The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_ntptime.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  ***********************************************************************
    3  *                                                                     *
    4  * Copyright (c) David L. Mills 1993-2001                              *
    5  *                                                                     *
    6  * Permission to use, copy, modify, and distribute this software and   *
    7  * its documentation for any purpose and without fee is hereby         *
    8  * granted, provided that the above copyright notice appears in all    *
    9  * copies and that both the copyright notice and this permission       *
   10  * notice appear in supporting documentation, and that the name        *
   11  * University of Delaware not be used in advertising or publicity      *
   12  * pertaining to distribution of the software without specific,        *
   13  * written prior permission. The University of Delaware makes no       *
   14  * representations about the suitability this software for any         *
   15  * purpose. It is provided "as is" without express or implied          *
   16  * warranty.                                                           *
   17  *                                                                     *
   18  **********************************************************************/
   19 
   20 /*
   21  * Adapted from the original sources for FreeBSD and timecounters by:
   22  * Poul-Henning Kamp <phk@FreeBSD.org>.
   23  *
   24  * The 32bit version of the "LP" macros seems a bit past its "sell by" 
   25  * date so I have retained only the 64bit version and included it directly
   26  * in this file.
   27  *
   28  * Only minor changes done to interface with the timecounters over in
   29  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
   30  * confusing and/or plain wrong in that context.
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD$");
   35 
   36 #include "opt_ntp.h"
   37 
   38 #include <sys/param.h>
   39 #include <sys/systm.h>
   40 #include <sys/sysproto.h>
   41 #include <sys/clock.h>
   42 #include <sys/eventhandler.h>
   43 #include <sys/kernel.h>
   44 #include <sys/priv.h>
   45 #include <sys/proc.h>
   46 #include <sys/lock.h>
   47 #include <sys/mutex.h>
   48 #include <sys/time.h>
   49 #include <sys/timex.h>
   50 #include <sys/timetc.h>
   51 #include <sys/timepps.h>
   52 #include <sys/syscallsubr.h>
   53 #include <sys/sysctl.h>
   54 
   55 /*
   56  * Single-precision macros for 64-bit machines
   57  */
   58 typedef int64_t l_fp;
   59 #define L_ADD(v, u)     ((v) += (u))
   60 #define L_SUB(v, u)     ((v) -= (u))
   61 #define L_ADDHI(v, a)   ((v) += (int64_t)(a) << 32)
   62 #define L_NEG(v)        ((v) = -(v))
   63 #define L_RSHIFT(v, n) \
   64         do { \
   65                 if ((v) < 0) \
   66                         (v) = -(-(v) >> (n)); \
   67                 else \
   68                         (v) = (v) >> (n); \
   69         } while (0)
   70 #define L_MPY(v, a)     ((v) *= (a))
   71 #define L_CLR(v)        ((v) = 0)
   72 #define L_ISNEG(v)      ((v) < 0)
   73 #define L_LINT(v, a)    ((v) = (int64_t)(a) << 32)
   74 #define L_GINT(v)       ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
   75 
   76 /*
   77  * Generic NTP kernel interface
   78  *
   79  * These routines constitute the Network Time Protocol (NTP) interfaces
   80  * for user and daemon application programs. The ntp_gettime() routine
   81  * provides the time, maximum error (synch distance) and estimated error
   82  * (dispersion) to client user application programs. The ntp_adjtime()
   83  * routine is used by the NTP daemon to adjust the system clock to an
   84  * externally derived time. The time offset and related variables set by
   85  * this routine are used by other routines in this module to adjust the
   86  * phase and frequency of the clock discipline loop which controls the
   87  * system clock.
   88  *
   89  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
   90  * defined), the time at each tick interrupt is derived directly from
   91  * the kernel time variable. When the kernel time is reckoned in
   92  * microseconds, (NTP_NANO undefined), the time is derived from the
   93  * kernel time variable together with a variable representing the
   94  * leftover nanoseconds at the last tick interrupt. In either case, the
   95  * current nanosecond time is reckoned from these values plus an
   96  * interpolated value derived by the clock routines in another
   97  * architecture-specific module. The interpolation can use either a
   98  * dedicated counter or a processor cycle counter (PCC) implemented in
   99  * some architectures.
  100  *
  101  * Note that all routines must run at priority splclock or higher.
  102  */
  103 /*
  104  * Phase/frequency-lock loop (PLL/FLL) definitions
  105  *
  106  * The nanosecond clock discipline uses two variable types, time
  107  * variables and frequency variables. Both types are represented as 64-
  108  * bit fixed-point quantities with the decimal point between two 32-bit
  109  * halves. On a 32-bit machine, each half is represented as a single
  110  * word and mathematical operations are done using multiple-precision
  111  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
  112  * used.
  113  *
  114  * A time variable is a signed 64-bit fixed-point number in ns and
  115  * fraction. It represents the remaining time offset to be amortized
  116  * over succeeding tick interrupts. The maximum time offset is about
  117  * 0.5 s and the resolution is about 2.3e-10 ns.
  118  *
  119  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  120  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  121  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  122  * |s s s|                       ns                                |
  123  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  124  * |                        fraction                               |
  125  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  126  *
  127  * A frequency variable is a signed 64-bit fixed-point number in ns/s
  128  * and fraction. It represents the ns and fraction to be added to the
  129  * kernel time variable at each second. The maximum frequency offset is
  130  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
  131  *
  132  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  133  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  134  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  135  * |s s s s s s s s s s s s s|            ns/s                     |
  136  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  137  * |                        fraction                               |
  138  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  139  */
  140 /*
  141  * The following variables establish the state of the PLL/FLL and the
  142  * residual time and frequency offset of the local clock.
  143  */
  144 #define SHIFT_PLL       4               /* PLL loop gain (shift) */
  145 #define SHIFT_FLL       2               /* FLL loop gain (shift) */
  146 
  147 static int time_state = TIME_OK;        /* clock state */
  148 static int time_status = STA_UNSYNC;    /* clock status bits */
  149 static long time_tai;                   /* TAI offset (s) */
  150 static long time_monitor;               /* last time offset scaled (ns) */
  151 static long time_constant;              /* poll interval (shift) (s) */
  152 static long time_precision = 1;         /* clock precision (ns) */
  153 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
  154 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
  155 static long time_reftime;               /* time at last adjustment (s) */
  156 static l_fp time_offset;                /* time offset (ns) */
  157 static l_fp time_freq;                  /* frequency offset (ns/s) */
  158 static l_fp time_adj;                   /* tick adjust (ns/s) */
  159 
  160 static int64_t time_adjtime;            /* correction from adjtime(2) (usec) */
  161 
  162 #ifdef PPS_SYNC
  163 /*
  164  * The following variables are used when a pulse-per-second (PPS) signal
  165  * is available and connected via a modem control lead. They establish
  166  * the engineering parameters of the clock discipline loop when
  167  * controlled by the PPS signal.
  168  */
  169 #define PPS_FAVG        2               /* min freq avg interval (s) (shift) */
  170 #define PPS_FAVGDEF     8               /* default freq avg int (s) (shift) */
  171 #define PPS_FAVGMAX     15              /* max freq avg interval (s) (shift) */
  172 #define PPS_PAVG        4               /* phase avg interval (s) (shift) */
  173 #define PPS_VALID       120             /* PPS signal watchdog max (s) */
  174 #define PPS_MAXWANDER   100000          /* max PPS wander (ns/s) */
  175 #define PPS_POPCORN     2               /* popcorn spike threshold (shift) */
  176 
  177 static struct timespec pps_tf[3];       /* phase median filter */
  178 static l_fp pps_freq;                   /* scaled frequency offset (ns/s) */
  179 static long pps_fcount;                 /* frequency accumulator */
  180 static long pps_jitter;                 /* nominal jitter (ns) */
  181 static long pps_stabil;                 /* nominal stability (scaled ns/s) */
  182 static long pps_lastsec;                /* time at last calibration (s) */
  183 static int pps_valid;                   /* signal watchdog counter */
  184 static int pps_shift = PPS_FAVG;        /* interval duration (s) (shift) */
  185 static int pps_shiftmax = PPS_FAVGDEF;  /* max interval duration (s) (shift) */
  186 static int pps_intcnt;                  /* wander counter */
  187 
  188 /*
  189  * PPS signal quality monitors
  190  */
  191 static long pps_calcnt;                 /* calibration intervals */
  192 static long pps_jitcnt;                 /* jitter limit exceeded */
  193 static long pps_stbcnt;                 /* stability limit exceeded */
  194 static long pps_errcnt;                 /* calibration errors */
  195 #endif /* PPS_SYNC */
  196 /*
  197  * End of phase/frequency-lock loop (PLL/FLL) definitions
  198  */
  199 
  200 static void ntp_init(void);
  201 static void hardupdate(long offset);
  202 static void ntp_gettime1(struct ntptimeval *ntvp);
  203 static int ntp_is_time_error(void);
  204 
  205 static int
  206 ntp_is_time_error(void)
  207 {
  208         /*
  209          * Status word error decode. If any of these conditions occur,
  210          * an error is returned, instead of the status word. Most
  211          * applications will care only about the fact the system clock
  212          * may not be trusted, not about the details.
  213          *
  214          * Hardware or software error
  215          */
  216         if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
  217 
  218         /*
  219          * PPS signal lost when either time or frequency synchronization
  220          * requested
  221          */
  222             (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
  223             !(time_status & STA_PPSSIGNAL)) ||
  224 
  225         /*
  226          * PPS jitter exceeded when time synchronization requested
  227          */
  228             (time_status & STA_PPSTIME &&
  229             time_status & STA_PPSJITTER) ||
  230 
  231         /*
  232          * PPS wander exceeded or calibration error when frequency
  233          * synchronization requested
  234          */
  235             (time_status & STA_PPSFREQ &&
  236             time_status & (STA_PPSWANDER | STA_PPSERROR)))
  237                 return (1);
  238 
  239         return (0);
  240 }
  241 
  242 static void
  243 ntp_gettime1(struct ntptimeval *ntvp)
  244 {
  245         struct timespec atv;    /* nanosecond time */
  246 
  247         GIANT_REQUIRED;
  248 
  249         nanotime(&atv);
  250         ntvp->time.tv_sec = atv.tv_sec;
  251         ntvp->time.tv_nsec = atv.tv_nsec;
  252         ntvp->maxerror = time_maxerror;
  253         ntvp->esterror = time_esterror;
  254         ntvp->tai = time_tai;
  255         ntvp->time_state = time_state;
  256 
  257         if (ntp_is_time_error())
  258                 ntvp->time_state = TIME_ERROR;
  259 }
  260 
  261 /*
  262  * ntp_gettime() - NTP user application interface
  263  *
  264  * See the timex.h header file for synopsis and API description.  Note that
  265  * the TAI offset is returned in the ntvtimeval.tai structure member.
  266  */
  267 #ifndef _SYS_SYSPROTO_H_
  268 struct ntp_gettime_args {
  269         struct ntptimeval *ntvp;
  270 };
  271 #endif
  272 /* ARGSUSED */
  273 int
  274 ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
  275 {       
  276         struct ntptimeval ntv;
  277 
  278         mtx_lock(&Giant);
  279         ntp_gettime1(&ntv);
  280         mtx_unlock(&Giant);
  281 
  282         td->td_retval[0] = ntv.time_state;
  283         return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
  284 }
  285 
  286 static int
  287 ntp_sysctl(SYSCTL_HANDLER_ARGS)
  288 {
  289         struct ntptimeval ntv;  /* temporary structure */
  290 
  291         ntp_gettime1(&ntv);
  292 
  293         return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
  294 }
  295 
  296 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
  297 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
  298         0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
  299 
  300 #ifdef PPS_SYNC
  301 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
  302 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
  303 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
  304 
  305 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
  306 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
  307 #endif
  308 
  309 /*
  310  * ntp_adjtime() - NTP daemon application interface
  311  *
  312  * See the timex.h header file for synopsis and API description.  Note that
  313  * the timex.constant structure member has a dual purpose to set the time
  314  * constant and to set the TAI offset.
  315  */
  316 #ifndef _SYS_SYSPROTO_H_
  317 struct ntp_adjtime_args {
  318         struct timex *tp;
  319 };
  320 #endif
  321 
  322 int
  323 ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
  324 {
  325         struct timex ntv;       /* temporary structure */
  326         long freq;              /* frequency ns/s) */
  327         int modes;              /* mode bits from structure */
  328         int s;                  /* caller priority */
  329         int error;
  330 
  331         error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
  332         if (error)
  333                 return(error);
  334 
  335         /*
  336          * Update selected clock variables - only the superuser can
  337          * change anything. Note that there is no error checking here on
  338          * the assumption the superuser should know what it is doing.
  339          * Note that either the time constant or TAI offset are loaded
  340          * from the ntv.constant member, depending on the mode bits. If
  341          * the STA_PLL bit in the status word is cleared, the state and
  342          * status words are reset to the initial values at boot.
  343          */
  344         mtx_lock(&Giant);
  345         modes = ntv.modes;
  346         if (modes)
  347                 error = priv_check(td, PRIV_NTP_ADJTIME);
  348         if (error)
  349                 goto done2;
  350         s = splclock();
  351         if (modes & MOD_MAXERROR)
  352                 time_maxerror = ntv.maxerror;
  353         if (modes & MOD_ESTERROR)
  354                 time_esterror = ntv.esterror;
  355         if (modes & MOD_STATUS) {
  356                 if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
  357                         time_state = TIME_OK;
  358                         time_status = STA_UNSYNC;
  359 #ifdef PPS_SYNC
  360                         pps_shift = PPS_FAVG;
  361 #endif /* PPS_SYNC */
  362                 }
  363                 time_status &= STA_RONLY;
  364                 time_status |= ntv.status & ~STA_RONLY;
  365         }
  366         if (modes & MOD_TIMECONST) {
  367                 if (ntv.constant < 0)
  368                         time_constant = 0;
  369                 else if (ntv.constant > MAXTC)
  370                         time_constant = MAXTC;
  371                 else
  372                         time_constant = ntv.constant;
  373         }
  374         if (modes & MOD_TAI) {
  375                 if (ntv.constant > 0) /* XXX zero & negative numbers ? */
  376                         time_tai = ntv.constant;
  377         }
  378 #ifdef PPS_SYNC
  379         if (modes & MOD_PPSMAX) {
  380                 if (ntv.shift < PPS_FAVG)
  381                         pps_shiftmax = PPS_FAVG;
  382                 else if (ntv.shift > PPS_FAVGMAX)
  383                         pps_shiftmax = PPS_FAVGMAX;
  384                 else
  385                         pps_shiftmax = ntv.shift;
  386         }
  387 #endif /* PPS_SYNC */
  388         if (modes & MOD_NANO)
  389                 time_status |= STA_NANO;
  390         if (modes & MOD_MICRO)
  391                 time_status &= ~STA_NANO;
  392         if (modes & MOD_CLKB)
  393                 time_status |= STA_CLK;
  394         if (modes & MOD_CLKA)
  395                 time_status &= ~STA_CLK;
  396         if (modes & MOD_FREQUENCY) {
  397                 freq = (ntv.freq * 1000LL) >> 16;
  398                 if (freq > MAXFREQ)
  399                         L_LINT(time_freq, MAXFREQ);
  400                 else if (freq < -MAXFREQ)
  401                         L_LINT(time_freq, -MAXFREQ);
  402                 else {
  403                         /*
  404                          * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
  405                          * time_freq is [ns/s * 2^32]
  406                          */
  407                         time_freq = ntv.freq * 1000LL * 65536LL;
  408                 }
  409 #ifdef PPS_SYNC
  410                 pps_freq = time_freq;
  411 #endif /* PPS_SYNC */
  412         }
  413         if (modes & MOD_OFFSET) {
  414                 if (time_status & STA_NANO)
  415                         hardupdate(ntv.offset);
  416                 else
  417                         hardupdate(ntv.offset * 1000);
  418         }
  419 
  420         /*
  421          * Retrieve all clock variables. Note that the TAI offset is
  422          * returned only by ntp_gettime();
  423          */
  424         if (time_status & STA_NANO)
  425                 ntv.offset = L_GINT(time_offset);
  426         else
  427                 ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
  428         ntv.freq = L_GINT((time_freq / 1000LL) << 16);
  429         ntv.maxerror = time_maxerror;
  430         ntv.esterror = time_esterror;
  431         ntv.status = time_status;
  432         ntv.constant = time_constant;
  433         if (time_status & STA_NANO)
  434                 ntv.precision = time_precision;
  435         else
  436                 ntv.precision = time_precision / 1000;
  437         ntv.tolerance = MAXFREQ * SCALE_PPM;
  438 #ifdef PPS_SYNC
  439         ntv.shift = pps_shift;
  440         ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
  441         if (time_status & STA_NANO)
  442                 ntv.jitter = pps_jitter;
  443         else
  444                 ntv.jitter = pps_jitter / 1000;
  445         ntv.stabil = pps_stabil;
  446         ntv.calcnt = pps_calcnt;
  447         ntv.errcnt = pps_errcnt;
  448         ntv.jitcnt = pps_jitcnt;
  449         ntv.stbcnt = pps_stbcnt;
  450 #endif /* PPS_SYNC */
  451         splx(s);
  452 
  453         error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
  454         if (error)
  455                 goto done2;
  456 
  457         if (ntp_is_time_error())
  458                 td->td_retval[0] = TIME_ERROR;
  459         else
  460                 td->td_retval[0] = time_state;
  461 
  462 done2:
  463         mtx_unlock(&Giant);
  464         return (error);
  465 }
  466 
  467 /*
  468  * second_overflow() - called after ntp_tick_adjust()
  469  *
  470  * This routine is ordinarily called immediately following the above
  471  * routine ntp_tick_adjust(). While these two routines are normally
  472  * combined, they are separated here only for the purposes of
  473  * simulation.
  474  */
  475 void
  476 ntp_update_second(int64_t *adjustment, time_t *newsec)
  477 {
  478         int tickrate;
  479         l_fp ftemp;             /* 32/64-bit temporary */
  480 
  481         /*
  482          * On rollover of the second both the nanosecond and microsecond
  483          * clocks are updated and the state machine cranked as
  484          * necessary. The phase adjustment to be used for the next
  485          * second is calculated and the maximum error is increased by
  486          * the tolerance.
  487          */
  488         time_maxerror += MAXFREQ / 1000;
  489 
  490         /*
  491          * Leap second processing. If in leap-insert state at
  492          * the end of the day, the system clock is set back one
  493          * second; if in leap-delete state, the system clock is
  494          * set ahead one second. The nano_time() routine or
  495          * external clock driver will insure that reported time
  496          * is always monotonic.
  497          */
  498         switch (time_state) {
  499 
  500                 /*
  501                  * No warning.
  502                  */
  503                 case TIME_OK:
  504                 if (time_status & STA_INS)
  505                         time_state = TIME_INS;
  506                 else if (time_status & STA_DEL)
  507                         time_state = TIME_DEL;
  508                 break;
  509 
  510                 /*
  511                  * Insert second 23:59:60 following second
  512                  * 23:59:59.
  513                  */
  514                 case TIME_INS:
  515                 if (!(time_status & STA_INS))
  516                         time_state = TIME_OK;
  517                 else if ((*newsec) % 86400 == 0) {
  518                         (*newsec)--;
  519                         time_state = TIME_OOP;
  520                         time_tai++;
  521                 }
  522                 break;
  523 
  524                 /*
  525                  * Delete second 23:59:59.
  526                  */
  527                 case TIME_DEL:
  528                 if (!(time_status & STA_DEL))
  529                         time_state = TIME_OK;
  530                 else if (((*newsec) + 1) % 86400 == 0) {
  531                         (*newsec)++;
  532                         time_tai--;
  533                         time_state = TIME_WAIT;
  534                 }
  535                 break;
  536 
  537                 /*
  538                  * Insert second in progress.
  539                  */
  540                 case TIME_OOP:
  541                         time_state = TIME_WAIT;
  542                 break;
  543 
  544                 /*
  545                  * Wait for status bits to clear.
  546                  */
  547                 case TIME_WAIT:
  548                 if (!(time_status & (STA_INS | STA_DEL)))
  549                         time_state = TIME_OK;
  550         }
  551 
  552         /*
  553          * Compute the total time adjustment for the next second
  554          * in ns. The offset is reduced by a factor depending on
  555          * whether the PPS signal is operating. Note that the
  556          * value is in effect scaled by the clock frequency,
  557          * since the adjustment is added at each tick interrupt.
  558          */
  559         ftemp = time_offset;
  560 #ifdef PPS_SYNC
  561         /* XXX even if PPS signal dies we should finish adjustment ? */
  562         if (time_status & STA_PPSTIME && time_status &
  563             STA_PPSSIGNAL)
  564                 L_RSHIFT(ftemp, pps_shift);
  565         else
  566                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  567 #else
  568                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  569 #endif /* PPS_SYNC */
  570         time_adj = ftemp;
  571         L_SUB(time_offset, ftemp);
  572         L_ADD(time_adj, time_freq);
  573         
  574         /*
  575          * Apply any correction from adjtime(2).  If more than one second
  576          * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
  577          * until the last second is slewed the final < 500 usecs.
  578          */
  579         if (time_adjtime != 0) {
  580                 if (time_adjtime > 1000000)
  581                         tickrate = 5000;
  582                 else if (time_adjtime < -1000000)
  583                         tickrate = -5000;
  584                 else if (time_adjtime > 500)
  585                         tickrate = 500;
  586                 else if (time_adjtime < -500)
  587                         tickrate = -500;
  588                 else
  589                         tickrate = time_adjtime;
  590                 time_adjtime -= tickrate;
  591                 L_LINT(ftemp, tickrate * 1000);
  592                 L_ADD(time_adj, ftemp);
  593         }
  594         *adjustment = time_adj;
  595                 
  596 #ifdef PPS_SYNC
  597         if (pps_valid > 0)
  598                 pps_valid--;
  599         else
  600                 time_status &= ~STA_PPSSIGNAL;
  601 #endif /* PPS_SYNC */
  602 }
  603 
  604 /*
  605  * ntp_init() - initialize variables and structures
  606  *
  607  * This routine must be called after the kernel variables hz and tick
  608  * are set or changed and before the next tick interrupt. In this
  609  * particular implementation, these values are assumed set elsewhere in
  610  * the kernel. The design allows the clock frequency and tick interval
  611  * to be changed while the system is running. So, this routine should
  612  * probably be integrated with the code that does that.
  613  */
  614 static void
  615 ntp_init()
  616 {
  617 
  618         /*
  619          * The following variables are initialized only at startup. Only
  620          * those structures not cleared by the compiler need to be
  621          * initialized, and these only in the simulator. In the actual
  622          * kernel, any nonzero values here will quickly evaporate.
  623          */
  624         L_CLR(time_offset);
  625         L_CLR(time_freq);
  626 #ifdef PPS_SYNC
  627         pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
  628         pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
  629         pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
  630         pps_fcount = 0;
  631         L_CLR(pps_freq);
  632 #endif /* PPS_SYNC */      
  633 }
  634 
  635 SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL);
  636 
  637 /*
  638  * hardupdate() - local clock update
  639  *
  640  * This routine is called by ntp_adjtime() to update the local clock
  641  * phase and frequency. The implementation is of an adaptive-parameter,
  642  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
  643  * time and frequency offset estimates for each call. If the kernel PPS
  644  * discipline code is configured (PPS_SYNC), the PPS signal itself
  645  * determines the new time offset, instead of the calling argument.
  646  * Presumably, calls to ntp_adjtime() occur only when the caller
  647  * believes the local clock is valid within some bound (+-128 ms with
  648  * NTP). If the caller's time is far different than the PPS time, an
  649  * argument will ensue, and it's not clear who will lose.
  650  *
  651  * For uncompensated quartz crystal oscillators and nominal update
  652  * intervals less than 256 s, operation should be in phase-lock mode,
  653  * where the loop is disciplined to phase. For update intervals greater
  654  * than 1024 s, operation should be in frequency-lock mode, where the
  655  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
  656  * is selected by the STA_MODE status bit.
  657  */
  658 static void
  659 hardupdate(offset)
  660         long offset;            /* clock offset (ns) */
  661 {
  662         long mtemp;
  663         l_fp ftemp;
  664 
  665         /*
  666          * Select how the phase is to be controlled and from which
  667          * source. If the PPS signal is present and enabled to
  668          * discipline the time, the PPS offset is used; otherwise, the
  669          * argument offset is used.
  670          */
  671         if (!(time_status & STA_PLL))
  672                 return;
  673         if (!(time_status & STA_PPSTIME && time_status &
  674             STA_PPSSIGNAL)) {
  675                 if (offset > MAXPHASE)
  676                         time_monitor = MAXPHASE;
  677                 else if (offset < -MAXPHASE)
  678                         time_monitor = -MAXPHASE;
  679                 else
  680                         time_monitor = offset;
  681                 L_LINT(time_offset, time_monitor);
  682         }
  683 
  684         /*
  685          * Select how the frequency is to be controlled and in which
  686          * mode (PLL or FLL). If the PPS signal is present and enabled
  687          * to discipline the frequency, the PPS frequency is used;
  688          * otherwise, the argument offset is used to compute it.
  689          */
  690         if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
  691                 time_reftime = time_second;
  692                 return;
  693         }
  694         if (time_status & STA_FREQHOLD || time_reftime == 0)
  695                 time_reftime = time_second;
  696         mtemp = time_second - time_reftime;
  697         L_LINT(ftemp, time_monitor);
  698         L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
  699         L_MPY(ftemp, mtemp);
  700         L_ADD(time_freq, ftemp);
  701         time_status &= ~STA_MODE;
  702         if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
  703             MAXSEC)) {
  704                 L_LINT(ftemp, (time_monitor << 4) / mtemp);
  705                 L_RSHIFT(ftemp, SHIFT_FLL + 4);
  706                 L_ADD(time_freq, ftemp);
  707                 time_status |= STA_MODE;
  708         }
  709         time_reftime = time_second;
  710         if (L_GINT(time_freq) > MAXFREQ)
  711                 L_LINT(time_freq, MAXFREQ);
  712         else if (L_GINT(time_freq) < -MAXFREQ)
  713                 L_LINT(time_freq, -MAXFREQ);
  714 }
  715 
  716 #ifdef PPS_SYNC
  717 /*
  718  * hardpps() - discipline CPU clock oscillator to external PPS signal
  719  *
  720  * This routine is called at each PPS interrupt in order to discipline
  721  * the CPU clock oscillator to the PPS signal. There are two independent
  722  * first-order feedback loops, one for the phase, the other for the
  723  * frequency. The phase loop measures and grooms the PPS phase offset
  724  * and leaves it in a handy spot for the seconds overflow routine. The
  725  * frequency loop averages successive PPS phase differences and
  726  * calculates the PPS frequency offset, which is also processed by the
  727  * seconds overflow routine. The code requires the caller to capture the
  728  * time and architecture-dependent hardware counter values in
  729  * nanoseconds at the on-time PPS signal transition.
  730  *
  731  * Note that, on some Unix systems this routine runs at an interrupt
  732  * priority level higher than the timer interrupt routine hardclock().
  733  * Therefore, the variables used are distinct from the hardclock()
  734  * variables, except for the actual time and frequency variables, which
  735  * are determined by this routine and updated atomically.
  736  */
  737 void
  738 hardpps(tsp, nsec)
  739         struct timespec *tsp;   /* time at PPS */
  740         long nsec;              /* hardware counter at PPS */
  741 {
  742         long u_sec, u_nsec, v_nsec; /* temps */
  743         l_fp ftemp;
  744 
  745         /*
  746          * The signal is first processed by a range gate and frequency
  747          * discriminator. The range gate rejects noise spikes outside
  748          * the range +-500 us. The frequency discriminator rejects input
  749          * signals with apparent frequency outside the range 1 +-500
  750          * PPM. If two hits occur in the same second, we ignore the
  751          * later hit; if not and a hit occurs outside the range gate,
  752          * keep the later hit for later comparison, but do not process
  753          * it.
  754          */
  755         time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
  756         time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
  757         pps_valid = PPS_VALID;
  758         u_sec = tsp->tv_sec;
  759         u_nsec = tsp->tv_nsec;
  760         if (u_nsec >= (NANOSECOND >> 1)) {
  761                 u_nsec -= NANOSECOND;
  762                 u_sec++;
  763         }
  764         v_nsec = u_nsec - pps_tf[0].tv_nsec;
  765         if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
  766             MAXFREQ)
  767                 return;
  768         pps_tf[2] = pps_tf[1];
  769         pps_tf[1] = pps_tf[0];
  770         pps_tf[0].tv_sec = u_sec;
  771         pps_tf[0].tv_nsec = u_nsec;
  772 
  773         /*
  774          * Compute the difference between the current and previous
  775          * counter values. If the difference exceeds 0.5 s, assume it
  776          * has wrapped around, so correct 1.0 s. If the result exceeds
  777          * the tick interval, the sample point has crossed a tick
  778          * boundary during the last second, so correct the tick. Very
  779          * intricate.
  780          */
  781         u_nsec = nsec;
  782         if (u_nsec > (NANOSECOND >> 1))
  783                 u_nsec -= NANOSECOND;
  784         else if (u_nsec < -(NANOSECOND >> 1))
  785                 u_nsec += NANOSECOND;
  786         pps_fcount += u_nsec;
  787         if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
  788                 return;
  789         time_status &= ~STA_PPSJITTER;
  790 
  791         /*
  792          * A three-stage median filter is used to help denoise the PPS
  793          * time. The median sample becomes the time offset estimate; the
  794          * difference between the other two samples becomes the time
  795          * dispersion (jitter) estimate.
  796          */
  797         if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
  798                 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
  799                         v_nsec = pps_tf[1].tv_nsec;     /* 0 1 2 */
  800                         u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
  801                 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
  802                         v_nsec = pps_tf[0].tv_nsec;     /* 2 0 1 */
  803                         u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
  804                 } else {
  805                         v_nsec = pps_tf[2].tv_nsec;     /* 0 2 1 */
  806                         u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
  807                 }
  808         } else {
  809                 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
  810                         v_nsec = pps_tf[1].tv_nsec;     /* 2 1 0 */
  811                         u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
  812                 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
  813                         v_nsec = pps_tf[0].tv_nsec;     /* 1 0 2 */
  814                         u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
  815                 } else {
  816                         v_nsec = pps_tf[2].tv_nsec;     /* 1 2 0 */
  817                         u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
  818                 }
  819         }
  820 
  821         /*
  822          * Nominal jitter is due to PPS signal noise and interrupt
  823          * latency. If it exceeds the popcorn threshold, the sample is
  824          * discarded. otherwise, if so enabled, the time offset is
  825          * updated. We can tolerate a modest loss of data here without
  826          * much degrading time accuracy.
  827          */
  828         if (u_nsec > (pps_jitter << PPS_POPCORN)) {
  829                 time_status |= STA_PPSJITTER;
  830                 pps_jitcnt++;
  831         } else if (time_status & STA_PPSTIME) {
  832                 time_monitor = -v_nsec;
  833                 L_LINT(time_offset, time_monitor);
  834         }
  835         pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
  836         u_sec = pps_tf[0].tv_sec - pps_lastsec;
  837         if (u_sec < (1 << pps_shift))
  838                 return;
  839 
  840         /*
  841          * At the end of the calibration interval the difference between
  842          * the first and last counter values becomes the scaled
  843          * frequency. It will later be divided by the length of the
  844          * interval to determine the frequency update. If the frequency
  845          * exceeds a sanity threshold, or if the actual calibration
  846          * interval is not equal to the expected length, the data are
  847          * discarded. We can tolerate a modest loss of data here without
  848          * much degrading frequency accuracy.
  849          */
  850         pps_calcnt++;
  851         v_nsec = -pps_fcount;
  852         pps_lastsec = pps_tf[0].tv_sec;
  853         pps_fcount = 0;
  854         u_nsec = MAXFREQ << pps_shift;
  855         if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
  856             pps_shift)) {
  857                 time_status |= STA_PPSERROR;
  858                 pps_errcnt++;
  859                 return;
  860         }
  861 
  862         /*
  863          * Here the raw frequency offset and wander (stability) is
  864          * calculated. If the wander is less than the wander threshold
  865          * for four consecutive averaging intervals, the interval is
  866          * doubled; if it is greater than the threshold for four
  867          * consecutive intervals, the interval is halved. The scaled
  868          * frequency offset is converted to frequency offset. The
  869          * stability metric is calculated as the average of recent
  870          * frequency changes, but is used only for performance
  871          * monitoring.
  872          */
  873         L_LINT(ftemp, v_nsec);
  874         L_RSHIFT(ftemp, pps_shift);
  875         L_SUB(ftemp, pps_freq);
  876         u_nsec = L_GINT(ftemp);
  877         if (u_nsec > PPS_MAXWANDER) {
  878                 L_LINT(ftemp, PPS_MAXWANDER);
  879                 pps_intcnt--;
  880                 time_status |= STA_PPSWANDER;
  881                 pps_stbcnt++;
  882         } else if (u_nsec < -PPS_MAXWANDER) {
  883                 L_LINT(ftemp, -PPS_MAXWANDER);
  884                 pps_intcnt--;
  885                 time_status |= STA_PPSWANDER;
  886                 pps_stbcnt++;
  887         } else {
  888                 pps_intcnt++;
  889         }
  890         if (pps_intcnt >= 4) {
  891                 pps_intcnt = 4;
  892                 if (pps_shift < pps_shiftmax) {
  893                         pps_shift++;
  894                         pps_intcnt = 0;
  895                 }
  896         } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
  897                 pps_intcnt = -4;
  898                 if (pps_shift > PPS_FAVG) {
  899                         pps_shift--;
  900                         pps_intcnt = 0;
  901                 }
  902         }
  903         if (u_nsec < 0)
  904                 u_nsec = -u_nsec;
  905         pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
  906 
  907         /*
  908          * The PPS frequency is recalculated and clamped to the maximum
  909          * MAXFREQ. If enabled, the system clock frequency is updated as
  910          * well.
  911          */
  912         L_ADD(pps_freq, ftemp);
  913         u_nsec = L_GINT(pps_freq);
  914         if (u_nsec > MAXFREQ)
  915                 L_LINT(pps_freq, MAXFREQ);
  916         else if (u_nsec < -MAXFREQ)
  917                 L_LINT(pps_freq, -MAXFREQ);
  918         if (time_status & STA_PPSFREQ)
  919                 time_freq = pps_freq;
  920 }
  921 #endif /* PPS_SYNC */
  922 
  923 #ifndef _SYS_SYSPROTO_H_
  924 struct adjtime_args {
  925         struct timeval *delta;
  926         struct timeval *olddelta;
  927 };
  928 #endif
  929 /* ARGSUSED */
  930 int
  931 adjtime(struct thread *td, struct adjtime_args *uap)
  932 {
  933         struct timeval delta, olddelta, *deltap;
  934         int error;
  935 
  936         if (uap->delta) {
  937                 error = copyin(uap->delta, &delta, sizeof(delta));
  938                 if (error)
  939                         return (error);
  940                 deltap = &delta;
  941         } else
  942                 deltap = NULL;
  943         error = kern_adjtime(td, deltap, &olddelta);
  944         if (uap->olddelta && error == 0)
  945                 error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
  946         return (error);
  947 }
  948 
  949 int
  950 kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
  951 {
  952         struct timeval atv;
  953         int error;
  954 
  955         mtx_lock(&Giant);
  956         if (olddelta) {
  957                 atv.tv_sec = time_adjtime / 1000000;
  958                 atv.tv_usec = time_adjtime % 1000000;
  959                 if (atv.tv_usec < 0) {
  960                         atv.tv_usec += 1000000;
  961                         atv.tv_sec--;
  962                 }
  963                 *olddelta = atv;
  964         }
  965         if (delta) {
  966                 if ((error = priv_check(td, PRIV_ADJTIME))) {
  967                         mtx_unlock(&Giant);
  968                         return (error);
  969                 }
  970                 time_adjtime = (int64_t)delta->tv_sec * 1000000 +
  971                     delta->tv_usec;
  972         }
  973         mtx_unlock(&Giant);
  974         return (0);
  975 }
  976 
  977 static struct callout resettodr_callout;
  978 static int resettodr_period = 1800;
  979 
  980 static void
  981 periodic_resettodr(void *arg __unused)
  982 {
  983 
  984         if (!ntp_is_time_error()) {
  985                 mtx_lock(&Giant);
  986                 resettodr();
  987                 mtx_unlock(&Giant);
  988         }
  989         if (resettodr_period > 0)
  990                 callout_reset(&resettodr_callout, resettodr_period * hz,
  991                     periodic_resettodr, NULL);
  992 }
  993 
  994 static void
  995 shutdown_resettodr(void *arg __unused, int howto __unused)
  996 {
  997 
  998         callout_drain(&resettodr_callout);
  999         if (resettodr_period > 0 && !ntp_is_time_error()) {
 1000                 mtx_lock(&Giant);
 1001                 resettodr();
 1002                 mtx_unlock(&Giant);
 1003         }
 1004 }
 1005 
 1006 static int
 1007 sysctl_resettodr_period(SYSCTL_HANDLER_ARGS)
 1008 {
 1009         int error;
 1010 
 1011         error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
 1012         if (error || !req->newptr)
 1013                 return (error);
 1014         if (resettodr_period == 0)
 1015                 callout_stop(&resettodr_callout);
 1016         else
 1017                 callout_reset(&resettodr_callout, resettodr_period * hz,
 1018                     periodic_resettodr, NULL);
 1019         return (0);
 1020 }
 1021 
 1022 SYSCTL_PROC(_machdep, OID_AUTO, rtc_save_period, CTLTYPE_INT|CTLFLAG_RW,
 1023         &resettodr_period, 1800, sysctl_resettodr_period, "I",
 1024         "Save system time to RTC with this period (in seconds)");
 1025 TUNABLE_INT("machdep.rtc_save_period", &resettodr_period);
 1026 
 1027 static void
 1028 start_periodic_resettodr(void *arg __unused)
 1029 {
 1030 
 1031         EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_resettodr, NULL,
 1032             SHUTDOWN_PRI_FIRST);
 1033         callout_init(&resettodr_callout, 1);
 1034         if (resettodr_period == 0)
 1035                 return;
 1036         callout_reset(&resettodr_callout, resettodr_period * hz,
 1037             periodic_resettodr, NULL);
 1038 }
 1039 
 1040 SYSINIT(periodic_resettodr, SI_SUB_RUN_SCHEDULER, SI_ORDER_MIDDLE,
 1041         start_periodic_resettodr, NULL);

Cache object: 40623d883d1500d9157de737d405eaf5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.