The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_poll.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2001-2002 Luigi Rizzo
    3  *
    4  * Supported by: the Xorp Project (www.xorp.org)
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  *
   27  * $FreeBSD$
   28  */
   29 
   30 #include <sys/param.h>
   31 #include <sys/systm.h>
   32 #include <sys/kernel.h>
   33 #include <sys/socket.h>                 /* needed by net/if.h           */
   34 #include <sys/sysctl.h>
   35 
   36 #include <i386/include/md_var.h>        /* for vm_page_zero_idle()      */
   37 #include <net/if.h>                     /* for IFF_* flags              */
   38 #include <net/netisr.h>                 /* for NETISR_POLL              */
   39 
   40 #ifdef SMP
   41 #include "opt_lint.h"
   42 #ifndef COMPILING_LINT
   43 #error DEVICE_POLLING is not compatible with SMP
   44 #endif
   45 #endif
   46 
   47 static void netisr_poll(void);          /* the two netisr handlers      */
   48 static void netisr_pollmore(void);
   49 
   50 void init_device_poll(void);            /* init routine                 */
   51 void hardclock_device_poll(void);       /* hook from hardclock          */
   52 void ether_poll(int);                   /* polling while in trap        */
   53 int idle_poll(void);                    /* poll while in idle loop      */
   54 
   55 /*
   56  * Polling support for [network] device drivers.
   57  *
   58  * Drivers which support this feature try to register with the
   59  * polling code.
   60  *
   61  * If registration is successful, the driver must disable interrupts,
   62  * and further I/O is performed through the handler, which is invoked
   63  * (at least once per clock tick) with 3 arguments: the "arg" passed at
   64  * register time (a struct ifnet pointer), a command, and a "count" limit.
   65  *
   66  * The command can be one of the following:
   67  *  POLL_ONLY: quick move of "count" packets from input/output queues.
   68  *  POLL_AND_CHECK_STATUS: as above, plus check status registers or do
   69  *      other more expensive operations. This command is issued periodically
   70  *      but less frequently than POLL_ONLY.
   71  *  POLL_DEREGISTER: deregister and return to interrupt mode.
   72  *
   73  * The first two commands are only issued if the interface is marked as
   74  * 'IFF_UP and IFF_RUNNING', the last one only if IFF_RUNNING is set.
   75  *
   76  * The count limit specifies how much work the handler can do during the
   77  * call -- typically this is the number of packets to be received, or
   78  * transmitted, etc. (drivers are free to interpret this number, as long
   79  * as the max time spent in the function grows roughly linearly with the
   80  * count).
   81  *
   82  * Deregistration can be requested by the driver itself (typically in the
   83  * *_stop() routine), or by the polling code, by invoking the handler.
   84  *
   85  * Polling can be globally enabled or disabled with the sysctl variable
   86  * kern.polling.enable (default is 0, disabled)
   87  *
   88  * A second variable controls the sharing of CPU between polling/kernel
   89  * network processing, and other activities (typically userlevel tasks):
   90  * kern.polling.user_frac (between 0 and 100, default 50) sets the share
   91  * of CPU allocated to user tasks. CPU is allocated proportionally to the
   92  * shares, by dynamically adjusting the "count" (poll_burst).
   93  *
   94  * Other parameters can should be left to their default values.
   95  * The following constraints hold
   96  *
   97  *      1 <= poll_each_burst <= poll_burst <= poll_burst_max
   98  *      0 <= poll_in_trap <= poll_each_burst
   99  *      MIN_POLL_BURST_MAX <= poll_burst_max <= MAX_POLL_BURST_MAX
  100  */
  101 
  102 #define MIN_POLL_BURST_MAX      10
  103 #define MAX_POLL_BURST_MAX      1000
  104 
  105 SYSCTL_NODE(_kern, OID_AUTO, polling, CTLFLAG_RW, 0,
  106         "Device polling parameters");
  107 
  108 static u_int32_t poll_burst = 5;
  109 SYSCTL_UINT(_kern_polling, OID_AUTO, burst, CTLFLAG_RW,
  110         &poll_burst, 0, "Current polling burst size");
  111 
  112 static u_int32_t poll_each_burst = 5;
  113 SYSCTL_UINT(_kern_polling, OID_AUTO, each_burst, CTLFLAG_RW,
  114         &poll_each_burst, 0, "Max size of each burst");
  115 
  116 static u_int32_t poll_burst_max = 150;  /* good for 100Mbit net and HZ=1000 */
  117 SYSCTL_UINT(_kern_polling, OID_AUTO, burst_max, CTLFLAG_RW,
  118         &poll_burst_max, 0, "Max Polling burst size");
  119 
  120 static u_int32_t poll_in_idle_loop=1;           /* do we poll in idle loop ? */
  121 SYSCTL_UINT(_kern_polling, OID_AUTO, idle_poll, CTLFLAG_RW,
  122         &poll_in_idle_loop, 0, "Enable device polling in idle loop");
  123 
  124 u_int32_t poll_in_trap;                 /* used in trap.c */
  125 SYSCTL_UINT(_kern_polling, OID_AUTO, poll_in_trap, CTLFLAG_RW,
  126         &poll_in_trap, 0, "Poll burst size during a trap");
  127 
  128 static u_int32_t user_frac = 50;
  129 SYSCTL_UINT(_kern_polling, OID_AUTO, user_frac, CTLFLAG_RW,
  130         &user_frac, 0, "Desired user fraction of cpu time");
  131 
  132 static u_int32_t reg_frac = 20 ;
  133 SYSCTL_UINT(_kern_polling, OID_AUTO, reg_frac, CTLFLAG_RW,
  134         &reg_frac, 0, "Every this many cycles poll register");
  135 
  136 static u_int32_t short_ticks;
  137 SYSCTL_UINT(_kern_polling, OID_AUTO, short_ticks, CTLFLAG_RW,
  138         &short_ticks, 0, "Hardclock ticks shorter than they should be");
  139 
  140 static u_int32_t lost_polls;
  141 SYSCTL_UINT(_kern_polling, OID_AUTO, lost_polls, CTLFLAG_RW,
  142         &lost_polls, 0, "How many times we would have lost a poll tick");
  143 
  144 static u_int32_t pending_polls;
  145 SYSCTL_UINT(_kern_polling, OID_AUTO, pending_polls, CTLFLAG_RW,
  146         &pending_polls, 0, "Do we need to poll again");
  147 
  148 static int residual_burst = 0;
  149 SYSCTL_INT(_kern_polling, OID_AUTO, residual_burst, CTLFLAG_RW,
  150         &residual_burst, 0, "# of residual cycles in burst");
  151 
  152 static u_int32_t poll_handlers; /* next free entry in pr[]. */
  153 SYSCTL_UINT(_kern_polling, OID_AUTO, handlers, CTLFLAG_RD,
  154         &poll_handlers, 0, "Number of registered poll handlers");
  155 
  156 static int polling = 0;         /* global polling enable */
  157 SYSCTL_UINT(_kern_polling, OID_AUTO, enable, CTLFLAG_RW,
  158         &polling, 0, "Polling enabled");
  159 
  160 static u_int32_t phase;
  161 SYSCTL_UINT(_kern_polling, OID_AUTO, phase, CTLFLAG_RW,
  162         &phase, 0, "Polling phase");
  163 
  164 static u_int32_t suspect;
  165 SYSCTL_UINT(_kern_polling, OID_AUTO, suspect, CTLFLAG_RW,
  166         &suspect, 0, "suspect event");
  167 
  168 static u_int32_t stalled;
  169 SYSCTL_UINT(_kern_polling, OID_AUTO, stalled, CTLFLAG_RW,
  170         &stalled, 0, "potential stalls");
  171 
  172 
  173 #define POLL_LIST_LEN  128
  174 struct pollrec {
  175         poll_handler_t  *handler;
  176         struct ifnet    *ifp;
  177 };
  178 
  179 static struct pollrec pr[POLL_LIST_LEN];
  180 
  181 /*
  182  * register relevant netisr. Called from kern_clock.c:
  183  */
  184 void
  185 init_device_poll(void)
  186 {
  187         register_netisr(NETISR_POLL, netisr_poll);
  188         register_netisr(NETISR_POLLMORE, netisr_pollmore);
  189 }
  190 
  191 /*
  192  * Hook from hardclock. Tries to schedule a netisr, but keeps track
  193  * of lost ticks due to the previous handler taking too long.
  194  * Normally, this should not happen, because polling handler should
  195  * run for a short time. However, in some cases (e.g. when there are
  196  * changes in link status etc.) the drivers take a very long time
  197  * (even in the order of milliseconds) to reset and reconfigure the
  198  * device, causing apparent lost polls.
  199  *
  200  * The first part of the code is just for debugging purposes, and tries
  201  * to count how often hardclock ticks are shorter than they should,
  202  * meaning either stray interrupts or delayed events.
  203  */
  204 void
  205 hardclock_device_poll(void)
  206 {
  207         static struct timeval prev_t, t;
  208         int delta;
  209 
  210         if (poll_handlers == 0)
  211                 return;
  212 
  213         microuptime(&t);
  214         delta = (t.tv_usec - prev_t.tv_usec) +
  215                 (t.tv_sec - prev_t.tv_sec)*1000000;
  216         if (delta * hz < 500000)
  217                 short_ticks++;
  218         else
  219                 prev_t = t;
  220 
  221         if (pending_polls > 100) {
  222                 /*
  223                  * Too much, assume it has stalled (not always true
  224                  * see comment above).
  225                  */
  226                 stalled++;
  227                 pending_polls = 0;
  228                 phase = 0;
  229         }
  230 
  231         if (phase <= 2) {
  232                 if (phase != 0)
  233                         suspect++;
  234                 phase = 1;
  235                 schednetisr(NETISR_POLL);
  236                 phase = 2;
  237         }
  238         if (pending_polls++ > 0)
  239                 lost_polls++;
  240 }
  241 
  242 /*
  243  * ether_poll is called from the idle loop or from the trap handler.
  244  */
  245 void
  246 ether_poll(int count)
  247 {
  248         int i;
  249         int s = splimp();
  250 
  251         if (count > poll_each_burst)
  252                 count = poll_each_burst;
  253         for (i = 0 ; i < poll_handlers ; i++)
  254                 if (pr[i].handler && (IFF_UP|IFF_RUNNING) ==
  255                     (pr[i].ifp->if_flags & (IFF_UP|IFF_RUNNING)) )
  256                         pr[i].handler(pr[i].ifp, 0, count); /* quick check */
  257         splx(s);
  258 }
  259 
  260 /*
  261  * idle_poll is replaces the body of the idle loop when DEVICE_POLLING
  262  * is used.
  263  */
  264 int
  265 idle_poll(void)
  266 {
  267         if (poll_in_idle_loop && poll_handlers > 0) {
  268                 int s = splimp();
  269                 enable_intr();
  270                 ether_poll(poll_each_burst);
  271                 disable_intr();
  272                 splx(s);
  273                 vm_page_zero_idle();
  274                 return 1;
  275         } else
  276                 return vm_page_zero_idle();
  277 }
  278 
  279 /*
  280  * netisr_pollmore is called after other netisr's, possibly scheduling
  281  * another NETISR_POLL call, or adapting the burst size for the next cycle.
  282  *
  283  * It is very bad to fetch large bursts of packets from a single card at once,
  284  * because the burst could take a long time to be completely processed, or
  285  * could saturate the intermediate queue (ipintrq or similar) leading to
  286  * losses or unfairness. To reduce the problem, and also to account better for
  287  * time spent in network-related processing, we split the burst in smaller
  288  * chunks of fixed size, giving control to the other netisr's between chunks.
  289  * This helps in improving the fairness, reducing livelock (because we
  290  * emulate more closely the "process to completion" that we have with
  291  * fastforwarding) and accounting for the work performed in low level
  292  * handling and forwarding.
  293  */
  294 
  295 
  296 static struct timeval poll_start_t;
  297 
  298 static void
  299 netisr_pollmore()
  300 {
  301         struct timeval t;
  302         int kern_load;
  303         int s = splhigh();
  304 
  305         phase = 5;
  306         if (residual_burst > 0) {
  307                 schednetisr(NETISR_POLL);
  308                 /* will run immediately on return, followed by netisrs */
  309                 splx(s);
  310                 return ;
  311         }
  312         /* here we can account time spent in netisr's in this tick */
  313         microuptime(&t);
  314         kern_load = (t.tv_usec - poll_start_t.tv_usec) +
  315                 (t.tv_sec - poll_start_t.tv_sec)*1000000;       /* us */
  316         kern_load = (kern_load * hz) / 10000;                   /* 0..100 */
  317         if (kern_load > (100 - user_frac)) { /* try decrease ticks */
  318                 if (poll_burst > 1)
  319                         poll_burst--;
  320         } else {
  321                 if (poll_burst < poll_burst_max)
  322                         poll_burst++;
  323         }
  324 
  325         pending_polls--;
  326         if (pending_polls == 0) /* we are done */
  327                 phase = 0;
  328         else {
  329                 /*
  330                  * Last cycle was long and caused us to miss one or more
  331                  * hardclock ticks. Restart processing again, but slightly
  332                  * reduce the burst size to prevent that this happens again.
  333                  */
  334                 poll_burst -= (poll_burst / 8);
  335                 if (poll_burst < 1)
  336                         poll_burst = 1;
  337                 schednetisr(NETISR_POLL);
  338                 phase = 6;
  339         }
  340         splx(s);
  341 }
  342 
  343 /*
  344  * netisr_poll is scheduled by schednetisr when appropriate, typically once
  345  * per tick. It is called at splnet() so first thing to do is to upgrade to
  346  * splimp(), and call all registered handlers.
  347  */
  348 static void
  349 netisr_poll(void)
  350 {
  351         static int reg_frac_count;
  352         int i, cycles;
  353         enum poll_cmd arg = POLL_ONLY;
  354         int s=splimp();
  355 
  356         phase = 3;
  357         if (residual_burst == 0) { /* first call in this tick */
  358                 microuptime(&poll_start_t);
  359                 /*
  360                  * Check that paremeters are consistent with runtime
  361                  * variables. Some of these tests could be done at sysctl
  362                  * time, but the savings would be very limited because we
  363                  * still have to check against reg_frac_count and
  364                  * poll_each_burst. So, instead of writing separate sysctl
  365                  * handlers, we do all here.
  366                  */
  367 
  368                 if (reg_frac > hz)
  369                         reg_frac = hz;
  370                 else if (reg_frac < 1)
  371                         reg_frac = 1;
  372                 if (reg_frac_count > reg_frac)
  373                         reg_frac_count = reg_frac - 1;
  374                 if (reg_frac_count-- == 0) {
  375                         arg = POLL_AND_CHECK_STATUS;
  376                         reg_frac_count = reg_frac - 1;
  377                 }
  378                 if (poll_burst_max < MIN_POLL_BURST_MAX)
  379                         poll_burst_max = MIN_POLL_BURST_MAX;
  380                 else if (poll_burst_max > MAX_POLL_BURST_MAX)
  381                         poll_burst_max = MAX_POLL_BURST_MAX;
  382 
  383                 if (poll_each_burst < 1)
  384                         poll_each_burst = 1;
  385                 else if (poll_each_burst > poll_burst_max)
  386                         poll_each_burst = poll_burst_max;
  387 
  388                 if (poll_burst > poll_burst_max)
  389                         poll_burst = poll_burst_max;
  390                 residual_burst = poll_burst;
  391         }
  392         cycles = (residual_burst < poll_each_burst) ?
  393                 residual_burst : poll_each_burst;
  394         residual_burst -= cycles;
  395 
  396         if (polling) {
  397                 for (i = 0 ; i < poll_handlers ; i++)
  398                         if (pr[i].handler && (IFF_UP|IFF_RUNNING) ==
  399                             (pr[i].ifp->if_flags & (IFF_UP|IFF_RUNNING)) )
  400                                 pr[i].handler(pr[i].ifp, arg, cycles);
  401         } else {        /* unregister */
  402                 for (i = 0 ; i < poll_handlers ; i++) {
  403                         if (pr[i].handler &&
  404                             pr[i].ifp->if_flags & IFF_RUNNING) {
  405                                 pr[i].ifp->if_ipending &= ~IFF_POLLING;
  406                                 pr[i].handler(pr[i].ifp, POLL_DEREGISTER, 1);
  407                         }
  408                         pr[i].handler=NULL;
  409                 }
  410                 residual_burst = 0;
  411                 poll_handlers = 0;
  412         }
  413         schednetisr(NETISR_POLLMORE);
  414         phase = 4;
  415         splx(s);
  416 }
  417 
  418 /*
  419  * Try to register routine for polling. Returns 1 if successful
  420  * (and polling should be enabled), 0 otherwise.
  421  * A device is not supposed to register itself multiple times.
  422  *
  423  * This is called from within the *_intr() functions, so we do not need
  424  * further locking.
  425  */
  426 int
  427 ether_poll_register(poll_handler_t *h, struct ifnet *ifp)
  428 {
  429         int s;
  430 
  431         if (polling == 0) /* polling disabled, cannot register */
  432                 return 0;
  433         if (h == NULL || ifp == NULL)           /* bad arguments        */
  434                 return 0;
  435         if ( !(ifp->if_flags & IFF_UP) )        /* must be up           */
  436                 return 0;
  437         if (ifp->if_ipending & IFF_POLLING)     /* already polling      */
  438                 return 0;
  439 
  440         s = splhigh();
  441         if (poll_handlers >= POLL_LIST_LEN) {
  442                 /*
  443                  * List full, cannot register more entries.
  444                  * This should never happen; if it does, it is probably a
  445                  * broken driver trying to register multiple times. Checking
  446                  * this at runtime is expensive, and won't solve the problem
  447                  * anyways, so just report a few times and then give up.
  448                  */
  449                 static int verbose = 10 ;
  450                 splx(s);
  451                 if (verbose >0) {
  452                         printf("poll handlers list full, "
  453                                 "maybe a broken driver ?\n");
  454                         verbose--;
  455                 }
  456                 return 0; /* no polling for you */
  457         }
  458 
  459         pr[poll_handlers].handler = h;
  460         pr[poll_handlers].ifp = ifp;
  461         poll_handlers++;
  462         ifp->if_ipending |= IFF_POLLING;
  463         splx(s);
  464         return 1; /* polling enabled in next call */
  465 }
  466 
  467 /*
  468  * Remove interface from the polling list. Normally called by *_stop().
  469  * It is not an error to call it with IFF_POLLING clear, the call is
  470  * sufficiently rare to be preferable to save the space for the extra
  471  * test in each driver in exchange of one additional function call.
  472  */
  473 int
  474 ether_poll_deregister(struct ifnet *ifp)
  475 {
  476         int i;
  477         int s = splimp();
  478         
  479         if ( !ifp || !(ifp->if_ipending & IFF_POLLING) ) {
  480                 splx(s);
  481                 return 0;
  482         }
  483         for (i = 0 ; i < poll_handlers ; i++)
  484                 if (pr[i].ifp == ifp) /* found it */
  485                         break;
  486         ifp->if_ipending &= ~IFF_POLLING; /* found or not... */
  487         if (i == poll_handlers) {
  488                 splx(s);
  489                 printf("ether_poll_deregister: ifp not found!!!\n");
  490                 return 0;
  491         }
  492         poll_handlers--;
  493         if (i < poll_handlers) { /* Last entry replaces this one. */
  494                 pr[i].handler = pr[poll_handlers].handler;
  495                 pr[i].ifp = pr[poll_handlers].ifp;
  496         }
  497         splx(s);
  498         return 1;
  499 }

Cache object: fd16ab634ed12e29b2406c7237749e89


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.