The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_ntptime.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: kern_ntptime.c,v 1.41 2006/11/01 10:17:58 yamt Exp $   */
    2 #include <sys/types.h>  /* XXX to get __HAVE_TIMECOUNTER, remove
    3                            after all ports are converted. */
    4 #ifdef __HAVE_TIMECOUNTER
    5 
    6 /*-
    7  ***********************************************************************
    8  *                                                                     *
    9  * Copyright (c) David L. Mills 1993-2001                              *
   10  *                                                                     *
   11  * Permission to use, copy, modify, and distribute this software and   *
   12  * its documentation for any purpose and without fee is hereby         *
   13  * granted, provided that the above copyright notice appears in all    *
   14  * copies and that both the copyright notice and this permission       *
   15  * notice appear in supporting documentation, and that the name        *
   16  * University of Delaware not be used in advertising or publicity      *
   17  * pertaining to distribution of the software without specific,        *
   18  * written prior permission. The University of Delaware makes no       *
   19  * representations about the suitability this software for any         *
   20  * purpose. It is provided "as is" without express or implied          *
   21  * warranty.                                                           *
   22  *                                                                     *
   23  **********************************************************************/
   24 
   25 /*
   26  * Adapted from the original sources for FreeBSD and timecounters by:
   27  * Poul-Henning Kamp <phk@FreeBSD.org>.
   28  *
   29  * The 32bit version of the "LP" macros seems a bit past its "sell by" 
   30  * date so I have retained only the 64bit version and included it directly
   31  * in this file.
   32  *
   33  * Only minor changes done to interface with the timecounters over in
   34  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
   35  * confusing and/or plain wrong in that context.
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 /* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
   40 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.41 2006/11/01 10:17:58 yamt Exp $");
   41 
   42 #include "opt_ntp.h"
   43 #include "opt_compat_netbsd.h"
   44 
   45 #include <sys/param.h>
   46 #include <sys/resourcevar.h>
   47 #include <sys/systm.h>
   48 #include <sys/kernel.h>
   49 #include <sys/proc.h>
   50 #include <sys/sysctl.h>
   51 #include <sys/timex.h>
   52 #ifdef COMPAT_30
   53 #include <compat/sys/timex.h>
   54 #endif
   55 #include <sys/vnode.h>
   56 #include <sys/kauth.h>
   57 
   58 #include <sys/mount.h>
   59 #include <sys/sa.h>
   60 #include <sys/syscallargs.h>
   61 
   62 #include <machine/cpu.h>
   63 
   64 /*
   65  * Single-precision macros for 64-bit machines
   66  */
   67 typedef int64_t l_fp;
   68 #define L_ADD(v, u)     ((v) += (u))
   69 #define L_SUB(v, u)     ((v) -= (u))
   70 #define L_ADDHI(v, a)   ((v) += (int64_t)(a) << 32)
   71 #define L_NEG(v)        ((v) = -(v))
   72 #define L_RSHIFT(v, n) \
   73         do { \
   74                 if ((v) < 0) \
   75                         (v) = -(-(v) >> (n)); \
   76                 else \
   77                         (v) = (v) >> (n); \
   78         } while (0)
   79 #define L_MPY(v, a)     ((v) *= (a))
   80 #define L_CLR(v)        ((v) = 0)
   81 #define L_ISNEG(v)      ((v) < 0)
   82 #define L_LINT(v, a)    ((v) = (int64_t)(a) << 32)
   83 #define L_GINT(v)       ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
   84 
   85 #ifdef NTP
   86 /*
   87  * Generic NTP kernel interface
   88  *
   89  * These routines constitute the Network Time Protocol (NTP) interfaces
   90  * for user and daemon application programs. The ntp_gettime() routine
   91  * provides the time, maximum error (synch distance) and estimated error
   92  * (dispersion) to client user application programs. The ntp_adjtime()
   93  * routine is used by the NTP daemon to adjust the system clock to an
   94  * externally derived time. The time offset and related variables set by
   95  * this routine are used by other routines in this module to adjust the
   96  * phase and frequency of the clock discipline loop which controls the
   97  * system clock.
   98  *
   99  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
  100  * defined), the time at each tick interrupt is derived directly from
  101  * the kernel time variable. When the kernel time is reckoned in
  102  * microseconds, (NTP_NANO undefined), the time is derived from the
  103  * kernel time variable together with a variable representing the
  104  * leftover nanoseconds at the last tick interrupt. In either case, the
  105  * current nanosecond time is reckoned from these values plus an
  106  * interpolated value derived by the clock routines in another
  107  * architecture-specific module. The interpolation can use either a
  108  * dedicated counter or a processor cycle counter (PCC) implemented in
  109  * some architectures.
  110  *
  111  * Note that all routines must run at priority splclock or higher.
  112  */
  113 /*
  114  * Phase/frequency-lock loop (PLL/FLL) definitions
  115  *
  116  * The nanosecond clock discipline uses two variable types, time
  117  * variables and frequency variables. Both types are represented as 64-
  118  * bit fixed-point quantities with the decimal point between two 32-bit
  119  * halves. On a 32-bit machine, each half is represented as a single
  120  * word and mathematical operations are done using multiple-precision
  121  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
  122  * used.
  123  *
  124  * A time variable is a signed 64-bit fixed-point number in ns and
  125  * fraction. It represents the remaining time offset to be amortized
  126  * over succeeding tick interrupts. The maximum time offset is about
  127  * 0.5 s and the resolution is about 2.3e-10 ns.
  128  *
  129  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  130  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  131  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  132  * |s s s|                       ns                                |
  133  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  134  * |                        fraction                               |
  135  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  136  *
  137  * A frequency variable is a signed 64-bit fixed-point number in ns/s
  138  * and fraction. It represents the ns and fraction to be added to the
  139  * kernel time variable at each second. The maximum frequency offset is
  140  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
  141  *
  142  *                      1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
  143  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  144  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  145  * |s s s s s s s s s s s s s|            ns/s                     |
  146  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  147  * |                        fraction                               |
  148  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  149  */
  150 /*
  151  * The following variables establish the state of the PLL/FLL and the
  152  * residual time and frequency offset of the local clock.
  153  */
  154 #define SHIFT_PLL       4               /* PLL loop gain (shift) */
  155 #define SHIFT_FLL       2               /* FLL loop gain (shift) */
  156 
  157 static int time_state = TIME_OK;        /* clock state */
  158 static int time_status = STA_UNSYNC;    /* clock status bits */
  159 static long time_tai;                   /* TAI offset (s) */
  160 static long time_monitor;               /* last time offset scaled (ns) */
  161 static long time_constant;              /* poll interval (shift) (s) */
  162 static long time_precision = 1;         /* clock precision (ns) */
  163 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
  164 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
  165 static long time_reftime;               /* time at last adjustment (s) */
  166 static l_fp time_offset;                /* time offset (ns) */
  167 static l_fp time_freq;                  /* frequency offset (ns/s) */
  168 #endif /* NTP */
  169 
  170 static l_fp time_adj;                   /* tick adjust (ns/s) */
  171 int64_t time_adjtime;           /* correction from adjtime(2) (usec) */
  172 
  173 extern int time_adjusted;       /* ntp might have changed the system time */
  174 
  175 #ifdef NTP
  176 #ifdef PPS_SYNC
  177 /*
  178  * The following variables are used when a pulse-per-second (PPS) signal
  179  * is available and connected via a modem control lead. They establish
  180  * the engineering parameters of the clock discipline loop when
  181  * controlled by the PPS signal.
  182  */
  183 #define PPS_FAVG        2               /* min freq avg interval (s) (shift) */
  184 #define PPS_FAVGDEF     8               /* default freq avg int (s) (shift) */
  185 #define PPS_FAVGMAX     15              /* max freq avg interval (s) (shift) */
  186 #define PPS_PAVG        4               /* phase avg interval (s) (shift) */
  187 #define PPS_VALID       120             /* PPS signal watchdog max (s) */
  188 #define PPS_MAXWANDER   100000          /* max PPS wander (ns/s) */
  189 #define PPS_POPCORN     2               /* popcorn spike threshold (shift) */
  190 
  191 static struct timespec pps_tf[3];       /* phase median filter */
  192 static l_fp pps_freq;                   /* scaled frequency offset (ns/s) */
  193 static long pps_fcount;                 /* frequency accumulator */
  194 static long pps_jitter;                 /* nominal jitter (ns) */
  195 static long pps_stabil;                 /* nominal stability (scaled ns/s) */
  196 static long pps_lastsec;                /* time at last calibration (s) */
  197 static int pps_valid;                   /* signal watchdog counter */
  198 static int pps_shift = PPS_FAVG;        /* interval duration (s) (shift) */
  199 static int pps_shiftmax = PPS_FAVGDEF;  /* max interval duration (s) (shift) */
  200 static int pps_intcnt;                  /* wander counter */
  201 
  202 /*
  203  * PPS signal quality monitors
  204  */
  205 static long pps_calcnt;                 /* calibration intervals */
  206 static long pps_jitcnt;                 /* jitter limit exceeded */
  207 static long pps_stbcnt;                 /* stability limit exceeded */
  208 static long pps_errcnt;                 /* calibration errors */
  209 #endif /* PPS_SYNC */
  210 /*
  211  * End of phase/frequency-lock loop (PLL/FLL) definitions
  212  */
  213 
  214 static void hardupdate(long offset);
  215 
  216 /*
  217  * ntp_gettime() - NTP user application interface
  218  */
  219 void
  220 ntp_gettime(ntv)
  221         struct ntptimeval *ntv;
  222 {
  223         nanotime(&ntv->time);
  224         ntv->maxerror = time_maxerror;
  225         ntv->esterror = time_esterror;
  226         ntv->tai = time_tai;
  227         ntv->time_state = time_state;
  228 }
  229 
  230 /* ARGSUSED */
  231 /*
  232  * ntp_adjtime() - NTP daemon application interface
  233  */
  234 int
  235 sys_ntp_adjtime(l, v, retval)
  236         struct lwp *l;
  237         void *v;
  238         register_t *retval;
  239 {
  240         struct sys_ntp_adjtime_args /* {
  241                 syscallarg(struct timex *) tp;
  242         } */ *uap = v;
  243         struct timex ntv;
  244         int error = 0;
  245 
  246         error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv, sizeof(ntv));
  247         if (error != 0)
  248                 return (error);
  249 
  250         if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
  251             KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
  252             NULL, NULL)) != 0)
  253                 return (error);
  254 
  255         ntp_adjtime1(&ntv);
  256 
  257         error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
  258         if (!error)
  259                 *retval = ntp_timestatus();
  260 
  261         return error;
  262 }
  263 
  264 void
  265 ntp_adjtime1(ntv)
  266         struct timex *ntv;
  267 {
  268         long freq;
  269         int modes;
  270         int s;
  271 
  272         /*
  273          * Update selected clock variables - only the superuser can
  274          * change anything. Note that there is no error checking here on
  275          * the assumption the superuser should know what it is doing.
  276          * Note that either the time constant or TAI offset are loaded
  277          * from the ntv.constant member, depending on the mode bits. If
  278          * the STA_PLL bit in the status word is cleared, the state and
  279          * status words are reset to the initial values at boot.
  280          */
  281         modes = ntv->modes;
  282         if (modes != 0)
  283                 /* We need to save the system time during shutdown */
  284                 time_adjusted |= 2;
  285         s = splclock();
  286         if (modes & MOD_MAXERROR)
  287                 time_maxerror = ntv->maxerror;
  288         if (modes & MOD_ESTERROR)
  289                 time_esterror = ntv->esterror;
  290         if (modes & MOD_STATUS) {
  291                 if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
  292                         time_state = TIME_OK;
  293                         time_status = STA_UNSYNC;
  294 #ifdef PPS_SYNC
  295                         pps_shift = PPS_FAVG;
  296 #endif /* PPS_SYNC */
  297                 }
  298                 time_status &= STA_RONLY;
  299                 time_status |= ntv->status & ~STA_RONLY;
  300         }
  301         if (modes & MOD_TIMECONST) {
  302                 if (ntv->constant < 0)
  303                         time_constant = 0;
  304                 else if (ntv->constant > MAXTC)
  305                         time_constant = MAXTC;
  306                 else
  307                         time_constant = ntv->constant;
  308         }
  309         if (modes & MOD_TAI) {
  310                 if (ntv->constant > 0)  /* XXX zero & negative numbers ? */
  311                         time_tai = ntv->constant;
  312         }
  313 #ifdef PPS_SYNC
  314         if (modes & MOD_PPSMAX) {
  315                 if (ntv->shift < PPS_FAVG)
  316                         pps_shiftmax = PPS_FAVG;
  317                 else if (ntv->shift > PPS_FAVGMAX)
  318                         pps_shiftmax = PPS_FAVGMAX;
  319                 else
  320                         pps_shiftmax = ntv->shift;
  321         }
  322 #endif /* PPS_SYNC */
  323         if (modes & MOD_NANO)
  324                 time_status |= STA_NANO;
  325         if (modes & MOD_MICRO)
  326                 time_status &= ~STA_NANO;
  327         if (modes & MOD_CLKB)
  328                 time_status |= STA_CLK;
  329         if (modes & MOD_CLKA)
  330                 time_status &= ~STA_CLK;
  331         if (modes & MOD_FREQUENCY) {
  332                 freq = (ntv->freq * 1000LL) >> 16;
  333                 if (freq > MAXFREQ)
  334                         L_LINT(time_freq, MAXFREQ);
  335                 else if (freq < -MAXFREQ)
  336                         L_LINT(time_freq, -MAXFREQ);
  337                 else {
  338                         /*
  339                          * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
  340                          * time_freq is [ns/s * 2^32]
  341                          */
  342                         time_freq = ntv->freq * 1000LL * 65536LL;
  343                 }
  344 #ifdef PPS_SYNC
  345                 pps_freq = time_freq;
  346 #endif /* PPS_SYNC */
  347         }
  348         if (modes & MOD_OFFSET) {
  349                 if (time_status & STA_NANO)
  350                         hardupdate(ntv->offset);
  351                 else
  352                         hardupdate(ntv->offset * 1000);
  353         }
  354 
  355         /*
  356          * Retrieve all clock variables. Note that the TAI offset is
  357          * returned only by ntp_gettime();
  358          */
  359         if (time_status & STA_NANO)
  360                 ntv->offset = L_GINT(time_offset);
  361         else
  362                 ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
  363         ntv->freq = L_GINT((time_freq / 1000LL) << 16);
  364         ntv->maxerror = time_maxerror;
  365         ntv->esterror = time_esterror;
  366         ntv->status = time_status;
  367         ntv->constant = time_constant;
  368         if (time_status & STA_NANO)
  369                 ntv->precision = time_precision;
  370         else
  371                 ntv->precision = time_precision / 1000;
  372         ntv->tolerance = MAXFREQ * SCALE_PPM;
  373 #ifdef PPS_SYNC
  374         ntv->shift = pps_shift;
  375         ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
  376         if (time_status & STA_NANO)
  377                 ntv->jitter = pps_jitter;
  378         else
  379                 ntv->jitter = pps_jitter / 1000;
  380         ntv->stabil = pps_stabil;
  381         ntv->calcnt = pps_calcnt;
  382         ntv->errcnt = pps_errcnt;
  383         ntv->jitcnt = pps_jitcnt;
  384         ntv->stbcnt = pps_stbcnt;
  385 #endif /* PPS_SYNC */
  386         splx(s);
  387 }
  388 #endif /* NTP */
  389 
  390 /*
  391  * second_overflow() - called after ntp_tick_adjust()
  392  *
  393  * This routine is ordinarily called immediately following the above
  394  * routine ntp_tick_adjust(). While these two routines are normally
  395  * combined, they are separated here only for the purposes of
  396  * simulation.
  397  */
  398 void
  399 ntp_update_second(int64_t *adjustment, time_t *newsec)
  400 {
  401         int tickrate;
  402         l_fp ftemp;             /* 32/64-bit temporary */
  403 
  404 #ifdef NTP
  405 
  406         /*
  407          * On rollover of the second both the nanosecond and microsecond
  408          * clocks are updated and the state machine cranked as
  409          * necessary. The phase adjustment to be used for the next
  410          * second is calculated and the maximum error is increased by
  411          * the tolerance.
  412          */
  413         time_maxerror += MAXFREQ / 1000;
  414 
  415         /*
  416          * Leap second processing. If in leap-insert state at
  417          * the end of the day, the system clock is set back one
  418          * second; if in leap-delete state, the system clock is
  419          * set ahead one second. The nano_time() routine or
  420          * external clock driver will insure that reported time
  421          * is always monotonic.
  422          */
  423         switch (time_state) {
  424 
  425                 /*
  426                  * No warning.
  427                  */
  428                 case TIME_OK:
  429                 if (time_status & STA_INS)
  430                         time_state = TIME_INS;
  431                 else if (time_status & STA_DEL)
  432                         time_state = TIME_DEL;
  433                 break;
  434 
  435                 /*
  436                  * Insert second 23:59:60 following second
  437                  * 23:59:59.
  438                  */
  439                 case TIME_INS:
  440                 if (!(time_status & STA_INS))
  441                         time_state = TIME_OK;
  442                 else if ((*newsec) % 86400 == 0) {
  443                         (*newsec)--;
  444                         time_state = TIME_OOP;
  445                         time_tai++;
  446                 }
  447                 break;
  448 
  449                 /*
  450                  * Delete second 23:59:59.
  451                  */
  452                 case TIME_DEL:
  453                 if (!(time_status & STA_DEL))
  454                         time_state = TIME_OK;
  455                 else if (((*newsec) + 1) % 86400 == 0) {
  456                         (*newsec)++;
  457                         time_tai--;
  458                         time_state = TIME_WAIT;
  459                 }
  460                 break;
  461 
  462                 /*
  463                  * Insert second in progress.
  464                  */
  465                 case TIME_OOP:
  466                         time_state = TIME_WAIT;
  467                 break;
  468 
  469                 /*
  470                  * Wait for status bits to clear.
  471                  */
  472                 case TIME_WAIT:
  473                 if (!(time_status & (STA_INS | STA_DEL)))
  474                         time_state = TIME_OK;
  475         }
  476 
  477         /*
  478          * Compute the total time adjustment for the next second
  479          * in ns. The offset is reduced by a factor depending on
  480          * whether the PPS signal is operating. Note that the
  481          * value is in effect scaled by the clock frequency,
  482          * since the adjustment is added at each tick interrupt.
  483          */
  484         ftemp = time_offset;
  485 #ifdef PPS_SYNC
  486         /* XXX even if PPS signal dies we should finish adjustment ? */
  487         if (time_status & STA_PPSTIME && time_status &
  488             STA_PPSSIGNAL)
  489                 L_RSHIFT(ftemp, pps_shift);
  490         else
  491                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  492 #else
  493                 L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
  494 #endif /* PPS_SYNC */
  495         time_adj = ftemp;
  496         L_SUB(time_offset, ftemp);
  497         L_ADD(time_adj, time_freq);
  498         
  499 #ifdef PPS_SYNC
  500         if (pps_valid > 0)
  501                 pps_valid--;
  502         else
  503                 time_status &= ~STA_PPSSIGNAL;
  504 #endif /* PPS_SYNC */
  505 #else  /* !NTP */
  506         L_CLR(time_adj);
  507 #endif /* !NTP */
  508 
  509         /*
  510          * Apply any correction from adjtime(2).  If more than one second
  511          * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
  512          * until the last second is slewed the final < 500 usecs.
  513          */
  514         if (time_adjtime != 0) {
  515                 if (time_adjtime > 1000000)
  516                         tickrate = 5000;
  517                 else if (time_adjtime < -1000000)
  518                         tickrate = -5000;
  519                 else if (time_adjtime > 500)
  520                         tickrate = 500;
  521                 else if (time_adjtime < -500)
  522                         tickrate = -500;
  523                 else
  524                         tickrate = time_adjtime;
  525                 time_adjtime -= tickrate;
  526                 L_LINT(ftemp, tickrate * 1000);
  527                 L_ADD(time_adj, ftemp);
  528         }
  529         *adjustment = time_adj;
  530 }
  531 
  532 /*
  533  * ntp_init() - initialize variables and structures
  534  *
  535  * This routine must be called after the kernel variables hz and tick
  536  * are set or changed and before the next tick interrupt. In this
  537  * particular implementation, these values are assumed set elsewhere in
  538  * the kernel. The design allows the clock frequency and tick interval
  539  * to be changed while the system is running. So, this routine should
  540  * probably be integrated with the code that does that.
  541  */
  542 void
  543 ntp_init(void)
  544 {
  545 
  546         /*
  547          * The following variables are initialized only at startup. Only
  548          * those structures not cleared by the compiler need to be
  549          * initialized, and these only in the simulator. In the actual
  550          * kernel, any nonzero values here will quickly evaporate.
  551          */
  552         L_CLR(time_adj);
  553 #ifdef NTP
  554         L_CLR(time_offset);
  555         L_CLR(time_freq);
  556 #ifdef PPS_SYNC
  557         pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
  558         pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
  559         pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
  560         pps_fcount = 0;
  561         L_CLR(pps_freq);
  562 #endif /* PPS_SYNC */
  563 #endif
  564 }
  565 
  566 #ifdef NTP
  567 /*
  568  * hardupdate() - local clock update
  569  *
  570  * This routine is called by ntp_adjtime() to update the local clock
  571  * phase and frequency. The implementation is of an adaptive-parameter,
  572  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
  573  * time and frequency offset estimates for each call. If the kernel PPS
  574  * discipline code is configured (PPS_SYNC), the PPS signal itself
  575  * determines the new time offset, instead of the calling argument.
  576  * Presumably, calls to ntp_adjtime() occur only when the caller
  577  * believes the local clock is valid within some bound (+-128 ms with
  578  * NTP). If the caller's time is far different than the PPS time, an
  579  * argument will ensue, and it's not clear who will lose.
  580  *
  581  * For uncompensated quartz crystal oscillators and nominal update
  582  * intervals less than 256 s, operation should be in phase-lock mode,
  583  * where the loop is disciplined to phase. For update intervals greater
  584  * than 1024 s, operation should be in frequency-lock mode, where the
  585  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
  586  * is selected by the STA_MODE status bit.
  587  *
  588  * Note: splclock() is in effect.
  589  */
  590 void
  591 hardupdate(long offset)
  592 {
  593         long mtemp;
  594         l_fp ftemp;
  595 
  596         /*
  597          * Select how the phase is to be controlled and from which
  598          * source. If the PPS signal is present and enabled to
  599          * discipline the time, the PPS offset is used; otherwise, the
  600          * argument offset is used.
  601          */
  602         if (!(time_status & STA_PLL))
  603                 return;
  604         if (!(time_status & STA_PPSTIME && time_status &
  605             STA_PPSSIGNAL)) {
  606                 if (offset > MAXPHASE)
  607                         time_monitor = MAXPHASE;
  608                 else if (offset < -MAXPHASE)
  609                         time_monitor = -MAXPHASE;
  610                 else
  611                         time_monitor = offset;
  612                 L_LINT(time_offset, time_monitor);
  613         }
  614 
  615         /*
  616          * Select how the frequency is to be controlled and in which
  617          * mode (PLL or FLL). If the PPS signal is present and enabled
  618          * to discipline the frequency, the PPS frequency is used;
  619          * otherwise, the argument offset is used to compute it.
  620          */
  621         if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
  622                 time_reftime = time_second;
  623                 return;
  624         }
  625         if (time_status & STA_FREQHOLD || time_reftime == 0)
  626                 time_reftime = time_second;
  627         mtemp = time_second - time_reftime;
  628         L_LINT(ftemp, time_monitor);
  629         L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
  630         L_MPY(ftemp, mtemp);
  631         L_ADD(time_freq, ftemp);
  632         time_status &= ~STA_MODE;
  633         if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
  634             MAXSEC)) {
  635                 L_LINT(ftemp, (time_monitor << 4) / mtemp);
  636                 L_RSHIFT(ftemp, SHIFT_FLL + 4);
  637                 L_ADD(time_freq, ftemp);
  638                 time_status |= STA_MODE;
  639         }
  640         time_reftime = time_second;
  641         if (L_GINT(time_freq) > MAXFREQ)
  642                 L_LINT(time_freq, MAXFREQ);
  643         else if (L_GINT(time_freq) < -MAXFREQ)
  644                 L_LINT(time_freq, -MAXFREQ);
  645 }
  646 
  647 #ifdef PPS_SYNC
  648 /*
  649  * hardpps() - discipline CPU clock oscillator to external PPS signal
  650  *
  651  * This routine is called at each PPS interrupt in order to discipline
  652  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
  653  * and leaves it in a handy spot for the hardclock() routine. It
  654  * integrates successive PPS phase differences and calculates the
  655  * frequency offset. This is used in hardclock() to discipline the CPU
  656  * clock oscillator so that intrinsic frequency error is cancelled out.
  657  * The code requires the caller to capture the time and hardware counter
  658  * value at the on-time PPS signal transition.
  659  *
  660  * Note that, on some Unix systems, this routine runs at an interrupt
  661  * priority level higher than the timer interrupt routine hardclock().
  662  * Therefore, the variables used are distinct from the hardclock()
  663  * variables, except for certain exceptions: The PPS frequency pps_freq
  664  * and phase pps_offset variables are determined by this routine and
  665  * updated atomically. The time_tolerance variable can be considered a
  666  * constant, since it is infrequently changed, and then only when the
  667  * PPS signal is disabled. The watchdog counter pps_valid is updated
  668  * once per second by hardclock() and is atomically cleared in this
  669  * routine.
  670  */
  671 void
  672 hardpps(struct timespec *tsp,           /* time at PPS */
  673         long nsec                       /* hardware counter at PPS */)
  674 {
  675         long u_sec, u_nsec, v_nsec; /* temps */
  676         l_fp ftemp;
  677 
  678         /*
  679          * The signal is first processed by a range gate and frequency
  680          * discriminator. The range gate rejects noise spikes outside
  681          * the range +-500 us. The frequency discriminator rejects input
  682          * signals with apparent frequency outside the range 1 +-500
  683          * PPM. If two hits occur in the same second, we ignore the
  684          * later hit; if not and a hit occurs outside the range gate,
  685          * keep the later hit for later comparison, but do not process
  686          * it.
  687          */
  688         time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
  689         time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
  690         pps_valid = PPS_VALID;
  691         u_sec = tsp->tv_sec;
  692         u_nsec = tsp->tv_nsec;
  693         if (u_nsec >= (NANOSECOND >> 1)) {
  694                 u_nsec -= NANOSECOND;
  695                 u_sec++;
  696         }
  697         v_nsec = u_nsec - pps_tf[0].tv_nsec;
  698         if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
  699             MAXFREQ)
  700                 return;
  701         pps_tf[2] = pps_tf[1];
  702         pps_tf[1] = pps_tf[0];
  703         pps_tf[0].tv_sec = u_sec;
  704         pps_tf[0].tv_nsec = u_nsec;
  705 
  706         /*
  707          * Compute the difference between the current and previous
  708          * counter values. If the difference exceeds 0.5 s, assume it
  709          * has wrapped around, so correct 1.0 s. If the result exceeds
  710          * the tick interval, the sample point has crossed a tick
  711          * boundary during the last second, so correct the tick. Very
  712          * intricate.
  713          */
  714         u_nsec = nsec;
  715         if (u_nsec > (NANOSECOND >> 1))
  716                 u_nsec -= NANOSECOND;
  717         else if (u_nsec < -(NANOSECOND >> 1))
  718                 u_nsec += NANOSECOND;
  719         pps_fcount += u_nsec;
  720         if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
  721                 return;
  722         time_status &= ~STA_PPSJITTER;
  723 
  724         /*
  725          * A three-stage median filter is used to help denoise the PPS
  726          * time. The median sample becomes the time offset estimate; the
  727          * difference between the other two samples becomes the time
  728          * dispersion (jitter) estimate.
  729          */
  730         if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
  731                 if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
  732                         v_nsec = pps_tf[1].tv_nsec;     /* 0 1 2 */
  733                         u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
  734                 } else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
  735                         v_nsec = pps_tf[0].tv_nsec;     /* 2 0 1 */
  736                         u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
  737                 } else {
  738                         v_nsec = pps_tf[2].tv_nsec;     /* 0 2 1 */
  739                         u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
  740                 }
  741         } else {
  742                 if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
  743                         v_nsec = pps_tf[1].tv_nsec;     /* 2 1 0 */
  744                         u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
  745                 } else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
  746                         v_nsec = pps_tf[0].tv_nsec;     /* 1 0 2 */
  747                         u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
  748                 } else {
  749                         v_nsec = pps_tf[2].tv_nsec;     /* 1 2 0 */
  750                         u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
  751                 }
  752         }
  753 
  754         /*
  755          * Nominal jitter is due to PPS signal noise and interrupt
  756          * latency. If it exceeds the popcorn threshold, the sample is
  757          * discarded. otherwise, if so enabled, the time offset is
  758          * updated. We can tolerate a modest loss of data here without
  759          * much degrading time accuracy.
  760          */
  761         if (u_nsec > (pps_jitter << PPS_POPCORN)) {
  762                 time_status |= STA_PPSJITTER;
  763                 pps_jitcnt++;
  764         } else if (time_status & STA_PPSTIME) {
  765                 time_monitor = -v_nsec;
  766                 L_LINT(time_offset, time_monitor);
  767         }
  768         pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
  769         u_sec = pps_tf[0].tv_sec - pps_lastsec;
  770         if (u_sec < (1 << pps_shift))
  771                 return;
  772 
  773         /*
  774          * At the end of the calibration interval the difference between
  775          * the first and last counter values becomes the scaled
  776          * frequency. It will later be divided by the length of the
  777          * interval to determine the frequency update. If the frequency
  778          * exceeds a sanity threshold, or if the actual calibration
  779          * interval is not equal to the expected length, the data are
  780          * discarded. We can tolerate a modest loss of data here without
  781          * much degrading frequency accuracy.
  782          */
  783         pps_calcnt++;
  784         v_nsec = -pps_fcount;
  785         pps_lastsec = pps_tf[0].tv_sec;
  786         pps_fcount = 0;
  787         u_nsec = MAXFREQ << pps_shift;
  788         if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
  789             pps_shift)) {
  790                 time_status |= STA_PPSERROR;
  791                 pps_errcnt++;
  792                 return;
  793         }
  794 
  795         /*
  796          * Here the raw frequency offset and wander (stability) is
  797          * calculated. If the wander is less than the wander threshold
  798          * for four consecutive averaging intervals, the interval is
  799          * doubled; if it is greater than the threshold for four
  800          * consecutive intervals, the interval is halved. The scaled
  801          * frequency offset is converted to frequency offset. The
  802          * stability metric is calculated as the average of recent
  803          * frequency changes, but is used only for performance
  804          * monitoring.
  805          */
  806         L_LINT(ftemp, v_nsec);
  807         L_RSHIFT(ftemp, pps_shift);
  808         L_SUB(ftemp, pps_freq);
  809         u_nsec = L_GINT(ftemp);
  810         if (u_nsec > PPS_MAXWANDER) {
  811                 L_LINT(ftemp, PPS_MAXWANDER);
  812                 pps_intcnt--;
  813                 time_status |= STA_PPSWANDER;
  814                 pps_stbcnt++;
  815         } else if (u_nsec < -PPS_MAXWANDER) {
  816                 L_LINT(ftemp, -PPS_MAXWANDER);
  817                 pps_intcnt--;
  818                 time_status |= STA_PPSWANDER;
  819                 pps_stbcnt++;
  820         } else {
  821                 pps_intcnt++;
  822         }
  823         if (pps_intcnt >= 4) {
  824                 pps_intcnt = 4;
  825                 if (pps_shift < pps_shiftmax) {
  826                         pps_shift++;
  827                         pps_intcnt = 0;
  828                 }
  829         } else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
  830                 pps_intcnt = -4;
  831                 if (pps_shift > PPS_FAVG) {
  832                         pps_shift--;
  833                         pps_intcnt = 0;
  834                 }
  835         }
  836         if (u_nsec < 0)
  837                 u_nsec = -u_nsec;
  838         pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
  839 
  840         /*
  841          * The PPS frequency is recalculated and clamped to the maximum
  842          * MAXFREQ. If enabled, the system clock frequency is updated as
  843          * well.
  844          */
  845         L_ADD(pps_freq, ftemp);
  846         u_nsec = L_GINT(pps_freq);
  847         if (u_nsec > MAXFREQ)
  848                 L_LINT(pps_freq, MAXFREQ);
  849         else if (u_nsec < -MAXFREQ)
  850                 L_LINT(pps_freq, -MAXFREQ);
  851         if (time_status & STA_PPSFREQ)
  852                 time_freq = pps_freq;
  853 }
  854 #endif /* PPS_SYNC */
  855 #endif /* NTP */
  856 #else /* !__HAVE_TIMECOUNTER */
  857 /******************************************************************************
  858  *                                                                            *
  859  * Copyright (c) David L. Mills 1993, 1994                                    *
  860  *                                                                            *
  861  * Permission to use, copy, modify, and distribute this software and its      *
  862  * documentation for any purpose and without fee is hereby granted, provided  *
  863  * that the above copyright notice appears in all copies and that both the    *
  864  * copyright notice and this permission notice appear in supporting           *
  865  * documentation, and that the name University of Delaware not be used in     *
  866  * advertising or publicity pertaining to distribution of the software        *
  867  * without specific, written prior permission.  The University of Delaware    *
  868  * makes no representations about the suitability this software for any       *
  869  * purpose.  It is provided "as is" without express or implied warranty.      *
  870  *                                                                            *
  871  ******************************************************************************/
  872 
  873 /*
  874  * Modification history kern_ntptime.c
  875  *
  876  * 24 Sep 94    David L. Mills
  877  *      Tightened code at exits.
  878  *
  879  * 24 Mar 94    David L. Mills
  880  *      Revised syscall interface to include new variables for PPS
  881  *      time discipline.
  882  *
  883  * 14 Feb 94    David L. Mills
  884  *      Added code for external clock
  885  *
  886  * 28 Nov 93    David L. Mills
  887  *      Revised frequency scaling to conform with adjusted parameters
  888  *
  889  * 17 Sep 93    David L. Mills
  890  *      Created file
  891  */
  892 /*
  893  * ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
  894  * V4.1.1 and V4.1.3
  895  *
  896  * These routines consitute the Network Time Protocol (NTP) interfaces
  897  * for user and daemon application programs. The ntp_gettime() routine
  898  * provides the time, maximum error (synch distance) and estimated error
  899  * (dispersion) to client user application programs. The ntp_adjtime()
  900  * routine is used by the NTP daemon to adjust the system clock to an
  901  * externally derived time. The time offset and related variables set by
  902  * this routine are used by hardclock() to adjust the phase and
  903  * frequency of the phase-lock loop which controls the system clock.
  904  */
  905 
  906 #include <sys/cdefs.h>
  907 __KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.41 2006/11/01 10:17:58 yamt Exp $");
  908 
  909 #include "opt_ntp.h"
  910 #include "opt_compat_netbsd.h"
  911 
  912 #include <sys/param.h>
  913 #include <sys/resourcevar.h>
  914 #include <sys/systm.h>
  915 #include <sys/kernel.h>
  916 #include <sys/proc.h>
  917 #include <sys/sysctl.h>
  918 #include <sys/timex.h>
  919 #ifdef COMPAT_30
  920 #include <compat/sys/timex.h>
  921 #endif
  922 #include <sys/vnode.h>
  923 #include <sys/kauth.h>
  924 
  925 #include <sys/mount.h>
  926 #include <sys/sa.h>
  927 #include <sys/syscallargs.h>
  928 
  929 #include <machine/cpu.h>
  930 
  931 #ifdef NTP
  932 /*
  933  * The following variables are used by the hardclock() routine in the
  934  * kern_clock.c module and are described in that module.
  935  */
  936 extern int time_state;          /* clock state */
  937 extern int time_status;         /* clock status bits */
  938 extern long time_offset;        /* time adjustment (us) */
  939 extern long time_freq;          /* frequency offset (scaled ppm) */
  940 extern long time_maxerror;      /* maximum error (us) */
  941 extern long time_esterror;      /* estimated error (us) */
  942 extern long time_constant;      /* pll time constant */
  943 extern long time_precision;     /* clock precision (us) */
  944 extern long time_tolerance;     /* frequency tolerance (scaled ppm) */
  945 extern int time_adjusted;       /* ntp might have changed the system time */
  946 
  947 #ifdef PPS_SYNC
  948 /*
  949  * The following variables are used only if the PPS signal discipline
  950  * is configured in the kernel.
  951  */
  952 extern int pps_shift;           /* interval duration (s) (shift) */
  953 extern long pps_freq;           /* pps frequency offset (scaled ppm) */
  954 extern long pps_jitter;         /* pps jitter (us) */
  955 extern long pps_stabil;         /* pps stability (scaled ppm) */
  956 extern long pps_jitcnt;         /* jitter limit exceeded */
  957 extern long pps_calcnt;         /* calibration intervals */
  958 extern long pps_errcnt;         /* calibration errors */
  959 extern long pps_stbcnt;         /* stability limit exceeded */
  960 #endif /* PPS_SYNC */
  961 
  962 /*ARGSUSED*/
  963 /*
  964  * ntp_gettime() - NTP user application interface
  965  */
  966 void
  967 ntp_gettime(ntvp)
  968         struct ntptimeval *ntvp;
  969 {
  970         struct timeval atv;
  971         int s;
  972 
  973         memset(ntvp, 0, sizeof(struct ntptimeval));
  974 
  975         s = splclock();
  976 #ifdef EXT_CLOCK
  977         /*
  978          * The microtime() external clock routine returns a
  979          * status code. If less than zero, we declare an error
  980          * in the clock status word and return the kernel
  981          * (software) time variable. While there are other
  982          * places that call microtime(), this is the only place
  983          * that matters from an application point of view.
  984          */
  985         if (microtime(&atv) < 0) {
  986                 time_status |= STA_CLOCKERR;
  987                 ntvp->time = time;
  988         } else
  989                 time_status &= ~STA_CLOCKERR;
  990 #else /* EXT_CLOCK */
  991         microtime(&atv);
  992 #endif /* EXT_CLOCK */
  993         ntvp->maxerror = time_maxerror;
  994         ntvp->esterror = time_esterror;
  995         (void) splx(s);
  996         TIMEVAL_TO_TIMESPEC(&atv, &ntvp->time);
  997 }
  998  
  999 
 1000 /* ARGSUSED */
 1001 /*
 1002  * ntp_adjtime() - NTP daemon application interface
 1003  */
 1004 int
 1005 sys_ntp_adjtime(l, v, retval)
 1006         struct lwp *l;
 1007         void *v;
 1008         register_t *retval;
 1009 {
 1010         struct sys_ntp_adjtime_args /* {
 1011                 syscallarg(struct timex *) tp;
 1012         } */ *uap = v;
 1013         struct timex ntv;
 1014         int error = 0;
 1015 
 1016         error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv, sizeof(ntv));
 1017         if (error != 0)
 1018                 return (error);
 1019 
 1020         if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
 1021             KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
 1022             NULL, NULL)) != 0)
 1023                 return (error);
 1024 
 1025         ntp_adjtime1(&ntv);
 1026 
 1027         error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
 1028         if (error == 0)
 1029                 *retval = ntp_timestatus();
 1030 
 1031         return error;
 1032 }
 1033 
 1034 void
 1035 ntp_adjtime1(ntv)
 1036         struct timex *ntv;
 1037 {
 1038         int modes;
 1039         int s;
 1040 
 1041         /*
 1042          * Update selected clock variables. Note that there is no error
 1043          * checking here on the assumption the superuser should know
 1044          * what it is doing.
 1045          */
 1046         modes = ntv->modes;
 1047         if (modes != 0)
 1048                 /* We need to save the system time during shutdown */
 1049                 time_adjusted |= 2;
 1050         s = splclock();
 1051         if (modes & MOD_FREQUENCY)
 1052 #ifdef PPS_SYNC
 1053                 time_freq = ntv->freq - pps_freq;
 1054 #else /* PPS_SYNC */
 1055                 time_freq = ntv->freq;
 1056 #endif /* PPS_SYNC */
 1057         if (modes & MOD_MAXERROR)
 1058                 time_maxerror = ntv->maxerror;
 1059         if (modes & MOD_ESTERROR)
 1060                 time_esterror = ntv->esterror;
 1061         if (modes & MOD_STATUS) {
 1062                 time_status &= STA_RONLY;
 1063                 time_status |= ntv->status & ~STA_RONLY;
 1064         }
 1065         if (modes & MOD_TIMECONST)
 1066                 time_constant = ntv->constant;
 1067         if (modes & MOD_OFFSET)
 1068                 hardupdate(ntv->offset);
 1069 
 1070         /*
 1071          * Retrieve all clock variables
 1072          */
 1073         if (time_offset < 0)
 1074                 ntv->offset = -(-time_offset >> SHIFT_UPDATE);
 1075         else
 1076                 ntv->offset = time_offset >> SHIFT_UPDATE;
 1077 #ifdef PPS_SYNC
 1078         ntv->freq = time_freq + pps_freq;
 1079 #else /* PPS_SYNC */
 1080         ntv->freq = time_freq;
 1081 #endif /* PPS_SYNC */
 1082         ntv->maxerror = time_maxerror;
 1083         ntv->esterror = time_esterror;
 1084         ntv->status = time_status;
 1085         ntv->constant = time_constant;
 1086         ntv->precision = time_precision;
 1087         ntv->tolerance = time_tolerance;
 1088 #ifdef PPS_SYNC
 1089         ntv->shift = pps_shift;
 1090         ntv->ppsfreq = pps_freq;
 1091         ntv->jitter = pps_jitter >> PPS_AVG;
 1092         ntv->stabil = pps_stabil;
 1093         ntv->calcnt = pps_calcnt;
 1094         ntv->errcnt = pps_errcnt;
 1095         ntv->jitcnt = pps_jitcnt;
 1096         ntv->stbcnt = pps_stbcnt;
 1097 #endif /* PPS_SYNC */
 1098         (void)splx(s);
 1099 }
 1100 #endif /* NTP */
 1101 #endif /* !__HAVE_TIMECOUNTER */
 1102 
 1103 #ifdef NTP
 1104 int
 1105 ntp_timestatus()
 1106 {
 1107         /*
 1108          * Status word error decode. If any of these conditions
 1109          * occur, an error is returned, instead of the status
 1110          * word. Most applications will care only about the fact
 1111          * the system clock may not be trusted, not about the
 1112          * details.
 1113          *
 1114          * Hardware or software error
 1115          */
 1116         if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
 1117 
 1118         /*
 1119          * PPS signal lost when either time or frequency
 1120          * synchronization requested
 1121          */
 1122             (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
 1123              !(time_status & STA_PPSSIGNAL)) ||
 1124 
 1125         /*
 1126          * PPS jitter exceeded when time synchronization
 1127          * requested
 1128          */
 1129             (time_status & STA_PPSTIME &&
 1130              time_status & STA_PPSJITTER) ||
 1131 
 1132         /*
 1133          * PPS wander exceeded or calibration error when
 1134          * frequency synchronization requested
 1135          */
 1136             (time_status & STA_PPSFREQ &&
 1137              time_status & (STA_PPSWANDER | STA_PPSERROR)))
 1138                 return (TIME_ERROR);
 1139         else
 1140                 return (time_state);
 1141 }
 1142 
 1143 /*ARGSUSED*/
 1144 /*
 1145  * ntp_gettime() - NTP user application interface
 1146  */
 1147 int
 1148 sys___ntp_gettime30(struct lwp *l, void *v, register_t *retval)
 1149 {
 1150         struct sys___ntp_gettime30_args /* {
 1151                 syscallarg(struct ntptimeval *) ntvp;
 1152         } */ *uap = v;
 1153         struct ntptimeval ntv;
 1154         int error = 0;
 1155 
 1156         if (SCARG(uap, ntvp)) {
 1157                 ntp_gettime(&ntv);
 1158 
 1159                 error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
 1160                                 sizeof(ntv));
 1161         }
 1162         if (!error) {
 1163                 *retval = ntp_timestatus();
 1164         }
 1165         return(error);
 1166 }
 1167 
 1168 #ifdef COMPAT_30
 1169 int
 1170 compat_30_sys_ntp_gettime(struct lwp *l, void *v, register_t *retval)
 1171 {
 1172         struct compat_30_sys_ntp_gettime_args /* {
 1173                 syscallarg(struct ntptimeval30 *) ontvp;
 1174         } */ *uap = v;
 1175         struct ntptimeval ntv;
 1176         struct ntptimeval30 ontv;
 1177         int error = 0;
 1178 
 1179         if (SCARG(uap, ntvp)) {
 1180                 ntp_gettime(&ntv);
 1181                 TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
 1182                 ontv.maxerror = ntv.maxerror;
 1183                 ontv.esterror = ntv.esterror;
 1184 
 1185                 error = copyout((caddr_t)&ontv, (caddr_t)SCARG(uap, ntvp),
 1186                                 sizeof(ontv));
 1187         }
 1188         if (!error)
 1189                 *retval = ntp_timestatus();
 1190 
 1191         return (error);
 1192 }
 1193 #endif
 1194 
 1195 /*
 1196  * return information about kernel precision timekeeping
 1197  */
 1198 static int
 1199 sysctl_kern_ntptime(SYSCTLFN_ARGS)
 1200 {
 1201         struct sysctlnode node;
 1202         struct ntptimeval ntv;
 1203 
 1204         ntp_gettime(&ntv);
 1205 
 1206         node = *rnode;
 1207         node.sysctl_data = &ntv;
 1208         node.sysctl_size = sizeof(ntv);
 1209         return (sysctl_lookup(SYSCTLFN_CALL(&node)));
 1210 }
 1211 
 1212 SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
 1213 {
 1214 
 1215         sysctl_createv(clog, 0, NULL, NULL,
 1216                        CTLFLAG_PERMANENT,
 1217                        CTLTYPE_NODE, "kern", NULL,
 1218                        NULL, 0, NULL, 0,
 1219                        CTL_KERN, CTL_EOL);
 1220 
 1221         sysctl_createv(clog, 0, NULL, NULL,
 1222                        CTLFLAG_PERMANENT,
 1223                        CTLTYPE_STRUCT, "ntptime",
 1224                        SYSCTL_DESCR("Kernel clock values for NTP"),
 1225                        sysctl_kern_ntptime, 0, NULL,
 1226                        sizeof(struct ntptimeval),
 1227                        CTL_KERN, KERN_NTPTIME, CTL_EOL);
 1228 }
 1229 #else /* !NTP */
 1230 /* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
 1231 
 1232 int
 1233 sys___ntp_gettime30(struct lwp *l, void *v, register_t *retval)
 1234 {
 1235 
 1236         return(ENOSYS);
 1237 }
 1238 
 1239 #ifdef COMPAT_30
 1240 int
 1241 compat_30_sys_ntp_gettime(struct lwp *l, void *v, register_t *retval)
 1242 {
 1243 
 1244         return(ENOSYS);
 1245 }
 1246 #endif
 1247 #endif /* !NTP */

Cache object: 436ed4b767cf4a294a2b2aad9fb0d8ca


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.