The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_ntptime.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  ***********************************************************************
    3  *                                                                     *
    4  * Copyright (c) David L. Mills 1993-2001                              *
    5  *                                                                     *
    6  * Permission to use, copy, modify, and distribute this software and   *
    7  * its documentation for any purpose and without fee is hereby         *
    8  * granted, provided that the above copyright notice appears in all    *
    9  * copies and that both the copyright notice and this permission       *
   10  * notice appear in supporting documentation, and that the name        *
   11  * University of Delaware not be used in advertising or publicity      *
   12  * pertaining to distribution of the software without specific,        *
   13  * written prior permission. The University of Delaware makes no       *
   14  * representations about the suitability this software for any         *
   15  * purpose. It is provided "as is" without express or implied          *
   16  * warranty.                                                           *
   17  *                                                                     *
   18  **********************************************************************/
   19 
   20 /*
   21  * Adapted from the original sources for FreeBSD and timecounters by:
   22  * Poul-Henning Kamp <phk@FreeBSD.org>.
   23  *
   24  * The 32bit version of the "LP" macros seems a bit past its "sell by" 
   25  * date so I have retained only the 64bit version and included it directly
   26  * in this file.
   27  *
   28  * Only minor changes done to interface with the timecounters over in
   29  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
   30  * confusing and/or plain wrong in that context.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 #include "opt_ntp.h"
   37 
   38 #include <sys/param.h>
   39 #include <sys/systm.h>
   40 #include <sys/sysproto.h>
   41 #include <sys/kernel.h>
   42 #include <sys/priv.h>
   43 #include <sys/proc.h>
   44 #include <sys/lock.h>
   45 #include <sys/mutex.h>
   46 #include <sys/time.h>
   47 #include <sys/timex.h>
   48 #include <sys/timetc.h>
   49 #include <sys/timepps.h>
   50 #include <sys/syscallsubr.h>
   51 #include <sys/sysctl.h>
   52 
   53 /*
   54  * Single-precision macros for 64-bit machines
   55  */
   56 typedef int64_t l_fp;
   57 #define L_ADD(v, u)     ((v) += (u))
   58 #define L_SUB(v, u)     ((v) -= (u))
   59 #define L_ADDHI(v, a)   ((v) += (int64_t)(a) << 32)
   60 #define L_NEG(v)        ((v) = -(v))
   61 #define L_RSHIFT(v, n) \
   62         do { \
   63                 if ((v) < 0) \
   64                         (v) = -(-(v) >> (n)); \
   65                 else \
   66                         (v) = (v) >> (n); \
   67         } while (0)
   68 #define L_MPY(v, a)     ((v) *= (a))
   69 #define L_CLR(v)        ((v) = 0)
   70 #define L_ISNEG(v)      ((v) < 0)
   71 #define L_LINT(v, a)    ((v) = (int64_t)(a) << 32)
   72 #define L_GINT(v)       ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
   73 
   74 /*
   75  * Generic NTP kernel interface
   76  *
   77  * These routines constitute the Network Time Protocol (NTP) interfaces
   78  * for user and daemon application programs. The ntp_gettime() routine
   79  * provides the time, maximum error (synch distance) and estimated error
   80  * (dispersion) to client user application programs. The ntp_adjtime()
   81  * routine is used by the NTP daemon to adjust the system clock to an
   82  * externally derived time. The time offset and related variables set by
   83  * this routine are used by other routines in this module to adjust the
   84  * phase and frequency of the clock discipline loop which controls the
   85  * system clock.
   86  *
   87  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
   88  * defined), the time at each tick interrupt is derived directly from
   89  * the kernel time variable. When the kernel time is reckoned in
   90  * microseconds, (NTP_NANO undefined), the time is derived from the
   91  * kernel time variable together with a variable representing the
   92  * leftover nanoseconds at the last tick interrupt. In either case, the
   93  * current nanosecond time is reckoned from these values plus an
   94  * interpolated value derived by the clock routines in another
   95  * architecture-specific module. The interpolation can use either a
   96  * dedicated counter or a processor cycle counter (PCC) implemented in
   97  * some architectures.
   98  *
   99  * Note that all routines must run at priority splclock or higher.
  100  */
  101 /*
  102  * Phase/frequency-lock loop (PLL/FLL) definitions
  103  *
  104  * The nanosecond clock discipline uses two variable types, time
  105  * variables and frequency variables. Both types are represented as 64-
  106  * bit fixed-point quantities with the decimal point between two 32-bit
  107  * halves. On a 32-bit machine, each half is represented as a single
  108  * word and mathematical operations are done using multiple-precision
  109  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
  110  * used.
  111  *
  112  * A time variable is a signed 64-bit fixed-point number in ns and
  113  * fraction. It represents the remaining time offset to be amortized
  114  * over succeeding tick interrupts. The maximum time offset is about
  115  * 0.5 s and the resolution is about 2.3e-10 ns.
  116  *
  117  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  118  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  119  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  120  * |s s s|                       ns                                |
  121  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  122  * |                        fraction                               |
  123  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  124  *
  125  * A frequency variable is a signed 64-bit fixed-point number in ns/s
  126  * and fraction. It represents the ns and fraction to be added to the
  127  * kernel time variable at each second. The maximum frequency offset is
  128  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
  129  *
  130  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  131  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  132  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  133  * |s s s s s s s s s s s s s|            ns/s                     |
  134  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  135  * |                        fraction                               |
  136  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  137  */
  138 /*
  139  * The following variables establish the state of the PLL/FLL and the
  140  * residual time and frequency offset of the local clock.
  141  */
  142 #define SHIFT_PLL       4               /* PLL loop gain (shift) */
  143 #define SHIFT_FLL       2               /* FLL loop gain (shift) */
  144 
  145 static int time_state = TIME_OK;        /* clock state */
  146 static int time_status = STA_UNSYNC;    /* clock status bits */
  147 static long time_tai;                   /* TAI offset (s) */
  148 static long time_monitor;               /* last time offset scaled (ns) */
  149 static long time_constant;              /* poll interval (shift) (s) */
  150 static long time_precision = 1;         /* clock precision (ns) */
  151 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
  152 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
  153 static long time_reftime;               /* time at last adjustment (s) */
  154 static l_fp time_offset;                /* time offset (ns) */
  155 static l_fp time_freq;                  /* frequency offset (ns/s) */
  156 static l_fp time_adj;                   /* tick adjust (ns/s) */
  157 
  158 static int64_t time_adjtime;            /* correction from adjtime(2) (usec) */
  159 
  160 #ifdef PPS_SYNC
  161 /*
  162  * The following variables are used when a pulse-per-second (PPS) signal
  163  * is available and connected via a modem control lead. They establish
  164  * the engineering parameters of the clock discipline loop when
  165  * controlled by the PPS signal.
  166  */
  167 #define PPS_FAVG        2               /* min freq avg interval (s) (shift) */
  168 #define PPS_FAVGDEF     8               /* default freq avg int (s) (shift) */
  169 #define PPS_FAVGMAX     15              /* max freq avg interval (s) (shift) */
  170 #define PPS_PAVG        4               /* phase avg interval (s) (shift) */
  171 #define PPS_VALID       120             /* PPS signal watchdog max (s) */
  172 #define PPS_MAXWANDER   100000          /* max PPS wander (ns/s) */
  173 #define PPS_POPCORN     2               /* popcorn spike threshold (shift) */
  174 
  175 static struct timespec pps_tf[3];       /* phase median filter */
  176 static l_fp pps_freq;                   /* scaled frequency offset (ns/s) */
  177 static long pps_fcount;                 /* frequency accumulator */
  178 static long pps_jitter;                 /* nominal jitter (ns) */
  179 static long pps_stabil;                 /* nominal stability (scaled ns/s) */
  180 static long pps_lastsec;                /* time at last calibration (s) */
  181 static int pps_valid;                   /* signal watchdog counter */
  182 static int pps_shift = PPS_FAVG;        /* interval duration (s) (shift) */
  183 static int pps_shiftmax = PPS_FAVGDEF;  /* max interval duration (s) (shift) */
  184 static int pps_intcnt;                  /* wander counter */
  185 
  186 /*
  187  * PPS signal quality monitors
  188  */
  189 static long pps_calcnt;                 /* calibration intervals */
  190 static long pps_jitcnt;                 /* jitter limit exceeded */
  191 static long pps_stbcnt;                 /* stability limit exceeded */
  192 static long pps_errcnt;                 /* calibration errors */
  193 #endif /* PPS_SYNC */
  194 /*
  195  * End of phase/frequency-lock loop (PLL/FLL) definitions
  196  */
  197 
  198 static void ntp_init(void);
  199 static void hardupdate(long offset);
  200 static void ntp_gettime1(struct ntptimeval *ntvp);
  201 
  202 static void
  203 ntp_gettime1(struct ntptimeval *ntvp)
  204 {
  205         struct timespec atv;    /* nanosecond time */
  206 
  207         GIANT_REQUIRED;
  208 
  209         nanotime(&atv);
  210         ntvp->time.tv_sec = atv.tv_sec;
  211         ntvp->time.tv_nsec = atv.tv_nsec;
  212         ntvp->maxerror = time_maxerror;
  213         ntvp->esterror = time_esterror;
  214         ntvp->tai = time_tai;
  215         ntvp->time_state = time_state;
  216 
  217         /*
  218          * Status word error decode. If any of these conditions occur,
  219          * an error is returned, instead of the status word. Most
  220          * applications will care only about the fact the system clock
  221          * may not be trusted, not about the details.
  222          *
  223          * Hardware or software error
  224          */
  225         if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
  226 
  227         /*
  228          * PPS signal lost when either time or frequency synchronization
  229          * requested
  230          */
  231             (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
  232             !(time_status & STA_PPSSIGNAL)) ||
  233 
  234         /*
  235          * PPS jitter exceeded when time synchronization requested
  236          */
  237             (time_status & STA_PPSTIME &&
  238             time_status & STA_PPSJITTER) ||
  239 
  240         /*
  241          * PPS wander exceeded or calibration error when frequency
  242          * synchronization requested
  243          */
  244             (time_status & STA_PPSFREQ &&
  245             time_status & (STA_PPSWANDER | STA_PPSERROR)))
  246                 ntvp->time_state = TIME_ERROR;
  247 }
  248 
  249 /*
  250  * ntp_gettime() - NTP user application interface
  251  *
  252  * See the timex.h header file for synopsis and API description.  Note that
  253  * the TAI offset is returned in the ntvtimeval.tai structure member.
  254  */
  255 #ifndef _SYS_SYSPROTO_H_
  256 struct ntp_gettime_args {
  257         struct ntptimeval *ntvp;
  258 };
  259 #endif
  260 /* ARGSUSED */
  261 int
  262 ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
  263 {       
  264         struct ntptimeval ntv;
  265 
  266         mtx_lock(&Giant);
  267         ntp_gettime1(&ntv);
  268         mtx_unlock(&Giant);
  269 
  270         td->td_retval[0] = ntv.time_state;
  271         return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
  272 }
  273 
  274 static int
  275 ntp_sysctl(SYSCTL_HANDLER_ARGS)
  276 {
  277         struct ntptimeval ntv;  /* temporary structure */
  278 
  279         ntp_gettime1(&ntv);
  280 
  281         return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
  282 }
  283 
  284 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
  285 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
  286         0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
  287 
  288 #ifdef PPS_SYNC
  289 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
  290 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
  291 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
  292 
  293 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
  294 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
  295 #endif
  296 
  297 /*
  298  * ntp_adjtime() - NTP daemon application interface
  299  *
  300  * See the timex.h header file for synopsis and API description.  Note that
  301  * the timex.constant structure member has a dual purpose to set the time
  302  * constant and to set the TAI offset.
  303  */
  304 #ifndef _SYS_SYSPROTO_H_
  305 struct ntp_adjtime_args {
  306         struct timex *tp;
  307 };
  308 #endif
  309 
  310 int
  311 ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
  312 {
  313         struct timex ntv;       /* temporary structure */
  314         long freq;              /* frequency ns/s) */
  315         int modes;              /* mode bits from structure */
  316         int s;                  /* caller priority */
  317         int error;
  318 
  319         error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
  320         if (error)
  321                 return(error);
  322 
  323         /*
  324          * Update selected clock variables - only the superuser can
  325          * change anything. Note that there is no error checking here on
  326          * the assumption the superuser should know what it is doing.
  327          * Note that either the time constant or TAI offset are loaded
  328          * from the ntv.constant member, depending on the mode bits. If
  329          * the STA_PLL bit in the status word is cleared, the state and
  330          * status words are reset to the initial values at boot.
  331          */
  332         mtx_lock(&Giant);
  333         modes = ntv.modes;
  334         if (modes)
  335                 error = priv_check(td, PRIV_NTP_ADJTIME);
  336         if (error)
  337                 goto done2;
  338         s = splclock();
  339         if (modes & MOD_MAXERROR)
  340                 time_maxerror = ntv.maxerror;
  341         if (modes & MOD_ESTERROR)
  342                 time_esterror = ntv.esterror;
  343         if (modes & MOD_STATUS) {
  344                 if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
  345                         time_state = TIME_OK;
  346                         time_status = STA_UNSYNC;
  347 #ifdef PPS_SYNC
  348                         pps_shift = PPS_FAVG;
  349 #endif /* PPS_SYNC */
  350                 }
  351                 time_status &= STA_RONLY;
  352                 time_status |= ntv.status & ~STA_RONLY;
  353         }
  354         if (modes & MOD_TIMECONST) {
  355                 if (ntv.constant < 0)
  356                         time_constant = 0;
  357                 else if (ntv.constant > MAXTC)
  358                         time_constant = MAXTC;
  359                 else
  360                         time_constant = ntv.constant;
  361         }
  362         if (modes & MOD_TAI) {
  363                 if (ntv.constant > 0) /* XXX zero & negative numbers ? */
  364                         time_tai = ntv.constant;
  365         }
  366 #ifdef PPS_SYNC
  367         if (modes & MOD_PPSMAX) {
  368                 if (ntv.shift < PPS_FAVG)
  369                         pps_shiftmax = PPS_FAVG;
  370                 else if (ntv.shift > PPS_FAVGMAX)
  371                         pps_shiftmax = PPS_FAVGMAX;
  372                 else
  373                         pps_shiftmax = ntv.shift;
  374         }
  375 #endif /* PPS_SYNC */
  376         if (modes & MOD_NANO)
  377                 time_status |= STA_NANO;
  378         if (modes & MOD_MICRO)
  379                 time_status &= ~STA_NANO;
  380         if (modes & MOD_CLKB)
  381                 time_status |= STA_CLK;
  382         if (modes & MOD_CLKA)
  383                 time_status &= ~STA_CLK;
  384         if (modes & MOD_FREQUENCY) {
  385                 freq = (ntv.freq * 1000LL) >> 16;
  386                 if (freq > MAXFREQ)
  387                         L_LINT(time_freq, MAXFREQ);
  388                 else if (freq < -MAXFREQ)
  389                         L_LINT(time_freq, -MAXFREQ);
  390                 else {
  391                         /*
  392                          * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
  393                          * time_freq is [ns/s * 2^32]
  394                          */
  395                         time_freq = ntv.freq * 1000LL * 65536LL;
  396                 }
  397 #ifdef PPS_SYNC
  398                 pps_freq = time_freq;
  399 #endif /* PPS_SYNC */
  400         }
  401         if (modes & MOD_OFFSET) {
  402                 if (time_status & STA_NANO)
  403                         hardupdate(ntv.offset);
  404                 else
  405                         hardupdate(ntv.offset * 1000);
  406         }
  407 
  408         /*
  409          * Retrieve all clock variables. Note that the TAI offset is
  410          * returned only by ntp_gettime();
  411          */
  412         if (time_status & STA_NANO)
  413                 ntv.offset = L_GINT(time_offset);
  414         else
  415                 ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
  416         ntv.freq = L_GINT((time_freq / 1000LL) << 16);
  417         ntv.maxerror = time_maxerror;
  418         ntv.esterror = time_esterror;
  419         ntv.status = time_status;
  420         ntv.constant = time_constant;
  421         if (time_status & STA_NANO)
  422                 ntv.precision = time_precision;
  423         else
  424                 ntv.precision = time_precision / 1000;
  425         ntv.tolerance = MAXFREQ * SCALE_PPM;
  426 #ifdef PPS_SYNC
  427         ntv.shift = pps_shift;
  428         ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
  429         if (time_status & STA_NANO)
  430                 ntv.jitter = pps_jitter;
  431         else
  432                 ntv.jitter = pps_jitter / 1000;
  433         ntv.stabil = pps_stabil;
  434         ntv.calcnt = pps_calcnt;
  435         ntv.errcnt = pps_errcnt;
  436         ntv.jitcnt = pps_jitcnt;
  437         ntv.stbcnt = pps_stbcnt;
  438 #endif /* PPS_SYNC */
  439         splx(s);
  440 
  441         error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
  442         if (error)
  443                 goto done2;
  444 
  445         /*
  446          * Status word error decode. See comments in
  447          * ntp_gettime() routine.
  448          */
  449         if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
  450             (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
  451             !(time_status & STA_PPSSIGNAL)) ||
  452             (time_status & STA_PPSTIME &&
  453             time_status & STA_PPSJITTER) ||
  454             (time_status & STA_PPSFREQ &&
  455             time_status & (STA_PPSWANDER | STA_PPSERROR))) {
  456                 td->td_retval[0] = TIME_ERROR;
  457         } else {
  458                 td->td_retval[0] = time_state;
  459         }
  460 done2:
  461         mtx_unlock(&Giant);
  462         return (error);
  463 }
  464 
  465 /*
  466  * second_overflow() - called after ntp_tick_adjust()
  467  *
  468  * This routine is ordinarily called immediately following the above
  469  * routine ntp_tick_adjust(). While these two routines are normally
  470  * combined, they are separated here only for the purposes of
  471  * simulation.
  472  */
  473 void
  474 ntp_update_second(int64_t *adjustment, time_t *newsec)
  475 {
  476         int tickrate;
  477         l_fp ftemp;             /* 32/64-bit temporary */
  478 
  479         /*
  480          * On rollover of the second both the nanosecond and microsecond
  481          * clocks are updated and the state machine cranked as
  482          * necessary. The phase adjustment to be used for the next
  483          * second is calculated and the maximum error is increased by
  484          * the tolerance.
  485          */
  486         time_maxerror += MAXFREQ / 1000;
  487 
  488         /*
  489          * Leap second processing. If in leap-insert state at
  490          * the end of the day, the system clock is set back one
  491          * second; if in leap-delete state, the system clock is
  492          * set ahead one second. The nano_time() routine or
  493          * external clock driver will insure that reported time
  494          * is always monotonic.
  495          */
  496         switch (time_state) {
  497 
  498                 /*
  499                  * No warning.
  500                  */
  501                 case TIME_OK:
  502                 if (time_status & STA_INS)
  503                         time_state = TIME_INS;
  504                 else if (time_status & STA_DEL)
  505                         time_state = TIME_DEL;
  506                 break;
  507 
  508                 /*
  509                  * Insert second 23:59:60 following second
  510                  * 23:59:59.
  511                  */
  512                 case TIME_INS:
  513                 if (!(time_status & STA_INS))
  514                         time_state = TIME_OK;
  515                 else if ((*newsec) % 86400 == 0) {
  516                         (*newsec)--;
  517                         time_state = TIME_OOP;
  518                         time_tai++;
  519                 }
  520                 break;
  521 
  522                 /*
  523                  * Delete second 23:59:59.
  524                  */
  525                 case TIME_DEL:
  526                 if (!(time_status & STA_DEL))
  527                         time_state = TIME_OK;
  528                 else if (((*newsec) + 1) % 86400 == 0) {
  529                         (*newsec)++;
  530                         time_tai--;
  531                         time_state = TIME_WAIT;
  532                 }
  533                 break;
  534 
  535                 /*
  536                  * Insert second in progress.
  537                  */
  538                 case TIME_OOP:
  539                         time_state = TIME_WAIT;
  540                 break;
  541 
  542                 /*
  543                  * Wait for status bits to clear.
  544                  */
  545                 case TIME_WAIT:
  546                 if (!(time_status & (STA_INS | STA_DEL)))
  547                         time_state = TIME_OK;
  548         }
  549 
  550         /*
  551          * Compute the total time adjustment for the next second
  552          * in ns. The offset is reduced by a factor depending on
  553          * whether the PPS signal is operating. Note that the
  554          * value is in effect scaled by the clock frequency,
  555          * since the adjustment is added at each tick interrupt.
  556          */
  557         ftemp = time_offset;
  558 #ifdef PPS_SYNC
  559         /* XXX even if PPS signal dies we should finish adjustment ? */
  560         if (time_status & STA_PPSTIME && time_status &
  561             STA_PPSSIGNAL)
  562                 L_RSHIFT(ftemp, pps_shift);
  563         else
  564                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  565 #else
  566                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  567 #endif /* PPS_SYNC */
  568         time_adj = ftemp;
  569         L_SUB(time_offset, ftemp);
  570         L_ADD(time_adj, time_freq);
  571         
  572         /*
  573          * Apply any correction from adjtime(2).  If more than one second
  574          * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
  575          * until the last second is slewed the final < 500 usecs.
  576          */
  577         if (time_adjtime != 0) {
  578                 if (time_adjtime > 1000000)
  579                         tickrate = 5000;
  580                 else if (time_adjtime < -1000000)
  581                         tickrate = -5000;
  582                 else if (time_adjtime > 500)
  583                         tickrate = 500;
  584                 else if (time_adjtime < -500)
  585                         tickrate = -500;
  586                 else
  587                         tickrate = time_adjtime;
  588                 time_adjtime -= tickrate;
  589                 L_LINT(ftemp, tickrate * 1000);
  590                 L_ADD(time_adj, ftemp);
  591         }
  592         *adjustment = time_adj;
  593                 
  594 #ifdef PPS_SYNC
  595         if (pps_valid > 0)
  596                 pps_valid--;
  597         else
  598                 time_status &= ~STA_PPSSIGNAL;
  599 #endif /* PPS_SYNC */
  600 }
  601 
  602 /*
  603  * ntp_init() - initialize variables and structures
  604  *
  605  * This routine must be called after the kernel variables hz and tick
  606  * are set or changed and before the next tick interrupt. In this
  607  * particular implementation, these values are assumed set elsewhere in
  608  * the kernel. The design allows the clock frequency and tick interval
  609  * to be changed while the system is running. So, this routine should
  610  * probably be integrated with the code that does that.
  611  */
  612 static void
  613 ntp_init()
  614 {
  615 
  616         /*
  617          * The following variables are initialized only at startup. Only
  618          * those structures not cleared by the compiler need to be
  619          * initialized, and these only in the simulator. In the actual
  620          * kernel, any nonzero values here will quickly evaporate.
  621          */
  622         L_CLR(time_offset);
  623         L_CLR(time_freq);
  624 #ifdef PPS_SYNC
  625         pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
  626         pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
  627         pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
  628         pps_fcount = 0;
  629         L_CLR(pps_freq);
  630 #endif /* PPS_SYNC */      
  631 }
  632 
  633 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);
  634 
  635 /*
  636  * hardupdate() - local clock update
  637  *
  638  * This routine is called by ntp_adjtime() to update the local clock
  639  * phase and frequency. The implementation is of an adaptive-parameter,
  640  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
  641  * time and frequency offset estimates for each call. If the kernel PPS
  642  * discipline code is configured (PPS_SYNC), the PPS signal itself
  643  * determines the new time offset, instead of the calling argument.
  644  * Presumably, calls to ntp_adjtime() occur only when the caller
  645  * believes the local clock is valid within some bound (+-128 ms with
  646  * NTP). If the caller's time is far different than the PPS time, an
  647  * argument will ensue, and it's not clear who will lose.
  648  *
  649  * For uncompensated quartz crystal oscillators and nominal update
  650  * intervals less than 256 s, operation should be in phase-lock mode,
  651  * where the loop is disciplined to phase. For update intervals greater
  652  * than 1024 s, operation should be in frequency-lock mode, where the
  653  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
  654  * is selected by the STA_MODE status bit.
  655  */
  656 static void
  657 hardupdate(offset)
  658         long offset;            /* clock offset (ns) */
  659 {
  660         long mtemp;
  661         l_fp ftemp;
  662 
  663         /*
  664          * Select how the phase is to be controlled and from which
  665          * source. If the PPS signal is present and enabled to
  666          * discipline the time, the PPS offset is used; otherwise, the
  667          * argument offset is used.
  668          */
  669         if (!(time_status & STA_PLL))
  670                 return;
  671         if (!(time_status & STA_PPSTIME && time_status &
  672             STA_PPSSIGNAL)) {
  673                 if (offset > MAXPHASE)
  674                         time_monitor = MAXPHASE;
  675                 else if (offset < -MAXPHASE)
  676                         time_monitor = -MAXPHASE;
  677                 else
  678                         time_monitor = offset;
  679                 L_LINT(time_offset, time_monitor);
  680         }
  681 
  682         /*
  683          * Select how the frequency is to be controlled and in which
  684          * mode (PLL or FLL). If the PPS signal is present and enabled
  685          * to discipline the frequency, the PPS frequency is used;
  686          * otherwise, the argument offset is used to compute it.
  687          */
  688         if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
  689                 time_reftime = time_second;
  690                 return;
  691         }
  692         if (time_status & STA_FREQHOLD || time_reftime == 0)
  693                 time_reftime = time_second;
  694         mtemp = time_second - time_reftime;
  695         L_LINT(ftemp, time_monitor);
  696         L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
  697         L_MPY(ftemp, mtemp);
  698         L_ADD(time_freq, ftemp);
  699         time_status &= ~STA_MODE;
  700         if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
  701             MAXSEC)) {
  702                 L_LINT(ftemp, (time_monitor << 4) / mtemp);
  703                 L_RSHIFT(ftemp, SHIFT_FLL + 4);
  704                 L_ADD(time_freq, ftemp);
  705                 time_status |= STA_MODE;
  706         }
  707         time_reftime = time_second;
  708         if (L_GINT(time_freq) > MAXFREQ)
  709                 L_LINT(time_freq, MAXFREQ);
  710         else if (L_GINT(time_freq) < -MAXFREQ)
  711                 L_LINT(time_freq, -MAXFREQ);
  712 }
  713 
  714 #ifdef PPS_SYNC
  715 /*
  716  * hardpps() - discipline CPU clock oscillator to external PPS signal
  717  *
  718  * This routine is called at each PPS interrupt in order to discipline
  719  * the CPU clock oscillator to the PPS signal. There are two independent
  720  * first-order feedback loops, one for the phase, the other for the
  721  * frequency. The phase loop measures and grooms the PPS phase offset
  722  * and leaves it in a handy spot for the seconds overflow routine. The
  723  * frequency loop averages successive PPS phase differences and
  724  * calculates the PPS frequency offset, which is also processed by the
  725  * seconds overflow routine. The code requires the caller to capture the
  726  * time and architecture-dependent hardware counter values in
  727  * nanoseconds at the on-time PPS signal transition.
  728  *
  729  * Note that, on some Unix systems this routine runs at an interrupt
  730  * priority level higher than the timer interrupt routine hardclock().
  731  * Therefore, the variables used are distinct from the hardclock()
  732  * variables, except for the actual time and frequency variables, which
  733  * are determined by this routine and updated atomically.
  734  */
  735 void
  736 hardpps(tsp, nsec)
  737         struct timespec *tsp;   /* time at PPS */
  738         long nsec;              /* hardware counter at PPS */
  739 {
  740         long u_sec, u_nsec, v_nsec; /* temps */
  741         l_fp ftemp;
  742 
  743         /*
  744          * The signal is first processed by a range gate and frequency
  745          * discriminator. The range gate rejects noise spikes outside
  746          * the range +-500 us. The frequency discriminator rejects input
  747          * signals with apparent frequency outside the range 1 +-500
  748          * PPM. If two hits occur in the same second, we ignore the
  749          * later hit; if not and a hit occurs outside the range gate,
  750          * keep the later hit for later comparison, but do not process
  751          * it.
  752          */
  753         time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
  754         time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
  755         pps_valid = PPS_VALID;
  756         u_sec = tsp->tv_sec;
  757         u_nsec = tsp->tv_nsec;
  758         if (u_nsec >= (NANOSECOND >> 1)) {
  759                 u_nsec -= NANOSECOND;
  760                 u_sec++;
  761         }
  762         v_nsec = u_nsec - pps_tf[0].tv_nsec;
  763         if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
  764             MAXFREQ)
  765                 return;
  766         pps_tf[2] = pps_tf[1];
  767         pps_tf[1] = pps_tf[0];
  768         pps_tf[0].tv_sec = u_sec;
  769         pps_tf[0].tv_nsec = u_nsec;
  770 
  771         /*
  772          * Compute the difference between the current and previous
  773          * counter values. If the difference exceeds 0.5 s, assume it
  774          * has wrapped around, so correct 1.0 s. If the result exceeds
  775          * the tick interval, the sample point has crossed a tick
  776          * boundary during the last second, so correct the tick. Very
  777          * intricate.
  778          */
  779         u_nsec = nsec;
  780         if (u_nsec > (NANOSECOND >> 1))
  781                 u_nsec -= NANOSECOND;
  782         else if (u_nsec < -(NANOSECOND >> 1))
  783                 u_nsec += NANOSECOND;
  784         pps_fcount += u_nsec;
  785         if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
  786                 return;
  787         time_status &= ~STA_PPSJITTER;
  788 
  789         /*
  790          * A three-stage median filter is used to help denoise the PPS
  791          * time. The median sample becomes the time offset estimate; the
  792          * difference between the other two samples becomes the time
  793          * dispersion (jitter) estimate.
  794          */
  795         if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
  796                 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
  797                         v_nsec = pps_tf[1].tv_nsec;     /* 0 1 2 */
  798                         u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
  799                 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
  800                         v_nsec = pps_tf[0].tv_nsec;     /* 2 0 1 */
  801                         u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
  802                 } else {
  803                         v_nsec = pps_tf[2].tv_nsec;     /* 0 2 1 */
  804                         u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
  805                 }
  806         } else {
  807                 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
  808                         v_nsec = pps_tf[1].tv_nsec;     /* 2 1 0 */
  809                         u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
  810                 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
  811                         v_nsec = pps_tf[0].tv_nsec;     /* 1 0 2 */
  812                         u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
  813                 } else {
  814                         v_nsec = pps_tf[2].tv_nsec;     /* 1 2 0 */
  815                         u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
  816                 }
  817         }
  818 
  819         /*
  820          * Nominal jitter is due to PPS signal noise and interrupt
  821          * latency. If it exceeds the popcorn threshold, the sample is
  822          * discarded. otherwise, if so enabled, the time offset is
  823          * updated. We can tolerate a modest loss of data here without
  824          * much degrading time accuracy.
  825          */
  826         if (u_nsec > (pps_jitter << PPS_POPCORN)) {
  827                 time_status |= STA_PPSJITTER;
  828                 pps_jitcnt++;
  829         } else if (time_status & STA_PPSTIME) {
  830                 time_monitor = -v_nsec;
  831                 L_LINT(time_offset, time_monitor);
  832         }
  833         pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
  834         u_sec = pps_tf[0].tv_sec - pps_lastsec;
  835         if (u_sec < (1 << pps_shift))
  836                 return;
  837 
  838         /*
  839          * At the end of the calibration interval the difference between
  840          * the first and last counter values becomes the scaled
  841          * frequency. It will later be divided by the length of the
  842          * interval to determine the frequency update. If the frequency
  843          * exceeds a sanity threshold, or if the actual calibration
  844          * interval is not equal to the expected length, the data are
  845          * discarded. We can tolerate a modest loss of data here without
  846          * much degrading frequency accuracy.
  847          */
  848         pps_calcnt++;
  849         v_nsec = -pps_fcount;
  850         pps_lastsec = pps_tf[0].tv_sec;
  851         pps_fcount = 0;
  852         u_nsec = MAXFREQ << pps_shift;
  853         if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
  854             pps_shift)) {
  855                 time_status |= STA_PPSERROR;
  856                 pps_errcnt++;
  857                 return;
  858         }
  859 
  860         /*
  861          * Here the raw frequency offset and wander (stability) is
  862          * calculated. If the wander is less than the wander threshold
  863          * for four consecutive averaging intervals, the interval is
  864          * doubled; if it is greater than the threshold for four
  865          * consecutive intervals, the interval is halved. The scaled
  866          * frequency offset is converted to frequency offset. The
  867          * stability metric is calculated as the average of recent
  868          * frequency changes, but is used only for performance
  869          * monitoring.
  870          */
  871         L_LINT(ftemp, v_nsec);
  872         L_RSHIFT(ftemp, pps_shift);
  873         L_SUB(ftemp, pps_freq);
  874         u_nsec = L_GINT(ftemp);
  875         if (u_nsec > PPS_MAXWANDER) {
  876                 L_LINT(ftemp, PPS_MAXWANDER);
  877                 pps_intcnt--;
  878                 time_status |= STA_PPSWANDER;
  879                 pps_stbcnt++;
  880         } else if (u_nsec < -PPS_MAXWANDER) {
  881                 L_LINT(ftemp, -PPS_MAXWANDER);
  882                 pps_intcnt--;
  883                 time_status |= STA_PPSWANDER;
  884                 pps_stbcnt++;
  885         } else {
  886                 pps_intcnt++;
  887         }
  888         if (pps_intcnt >= 4) {
  889                 pps_intcnt = 4;
  890                 if (pps_shift < pps_shiftmax) {
  891                         pps_shift++;
  892                         pps_intcnt = 0;
  893                 }
  894         } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
  895                 pps_intcnt = -4;
  896                 if (pps_shift > PPS_FAVG) {
  897                         pps_shift--;
  898                         pps_intcnt = 0;
  899                 }
  900         }
  901         if (u_nsec < 0)
  902                 u_nsec = -u_nsec;
  903         pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
  904 
  905         /*
  906          * The PPS frequency is recalculated and clamped to the maximum
  907          * MAXFREQ. If enabled, the system clock frequency is updated as
  908          * well.
  909          */
  910         L_ADD(pps_freq, ftemp);
  911         u_nsec = L_GINT(pps_freq);
  912         if (u_nsec > MAXFREQ)
  913                 L_LINT(pps_freq, MAXFREQ);
  914         else if (u_nsec < -MAXFREQ)
  915                 L_LINT(pps_freq, -MAXFREQ);
  916         if (time_status & STA_PPSFREQ)
  917                 time_freq = pps_freq;
  918 }
  919 #endif /* PPS_SYNC */
  920 
  921 #ifndef _SYS_SYSPROTO_H_
  922 struct adjtime_args {
  923         struct timeval *delta;
  924         struct timeval *olddelta;
  925 };
  926 #endif
  927 /* ARGSUSED */
  928 int
  929 adjtime(struct thread *td, struct adjtime_args *uap)
  930 {
  931         struct timeval delta, olddelta, *deltap;
  932         int error;
  933 
  934         if (uap->delta) {
  935                 error = copyin(uap->delta, &delta, sizeof(delta));
  936                 if (error)
  937                         return (error);
  938                 deltap = &delta;
  939         } else
  940                 deltap = NULL;
  941         error = kern_adjtime(td, deltap, &olddelta);
  942         if (uap->olddelta && error == 0)
  943                 error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
  944         return (error);
  945 }
  946 
  947 int
  948 kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
  949 {
  950         struct timeval atv;
  951         int error;
  952 
  953         mtx_lock(&Giant);
  954         if (olddelta) {
  955                 atv.tv_sec = time_adjtime / 1000000;
  956                 atv.tv_usec = time_adjtime % 1000000;
  957                 if (atv.tv_usec < 0) {
  958                         atv.tv_usec += 1000000;
  959                         atv.tv_sec--;
  960                 }
  961                 *olddelta = atv;
  962         }
  963         if (delta) {
  964                 if ((error = priv_check(td, PRIV_ADJTIME))) {
  965                         mtx_unlock(&Giant);
  966                         return (error);
  967                 }
  968                 time_adjtime = (int64_t)delta->tv_sec * 1000000 +
  969                     delta->tv_usec;
  970         }
  971         mtx_unlock(&Giant);
  972         return (0);
  973 }
  974 

Cache object: 8c30c717addf30c94d77f6a8d71002b3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.