
  537                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  538 #endif /* PPS_SYNC */
  539         time_adj = ftemp;
  540         L_SUB(time_offset, ftemp);
  541         L_ADD(time_adj, time_freq);
  542         
  543         /*
  544          * Apply any correction from adjtime(2).  If more than one second
  545          * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
  546          * until the last second is slewed the final < 500 usecs.
  547          */
  548         if (time_adjtime != 0) {
  549                 if (time_adjtime > 1000000)
  550                         tickrate = 5000;
  551                 else if (time_adjtime < -1000000)
  552                         tickrate = -5000;
  553                 else if (time_adjtime > 500)
  554                         tickrate = 500;
  555                 else if (time_adjtime < -500)
  556                         tickrate = -500;
  557                 else
  558                         tickrate = time_adjtime;
  559                 time_adjtime -= tickrate;
  560                 L_LINT(ftemp, tickrate * 1000);
  561                 L_ADD(time_adj, ftemp);
  562         }
  563         *adjustment = time_adj;
  564                 
  565 #ifdef PPS_SYNC
  566         if (pps_valid > 0)
  567                 pps_valid--;
  568         else
  569                 time_status &= ~STA_PPSSIGNAL;
  570 #endif /* PPS_SYNC */
  571 }
  572 
  573 /*
  574  * ntp_init() - initialize variables and structures
  575  *
  576  * This routine must be called after the kernel variables hz and tick
  577  * are set or changed and before the next tick interrupt. In this
  578  * particular implementation, these values are assumed set elsewhere in
  579  * the kernel. The design allows the clock frequency and tick interval
  580  * to be changed while the system is running. So, this routine should
  581  * probably be integrated with the code that does that.
  582  */
  583 static void
  584 ntp_init()
  585 {
  586 
  587         /*
  588          * The following variables are initialized only at startup. Only
  589          * those structures not cleared by the compiler need to be
  590          * initialized, and these only in the simulator. In the actual
  591          * kernel, any nonzero values here will quickly evaporate.
  592          */
  593         L_CLR(time_offset);
  594         L_CLR(time_freq);
  595 #ifdef PPS_SYNC
  596         pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
  597         pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
  598         pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
  599         pps_fcount = 0;
  600         L_CLR(pps_freq);
  601 #endif /* PPS_SYNC */      
  602 }
  603 
  604 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL)
  605 
  606 /*
  607  * hardupdate() - local clock update
  608  *
  609  * This routine is called by ntp_adjtime() to update the local clock
  610  * phase and frequency. The implementation is of an adaptive-parameter,
  611  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
  612  * time and frequency offset estimates for each call. If the kernel PPS
  613  * discipline code is configured (PPS_SYNC), the PPS signal itself
  614  * determines the new time offset, instead of the calling argument.
  615  * Presumably, calls to ntp_adjtime() occur only when the caller
  616  * believes the local clock is valid within some bound (+-128 ms with
  617  * NTP). If the caller's time is far different than the PPS time, an
  618  * argument will ensue, and it's not clear who will lose.
  619  *
  620  * For uncompensated quartz crystal oscillators and nominal update
  621  * intervals less than 256 s, operation should be in phase-lock mode,
  622  * where the loop is disciplined to phase. For update intervals greater
  623  * than 1024 s, operation should be in frequency-lock mode, where the
  624  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
  625  * is selected by the STA_MODE status bit.
  626  */
  627 static void
  628 hardupdate(offset)
  629         long offset;            /* clock offset (ns) */
  630 {
  631         long mtemp;
  632         l_fp ftemp;
  633 
  634         /*
  635          * Select how the phase is to be controlled and from which
  636          * source. If the PPS signal is present and enabled to
  637          * discipline the time, the PPS offset is used; otherwise, the
  638          * argument offset is used.
  639          */
  640         if (!(time_status & STA_PLL))
  641                 return;
  642         if (!(time_status & STA_PPSTIME && time_status &
  643             STA_PPSSIGNAL)) {
  644                 if (offset > MAXPHASE)
  645                         time_monitor = MAXPHASE;
  646                 else if (offset < -MAXPHASE)
  647                         time_monitor = -MAXPHASE;
  648                 else
  649                         time_monitor = offset;
  650                 L_LINT(time_offset, time_monitor);
  651         }
  652 
  653         /*
  654          * Select how the frequency is to be controlled and in which
  655          * mode (PLL or FLL). If the PPS signal is present and enabled
  656          * to discipline the frequency, the PPS frequency is used;
  657          * otherwise, the argument offset is used to compute it.
  658          */
  659         if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
  660                 time_reftime = time_second;
  661                 return;
  662         }
  663         if (time_status & STA_FREQHOLD || time_reftime == 0)
  664                 time_reftime = time_second;
  665         mtemp = time_second - time_reftime;
  666         L_LINT(ftemp, time_monitor);
  667         L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
  668         L_MPY(ftemp, mtemp);
  669         L_ADD(time_freq, ftemp);
  670         time_status &= ~STA_MODE;
  671         if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
  672             MAXSEC)) {
  673                 L_LINT(ftemp, (time_monitor << 4) / mtemp);
  674                 L_RSHIFT(ftemp, SHIFT_FLL + 4);
  675                 L_ADD(time_freq, ftemp);
  676                 time_status |= STA_MODE;
  677         }
  678         time_reftime = time_second;
  679         if (L_GINT(time_freq) > MAXFREQ)
  680                 L_LINT(time_freq, MAXFREQ);
  681         else if (L_GINT(time_freq) < -MAXFREQ)
  682                 L_LINT(time_freq, -MAXFREQ);
  683 }
  684 
  685 #ifdef PPS_SYNC
  686 /*
  687  * hardpps() - discipline CPU clock oscillator to external PPS signal
  688  *
  689  * This routine is called at each PPS interrupt in order to discipline
  690  * the CPU clock oscillator to the PPS signal. There are two independent
  691  * first-order feedback loops, one for the phase, the other for the
  692  * frequency. The phase loop measures and grooms the PPS phase offset
  693  * and leaves it in a handy spot for the seconds overflow routine. The
  694  * frequency loop averages successive PPS phase differences and
  695  * calculates the PPS frequency offset, which is also processed by the
  696  * seconds overflow routine. The code requires the caller to capture the
  697  * time and architecture-dependent hardware counter values in
  698  * nanoseconds at the on-time PPS signal transition.
  699  *
  700  * Note that, on some Unix systems this routine runs at an interrupt
  701  * priority level higher than the timer interrupt routine hardclock().
  702  * Therefore, the variables used are distinct from the hardclock()
  703  * variables, except for the actual time and frequency variables, which
  704  * are determined by this routine and updated atomically.
  705  */
  706 void
  707 hardpps(tsp, nsec)
  708         struct timespec *tsp;   /* time at PPS */
  709         long nsec;              /* hardware counter at PPS */
  710 {
  711         long u_sec, u_nsec, v_nsec; /* temps */
  712         l_fp ftemp;
  713 
  714         /*
  715          * The signal is first processed by a range gate and frequency
  716          * discriminator. The range gate rejects noise spikes outside
  717          * the range +-500 us. The frequency discriminator rejects input
  718          * signals with apparent frequency outside the range 1 +-500
  719          * PPM. If two hits occur in the same second, we ignore the
  720          * later hit; if not and a hit occurs outside the range gate,
  721          * keep the later hit for later comparison, but do not process
  722          * it.
  723          */
  724         time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
  725         time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
  726         pps_valid = PPS_VALID;
  727         u_sec = tsp->tv_sec;
  728         u_nsec = tsp->tv_nsec;
  729         if (u_nsec >= (NANOSECOND >> 1)) {
  730                 u_nsec -= NANOSECOND;
  731                 u_sec++;
  732         }
  733         v_nsec = u_nsec - pps_tf[0].tv_nsec;
  734         if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
  735             MAXFREQ)
  736                 return;
  737         pps_tf[2] = pps_tf[1];
  738         pps_tf[1] = pps_tf[0];
  739         pps_tf[0].tv_sec = u_sec;
  740         pps_tf[0].tv_nsec = u_nsec;
  741 
  742         /*
  743          * Compute the difference between the current and previous
  744          * counter values. If the difference exceeds 0.5 s, assume it
  745          * has wrapped around, so correct 1.0 s. If the result exceeds
  746          * the tick interval, the sample point has crossed a tick
  747          * boundary during the last second, so correct the tick. Very
  748          * intricate.
  749          */
  750         u_nsec = nsec;
  751         if (u_nsec > (NANOSECOND >> 1))
  752                 u_nsec -= NANOSECOND;
  753         else if (u_nsec < -(NANOSECOND >> 1))
  754                 u_nsec += NANOSECOND;
  755         pps_fcount += u_nsec;
  756         if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
  757                 return;
  758         time_status &= ~STA_PPSJITTER;
  759 
  760         /*
  761          * A three-stage median filter is used to help denoise the PPS
  762          * time. The median sample becomes the time offset estimate; the
  763          * difference between the other two samples becomes the time
  764          * dispersion (jitter) estimate.
  765          */
  766         if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
  767                 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
  768                         v_nsec = pps_tf[1].tv_nsec;     /* 0 1 2 */
  769                         u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
  770                 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
  771                         v_nsec = pps_tf[0].tv_nsec;     /* 2 0 1 */
  772                         u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
  773                 } else {
  774                         v_nsec = pps_tf[2].tv_nsec;     /* 0 2 1 */
  775                         u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
  776                 }
  777         } else {
  778                 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
  779                         v_nsec = pps_tf[1].tv_nsec;     /* 2 1 0 */
  780                         u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
  781                 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
  782                         v_nsec = pps_tf[0].tv_nsec;     /* 1 0 2 */
  783                         u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
  784                 } else {
  785                         v_nsec = pps_tf[2].tv_nsec;     /* 1 2 0 */
  786                         u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
  787                 }
  788         }
  789 
  790         /*
  791          * Nominal jitter is due to PPS signal noise and interrupt
  792          * latency. If it exceeds the popcorn threshold, the sample is
  793          * discarded. otherwise, if so enabled, the time offset is
  794          * updated. We can tolerate a modest loss of data here without
  795          * much degrading time accuracy.
  796          */
  797         if (u_nsec > (pps_jitter << PPS_POPCORN)) {
  798                 time_status |= STA_PPSJITTER;
  799                 pps_jitcnt++;
  800         } else if (time_status & STA_PPSTIME) {
  801                 time_monitor = -v_nsec;
  802                 L_LINT(time_offset, time_monitor);
  803         }
  804         pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
  805         u_sec = pps_tf[0].tv_sec - pps_lastsec;
  806         if (u_sec < (1 << pps_shift))
  807                 return;
  808 
  809         /*
  810          * At the end of the calibration interval the difference between
  811          * the first and last counter values becomes the scaled
  812          * frequency. It will later be divided by the length of the
  813          * interval to determine the frequency update. If the frequency
  814          * exceeds a sanity threshold, or if the actual calibration
  815          * interval is not equal to the expected length, the data are
  816          * discarded. We can tolerate a modest loss of data here without
  817          * much degrading frequency accuracy.
  818          */
  819         pps_calcnt++;
  820         v_nsec = -pps_fcount;
  821         pps_lastsec = pps_tf[0].tv_sec;
  822         pps_fcount = 0;
  823         u_nsec = MAXFREQ << pps_shift;
  824         if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
  825             pps_shift)) {
  826                 time_status |= STA_PPSERROR;
  827                 pps_errcnt++;
  828                 return;
  829         }
  830 
  831         /*
  832          * Here the raw frequency offset and wander (stability) is
  833          * calculated. If the wander is less than the wander threshold
  834          * for four consecutive averaging intervals, the interval is
  835          * doubled; if it is greater than the threshold for four
  836          * consecutive intervals, the interval is halved. The scaled
  837          * frequency offset is converted to frequency offset. The
  838          * stability metric is calculated as the average of recent
  839          * frequency changes, but is used only for performance
  840          * monitoring.
  841          */
  842         L_LINT(ftemp, v_nsec);
  843         L_RSHIFT(ftemp, pps_shift);
  844         L_SUB(ftemp, pps_freq);
  845         u_nsec = L_GINT(ftemp);
  846         if (u_nsec > PPS_MAXWANDER) {
  847                 L_LINT(ftemp, PPS_MAXWANDER);
  848                 pps_intcnt--;
  849                 time_status |= STA_PPSWANDER;
  850                 pps_stbcnt++;
  851         } else if (u_nsec < -PPS_MAXWANDER) {
  852                 L_LINT(ftemp, -PPS_MAXWANDER);
  853                 pps_intcnt--;
  854                 time_status |= STA_PPSWANDER;
  855                 pps_stbcnt++;
  856         } else {
  857                 pps_intcnt++;
  858         }
  859         if (pps_intcnt >= 4) {
  860                 pps_intcnt = 4;
  861                 if (pps_shift < pps_shiftmax) {
  862                         pps_shift++;
  863                         pps_intcnt = 0;
  864                 }
  865         } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
  866                 pps_intcnt = -4;
  867                 if (pps_shift > PPS_FAVG) {
  868                         pps_shift--;
  869                         pps_intcnt = 0;
  870                 }
  871         }
  872         if (u_nsec < 0)
  873                 u_nsec = -u_nsec;
  874         pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
  875 
  876         /*
  877          * The PPS frequency is recalculated and clamped to the maximum
  878          * MAXFREQ. If enabled, the system clock frequency is updated as
  879          * well.
  880          */
  881         L_ADD(pps_freq, ftemp);
  882         u_nsec = L_GINT(pps_freq);
  883         if (u_nsec > MAXFREQ)
  884                 L_LINT(pps_freq, MAXFREQ);
  885         else if (u_nsec < -MAXFREQ)
  886                 L_LINT(pps_freq, -MAXFREQ);
  887         if (time_status & STA_PPSFREQ)
  888                 time_freq = pps_freq;
  889 }
  890 #endif /* PPS_SYNC */
  891 
  892 #ifndef _SYS_SYSPROTO_H_
  893 struct adjtime_args {
  894         struct timeval *delta;
  895         struct timeval *olddelta;
  896 };
  897 #endif
  898 /*
  899  * MPSAFE
  900  */
  901 /* ARGSUSED */
  902 int
  903 adjtime(struct thread *td, struct adjtime_args *uap)
  904 {
  905         struct timeval atv;
  906         int error;
  907 
  908         if ((error = suser(td)))
  909                 return (error);
  910 
  911         mtx_lock(&Giant);
  912         if (uap->olddelta) {
  913                 atv.tv_sec = time_adjtime / 1000000;
  914                 atv.tv_usec = time_adjtime % 1000000;
  915                 if (atv.tv_usec < 0) {
  916                         atv.tv_usec += 1000000;
  917                         atv.tv_sec--;
  918                 }
  919                 error = copyout(&atv, uap->olddelta, sizeof(atv));
  920                 if (error)
  921                         goto done2;
  922         }
  923         if (uap->delta) {
  924                 error = copyin(uap->delta, &atv, sizeof(atv));
  925                 if (error)
  926                         goto done2;
  927                 time_adjtime = (int64_t)atv.tv_sec * 1000000 + atv.tv_usec;
  928         }
  929 done2:
  930         mtx_unlock(&Giant);
  931         return (error);
  932 }
  933 

Cache object: 82171d85f5317a359319deaf62951ee4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.