The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_ntptime.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  ***********************************************************************
    3  *                                                                     *
    4  * Copyright (c) David L. Mills 1993-2001                              *
    5  *                                                                     *
    6  * Permission to use, copy, modify, and distribute this software and   *
    7  * its documentation for any purpose and without fee is hereby         *
    8  * granted, provided that the above copyright notice appears in all    *
    9  * copies and that both the copyright notice and this permission       *
   10  * notice appear in supporting documentation, and that the name        *
   11  * University of Delaware not be used in advertising or publicity      *
   12  * pertaining to distribution of the software without specific,        *
   13  * written prior permission. The University of Delaware makes no       *
   14  * representations about the suitability this software for any         *
   15  * purpose. It is provided "as is" without express or implied          *
   16  * warranty.                                                           *
   17  *                                                                     *
   18  **********************************************************************/
   19 
   20 /*
   21  * Adapted from the original sources for FreeBSD and timecounters by:
   22  * Poul-Henning Kamp <phk@FreeBSD.org>.
   23  *
   24  * The 32bit version of the "LP" macros seems a bit past its "sell by" 
   25  * date so I have retained only the 64bit version and included it directly
   26  * in this file.
   27  *
   28  * Only minor changes done to interface with the timecounters over in
   29  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
   30  * confusing and/or plain wrong in that context.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.54.2.2 2005/04/21 20:33:05 ps Exp $");
   35 
   36 #include "opt_ntp.h"
   37 
   38 #include <sys/param.h>
   39 #include <sys/systm.h>
   40 #include <sys/sysproto.h>
   41 #include <sys/kernel.h>
   42 #include <sys/proc.h>
   43 #include <sys/lock.h>
   44 #include <sys/mutex.h>
   45 #include <sys/time.h>
   46 #include <sys/timex.h>
   47 #include <sys/timetc.h>
   48 #include <sys/timepps.h>
   49 #include <sys/syscallsubr.h>
   50 #include <sys/sysctl.h>
   51 
   52 /*
   53  * Single-precision macros for 64-bit machines
   54  */
   55 typedef int64_t l_fp;
   56 #define L_ADD(v, u)     ((v) += (u))
   57 #define L_SUB(v, u)     ((v) -= (u))
   58 #define L_ADDHI(v, a)   ((v) += (int64_t)(a) << 32)
   59 #define L_NEG(v)        ((v) = -(v))
   60 #define L_RSHIFT(v, n) \
   61         do { \
   62                 if ((v) < 0) \
   63                         (v) = -(-(v) >> (n)); \
   64                 else \
   65                         (v) = (v) >> (n); \
   66         } while (0)
   67 #define L_MPY(v, a)     ((v) *= (a))
   68 #define L_CLR(v)        ((v) = 0)
   69 #define L_ISNEG(v)      ((v) < 0)
   70 #define L_LINT(v, a)    ((v) = (int64_t)(a) << 32)
   71 #define L_GINT(v)       ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
   72 
   73 /*
   74  * Generic NTP kernel interface
   75  *
   76  * These routines constitute the Network Time Protocol (NTP) interfaces
   77  * for user and daemon application programs. The ntp_gettime() routine
   78  * provides the time, maximum error (synch distance) and estimated error
   79  * (dispersion) to client user application programs. The ntp_adjtime()
   80  * routine is used by the NTP daemon to adjust the system clock to an
   81  * externally derived time. The time offset and related variables set by
   82  * this routine are used by other routines in this module to adjust the
   83  * phase and frequency of the clock discipline loop which controls the
   84  * system clock.
   85  *
   86  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
   87  * defined), the time at each tick interrupt is derived directly from
   88  * the kernel time variable. When the kernel time is reckoned in
   89  * microseconds, (NTP_NANO undefined), the time is derived from the
   90  * kernel time variable together with a variable representing the
   91  * leftover nanoseconds at the last tick interrupt. In either case, the
   92  * current nanosecond time is reckoned from these values plus an
   93  * interpolated value derived by the clock routines in another
   94  * architecture-specific module. The interpolation can use either a
   95  * dedicated counter or a processor cycle counter (PCC) implemented in
   96  * some architectures.
   97  *
   98  * Note that all routines must run at priority splclock or higher.
   99  */
  100 /*
  101  * Phase/frequency-lock loop (PLL/FLL) definitions
  102  *
  103  * The nanosecond clock discipline uses two variable types, time
  104  * variables and frequency variables. Both types are represented as 64-
  105  * bit fixed-point quantities with the decimal point between two 32-bit
  106  * halves. On a 32-bit machine, each half is represented as a single
  107  * word and mathematical operations are done using multiple-precision
  108  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
  109  * used.
  110  *
  111  * A time variable is a signed 64-bit fixed-point number in ns and
  112  * fraction. It represents the remaining time offset to be amortized
  113  * over succeeding tick interrupts. The maximum time offset is about
  114  * 0.5 s and the resolution is about 2.3e-10 ns.
  115  *
  116  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  117  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  118  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  119  * |s s s|                       ns                                |
  120  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  121  * |                        fraction                               |
  122  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  123  *
  124  * A frequency variable is a signed 64-bit fixed-point number in ns/s
  125  * and fraction. It represents the ns and fraction to be added to the
  126  * kernel time variable at each second. The maximum frequency offset is
  127  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
  128  *
  129  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  130  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  131  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  132  * |s s s s s s s s s s s s s|            ns/s                     |
  133  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  134  * |                        fraction                               |
  135  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  136  */
  137 /*
  138  * The following variables establish the state of the PLL/FLL and the
  139  * residual time and frequency offset of the local clock.
  140  */
  141 #define SHIFT_PLL       4               /* PLL loop gain (shift) */
  142 #define SHIFT_FLL       2               /* FLL loop gain (shift) */
  143 
  144 static int time_state = TIME_OK;        /* clock state */
  145 static int time_status = STA_UNSYNC;    /* clock status bits */
  146 static long time_tai;                   /* TAI offset (s) */
  147 static long time_monitor;               /* last time offset scaled (ns) */
  148 static long time_constant;              /* poll interval (shift) (s) */
  149 static long time_precision = 1;         /* clock precision (ns) */
  150 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
  151 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
  152 static long time_reftime;               /* time at last adjustment (s) */
  153 static l_fp time_offset;                /* time offset (ns) */
  154 static l_fp time_freq;                  /* frequency offset (ns/s) */
  155 static l_fp time_adj;                   /* tick adjust (ns/s) */
  156 
  157 static int64_t time_adjtime;            /* correction from adjtime(2) (usec) */
  158 
  159 #ifdef PPS_SYNC
  160 /*
  161  * The following variables are used when a pulse-per-second (PPS) signal
  162  * is available and connected via a modem control lead. They establish
  163  * the engineering parameters of the clock discipline loop when
  164  * controlled by the PPS signal.
  165  */
  166 #define PPS_FAVG        2               /* min freq avg interval (s) (shift) */
  167 #define PPS_FAVGDEF     8               /* default freq avg int (s) (shift) */
  168 #define PPS_FAVGMAX     15              /* max freq avg interval (s) (shift) */
  169 #define PPS_PAVG        4               /* phase avg interval (s) (shift) */
  170 #define PPS_VALID       120             /* PPS signal watchdog max (s) */
  171 #define PPS_MAXWANDER   100000          /* max PPS wander (ns/s) */
  172 #define PPS_POPCORN     2               /* popcorn spike threshold (shift) */
  173 
  174 static struct timespec pps_tf[3];       /* phase median filter */
  175 static l_fp pps_freq;                   /* scaled frequency offset (ns/s) */
  176 static long pps_fcount;                 /* frequency accumulator */
  177 static long pps_jitter;                 /* nominal jitter (ns) */
  178 static long pps_stabil;                 /* nominal stability (scaled ns/s) */
  179 static long pps_lastsec;                /* time at last calibration (s) */
  180 static int pps_valid;                   /* signal watchdog counter */
  181 static int pps_shift = PPS_FAVG;        /* interval duration (s) (shift) */
  182 static int pps_shiftmax = PPS_FAVGDEF;  /* max interval duration (s) (shift) */
  183 static int pps_intcnt;                  /* wander counter */
  184 
  185 /*
  186  * PPS signal quality monitors
  187  */
  188 static long pps_calcnt;                 /* calibration intervals */
  189 static long pps_jitcnt;                 /* jitter limit exceeded */
  190 static long pps_stbcnt;                 /* stability limit exceeded */
  191 static long pps_errcnt;                 /* calibration errors */
  192 #endif /* PPS_SYNC */
  193 /*
  194  * End of phase/frequency-lock loop (PLL/FLL) definitions
  195  */
  196 
  197 static void ntp_init(void);
  198 static void hardupdate(long offset);
  199 
  200 /*
  201  * ntp_gettime() - NTP user application interface
  202  *
  203  * See the timex.h header file for synopsis and API description. Note
  204  * that the TAI offset is returned in the ntvtimeval.tai structure
  205  * member.
  206  */
  207 static int
  208 ntp_sysctl(SYSCTL_HANDLER_ARGS)
  209 {
  210         struct ntptimeval ntv;  /* temporary structure */
  211         struct timespec atv;    /* nanosecond time */
  212 
  213         nanotime(&atv);
  214         ntv.time.tv_sec = atv.tv_sec;
  215         ntv.time.tv_nsec = atv.tv_nsec;
  216         ntv.maxerror = time_maxerror;
  217         ntv.esterror = time_esterror;
  218         ntv.tai = time_tai;
  219         ntv.time_state = time_state;
  220 
  221         /*
  222          * Status word error decode. If any of these conditions occur,
  223          * an error is returned, instead of the status word. Most
  224          * applications will care only about the fact the system clock
  225          * may not be trusted, not about the details.
  226          *
  227          * Hardware or software error
  228          */
  229         if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
  230 
  231         /*
  232          * PPS signal lost when either time or frequency synchronization
  233          * requested
  234          */
  235             (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
  236             !(time_status & STA_PPSSIGNAL)) ||
  237 
  238         /*
  239          * PPS jitter exceeded when time synchronization requested
  240          */
  241             (time_status & STA_PPSTIME &&
  242             time_status & STA_PPSJITTER) ||
  243 
  244         /*
  245          * PPS wander exceeded or calibration error when frequency
  246          * synchronization requested
  247          */
  248             (time_status & STA_PPSFREQ &&
  249             time_status & (STA_PPSWANDER | STA_PPSERROR)))
  250                 ntv.time_state = TIME_ERROR;
  251         return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
  252 }
  253 
  254 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
  255 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
  256         0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
  257 
  258 #ifdef PPS_SYNC
  259 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
  260 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
  261 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
  262 
  263 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
  264 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
  265 #endif
  266 /*
  267  * ntp_adjtime() - NTP daemon application interface
  268  *
  269  * See the timex.h header file for synopsis and API description. Note
  270  * that the timex.constant structure member has a dual purpose to set
  271  * the time constant and to set the TAI offset.
  272  */
  273 #ifndef _SYS_SYSPROTO_H_
  274 struct ntp_adjtime_args {
  275         struct timex *tp;
  276 };
  277 #endif
  278 
  279 /*
  280  * MPSAFE
  281  */
  282 int
  283 ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
  284 {
  285         struct timex ntv;       /* temporary structure */
  286         long freq;              /* frequency ns/s) */
  287         int modes;              /* mode bits from structure */
  288         int s;                  /* caller priority */
  289         int error;
  290 
  291         error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
  292         if (error)
  293                 return(error);
  294 
  295         /*
  296          * Update selected clock variables - only the superuser can
  297          * change anything. Note that there is no error checking here on
  298          * the assumption the superuser should know what it is doing.
  299          * Note that either the time constant or TAI offset are loaded
  300          * from the ntv.constant member, depending on the mode bits. If
  301          * the STA_PLL bit in the status word is cleared, the state and
  302          * status words are reset to the initial values at boot.
  303          */
  304         mtx_lock(&Giant);
  305         modes = ntv.modes;
  306         if (modes)
  307                 error = suser(td);
  308         if (error)
  309                 goto done2;
  310         s = splclock();
  311         if (modes & MOD_MAXERROR)
  312                 time_maxerror = ntv.maxerror;
  313         if (modes & MOD_ESTERROR)
  314                 time_esterror = ntv.esterror;
  315         if (modes & MOD_STATUS) {
  316                 if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
  317                         time_state = TIME_OK;
  318                         time_status = STA_UNSYNC;
  319 #ifdef PPS_SYNC
  320                         pps_shift = PPS_FAVG;
  321 #endif /* PPS_SYNC */
  322                 }
  323                 time_status &= STA_RONLY;
  324                 time_status |= ntv.status & ~STA_RONLY;
  325         }
  326         if (modes & MOD_TIMECONST) {
  327                 if (ntv.constant < 0)
  328                         time_constant = 0;
  329                 else if (ntv.constant > MAXTC)
  330                         time_constant = MAXTC;
  331                 else
  332                         time_constant = ntv.constant;
  333         }
  334         if (modes & MOD_TAI) {
  335                 if (ntv.constant > 0) /* XXX zero & negative numbers ? */
  336                         time_tai = ntv.constant;
  337         }
  338 #ifdef PPS_SYNC
  339         if (modes & MOD_PPSMAX) {
  340                 if (ntv.shift < PPS_FAVG)
  341                         pps_shiftmax = PPS_FAVG;
  342                 else if (ntv.shift > PPS_FAVGMAX)
  343                         pps_shiftmax = PPS_FAVGMAX;
  344                 else
  345                         pps_shiftmax = ntv.shift;
  346         }
  347 #endif /* PPS_SYNC */
  348         if (modes & MOD_NANO)
  349                 time_status |= STA_NANO;
  350         if (modes & MOD_MICRO)
  351                 time_status &= ~STA_NANO;
  352         if (modes & MOD_CLKB)
  353                 time_status |= STA_CLK;
  354         if (modes & MOD_CLKA)
  355                 time_status &= ~STA_CLK;
  356         if (modes & MOD_FREQUENCY) {
  357                 freq = (ntv.freq * 1000LL) >> 16;
  358                 if (freq > MAXFREQ)
  359                         L_LINT(time_freq, MAXFREQ);
  360                 else if (freq < -MAXFREQ)
  361                         L_LINT(time_freq, -MAXFREQ);
  362                 else {
  363                         /*
  364                          * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
  365                          * time_freq is [ns/s * 2^32]
  366                          */
  367                         time_freq = ntv.freq * 1000LL * 65536LL;
  368                 }
  369 #ifdef PPS_SYNC
  370                 pps_freq = time_freq;
  371 #endif /* PPS_SYNC */
  372         }
  373         if (modes & MOD_OFFSET) {
  374                 if (time_status & STA_NANO)
  375                         hardupdate(ntv.offset);
  376                 else
  377                         hardupdate(ntv.offset * 1000);
  378         }
  379 
  380         /*
  381          * Retrieve all clock variables. Note that the TAI offset is
  382          * returned only by ntp_gettime();
  383          */
  384         if (time_status & STA_NANO)
  385                 ntv.offset = L_GINT(time_offset);
  386         else
  387                 ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
  388         ntv.freq = L_GINT((time_freq / 1000LL) << 16);
  389         ntv.maxerror = time_maxerror;
  390         ntv.esterror = time_esterror;
  391         ntv.status = time_status;
  392         ntv.constant = time_constant;
  393         if (time_status & STA_NANO)
  394                 ntv.precision = time_precision;
  395         else
  396                 ntv.precision = time_precision / 1000;
  397         ntv.tolerance = MAXFREQ * SCALE_PPM;
  398 #ifdef PPS_SYNC
  399         ntv.shift = pps_shift;
  400         ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
  401         if (time_status & STA_NANO)
  402                 ntv.jitter = pps_jitter;
  403         else
  404                 ntv.jitter = pps_jitter / 1000;
  405         ntv.stabil = pps_stabil;
  406         ntv.calcnt = pps_calcnt;
  407         ntv.errcnt = pps_errcnt;
  408         ntv.jitcnt = pps_jitcnt;
  409         ntv.stbcnt = pps_stbcnt;
  410 #endif /* PPS_SYNC */
  411         splx(s);
  412 
  413         error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
  414         if (error)
  415                 goto done2;
  416 
  417         /*
  418          * Status word error decode. See comments in
  419          * ntp_gettime() routine.
  420          */
  421         if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
  422             (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
  423             !(time_status & STA_PPSSIGNAL)) ||
  424             (time_status & STA_PPSTIME &&
  425             time_status & STA_PPSJITTER) ||
  426             (time_status & STA_PPSFREQ &&
  427             time_status & (STA_PPSWANDER | STA_PPSERROR))) {
  428                 td->td_retval[0] = TIME_ERROR;
  429         } else {
  430                 td->td_retval[0] = time_state;
  431         }
  432 done2:
  433         mtx_unlock(&Giant);
  434         return (error);
  435 }
  436 
  437 /*
  438  * second_overflow() - called after ntp_tick_adjust()
  439  *
  440  * This routine is ordinarily called immediately following the above
  441  * routine ntp_tick_adjust(). While these two routines are normally
  442  * combined, they are separated here only for the purposes of
  443  * simulation.
  444  */
  445 void
  446 ntp_update_second(int64_t *adjustment, time_t *newsec)
  447 {
  448         int tickrate;
  449         l_fp ftemp;             /* 32/64-bit temporary */
  450 
  451         /*
  452          * On rollover of the second both the nanosecond and microsecond
  453          * clocks are updated and the state machine cranked as
  454          * necessary. The phase adjustment to be used for the next
  455          * second is calculated and the maximum error is increased by
  456          * the tolerance.
  457          */
  458         time_maxerror += MAXFREQ / 1000;
  459 
  460         /*
  461          * Leap second processing. If in leap-insert state at
  462          * the end of the day, the system clock is set back one
  463          * second; if in leap-delete state, the system clock is
  464          * set ahead one second. The nano_time() routine or
  465          * external clock driver will insure that reported time
  466          * is always monotonic.
  467          */
  468         switch (time_state) {
  469 
  470                 /*
  471                  * No warning.
  472                  */
  473                 case TIME_OK:
  474                 if (time_status & STA_INS)
  475                         time_state = TIME_INS;
  476                 else if (time_status & STA_DEL)
  477                         time_state = TIME_DEL;
  478                 break;
  479 
  480                 /*
  481                  * Insert second 23:59:60 following second
  482                  * 23:59:59.
  483                  */
  484                 case TIME_INS:
  485                 if (!(time_status & STA_INS))
  486                         time_state = TIME_OK;
  487                 else if ((*newsec) % 86400 == 0) {
  488                         (*newsec)--;
  489                         time_state = TIME_OOP;
  490                         time_tai++;
  491                 }
  492                 break;
  493 
  494                 /*
  495                  * Delete second 23:59:59.
  496                  */
  497                 case TIME_DEL:
  498                 if (!(time_status & STA_DEL))
  499                         time_state = TIME_OK;
  500                 else if (((*newsec) + 1) % 86400 == 0) {
  501                         (*newsec)++;
  502                         time_tai--;
  503                         time_state = TIME_WAIT;
  504                 }
  505                 break;
  506 
  507                 /*
  508                  * Insert second in progress.
  509                  */
  510                 case TIME_OOP:
  511                         time_state = TIME_WAIT;
  512                 break;
  513 
  514                 /*
  515                  * Wait for status bits to clear.
  516                  */
  517                 case TIME_WAIT:
  518                 if (!(time_status & (STA_INS | STA_DEL)))
  519                         time_state = TIME_OK;
  520         }
  521 
  522         /*
  523          * Compute the total time adjustment for the next second
  524          * in ns. The offset is reduced by a factor depending on
  525          * whether the PPS signal is operating. Note that the
  526          * value is in effect scaled by the clock frequency,
  527          * since the adjustment is added at each tick interrupt.
  528          */
  529         ftemp = time_offset;
  530 #ifdef PPS_SYNC
  531         /* XXX even if PPS signal dies we should finish adjustment ? */
  532         if (time_status & STA_PPSTIME && time_status &
  533             STA_PPSSIGNAL)
  534                 L_RSHIFT(ftemp, pps_shift);
  535         else
  536                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  537 #else
  538                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  539 #endif /* PPS_SYNC */
  540         time_adj = ftemp;
  541         L_SUB(time_offset, ftemp);
  542         L_ADD(time_adj, time_freq);
  543         
  544         /*
  545          * Apply any correction from adjtime(2).  If more than one second
  546          * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
  547          * until the last second is slewed the final < 500 usecs.
  548          */
  549         if (time_adjtime != 0) {
  550                 if (time_adjtime > 1000000)
  551                         tickrate = 5000;
  552                 else if (time_adjtime < -1000000)
  553                         tickrate = -5000;
  554                 else if (time_adjtime > 500)
  555                         tickrate = 500;
  556                 else if (time_adjtime < -500)
  557                         tickrate = -500;
  558                 else
  559                         tickrate = time_adjtime;
  560                 time_adjtime -= tickrate;
  561                 L_LINT(ftemp, tickrate * 1000);
  562                 L_ADD(time_adj, ftemp);
  563         }
  564         *adjustment = time_adj;
  565                 
  566 #ifdef PPS_SYNC
  567         if (pps_valid > 0)
  568                 pps_valid--;
  569         else
  570                 time_status &= ~STA_PPSSIGNAL;
  571 #endif /* PPS_SYNC */
  572 }
  573 
  574 /*
  575  * ntp_init() - initialize variables and structures
  576  *
  577  * This routine must be called after the kernel variables hz and tick
  578  * are set or changed and before the next tick interrupt. In this
  579  * particular implementation, these values are assumed set elsewhere in
  580  * the kernel. The design allows the clock frequency and tick interval
  581  * to be changed while the system is running. So, this routine should
  582  * probably be integrated with the code that does that.
  583  */
  584 static void
  585 ntp_init()
  586 {
  587 
  588         /*
  589          * The following variables are initialized only at startup. Only
  590          * those structures not cleared by the compiler need to be
  591          * initialized, and these only in the simulator. In the actual
  592          * kernel, any nonzero values here will quickly evaporate.
  593          */
  594         L_CLR(time_offset);
  595         L_CLR(time_freq);
  596 #ifdef PPS_SYNC
  597         pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
  598         pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
  599         pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
  600         pps_fcount = 0;
  601         L_CLR(pps_freq);
  602 #endif /* PPS_SYNC */      
  603 }
  604 
  605 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL)
  606 
  607 /*
  608  * hardupdate() - local clock update
  609  *
  610  * This routine is called by ntp_adjtime() to update the local clock
  611  * phase and frequency. The implementation is of an adaptive-parameter,
  612  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
  613  * time and frequency offset estimates for each call. If the kernel PPS
  614  * discipline code is configured (PPS_SYNC), the PPS signal itself
  615  * determines the new time offset, instead of the calling argument.
  616  * Presumably, calls to ntp_adjtime() occur only when the caller
  617  * believes the local clock is valid within some bound (+-128 ms with
  618  * NTP). If the caller's time is far different than the PPS time, an
  619  * argument will ensue, and it's not clear who will lose.
  620  *
  621  * For uncompensated quartz crystal oscillators and nominal update
  622  * intervals less than 256 s, operation should be in phase-lock mode,
  623  * where the loop is disciplined to phase. For update intervals greater
  624  * than 1024 s, operation should be in frequency-lock mode, where the
  625  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
  626  * is selected by the STA_MODE status bit.
  627  */
  628 static void
  629 hardupdate(offset)
  630         long offset;            /* clock offset (ns) */
  631 {
  632         long mtemp;
  633         l_fp ftemp;
  634 
  635         /*
  636          * Select how the phase is to be controlled and from which
  637          * source. If the PPS signal is present and enabled to
  638          * discipline the time, the PPS offset is used; otherwise, the
  639          * argument offset is used.
  640          */
  641         if (!(time_status & STA_PLL))
  642                 return;
  643         if (!(time_status & STA_PPSTIME && time_status &
  644             STA_PPSSIGNAL)) {
  645                 if (offset > MAXPHASE)
  646                         time_monitor = MAXPHASE;
  647                 else if (offset < -MAXPHASE)
  648                         time_monitor = -MAXPHASE;
  649                 else
  650                         time_monitor = offset;
  651                 L_LINT(time_offset, time_monitor);
  652         }
  653 
  654         /*
  655          * Select how the frequency is to be controlled and in which
  656          * mode (PLL or FLL). If the PPS signal is present and enabled
  657          * to discipline the frequency, the PPS frequency is used;
  658          * otherwise, the argument offset is used to compute it.
  659          */
  660         if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
  661                 time_reftime = time_second;
  662                 return;
  663         }
  664         if (time_status & STA_FREQHOLD || time_reftime == 0)
  665                 time_reftime = time_second;
  666         mtemp = time_second - time_reftime;
  667         L_LINT(ftemp, time_monitor);
  668         L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
  669         L_MPY(ftemp, mtemp);
  670         L_ADD(time_freq, ftemp);
  671         time_status &= ~STA_MODE;
  672         if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
  673             MAXSEC)) {
  674                 L_LINT(ftemp, (time_monitor << 4) / mtemp);
  675                 L_RSHIFT(ftemp, SHIFT_FLL + 4);
  676                 L_ADD(time_freq, ftemp);
  677                 time_status |= STA_MODE;
  678         }
  679         time_reftime = time_second;
  680         if (L_GINT(time_freq) > MAXFREQ)
  681                 L_LINT(time_freq, MAXFREQ);
  682         else if (L_GINT(time_freq) < -MAXFREQ)
  683                 L_LINT(time_freq, -MAXFREQ);
  684 }
  685 
  686 #ifdef PPS_SYNC
  687 /*
  688  * hardpps() - discipline CPU clock oscillator to external PPS signal
  689  *
  690  * This routine is called at each PPS interrupt in order to discipline
  691  * the CPU clock oscillator to the PPS signal. There are two independent
  692  * first-order feedback loops, one for the phase, the other for the
  693  * frequency. The phase loop measures and grooms the PPS phase offset
  694  * and leaves it in a handy spot for the seconds overflow routine. The
  695  * frequency loop averages successive PPS phase differences and
  696  * calculates the PPS frequency offset, which is also processed by the
  697  * seconds overflow routine. The code requires the caller to capture the
  698  * time and architecture-dependent hardware counter values in
  699  * nanoseconds at the on-time PPS signal transition.
  700  *
  701  * Note that, on some Unix systems this routine runs at an interrupt
  702  * priority level higher than the timer interrupt routine hardclock().
  703  * Therefore, the variables used are distinct from the hardclock()
  704  * variables, except for the actual time and frequency variables, which
  705  * are determined by this routine and updated atomically.
  706  */
  707 void
  708 hardpps(tsp, nsec)
  709         struct timespec *tsp;   /* time at PPS */
  710         long nsec;              /* hardware counter at PPS */
  711 {
  712         long u_sec, u_nsec, v_nsec; /* temps */
  713         l_fp ftemp;
  714 
  715         /*
  716          * The signal is first processed by a range gate and frequency
  717          * discriminator. The range gate rejects noise spikes outside
  718          * the range +-500 us. The frequency discriminator rejects input
  719          * signals with apparent frequency outside the range 1 +-500
  720          * PPM. If two hits occur in the same second, we ignore the
  721          * later hit; if not and a hit occurs outside the range gate,
  722          * keep the later hit for later comparison, but do not process
  723          * it.
  724          */
  725         time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
  726         time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
  727         pps_valid = PPS_VALID;
  728         u_sec = tsp->tv_sec;
  729         u_nsec = tsp->tv_nsec;
  730         if (u_nsec >= (NANOSECOND >> 1)) {
  731                 u_nsec -= NANOSECOND;
  732                 u_sec++;
  733         }
  734         v_nsec = u_nsec - pps_tf[0].tv_nsec;
  735         if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
  736             MAXFREQ)
  737                 return;
  738         pps_tf[2] = pps_tf[1];
  739         pps_tf[1] = pps_tf[0];
  740         pps_tf[0].tv_sec = u_sec;
  741         pps_tf[0].tv_nsec = u_nsec;
  742 
  743         /*
  744          * Compute the difference between the current and previous
  745          * counter values. If the difference exceeds 0.5 s, assume it
  746          * has wrapped around, so correct 1.0 s. If the result exceeds
  747          * the tick interval, the sample point has crossed a tick
  748          * boundary during the last second, so correct the tick. Very
  749          * intricate.
  750          */
  751         u_nsec = nsec;
  752         if (u_nsec > (NANOSECOND >> 1))
  753                 u_nsec -= NANOSECOND;
  754         else if (u_nsec < -(NANOSECOND >> 1))
  755                 u_nsec += NANOSECOND;
  756         pps_fcount += u_nsec;
  757         if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
  758                 return;
  759         time_status &= ~STA_PPSJITTER;
  760 
  761         /*
  762          * A three-stage median filter is used to help denoise the PPS
  763          * time. The median sample becomes the time offset estimate; the
  764          * difference between the other two samples becomes the time
  765          * dispersion (jitter) estimate.
  766          */
  767         if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
  768                 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
  769                         v_nsec = pps_tf[1].tv_nsec;     /* 0 1 2 */
  770                         u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
  771                 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
  772                         v_nsec = pps_tf[0].tv_nsec;     /* 2 0 1 */
  773                         u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
  774                 } else {
  775                         v_nsec = pps_tf[2].tv_nsec;     /* 0 2 1 */
  776                         u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
  777                 }
  778         } else {
  779                 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
  780                         v_nsec = pps_tf[1].tv_nsec;     /* 2 1 0 */
  781                         u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
  782                 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
  783                         v_nsec = pps_tf[0].tv_nsec;     /* 1 0 2 */
  784                         u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
  785                 } else {
  786                         v_nsec = pps_tf[2].tv_nsec;     /* 1 2 0 */
  787                         u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
  788                 }
  789         }
  790 
  791         /*
  792          * Nominal jitter is due to PPS signal noise and interrupt
  793          * latency. If it exceeds the popcorn threshold, the sample is
  794          * discarded. otherwise, if so enabled, the time offset is
  795          * updated. We can tolerate a modest loss of data here without
  796          * much degrading time accuracy.
  797          */
  798         if (u_nsec > (pps_jitter << PPS_POPCORN)) {
  799                 time_status |= STA_PPSJITTER;
  800                 pps_jitcnt++;
  801         } else if (time_status & STA_PPSTIME) {
  802                 time_monitor = -v_nsec;
  803                 L_LINT(time_offset, time_monitor);
  804         }
  805         pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
  806         u_sec = pps_tf[0].tv_sec - pps_lastsec;
  807         if (u_sec < (1 << pps_shift))
  808                 return;
  809 
  810         /*
  811          * At the end of the calibration interval the difference between
  812          * the first and last counter values becomes the scaled
  813          * frequency. It will later be divided by the length of the
  814          * interval to determine the frequency update. If the frequency
  815          * exceeds a sanity threshold, or if the actual calibration
  816          * interval is not equal to the expected length, the data are
  817          * discarded. We can tolerate a modest loss of data here without
  818          * much degrading frequency accuracy.
  819          */
  820         pps_calcnt++;
  821         v_nsec = -pps_fcount;
  822         pps_lastsec = pps_tf[0].tv_sec;
  823         pps_fcount = 0;
  824         u_nsec = MAXFREQ << pps_shift;
  825         if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
  826             pps_shift)) {
  827                 time_status |= STA_PPSERROR;
  828                 pps_errcnt++;
  829                 return;
  830         }
  831 
  832         /*
  833          * Here the raw frequency offset and wander (stability) is
  834          * calculated. If the wander is less than the wander threshold
  835          * for four consecutive averaging intervals, the interval is
  836          * doubled; if it is greater than the threshold for four
  837          * consecutive intervals, the interval is halved. The scaled
  838          * frequency offset is converted to frequency offset. The
  839          * stability metric is calculated as the average of recent
  840          * frequency changes, but is used only for performance
  841          * monitoring.
  842          */
  843         L_LINT(ftemp, v_nsec);
  844         L_RSHIFT(ftemp, pps_shift);
  845         L_SUB(ftemp, pps_freq);
  846         u_nsec = L_GINT(ftemp);
  847         if (u_nsec > PPS_MAXWANDER) {
  848                 L_LINT(ftemp, PPS_MAXWANDER);
  849                 pps_intcnt--;
  850                 time_status |= STA_PPSWANDER;
  851                 pps_stbcnt++;
  852         } else if (u_nsec < -PPS_MAXWANDER) {
  853                 L_LINT(ftemp, -PPS_MAXWANDER);
  854                 pps_intcnt--;
  855                 time_status |= STA_PPSWANDER;
  856                 pps_stbcnt++;
  857         } else {
  858                 pps_intcnt++;
  859         }
  860         if (pps_intcnt >= 4) {
  861                 pps_intcnt = 4;
  862                 if (pps_shift < pps_shiftmax) {
  863                         pps_shift++;
  864                         pps_intcnt = 0;
  865                 }
  866         } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
  867                 pps_intcnt = -4;
  868                 if (pps_shift > PPS_FAVG) {
  869                         pps_shift--;
  870                         pps_intcnt = 0;
  871                 }
  872         }
  873         if (u_nsec < 0)
  874                 u_nsec = -u_nsec;
  875         pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
  876 
  877         /*
  878          * The PPS frequency is recalculated and clamped to the maximum
  879          * MAXFREQ. If enabled, the system clock frequency is updated as
  880          * well.
  881          */
  882         L_ADD(pps_freq, ftemp);
  883         u_nsec = L_GINT(pps_freq);
  884         if (u_nsec > MAXFREQ)
  885                 L_LINT(pps_freq, MAXFREQ);
  886         else if (u_nsec < -MAXFREQ)
  887                 L_LINT(pps_freq, -MAXFREQ);
  888         if (time_status & STA_PPSFREQ)
  889                 time_freq = pps_freq;
  890 }
  891 #endif /* PPS_SYNC */
  892 
  893 #ifndef _SYS_SYSPROTO_H_
  894 struct adjtime_args {
  895         struct timeval *delta;
  896         struct timeval *olddelta;
  897 };
  898 #endif
  899 /*
  900  * MPSAFE
  901  */
  902 /* ARGSUSED */
  903 int
  904 adjtime(struct thread *td, struct adjtime_args *uap)
  905 {
  906         struct timeval delta, olddelta, *deltap;
  907         int error;
  908 
  909         if (uap->delta) {
  910                 error = copyin(uap->delta, &delta, sizeof(delta));
  911                 if (error)
  912                         return (error);
  913                 deltap = &delta;
  914         } else
  915                 deltap = NULL;
  916         error = kern_adjtime(td, deltap, &olddelta);
  917         if (uap->olddelta && error == 0)
  918                 error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
  919         return (error);
  920 }
  921 
  922 int
  923 kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
  924 {
  925         struct timeval atv;
  926         int error;
  927 
  928         if ((error = suser(td)))
  929                 return (error);
  930 
  931         mtx_lock(&Giant);
  932         if (olddelta) {
  933                 atv.tv_sec = time_adjtime / 1000000;
  934                 atv.tv_usec = time_adjtime % 1000000;
  935                 if (atv.tv_usec < 0) {
  936                         atv.tv_usec += 1000000;
  937                         atv.tv_sec--;
  938                 }
  939                 *olddelta = atv;
  940         }
  941         if (delta)
  942                 time_adjtime = (int64_t)delta->tv_sec * 1000000 +
  943                     delta->tv_usec;
  944         mtx_unlock(&Giant);
  945         return (error);
  946 }
  947 

Cache object: cf6197b9d5be367aaa43ccb4e48a5fc8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.