The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_proc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_ddb.h"
   38 #include "opt_ktrace.h"
   39 #include "opt_kstack_pages.h"
   40 #include "opt_stack.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/bitstring.h>
   45 #include <sys/elf.h>
   46 #include <sys/eventhandler.h>
   47 #include <sys/exec.h>
   48 #include <sys/fcntl.h>
   49 #include <sys/jail.h>
   50 #include <sys/kernel.h>
   51 #include <sys/limits.h>
   52 #include <sys/lock.h>
   53 #include <sys/loginclass.h>
   54 #include <sys/malloc.h>
   55 #include <sys/mman.h>
   56 #include <sys/mount.h>
   57 #include <sys/mutex.h>
   58 #include <sys/namei.h>
   59 #include <sys/proc.h>
   60 #include <sys/ptrace.h>
   61 #include <sys/refcount.h>
   62 #include <sys/resourcevar.h>
   63 #include <sys/rwlock.h>
   64 #include <sys/sbuf.h>
   65 #include <sys/sysent.h>
   66 #include <sys/sched.h>
   67 #include <sys/smp.h>
   68 #include <sys/stack.h>
   69 #include <sys/stat.h>
   70 #include <sys/dtrace_bsd.h>
   71 #include <sys/sysctl.h>
   72 #include <sys/filedesc.h>
   73 #include <sys/tty.h>
   74 #include <sys/signalvar.h>
   75 #include <sys/sdt.h>
   76 #include <sys/sx.h>
   77 #include <sys/user.h>
   78 #include <sys/vnode.h>
   79 #include <sys/wait.h>
   80 #ifdef KTRACE
   81 #include <sys/ktrace.h>
   82 #endif
   83 
   84 #ifdef DDB
   85 #include <ddb/ddb.h>
   86 #endif
   87 
   88 #include <vm/vm.h>
   89 #include <vm/vm_param.h>
   90 #include <vm/vm_extern.h>
   91 #include <vm/pmap.h>
   92 #include <vm/vm_map.h>
   93 #include <vm/vm_object.h>
   94 #include <vm/vm_page.h>
   95 #include <vm/uma.h>
   96 
   97 #include <fs/devfs/devfs.h>
   98 
   99 #ifdef COMPAT_FREEBSD32
  100 #include <compat/freebsd32/freebsd32.h>
  101 #include <compat/freebsd32/freebsd32_util.h>
  102 #endif
  103 
  104 SDT_PROVIDER_DEFINE(proc);
  105 
  106 MALLOC_DEFINE(M_SESSION, "session", "session header");
  107 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
  108 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
  109 
  110 static void doenterpgrp(struct proc *, struct pgrp *);
  111 static void orphanpg(struct pgrp *pg);
  112 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
  113 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
  114 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
  115     int preferthread);
  116 static void pgdelete(struct pgrp *);
  117 static int pgrp_init(void *mem, int size, int flags);
  118 static int proc_ctor(void *mem, int size, void *arg, int flags);
  119 static void proc_dtor(void *mem, int size, void *arg);
  120 static int proc_init(void *mem, int size, int flags);
  121 static void proc_fini(void *mem, int size);
  122 static void pargs_free(struct pargs *pa);
  123 
  124 /*
  125  * Other process lists
  126  */
  127 struct pidhashhead *pidhashtbl = NULL;
  128 struct sx *pidhashtbl_lock;
  129 u_long pidhash;
  130 u_long pidhashlock;
  131 struct pgrphashhead *pgrphashtbl;
  132 u_long pgrphash;
  133 struct proclist allproc = LIST_HEAD_INITIALIZER(allproc);
  134 struct sx __exclusive_cache_line allproc_lock;
  135 struct sx __exclusive_cache_line proctree_lock;
  136 struct mtx __exclusive_cache_line ppeers_lock;
  137 struct mtx __exclusive_cache_line procid_lock;
  138 uma_zone_t proc_zone;
  139 uma_zone_t pgrp_zone;
  140 
  141 /*
  142  * The offset of various fields in struct proc and struct thread.
  143  * These are used by kernel debuggers to enumerate kernel threads and
  144  * processes.
  145  */
  146 const int proc_off_p_pid = offsetof(struct proc, p_pid);
  147 const int proc_off_p_comm = offsetof(struct proc, p_comm);
  148 const int proc_off_p_list = offsetof(struct proc, p_list);
  149 const int proc_off_p_hash = offsetof(struct proc, p_hash);
  150 const int proc_off_p_threads = offsetof(struct proc, p_threads);
  151 const int thread_off_td_tid = offsetof(struct thread, td_tid);
  152 const int thread_off_td_name = offsetof(struct thread, td_name);
  153 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
  154 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
  155 const int thread_off_td_plist = offsetof(struct thread, td_plist);
  156 
  157 EVENTHANDLER_LIST_DEFINE(process_ctor);
  158 EVENTHANDLER_LIST_DEFINE(process_dtor);
  159 EVENTHANDLER_LIST_DEFINE(process_init);
  160 EVENTHANDLER_LIST_DEFINE(process_fini);
  161 EVENTHANDLER_LIST_DEFINE(process_exit);
  162 EVENTHANDLER_LIST_DEFINE(process_fork);
  163 EVENTHANDLER_LIST_DEFINE(process_exec);
  164 
  165 int kstack_pages = KSTACK_PAGES;
  166 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
  167     "Kernel stack size in pages");
  168 static int vmmap_skip_res_cnt = 0;
  169 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
  170     &vmmap_skip_res_cnt, 0,
  171     "Skip calculation of the pages resident count in kern.proc.vmmap");
  172 
  173 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
  174 #ifdef COMPAT_FREEBSD32
  175 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
  176 #endif
  177 
  178 /*
  179  * Initialize global process hashing structures.
  180  */
  181 void
  182 procinit(void)
  183 {
  184         u_long i;
  185 
  186         sx_init(&allproc_lock, "allproc");
  187         sx_init(&proctree_lock, "proctree");
  188         mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
  189         mtx_init(&procid_lock, "procid", NULL, MTX_DEF);
  190         pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
  191         pidhashlock = (pidhash + 1) / 64;
  192         if (pidhashlock > 0)
  193                 pidhashlock--;
  194         pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1),
  195             M_PROC, M_WAITOK | M_ZERO);
  196         for (i = 0; i < pidhashlock + 1; i++)
  197                 sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK);
  198         pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
  199         proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
  200             proc_ctor, proc_dtor, proc_init, proc_fini,
  201             UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  202         pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL,
  203             pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  204         uihashinit();
  205 }
  206 
  207 /*
  208  * Prepare a proc for use.
  209  */
  210 static int
  211 proc_ctor(void *mem, int size, void *arg, int flags)
  212 {
  213         struct proc *p;
  214         struct thread *td;
  215 
  216         p = (struct proc *)mem;
  217 #ifdef KDTRACE_HOOKS
  218         kdtrace_proc_ctor(p);
  219 #endif
  220         EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
  221         td = FIRST_THREAD_IN_PROC(p);
  222         if (td != NULL) {
  223                 /* Make sure all thread constructors are executed */
  224                 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
  225         }
  226         return (0);
  227 }
  228 
  229 /*
  230  * Reclaim a proc after use.
  231  */
  232 static void
  233 proc_dtor(void *mem, int size, void *arg)
  234 {
  235         struct proc *p;
  236         struct thread *td;
  237 
  238         /* INVARIANTS checks go here */
  239         p = (struct proc *)mem;
  240         td = FIRST_THREAD_IN_PROC(p);
  241         if (td != NULL) {
  242 #ifdef INVARIANTS
  243                 KASSERT((p->p_numthreads == 1),
  244                     ("bad number of threads in exiting process"));
  245                 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
  246 #endif
  247                 /* Free all OSD associated to this thread. */
  248                 osd_thread_exit(td);
  249                 ast_kclear(td);
  250 
  251                 /* Make sure all thread destructors are executed */
  252                 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
  253         }
  254         EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
  255 #ifdef KDTRACE_HOOKS
  256         kdtrace_proc_dtor(p);
  257 #endif
  258         if (p->p_ksi != NULL)
  259                 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
  260 }
  261 
  262 /*
  263  * Initialize type-stable parts of a proc (when newly created).
  264  */
  265 static int
  266 proc_init(void *mem, int size, int flags)
  267 {
  268         struct proc *p;
  269 
  270         p = (struct proc *)mem;
  271         mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
  272         mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
  273         mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
  274         mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
  275         mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
  276         cv_init(&p->p_pwait, "ppwait");
  277         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
  278         EVENTHANDLER_DIRECT_INVOKE(process_init, p);
  279         p->p_stats = pstats_alloc();
  280         p->p_pgrp = NULL;
  281         return (0);
  282 }
  283 
  284 /*
  285  * UMA should ensure that this function is never called.
  286  * Freeing a proc structure would violate type stability.
  287  */
  288 static void
  289 proc_fini(void *mem, int size)
  290 {
  291 #ifdef notnow
  292         struct proc *p;
  293 
  294         p = (struct proc *)mem;
  295         EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
  296         pstats_free(p->p_stats);
  297         thread_free(FIRST_THREAD_IN_PROC(p));
  298         mtx_destroy(&p->p_mtx);
  299         if (p->p_ksi != NULL)
  300                 ksiginfo_free(p->p_ksi);
  301 #else
  302         panic("proc reclaimed");
  303 #endif
  304 }
  305 
  306 static int
  307 pgrp_init(void *mem, int size, int flags)
  308 {
  309         struct pgrp *pg;
  310 
  311         pg = mem;
  312         mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
  313         return (0);
  314 }
  315 
  316 /*
  317  * PID space management.
  318  *
  319  * These bitmaps are used by fork_findpid.
  320  */
  321 bitstr_t bit_decl(proc_id_pidmap, PID_MAX);
  322 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX);
  323 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX);
  324 bitstr_t bit_decl(proc_id_reapmap, PID_MAX);
  325 
  326 static bitstr_t *proc_id_array[] = {
  327         proc_id_pidmap,
  328         proc_id_grpidmap,
  329         proc_id_sessidmap,
  330         proc_id_reapmap,
  331 };
  332 
  333 void
  334 proc_id_set(int type, pid_t id)
  335 {
  336 
  337         KASSERT(type >= 0 && type < nitems(proc_id_array),
  338             ("invalid type %d\n", type));
  339         mtx_lock(&procid_lock);
  340         KASSERT(bit_test(proc_id_array[type], id) == 0,
  341             ("bit %d already set in %d\n", id, type));
  342         bit_set(proc_id_array[type], id);
  343         mtx_unlock(&procid_lock);
  344 }
  345 
  346 void
  347 proc_id_set_cond(int type, pid_t id)
  348 {
  349 
  350         KASSERT(type >= 0 && type < nitems(proc_id_array),
  351             ("invalid type %d\n", type));
  352         if (bit_test(proc_id_array[type], id))
  353                 return;
  354         mtx_lock(&procid_lock);
  355         bit_set(proc_id_array[type], id);
  356         mtx_unlock(&procid_lock);
  357 }
  358 
  359 void
  360 proc_id_clear(int type, pid_t id)
  361 {
  362 
  363         KASSERT(type >= 0 && type < nitems(proc_id_array),
  364             ("invalid type %d\n", type));
  365         mtx_lock(&procid_lock);
  366         KASSERT(bit_test(proc_id_array[type], id) != 0,
  367             ("bit %d not set in %d\n", id, type));
  368         bit_clear(proc_id_array[type], id);
  369         mtx_unlock(&procid_lock);
  370 }
  371 
  372 /*
  373  * Is p an inferior of the current process?
  374  */
  375 int
  376 inferior(struct proc *p)
  377 {
  378 
  379         sx_assert(&proctree_lock, SX_LOCKED);
  380         PROC_LOCK_ASSERT(p, MA_OWNED);
  381         for (; p != curproc; p = proc_realparent(p)) {
  382                 if (p->p_pid == 0)
  383                         return (0);
  384         }
  385         return (1);
  386 }
  387 
  388 /*
  389  * Shared lock all the pid hash lists.
  390  */
  391 void
  392 pidhash_slockall(void)
  393 {
  394         u_long i;
  395 
  396         for (i = 0; i < pidhashlock + 1; i++)
  397                 sx_slock(&pidhashtbl_lock[i]);
  398 }
  399 
  400 /*
  401  * Shared unlock all the pid hash lists.
  402  */
  403 void
  404 pidhash_sunlockall(void)
  405 {
  406         u_long i;
  407 
  408         for (i = 0; i < pidhashlock + 1; i++)
  409                 sx_sunlock(&pidhashtbl_lock[i]);
  410 }
  411 
  412 /*
  413  * Similar to pfind_any(), this function finds zombies.
  414  */
  415 struct proc *
  416 pfind_any_locked(pid_t pid)
  417 {
  418         struct proc *p;
  419 
  420         sx_assert(PIDHASHLOCK(pid), SX_LOCKED);
  421         LIST_FOREACH(p, PIDHASH(pid), p_hash) {
  422                 if (p->p_pid == pid) {
  423                         PROC_LOCK(p);
  424                         if (p->p_state == PRS_NEW) {
  425                                 PROC_UNLOCK(p);
  426                                 p = NULL;
  427                         }
  428                         break;
  429                 }
  430         }
  431         return (p);
  432 }
  433 
  434 /*
  435  * Locate a process by number.
  436  *
  437  * By not returning processes in the PRS_NEW state, we allow callers to avoid
  438  * testing for that condition to avoid dereferencing p_ucred, et al.
  439  */
  440 static __always_inline struct proc *
  441 _pfind(pid_t pid, bool zombie)
  442 {
  443         struct proc *p;
  444 
  445         p = curproc;
  446         if (p->p_pid == pid) {
  447                 PROC_LOCK(p);
  448                 return (p);
  449         }
  450         sx_slock(PIDHASHLOCK(pid));
  451         LIST_FOREACH(p, PIDHASH(pid), p_hash) {
  452                 if (p->p_pid == pid) {
  453                         PROC_LOCK(p);
  454                         if (p->p_state == PRS_NEW ||
  455                             (!zombie && p->p_state == PRS_ZOMBIE)) {
  456                                 PROC_UNLOCK(p);
  457                                 p = NULL;
  458                         }
  459                         break;
  460                 }
  461         }
  462         sx_sunlock(PIDHASHLOCK(pid));
  463         return (p);
  464 }
  465 
  466 struct proc *
  467 pfind(pid_t pid)
  468 {
  469 
  470         return (_pfind(pid, false));
  471 }
  472 
  473 /*
  474  * Same as pfind but allow zombies.
  475  */
  476 struct proc *
  477 pfind_any(pid_t pid)
  478 {
  479 
  480         return (_pfind(pid, true));
  481 }
  482 
  483 /*
  484  * Locate a process group by number.
  485  * The caller must hold proctree_lock.
  486  */
  487 struct pgrp *
  488 pgfind(pid_t pgid)
  489 {
  490         struct pgrp *pgrp;
  491 
  492         sx_assert(&proctree_lock, SX_LOCKED);
  493 
  494         LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
  495                 if (pgrp->pg_id == pgid) {
  496                         PGRP_LOCK(pgrp);
  497                         return (pgrp);
  498                 }
  499         }
  500         return (NULL);
  501 }
  502 
  503 /*
  504  * Locate process and do additional manipulations, depending on flags.
  505  */
  506 int
  507 pget(pid_t pid, int flags, struct proc **pp)
  508 {
  509         struct proc *p;
  510         struct thread *td1;
  511         int error;
  512 
  513         p = curproc;
  514         if (p->p_pid == pid) {
  515                 PROC_LOCK(p);
  516         } else {
  517                 p = NULL;
  518                 if (pid <= PID_MAX) {
  519                         if ((flags & PGET_NOTWEXIT) == 0)
  520                                 p = pfind_any(pid);
  521                         else
  522                                 p = pfind(pid);
  523                 } else if ((flags & PGET_NOTID) == 0) {
  524                         td1 = tdfind(pid, -1);
  525                         if (td1 != NULL)
  526                                 p = td1->td_proc;
  527                 }
  528                 if (p == NULL)
  529                         return (ESRCH);
  530                 if ((flags & PGET_CANSEE) != 0) {
  531                         error = p_cansee(curthread, p);
  532                         if (error != 0)
  533                                 goto errout;
  534                 }
  535         }
  536         if ((flags & PGET_CANDEBUG) != 0) {
  537                 error = p_candebug(curthread, p);
  538                 if (error != 0)
  539                         goto errout;
  540         }
  541         if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
  542                 error = EPERM;
  543                 goto errout;
  544         }
  545         if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
  546                 error = ESRCH;
  547                 goto errout;
  548         }
  549         if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
  550                 /*
  551                  * XXXRW: Not clear ESRCH is the right error during proc
  552                  * execve().
  553                  */
  554                 error = ESRCH;
  555                 goto errout;
  556         }
  557         if ((flags & PGET_HOLD) != 0) {
  558                 _PHOLD(p);
  559                 PROC_UNLOCK(p);
  560         }
  561         *pp = p;
  562         return (0);
  563 errout:
  564         PROC_UNLOCK(p);
  565         return (error);
  566 }
  567 
  568 /*
  569  * Create a new process group.
  570  * pgid must be equal to the pid of p.
  571  * Begin a new session if required.
  572  */
  573 int
  574 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
  575 {
  576 
  577         sx_assert(&proctree_lock, SX_XLOCKED);
  578 
  579         KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
  580         KASSERT(p->p_pid == pgid,
  581             ("enterpgrp: new pgrp and pid != pgid"));
  582         KASSERT(pgfind(pgid) == NULL,
  583             ("enterpgrp: pgrp with pgid exists"));
  584         KASSERT(!SESS_LEADER(p),
  585             ("enterpgrp: session leader attempted setpgrp"));
  586 
  587         if (sess != NULL) {
  588                 /*
  589                  * new session
  590                  */
  591                 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
  592                 PROC_LOCK(p);
  593                 p->p_flag &= ~P_CONTROLT;
  594                 PROC_UNLOCK(p);
  595                 PGRP_LOCK(pgrp);
  596                 sess->s_leader = p;
  597                 sess->s_sid = p->p_pid;
  598                 proc_id_set(PROC_ID_SESSION, p->p_pid);
  599                 refcount_init(&sess->s_count, 1);
  600                 sess->s_ttyvp = NULL;
  601                 sess->s_ttydp = NULL;
  602                 sess->s_ttyp = NULL;
  603                 bcopy(p->p_session->s_login, sess->s_login,
  604                             sizeof(sess->s_login));
  605                 pgrp->pg_session = sess;
  606                 KASSERT(p == curproc,
  607                     ("enterpgrp: mksession and p != curproc"));
  608         } else {
  609                 pgrp->pg_session = p->p_session;
  610                 sess_hold(pgrp->pg_session);
  611                 PGRP_LOCK(pgrp);
  612         }
  613         pgrp->pg_id = pgid;
  614         proc_id_set(PROC_ID_GROUP, p->p_pid);
  615         LIST_INIT(&pgrp->pg_members);
  616         pgrp->pg_flags = 0;
  617 
  618         /*
  619          * As we have an exclusive lock of proctree_lock,
  620          * this should not deadlock.
  621          */
  622         LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
  623         SLIST_INIT(&pgrp->pg_sigiolst);
  624         PGRP_UNLOCK(pgrp);
  625 
  626         doenterpgrp(p, pgrp);
  627 
  628         return (0);
  629 }
  630 
  631 /*
  632  * Move p to an existing process group
  633  */
  634 int
  635 enterthispgrp(struct proc *p, struct pgrp *pgrp)
  636 {
  637 
  638         sx_assert(&proctree_lock, SX_XLOCKED);
  639         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  640         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  641         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  642         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  643         KASSERT(pgrp->pg_session == p->p_session,
  644             ("%s: pgrp's session %p, p->p_session %p proc %p\n",
  645             __func__, pgrp->pg_session, p->p_session, p));
  646         KASSERT(pgrp != p->p_pgrp,
  647             ("%s: p %p belongs to pgrp %p", __func__, p, pgrp));
  648 
  649         doenterpgrp(p, pgrp);
  650 
  651         return (0);
  652 }
  653 
  654 /*
  655  * If true, any child of q which belongs to group pgrp, qualifies the
  656  * process group pgrp as not orphaned.
  657  */
  658 static bool
  659 isjobproc(struct proc *q, struct pgrp *pgrp)
  660 {
  661         sx_assert(&proctree_lock, SX_LOCKED);
  662 
  663         return (q->p_pgrp != pgrp &&
  664             q->p_pgrp->pg_session == pgrp->pg_session);
  665 }
  666 
  667 static struct proc *
  668 jobc_reaper(struct proc *p)
  669 {
  670         struct proc *pp;
  671 
  672         sx_assert(&proctree_lock, SA_LOCKED);
  673 
  674         for (pp = p;;) {
  675                 pp = pp->p_reaper;
  676                 if (pp->p_reaper == pp ||
  677                     (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
  678                         return (pp);
  679         }
  680 }
  681 
  682 static struct proc *
  683 jobc_parent(struct proc *p, struct proc *p_exiting)
  684 {
  685         struct proc *pp;
  686 
  687         sx_assert(&proctree_lock, SA_LOCKED);
  688 
  689         pp = proc_realparent(p);
  690         if (pp->p_pptr == NULL || pp == p_exiting ||
  691             (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
  692                 return (pp);
  693         return (jobc_reaper(pp));
  694 }
  695 
  696 static int
  697 pgrp_calc_jobc(struct pgrp *pgrp)
  698 {
  699         struct proc *q;
  700         int cnt;
  701 
  702 #ifdef INVARIANTS
  703         if (!mtx_owned(&pgrp->pg_mtx))
  704                 sx_assert(&proctree_lock, SA_LOCKED);
  705 #endif
  706 
  707         cnt = 0;
  708         LIST_FOREACH(q, &pgrp->pg_members, p_pglist) {
  709                 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 ||
  710                     q->p_pptr == NULL)
  711                         continue;
  712                 if (isjobproc(jobc_parent(q, NULL), pgrp))
  713                         cnt++;
  714         }
  715         return (cnt);
  716 }
  717 
  718 /*
  719  * Move p to a process group
  720  */
  721 static void
  722 doenterpgrp(struct proc *p, struct pgrp *pgrp)
  723 {
  724         struct pgrp *savepgrp;
  725         struct proc *pp;
  726 
  727         sx_assert(&proctree_lock, SX_XLOCKED);
  728         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  729         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  730         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  731         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  732 
  733         savepgrp = p->p_pgrp;
  734         pp = jobc_parent(p, NULL);
  735 
  736         PGRP_LOCK(pgrp);
  737         PGRP_LOCK(savepgrp);
  738         if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1)
  739                 orphanpg(savepgrp);
  740         PROC_LOCK(p);
  741         LIST_REMOVE(p, p_pglist);
  742         p->p_pgrp = pgrp;
  743         PROC_UNLOCK(p);
  744         LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
  745         if (isjobproc(pp, pgrp))
  746                 pgrp->pg_flags &= ~PGRP_ORPHANED;
  747         PGRP_UNLOCK(savepgrp);
  748         PGRP_UNLOCK(pgrp);
  749         if (LIST_EMPTY(&savepgrp->pg_members))
  750                 pgdelete(savepgrp);
  751 }
  752 
  753 /*
  754  * remove process from process group
  755  */
  756 int
  757 leavepgrp(struct proc *p)
  758 {
  759         struct pgrp *savepgrp;
  760 
  761         sx_assert(&proctree_lock, SX_XLOCKED);
  762         savepgrp = p->p_pgrp;
  763         PGRP_LOCK(savepgrp);
  764         PROC_LOCK(p);
  765         LIST_REMOVE(p, p_pglist);
  766         p->p_pgrp = NULL;
  767         PROC_UNLOCK(p);
  768         PGRP_UNLOCK(savepgrp);
  769         if (LIST_EMPTY(&savepgrp->pg_members))
  770                 pgdelete(savepgrp);
  771         return (0);
  772 }
  773 
  774 /*
  775  * delete a process group
  776  */
  777 static void
  778 pgdelete(struct pgrp *pgrp)
  779 {
  780         struct session *savesess;
  781         struct tty *tp;
  782 
  783         sx_assert(&proctree_lock, SX_XLOCKED);
  784         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  785         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  786 
  787         /*
  788          * Reset any sigio structures pointing to us as a result of
  789          * F_SETOWN with our pgid.  The proctree lock ensures that
  790          * new sigio structures will not be added after this point.
  791          */
  792         funsetownlst(&pgrp->pg_sigiolst);
  793 
  794         PGRP_LOCK(pgrp);
  795         tp = pgrp->pg_session->s_ttyp;
  796         LIST_REMOVE(pgrp, pg_hash);
  797         savesess = pgrp->pg_session;
  798         PGRP_UNLOCK(pgrp);
  799 
  800         /* Remove the reference to the pgrp before deallocating it. */
  801         if (tp != NULL) {
  802                 tty_lock(tp);
  803                 tty_rel_pgrp(tp, pgrp);
  804         }
  805 
  806         proc_id_clear(PROC_ID_GROUP, pgrp->pg_id);
  807         uma_zfree(pgrp_zone, pgrp);
  808         sess_release(savesess);
  809 }
  810 
  811 
  812 static void
  813 fixjobc_kill(struct proc *p)
  814 {
  815         struct proc *q;
  816         struct pgrp *pgrp;
  817 
  818         sx_assert(&proctree_lock, SX_LOCKED);
  819         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  820         pgrp = p->p_pgrp;
  821         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  822         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  823 
  824         /*
  825          * p no longer affects process group orphanage for children.
  826          * It is marked by the flag because p is only physically
  827          * removed from its process group on wait(2).
  828          */
  829         MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0);
  830         p->p_treeflag |= P_TREE_GRPEXITED;
  831 
  832         /*
  833          * Check if exiting p orphans its own group.
  834          */
  835         pgrp = p->p_pgrp;
  836         if (isjobproc(jobc_parent(p, NULL), pgrp)) {
  837                 PGRP_LOCK(pgrp);
  838                 if (pgrp_calc_jobc(pgrp) == 0)
  839                         orphanpg(pgrp);
  840                 PGRP_UNLOCK(pgrp);
  841         }
  842 
  843         /*
  844          * Check this process' children to see whether they qualify
  845          * their process groups after reparenting to reaper.
  846          */
  847         LIST_FOREACH(q, &p->p_children, p_sibling) {
  848                 pgrp = q->p_pgrp;
  849                 PGRP_LOCK(pgrp);
  850                 if (pgrp_calc_jobc(pgrp) == 0) {
  851                         /*
  852                          * We want to handle exactly the children that
  853                          * has p as realparent.  Then, when calculating
  854                          * jobc_parent for children, we should ignore
  855                          * P_TREE_GRPEXITED flag already set on p.
  856                          */
  857                         if (jobc_parent(q, p) == p && isjobproc(p, pgrp))
  858                                 orphanpg(pgrp);
  859                 } else
  860                         pgrp->pg_flags &= ~PGRP_ORPHANED;
  861                 PGRP_UNLOCK(pgrp);
  862         }
  863         LIST_FOREACH(q, &p->p_orphans, p_orphan) {
  864                 pgrp = q->p_pgrp;
  865                 PGRP_LOCK(pgrp);
  866                 if (pgrp_calc_jobc(pgrp) == 0) {
  867                         if (isjobproc(p, pgrp))
  868                                 orphanpg(pgrp);
  869                 } else
  870                         pgrp->pg_flags &= ~PGRP_ORPHANED;
  871                 PGRP_UNLOCK(pgrp);
  872         }
  873 }
  874 
  875 void
  876 killjobc(void)
  877 {
  878         struct session *sp;
  879         struct tty *tp;
  880         struct proc *p;
  881         struct vnode *ttyvp;
  882 
  883         p = curproc;
  884         MPASS(p->p_flag & P_WEXIT);
  885         sx_assert(&proctree_lock, SX_LOCKED);
  886 
  887         if (SESS_LEADER(p)) {
  888                 sp = p->p_session;
  889 
  890                 /*
  891                  * s_ttyp is not zero'd; we use this to indicate that
  892                  * the session once had a controlling terminal. (for
  893                  * logging and informational purposes)
  894                  */
  895                 SESS_LOCK(sp);
  896                 ttyvp = sp->s_ttyvp;
  897                 tp = sp->s_ttyp;
  898                 sp->s_ttyvp = NULL;
  899                 sp->s_ttydp = NULL;
  900                 sp->s_leader = NULL;
  901                 SESS_UNLOCK(sp);
  902 
  903                 /*
  904                  * Signal foreground pgrp and revoke access to
  905                  * controlling terminal if it has not been revoked
  906                  * already.
  907                  *
  908                  * Because the TTY may have been revoked in the mean
  909                  * time and could already have a new session associated
  910                  * with it, make sure we don't send a SIGHUP to a
  911                  * foreground process group that does not belong to this
  912                  * session.
  913                  */
  914 
  915                 if (tp != NULL) {
  916                         tty_lock(tp);
  917                         if (tp->t_session == sp)
  918                                 tty_signal_pgrp(tp, SIGHUP);
  919                         tty_unlock(tp);
  920                 }
  921 
  922                 if (ttyvp != NULL) {
  923                         sx_xunlock(&proctree_lock);
  924                         if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
  925                                 VOP_REVOKE(ttyvp, REVOKEALL);
  926                                 VOP_UNLOCK(ttyvp);
  927                         }
  928                         devfs_ctty_unref(ttyvp);
  929                         sx_xlock(&proctree_lock);
  930                 }
  931         }
  932         fixjobc_kill(p);
  933 }
  934 
  935 /*
  936  * A process group has become orphaned, mark it as such for signal
  937  * delivery code.  If there are any stopped processes in the group,
  938  * hang-up all process in that group.
  939  */
  940 static void
  941 orphanpg(struct pgrp *pg)
  942 {
  943         struct proc *p;
  944 
  945         PGRP_LOCK_ASSERT(pg, MA_OWNED);
  946 
  947         pg->pg_flags |= PGRP_ORPHANED;
  948 
  949         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  950                 PROC_LOCK(p);
  951                 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
  952                         PROC_UNLOCK(p);
  953                         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  954                                 PROC_LOCK(p);
  955                                 kern_psignal(p, SIGHUP);
  956                                 kern_psignal(p, SIGCONT);
  957                                 PROC_UNLOCK(p);
  958                         }
  959                         return;
  960                 }
  961                 PROC_UNLOCK(p);
  962         }
  963 }
  964 
  965 void
  966 sess_hold(struct session *s)
  967 {
  968 
  969         refcount_acquire(&s->s_count);
  970 }
  971 
  972 void
  973 sess_release(struct session *s)
  974 {
  975 
  976         if (refcount_release(&s->s_count)) {
  977                 if (s->s_ttyp != NULL) {
  978                         tty_lock(s->s_ttyp);
  979                         tty_rel_sess(s->s_ttyp, s);
  980                 }
  981                 proc_id_clear(PROC_ID_SESSION, s->s_sid);
  982                 mtx_destroy(&s->s_mtx);
  983                 free(s, M_SESSION);
  984         }
  985 }
  986 
  987 #ifdef DDB
  988 
  989 static void
  990 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p)
  991 {
  992         db_printf(
  993             "    pid %d at %p pr %d pgrp %p e %d jc %d\n",
  994             p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid,
  995             p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0,
  996             p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp));
  997 }
  998 
  999 DB_SHOW_COMMAND_FLAGS(pgrpdump, pgrpdump, DB_CMD_MEMSAFE)
 1000 {
 1001         struct pgrp *pgrp;
 1002         struct proc *p;
 1003         int i;
 1004 
 1005         for (i = 0; i <= pgrphash; i++) {
 1006                 if (!LIST_EMPTY(&pgrphashtbl[i])) {
 1007                         db_printf("indx %d\n", i);
 1008                         LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
 1009                                 db_printf(
 1010                         "  pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n",
 1011                                     pgrp, (int)pgrp->pg_id, pgrp->pg_session,
 1012                                     pgrp->pg_session->s_count,
 1013                                     LIST_FIRST(&pgrp->pg_members));
 1014                                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
 1015                                         db_print_pgrp_one(pgrp, p);
 1016                         }
 1017                 }
 1018         }
 1019 }
 1020 #endif /* DDB */
 1021 
 1022 /*
 1023  * Calculate the kinfo_proc members which contain process-wide
 1024  * informations.
 1025  * Must be called with the target process locked.
 1026  */
 1027 static void
 1028 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
 1029 {
 1030         struct thread *td;
 1031 
 1032         PROC_LOCK_ASSERT(p, MA_OWNED);
 1033 
 1034         kp->ki_estcpu = 0;
 1035         kp->ki_pctcpu = 0;
 1036         FOREACH_THREAD_IN_PROC(p, td) {
 1037                 thread_lock(td);
 1038                 kp->ki_pctcpu += sched_pctcpu(td);
 1039                 kp->ki_estcpu += sched_estcpu(td);
 1040                 thread_unlock(td);
 1041         }
 1042 }
 1043 
 1044 /*
 1045  * Fill in any information that is common to all threads in the process.
 1046  * Must be called with the target process locked.
 1047  */
 1048 static void
 1049 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
 1050 {
 1051         struct thread *td0;
 1052         struct ucred *cred;
 1053         struct sigacts *ps;
 1054         struct timeval boottime;
 1055 
 1056         PROC_LOCK_ASSERT(p, MA_OWNED);
 1057 
 1058         kp->ki_structsize = sizeof(*kp);
 1059         kp->ki_paddr = p;
 1060         kp->ki_addr =/* p->p_addr; */0; /* XXX */
 1061         kp->ki_args = p->p_args;
 1062         kp->ki_textvp = p->p_textvp;
 1063 #ifdef KTRACE
 1064         kp->ki_tracep = ktr_get_tracevp(p, false);
 1065         kp->ki_traceflag = p->p_traceflag;
 1066 #endif
 1067         kp->ki_fd = p->p_fd;
 1068         kp->ki_pd = p->p_pd;
 1069         kp->ki_vmspace = p->p_vmspace;
 1070         kp->ki_flag = p->p_flag;
 1071         kp->ki_flag2 = p->p_flag2;
 1072         cred = p->p_ucred;
 1073         if (cred) {
 1074                 kp->ki_uid = cred->cr_uid;
 1075                 kp->ki_ruid = cred->cr_ruid;
 1076                 kp->ki_svuid = cred->cr_svuid;
 1077                 kp->ki_cr_flags = 0;
 1078                 if (cred->cr_flags & CRED_FLAG_CAPMODE)
 1079                         kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
 1080                 /* XXX bde doesn't like KI_NGROUPS */
 1081                 if (cred->cr_ngroups > KI_NGROUPS) {
 1082                         kp->ki_ngroups = KI_NGROUPS;
 1083                         kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
 1084                 } else
 1085                         kp->ki_ngroups = cred->cr_ngroups;
 1086                 bcopy(cred->cr_groups, kp->ki_groups,
 1087                     kp->ki_ngroups * sizeof(gid_t));
 1088                 kp->ki_rgid = cred->cr_rgid;
 1089                 kp->ki_svgid = cred->cr_svgid;
 1090                 /* If jailed(cred), emulate the old P_JAILED flag. */
 1091                 if (jailed(cred)) {
 1092                         kp->ki_flag |= P_JAILED;
 1093                         /* If inside the jail, use 0 as a jail ID. */
 1094                         if (cred->cr_prison != curthread->td_ucred->cr_prison)
 1095                                 kp->ki_jid = cred->cr_prison->pr_id;
 1096                 }
 1097                 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
 1098                     sizeof(kp->ki_loginclass));
 1099         }
 1100         ps = p->p_sigacts;
 1101         if (ps) {
 1102                 mtx_lock(&ps->ps_mtx);
 1103                 kp->ki_sigignore = ps->ps_sigignore;
 1104                 kp->ki_sigcatch = ps->ps_sigcatch;
 1105                 mtx_unlock(&ps->ps_mtx);
 1106         }
 1107         if (p->p_state != PRS_NEW &&
 1108             p->p_state != PRS_ZOMBIE &&
 1109             p->p_vmspace != NULL) {
 1110                 struct vmspace *vm = p->p_vmspace;
 1111 
 1112                 kp->ki_size = vm->vm_map.size;
 1113                 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
 1114                 FOREACH_THREAD_IN_PROC(p, td0) {
 1115                         if (!TD_IS_SWAPPED(td0))
 1116                                 kp->ki_rssize += td0->td_kstack_pages;
 1117                 }
 1118                 kp->ki_swrss = vm->vm_swrss;
 1119                 kp->ki_tsize = vm->vm_tsize;
 1120                 kp->ki_dsize = vm->vm_dsize;
 1121                 kp->ki_ssize = vm->vm_ssize;
 1122         } else if (p->p_state == PRS_ZOMBIE)
 1123                 kp->ki_stat = SZOMB;
 1124         if (kp->ki_flag & P_INMEM)
 1125                 kp->ki_sflag = PS_INMEM;
 1126         else
 1127                 kp->ki_sflag = 0;
 1128         /* Calculate legacy swtime as seconds since 'swtick'. */
 1129         kp->ki_swtime = (ticks - p->p_swtick) / hz;
 1130         kp->ki_pid = p->p_pid;
 1131         kp->ki_nice = p->p_nice;
 1132         kp->ki_fibnum = p->p_fibnum;
 1133         kp->ki_start = p->p_stats->p_start;
 1134         getboottime(&boottime);
 1135         timevaladd(&kp->ki_start, &boottime);
 1136         PROC_STATLOCK(p);
 1137         rufetch(p, &kp->ki_rusage);
 1138         kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
 1139         calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
 1140         PROC_STATUNLOCK(p);
 1141         calccru(p, &kp->ki_childutime, &kp->ki_childstime);
 1142         /* Some callers want child times in a single value. */
 1143         kp->ki_childtime = kp->ki_childstime;
 1144         timevaladd(&kp->ki_childtime, &kp->ki_childutime);
 1145 
 1146         FOREACH_THREAD_IN_PROC(p, td0)
 1147                 kp->ki_cow += td0->td_cow;
 1148 
 1149         if (p->p_comm[0] != '\0')
 1150                 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
 1151         if (p->p_sysent && p->p_sysent->sv_name != NULL &&
 1152             p->p_sysent->sv_name[0] != '\0')
 1153                 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
 1154         kp->ki_siglist = p->p_siglist;
 1155         kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
 1156         kp->ki_acflag = p->p_acflag;
 1157         kp->ki_lock = p->p_lock;
 1158         if (p->p_pptr) {
 1159                 kp->ki_ppid = p->p_oppid;
 1160                 if (p->p_flag & P_TRACED)
 1161                         kp->ki_tracer = p->p_pptr->p_pid;
 1162         }
 1163 }
 1164 
 1165 /*
 1166  * Fill job-related process information.
 1167  */
 1168 static void
 1169 fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp)
 1170 {
 1171         struct tty *tp;
 1172         struct session *sp;
 1173         struct pgrp *pgrp;
 1174 
 1175         sx_assert(&proctree_lock, SA_LOCKED);
 1176         PROC_LOCK_ASSERT(p, MA_OWNED);
 1177 
 1178         pgrp = p->p_pgrp;
 1179         if (pgrp == NULL)
 1180                 return;
 1181 
 1182         kp->ki_pgid = pgrp->pg_id;
 1183         kp->ki_jobc = pgrp_calc_jobc(pgrp);
 1184 
 1185         sp = pgrp->pg_session;
 1186         tp = NULL;
 1187 
 1188         if (sp != NULL) {
 1189                 kp->ki_sid = sp->s_sid;
 1190                 SESS_LOCK(sp);
 1191                 strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login));
 1192                 if (sp->s_ttyvp)
 1193                         kp->ki_kiflag |= KI_CTTY;
 1194                 if (SESS_LEADER(p))
 1195                         kp->ki_kiflag |= KI_SLEADER;
 1196                 tp = sp->s_ttyp;
 1197                 SESS_UNLOCK(sp);
 1198         }
 1199 
 1200         if ((p->p_flag & P_CONTROLT) && tp != NULL) {
 1201                 kp->ki_tdev = tty_udev(tp);
 1202                 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
 1203                 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
 1204                 if (tp->t_session)
 1205                         kp->ki_tsid = tp->t_session->s_sid;
 1206         } else {
 1207                 kp->ki_tdev = NODEV;
 1208                 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
 1209         }
 1210 }
 1211 
 1212 /*
 1213  * Fill in information that is thread specific.  Must be called with
 1214  * target process locked.  If 'preferthread' is set, overwrite certain
 1215  * process-related fields that are maintained for both threads and
 1216  * processes.
 1217  */
 1218 static void
 1219 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
 1220 {
 1221         struct proc *p;
 1222 
 1223         p = td->td_proc;
 1224         kp->ki_tdaddr = td;
 1225         PROC_LOCK_ASSERT(p, MA_OWNED);
 1226 
 1227         if (preferthread)
 1228                 PROC_STATLOCK(p);
 1229         thread_lock(td);
 1230         if (td->td_wmesg != NULL)
 1231                 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
 1232         else
 1233                 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
 1234         if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
 1235             sizeof(kp->ki_tdname)) {
 1236                 strlcpy(kp->ki_moretdname,
 1237                     td->td_name + sizeof(kp->ki_tdname) - 1,
 1238                     sizeof(kp->ki_moretdname));
 1239         } else {
 1240                 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
 1241         }
 1242         if (TD_ON_LOCK(td)) {
 1243                 kp->ki_kiflag |= KI_LOCKBLOCK;
 1244                 strlcpy(kp->ki_lockname, td->td_lockname,
 1245                     sizeof(kp->ki_lockname));
 1246         } else {
 1247                 kp->ki_kiflag &= ~KI_LOCKBLOCK;
 1248                 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
 1249         }
 1250 
 1251         if (p->p_state == PRS_NORMAL) { /* approximate. */
 1252                 if (TD_ON_RUNQ(td) ||
 1253                     TD_CAN_RUN(td) ||
 1254                     TD_IS_RUNNING(td)) {
 1255                         kp->ki_stat = SRUN;
 1256                 } else if (P_SHOULDSTOP(p)) {
 1257                         kp->ki_stat = SSTOP;
 1258                 } else if (TD_IS_SLEEPING(td)) {
 1259                         kp->ki_stat = SSLEEP;
 1260                 } else if (TD_ON_LOCK(td)) {
 1261                         kp->ki_stat = SLOCK;
 1262                 } else {
 1263                         kp->ki_stat = SWAIT;
 1264                 }
 1265         } else if (p->p_state == PRS_ZOMBIE) {
 1266                 kp->ki_stat = SZOMB;
 1267         } else {
 1268                 kp->ki_stat = SIDL;
 1269         }
 1270 
 1271         /* Things in the thread */
 1272         kp->ki_wchan = td->td_wchan;
 1273         kp->ki_pri.pri_level = td->td_priority;
 1274         kp->ki_pri.pri_native = td->td_base_pri;
 1275 
 1276         /*
 1277          * Note: legacy fields; clamp at the old NOCPU value and/or
 1278          * the maximum u_char CPU value.
 1279          */
 1280         if (td->td_lastcpu == NOCPU)
 1281                 kp->ki_lastcpu_old = NOCPU_OLD;
 1282         else if (td->td_lastcpu > MAXCPU_OLD)
 1283                 kp->ki_lastcpu_old = MAXCPU_OLD;
 1284         else
 1285                 kp->ki_lastcpu_old = td->td_lastcpu;
 1286 
 1287         if (td->td_oncpu == NOCPU)
 1288                 kp->ki_oncpu_old = NOCPU_OLD;
 1289         else if (td->td_oncpu > MAXCPU_OLD)
 1290                 kp->ki_oncpu_old = MAXCPU_OLD;
 1291         else
 1292                 kp->ki_oncpu_old = td->td_oncpu;
 1293 
 1294         kp->ki_lastcpu = td->td_lastcpu;
 1295         kp->ki_oncpu = td->td_oncpu;
 1296         kp->ki_tdflags = td->td_flags;
 1297         kp->ki_tid = td->td_tid;
 1298         kp->ki_numthreads = p->p_numthreads;
 1299         kp->ki_pcb = td->td_pcb;
 1300         kp->ki_kstack = (void *)td->td_kstack;
 1301         kp->ki_slptime = (ticks - td->td_slptick) / hz;
 1302         kp->ki_pri.pri_class = td->td_pri_class;
 1303         kp->ki_pri.pri_user = td->td_user_pri;
 1304 
 1305         if (preferthread) {
 1306                 rufetchtd(td, &kp->ki_rusage);
 1307                 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
 1308                 kp->ki_pctcpu = sched_pctcpu(td);
 1309                 kp->ki_estcpu = sched_estcpu(td);
 1310                 kp->ki_cow = td->td_cow;
 1311         }
 1312 
 1313         /* We can't get this anymore but ps etc never used it anyway. */
 1314         kp->ki_rqindex = 0;
 1315 
 1316         if (preferthread)
 1317                 kp->ki_siglist = td->td_siglist;
 1318         kp->ki_sigmask = td->td_sigmask;
 1319         thread_unlock(td);
 1320         if (preferthread)
 1321                 PROC_STATUNLOCK(p);
 1322 }
 1323 
 1324 /*
 1325  * Fill in a kinfo_proc structure for the specified process.
 1326  * Must be called with the target process locked.
 1327  */
 1328 void
 1329 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
 1330 {
 1331         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1332 
 1333         bzero(kp, sizeof(*kp));
 1334 
 1335         fill_kinfo_proc_pgrp(p,kp);
 1336         fill_kinfo_proc_only(p, kp);
 1337         fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
 1338         fill_kinfo_aggregate(p, kp);
 1339 }
 1340 
 1341 struct pstats *
 1342 pstats_alloc(void)
 1343 {
 1344 
 1345         return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
 1346 }
 1347 
 1348 /*
 1349  * Copy parts of p_stats; zero the rest of p_stats (statistics).
 1350  */
 1351 void
 1352 pstats_fork(struct pstats *src, struct pstats *dst)
 1353 {
 1354 
 1355         bzero(&dst->pstat_startzero,
 1356             __rangeof(struct pstats, pstat_startzero, pstat_endzero));
 1357         bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
 1358             __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
 1359 }
 1360 
 1361 void
 1362 pstats_free(struct pstats *ps)
 1363 {
 1364 
 1365         free(ps, M_SUBPROC);
 1366 }
 1367 
 1368 #ifdef COMPAT_FREEBSD32
 1369 
 1370 /*
 1371  * This function is typically used to copy out the kernel address, so
 1372  * it can be replaced by assignment of zero.
 1373  */
 1374 static inline uint32_t
 1375 ptr32_trim(const void *ptr)
 1376 {
 1377         uintptr_t uptr;
 1378 
 1379         uptr = (uintptr_t)ptr;
 1380         return ((uptr > UINT_MAX) ? 0 : uptr);
 1381 }
 1382 
 1383 #define PTRTRIM_CP(src,dst,fld) \
 1384         do { (dst).fld = ptr32_trim((src).fld); } while (0)
 1385 
 1386 static void
 1387 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
 1388 {
 1389         int i;
 1390 
 1391         bzero(ki32, sizeof(struct kinfo_proc32));
 1392         ki32->ki_structsize = sizeof(struct kinfo_proc32);
 1393         CP(*ki, *ki32, ki_layout);
 1394         PTRTRIM_CP(*ki, *ki32, ki_args);
 1395         PTRTRIM_CP(*ki, *ki32, ki_paddr);
 1396         PTRTRIM_CP(*ki, *ki32, ki_addr);
 1397         PTRTRIM_CP(*ki, *ki32, ki_tracep);
 1398         PTRTRIM_CP(*ki, *ki32, ki_textvp);
 1399         PTRTRIM_CP(*ki, *ki32, ki_fd);
 1400         PTRTRIM_CP(*ki, *ki32, ki_vmspace);
 1401         PTRTRIM_CP(*ki, *ki32, ki_wchan);
 1402         CP(*ki, *ki32, ki_pid);
 1403         CP(*ki, *ki32, ki_ppid);
 1404         CP(*ki, *ki32, ki_pgid);
 1405         CP(*ki, *ki32, ki_tpgid);
 1406         CP(*ki, *ki32, ki_sid);
 1407         CP(*ki, *ki32, ki_tsid);
 1408         CP(*ki, *ki32, ki_jobc);
 1409         CP(*ki, *ki32, ki_tdev);
 1410         CP(*ki, *ki32, ki_tdev_freebsd11);
 1411         CP(*ki, *ki32, ki_siglist);
 1412         CP(*ki, *ki32, ki_sigmask);
 1413         CP(*ki, *ki32, ki_sigignore);
 1414         CP(*ki, *ki32, ki_sigcatch);
 1415         CP(*ki, *ki32, ki_uid);
 1416         CP(*ki, *ki32, ki_ruid);
 1417         CP(*ki, *ki32, ki_svuid);
 1418         CP(*ki, *ki32, ki_rgid);
 1419         CP(*ki, *ki32, ki_svgid);
 1420         CP(*ki, *ki32, ki_ngroups);
 1421         for (i = 0; i < KI_NGROUPS; i++)
 1422                 CP(*ki, *ki32, ki_groups[i]);
 1423         CP(*ki, *ki32, ki_size);
 1424         CP(*ki, *ki32, ki_rssize);
 1425         CP(*ki, *ki32, ki_swrss);
 1426         CP(*ki, *ki32, ki_tsize);
 1427         CP(*ki, *ki32, ki_dsize);
 1428         CP(*ki, *ki32, ki_ssize);
 1429         CP(*ki, *ki32, ki_xstat);
 1430         CP(*ki, *ki32, ki_acflag);
 1431         CP(*ki, *ki32, ki_pctcpu);
 1432         CP(*ki, *ki32, ki_estcpu);
 1433         CP(*ki, *ki32, ki_slptime);
 1434         CP(*ki, *ki32, ki_swtime);
 1435         CP(*ki, *ki32, ki_cow);
 1436         CP(*ki, *ki32, ki_runtime);
 1437         TV_CP(*ki, *ki32, ki_start);
 1438         TV_CP(*ki, *ki32, ki_childtime);
 1439         CP(*ki, *ki32, ki_flag);
 1440         CP(*ki, *ki32, ki_kiflag);
 1441         CP(*ki, *ki32, ki_traceflag);
 1442         CP(*ki, *ki32, ki_stat);
 1443         CP(*ki, *ki32, ki_nice);
 1444         CP(*ki, *ki32, ki_lock);
 1445         CP(*ki, *ki32, ki_rqindex);
 1446         CP(*ki, *ki32, ki_oncpu);
 1447         CP(*ki, *ki32, ki_lastcpu);
 1448 
 1449         /* XXX TODO: wrap cpu value as appropriate */
 1450         CP(*ki, *ki32, ki_oncpu_old);
 1451         CP(*ki, *ki32, ki_lastcpu_old);
 1452 
 1453         bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
 1454         bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
 1455         bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
 1456         bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
 1457         bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
 1458         bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
 1459         bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
 1460         bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
 1461         CP(*ki, *ki32, ki_tracer);
 1462         CP(*ki, *ki32, ki_flag2);
 1463         CP(*ki, *ki32, ki_fibnum);
 1464         CP(*ki, *ki32, ki_cr_flags);
 1465         CP(*ki, *ki32, ki_jid);
 1466         CP(*ki, *ki32, ki_numthreads);
 1467         CP(*ki, *ki32, ki_tid);
 1468         CP(*ki, *ki32, ki_pri);
 1469         freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
 1470         freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
 1471         PTRTRIM_CP(*ki, *ki32, ki_pcb);
 1472         PTRTRIM_CP(*ki, *ki32, ki_kstack);
 1473         PTRTRIM_CP(*ki, *ki32, ki_udata);
 1474         PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
 1475         CP(*ki, *ki32, ki_sflag);
 1476         CP(*ki, *ki32, ki_tdflags);
 1477 }
 1478 #endif
 1479 
 1480 static ssize_t
 1481 kern_proc_out_size(struct proc *p, int flags)
 1482 {
 1483         ssize_t size = 0;
 1484 
 1485         PROC_LOCK_ASSERT(p, MA_OWNED);
 1486 
 1487         if ((flags & KERN_PROC_NOTHREADS) != 0) {
 1488 #ifdef COMPAT_FREEBSD32
 1489                 if ((flags & KERN_PROC_MASK32) != 0) {
 1490                         size += sizeof(struct kinfo_proc32);
 1491                 } else
 1492 #endif
 1493                         size += sizeof(struct kinfo_proc);
 1494         } else {
 1495 #ifdef COMPAT_FREEBSD32
 1496                 if ((flags & KERN_PROC_MASK32) != 0)
 1497                         size += sizeof(struct kinfo_proc32) * p->p_numthreads;
 1498                 else
 1499 #endif
 1500                         size += sizeof(struct kinfo_proc) * p->p_numthreads;
 1501         }
 1502         PROC_UNLOCK(p);
 1503         return (size);
 1504 }
 1505 
 1506 int
 1507 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
 1508 {
 1509         struct thread *td;
 1510         struct kinfo_proc ki;
 1511 #ifdef COMPAT_FREEBSD32
 1512         struct kinfo_proc32 ki32;
 1513 #endif
 1514         int error;
 1515 
 1516         PROC_LOCK_ASSERT(p, MA_OWNED);
 1517         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1518 
 1519         error = 0;
 1520         fill_kinfo_proc(p, &ki);
 1521         if ((flags & KERN_PROC_NOTHREADS) != 0) {
 1522 #ifdef COMPAT_FREEBSD32
 1523                 if ((flags & KERN_PROC_MASK32) != 0) {
 1524                         freebsd32_kinfo_proc_out(&ki, &ki32);
 1525                         if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
 1526                                 error = ENOMEM;
 1527                 } else
 1528 #endif
 1529                         if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
 1530                                 error = ENOMEM;
 1531         } else {
 1532                 FOREACH_THREAD_IN_PROC(p, td) {
 1533                         fill_kinfo_thread(td, &ki, 1);
 1534 #ifdef COMPAT_FREEBSD32
 1535                         if ((flags & KERN_PROC_MASK32) != 0) {
 1536                                 freebsd32_kinfo_proc_out(&ki, &ki32);
 1537                                 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
 1538                                         error = ENOMEM;
 1539                         } else
 1540 #endif
 1541                                 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
 1542                                         error = ENOMEM;
 1543                         if (error != 0)
 1544                                 break;
 1545                 }
 1546         }
 1547         PROC_UNLOCK(p);
 1548         return (error);
 1549 }
 1550 
 1551 static int
 1552 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
 1553 {
 1554         struct sbuf sb;
 1555         struct kinfo_proc ki;
 1556         int error, error2;
 1557 
 1558         if (req->oldptr == NULL)
 1559                 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags)));
 1560 
 1561         sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
 1562         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 1563         error = kern_proc_out(p, &sb, flags);
 1564         error2 = sbuf_finish(&sb);
 1565         sbuf_delete(&sb);
 1566         if (error != 0)
 1567                 return (error);
 1568         else if (error2 != 0)
 1569                 return (error2);
 1570         return (0);
 1571 }
 1572 
 1573 int
 1574 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg)
 1575 {
 1576         struct proc *p;
 1577         int error, i, j;
 1578 
 1579         for (i = 0; i < pidhashlock + 1; i++) {
 1580                 sx_slock(&proctree_lock);
 1581                 sx_slock(&pidhashtbl_lock[i]);
 1582                 for (j = i; j <= pidhash; j += pidhashlock + 1) {
 1583                         LIST_FOREACH(p, &pidhashtbl[j], p_hash) {
 1584                                 if (p->p_state == PRS_NEW)
 1585                                         continue;
 1586                                 error = cb(p, cbarg);
 1587                                 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
 1588                                 if (error != 0) {
 1589                                         sx_sunlock(&pidhashtbl_lock[i]);
 1590                                         sx_sunlock(&proctree_lock);
 1591                                         return (error);
 1592                                 }
 1593                         }
 1594                 }
 1595                 sx_sunlock(&pidhashtbl_lock[i]);
 1596                 sx_sunlock(&proctree_lock);
 1597         }
 1598         return (0);
 1599 }
 1600 
 1601 struct kern_proc_out_args {
 1602         struct sysctl_req *req;
 1603         int flags;
 1604         int oid_number;
 1605         int *name;
 1606 };
 1607 
 1608 static int
 1609 sysctl_kern_proc_iterate(struct proc *p, void *origarg)
 1610 {
 1611         struct kern_proc_out_args *arg = origarg;
 1612         int *name = arg->name;
 1613         int oid_number = arg->oid_number;
 1614         int flags = arg->flags;
 1615         struct sysctl_req *req = arg->req;
 1616         int error = 0;
 1617 
 1618         PROC_LOCK(p);
 1619 
 1620         KASSERT(p->p_ucred != NULL,
 1621             ("process credential is NULL for non-NEW proc"));
 1622         /*
 1623          * Show a user only appropriate processes.
 1624          */
 1625         if (p_cansee(curthread, p))
 1626                 goto skip;
 1627         /*
 1628          * TODO - make more efficient (see notes below).
 1629          * do by session.
 1630          */
 1631         switch (oid_number) {
 1632         case KERN_PROC_GID:
 1633                 if (p->p_ucred->cr_gid != (gid_t)name[0])
 1634                         goto skip;
 1635                 break;
 1636 
 1637         case KERN_PROC_PGRP:
 1638                 /* could do this by traversing pgrp */
 1639                 if (p->p_pgrp == NULL ||
 1640                     p->p_pgrp->pg_id != (pid_t)name[0])
 1641                         goto skip;
 1642                 break;
 1643 
 1644         case KERN_PROC_RGID:
 1645                 if (p->p_ucred->cr_rgid != (gid_t)name[0])
 1646                         goto skip;
 1647                 break;
 1648 
 1649         case KERN_PROC_SESSION:
 1650                 if (p->p_session == NULL ||
 1651                     p->p_session->s_sid != (pid_t)name[0])
 1652                         goto skip;
 1653                 break;
 1654 
 1655         case KERN_PROC_TTY:
 1656                 if ((p->p_flag & P_CONTROLT) == 0 ||
 1657                     p->p_session == NULL)
 1658                         goto skip;
 1659                 /* XXX proctree_lock */
 1660                 SESS_LOCK(p->p_session);
 1661                 if (p->p_session->s_ttyp == NULL ||
 1662                     tty_udev(p->p_session->s_ttyp) !=
 1663                     (dev_t)name[0]) {
 1664                         SESS_UNLOCK(p->p_session);
 1665                         goto skip;
 1666                 }
 1667                 SESS_UNLOCK(p->p_session);
 1668                 break;
 1669 
 1670         case KERN_PROC_UID:
 1671                 if (p->p_ucred->cr_uid != (uid_t)name[0])
 1672                         goto skip;
 1673                 break;
 1674 
 1675         case KERN_PROC_RUID:
 1676                 if (p->p_ucred->cr_ruid != (uid_t)name[0])
 1677                         goto skip;
 1678                 break;
 1679 
 1680         case KERN_PROC_PROC:
 1681                 break;
 1682 
 1683         default:
 1684                 break;
 1685         }
 1686         error = sysctl_out_proc(p, req, flags);
 1687         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
 1688         return (error);
 1689 skip:
 1690         PROC_UNLOCK(p);
 1691         return (0);
 1692 }
 1693 
 1694 static int
 1695 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
 1696 {
 1697         struct kern_proc_out_args iterarg;
 1698         int *name = (int *)arg1;
 1699         u_int namelen = arg2;
 1700         struct proc *p;
 1701         int flags, oid_number;
 1702         int error = 0;
 1703 
 1704         oid_number = oidp->oid_number;
 1705         if (oid_number != KERN_PROC_ALL &&
 1706             (oid_number & KERN_PROC_INC_THREAD) == 0)
 1707                 flags = KERN_PROC_NOTHREADS;
 1708         else {
 1709                 flags = 0;
 1710                 oid_number &= ~KERN_PROC_INC_THREAD;
 1711         }
 1712 #ifdef COMPAT_FREEBSD32
 1713         if (req->flags & SCTL_MASK32)
 1714                 flags |= KERN_PROC_MASK32;
 1715 #endif
 1716         if (oid_number == KERN_PROC_PID) {
 1717                 if (namelen != 1)
 1718                         return (EINVAL);
 1719                 error = sysctl_wire_old_buffer(req, 0);
 1720                 if (error)
 1721                         return (error);
 1722                 sx_slock(&proctree_lock);
 1723                 error = pget((pid_t)name[0], PGET_CANSEE, &p);
 1724                 if (error == 0)
 1725                         error = sysctl_out_proc(p, req, flags);
 1726                 sx_sunlock(&proctree_lock);
 1727                 return (error);
 1728         }
 1729 
 1730         switch (oid_number) {
 1731         case KERN_PROC_ALL:
 1732                 if (namelen != 0)
 1733                         return (EINVAL);
 1734                 break;
 1735         case KERN_PROC_PROC:
 1736                 if (namelen != 0 && namelen != 1)
 1737                         return (EINVAL);
 1738                 break;
 1739         default:
 1740                 if (namelen != 1)
 1741                         return (EINVAL);
 1742                 break;
 1743         }
 1744 
 1745         if (req->oldptr == NULL) {
 1746                 /* overestimate by 5 procs */
 1747                 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
 1748                 if (error)
 1749                         return (error);
 1750         } else {
 1751                 error = sysctl_wire_old_buffer(req, 0);
 1752                 if (error != 0)
 1753                         return (error);
 1754         }
 1755         iterarg.flags = flags;
 1756         iterarg.oid_number = oid_number;
 1757         iterarg.req = req;
 1758         iterarg.name = name;
 1759         error = proc_iterate(sysctl_kern_proc_iterate, &iterarg);
 1760         return (error);
 1761 }
 1762 
 1763 struct pargs *
 1764 pargs_alloc(int len)
 1765 {
 1766         struct pargs *pa;
 1767 
 1768         pa = malloc(sizeof(struct pargs) + len, M_PARGS,
 1769                 M_WAITOK);
 1770         refcount_init(&pa->ar_ref, 1);
 1771         pa->ar_length = len;
 1772         return (pa);
 1773 }
 1774 
 1775 static void
 1776 pargs_free(struct pargs *pa)
 1777 {
 1778 
 1779         free(pa, M_PARGS);
 1780 }
 1781 
 1782 void
 1783 pargs_hold(struct pargs *pa)
 1784 {
 1785 
 1786         if (pa == NULL)
 1787                 return;
 1788         refcount_acquire(&pa->ar_ref);
 1789 }
 1790 
 1791 void
 1792 pargs_drop(struct pargs *pa)
 1793 {
 1794 
 1795         if (pa == NULL)
 1796                 return;
 1797         if (refcount_release(&pa->ar_ref))
 1798                 pargs_free(pa);
 1799 }
 1800 
 1801 static int
 1802 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
 1803     size_t len)
 1804 {
 1805         ssize_t n;
 1806 
 1807         /*
 1808          * This may return a short read if the string is shorter than the chunk
 1809          * and is aligned at the end of the page, and the following page is not
 1810          * mapped.
 1811          */
 1812         n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
 1813         if (n <= 0)
 1814                 return (ENOMEM);
 1815         return (0);
 1816 }
 1817 
 1818 #define PROC_AUXV_MAX   256     /* Safety limit on auxv size. */
 1819 
 1820 enum proc_vector_type {
 1821         PROC_ARG,
 1822         PROC_ENV,
 1823         PROC_AUX,
 1824 };
 1825 
 1826 #ifdef COMPAT_FREEBSD32
 1827 static int
 1828 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
 1829     size_t *vsizep, enum proc_vector_type type)
 1830 {
 1831         struct freebsd32_ps_strings pss;
 1832         Elf32_Auxinfo aux;
 1833         vm_offset_t vptr, ptr;
 1834         uint32_t *proc_vector32;
 1835         char **proc_vector;
 1836         size_t vsize, size;
 1837         int i, error;
 1838 
 1839         error = 0;
 1840         if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
 1841             sizeof(pss))
 1842                 return (ENOMEM);
 1843         switch (type) {
 1844         case PROC_ARG:
 1845                 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
 1846                 vsize = pss.ps_nargvstr;
 1847                 if (vsize > ARG_MAX)
 1848                         return (ENOEXEC);
 1849                 size = vsize * sizeof(int32_t);
 1850                 break;
 1851         case PROC_ENV:
 1852                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
 1853                 vsize = pss.ps_nenvstr;
 1854                 if (vsize > ARG_MAX)
 1855                         return (ENOEXEC);
 1856                 size = vsize * sizeof(int32_t);
 1857                 break;
 1858         case PROC_AUX:
 1859                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
 1860                     (pss.ps_nenvstr + 1) * sizeof(int32_t);
 1861                 if (vptr % 4 != 0)
 1862                         return (ENOEXEC);
 1863                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 1864                         if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
 1865                             sizeof(aux))
 1866                                 return (ENOMEM);
 1867                         if (aux.a_type == AT_NULL)
 1868                                 break;
 1869                         ptr += sizeof(aux);
 1870                 }
 1871                 if (aux.a_type != AT_NULL)
 1872                         return (ENOEXEC);
 1873                 vsize = i + 1;
 1874                 size = vsize * sizeof(aux);
 1875                 break;
 1876         default:
 1877                 KASSERT(0, ("Wrong proc vector type: %d", type));
 1878                 return (EINVAL);
 1879         }
 1880         proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
 1881         if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
 1882                 error = ENOMEM;
 1883                 goto done;
 1884         }
 1885         if (type == PROC_AUX) {
 1886                 *proc_vectorp = (char **)proc_vector32;
 1887                 *vsizep = vsize;
 1888                 return (0);
 1889         }
 1890         proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
 1891         for (i = 0; i < (int)vsize; i++)
 1892                 proc_vector[i] = PTRIN(proc_vector32[i]);
 1893         *proc_vectorp = proc_vector;
 1894         *vsizep = vsize;
 1895 done:
 1896         free(proc_vector32, M_TEMP);
 1897         return (error);
 1898 }
 1899 #endif
 1900 
 1901 static int
 1902 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
 1903     size_t *vsizep, enum proc_vector_type type)
 1904 {
 1905         struct ps_strings pss;
 1906         Elf_Auxinfo aux;
 1907         vm_offset_t vptr, ptr;
 1908         char **proc_vector;
 1909         size_t vsize, size;
 1910         int i;
 1911 
 1912 #ifdef COMPAT_FREEBSD32
 1913         if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 1914                 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
 1915 #endif
 1916         if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
 1917             sizeof(pss))
 1918                 return (ENOMEM);
 1919         switch (type) {
 1920         case PROC_ARG:
 1921                 vptr = (vm_offset_t)pss.ps_argvstr;
 1922                 vsize = pss.ps_nargvstr;
 1923                 if (vsize > ARG_MAX)
 1924                         return (ENOEXEC);
 1925                 size = vsize * sizeof(char *);
 1926                 break;
 1927         case PROC_ENV:
 1928                 vptr = (vm_offset_t)pss.ps_envstr;
 1929                 vsize = pss.ps_nenvstr;
 1930                 if (vsize > ARG_MAX)
 1931                         return (ENOEXEC);
 1932                 size = vsize * sizeof(char *);
 1933                 break;
 1934         case PROC_AUX:
 1935                 /*
 1936                  * The aux array is just above env array on the stack. Check
 1937                  * that the address is naturally aligned.
 1938                  */
 1939                 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
 1940                     * sizeof(char *);
 1941 #if __ELF_WORD_SIZE == 64
 1942                 if (vptr % sizeof(uint64_t) != 0)
 1943 #else
 1944                 if (vptr % sizeof(uint32_t) != 0)
 1945 #endif
 1946                         return (ENOEXEC);
 1947                 /*
 1948                  * We count the array size reading the aux vectors from the
 1949                  * stack until AT_NULL vector is returned.  So (to keep the code
 1950                  * simple) we read the process stack twice: the first time here
 1951                  * to find the size and the second time when copying the vectors
 1952                  * to the allocated proc_vector.
 1953                  */
 1954                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 1955                         if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
 1956                             sizeof(aux))
 1957                                 return (ENOMEM);
 1958                         if (aux.a_type == AT_NULL)
 1959                                 break;
 1960                         ptr += sizeof(aux);
 1961                 }
 1962                 /*
 1963                  * If the PROC_AUXV_MAX entries are iterated over, and we have
 1964                  * not reached AT_NULL, it is most likely we are reading wrong
 1965                  * data: either the process doesn't have auxv array or data has
 1966                  * been modified. Return the error in this case.
 1967                  */
 1968                 if (aux.a_type != AT_NULL)
 1969                         return (ENOEXEC);
 1970                 vsize = i + 1;
 1971                 size = vsize * sizeof(aux);
 1972                 break;
 1973         default:
 1974                 KASSERT(0, ("Wrong proc vector type: %d", type));
 1975                 return (EINVAL); /* In case we are built without INVARIANTS. */
 1976         }
 1977         proc_vector = malloc(size, M_TEMP, M_WAITOK);
 1978         if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
 1979                 free(proc_vector, M_TEMP);
 1980                 return (ENOMEM);
 1981         }
 1982         *proc_vectorp = proc_vector;
 1983         *vsizep = vsize;
 1984 
 1985         return (0);
 1986 }
 1987 
 1988 #define GET_PS_STRINGS_CHUNK_SZ 256     /* Chunk size (bytes) for ps_strings operations. */
 1989 
 1990 static int
 1991 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
 1992     enum proc_vector_type type)
 1993 {
 1994         size_t done, len, nchr, vsize;
 1995         int error, i;
 1996         char **proc_vector, *sptr;
 1997         char pss_string[GET_PS_STRINGS_CHUNK_SZ];
 1998 
 1999         PROC_ASSERT_HELD(p);
 2000 
 2001         /*
 2002          * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
 2003          */
 2004         nchr = 2 * (PATH_MAX + ARG_MAX);
 2005 
 2006         error = get_proc_vector(td, p, &proc_vector, &vsize, type);
 2007         if (error != 0)
 2008                 return (error);
 2009         for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
 2010                 /*
 2011                  * The program may have scribbled into its argv array, e.g. to
 2012                  * remove some arguments.  If that has happened, break out
 2013                  * before trying to read from NULL.
 2014                  */
 2015                 if (proc_vector[i] == NULL)
 2016                         break;
 2017                 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
 2018                         error = proc_read_string(td, p, sptr, pss_string,
 2019                             sizeof(pss_string));
 2020                         if (error != 0)
 2021                                 goto done;
 2022                         len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
 2023                         if (done + len >= nchr)
 2024                                 len = nchr - done - 1;
 2025                         sbuf_bcat(sb, pss_string, len);
 2026                         if (len != GET_PS_STRINGS_CHUNK_SZ)
 2027                                 break;
 2028                         done += GET_PS_STRINGS_CHUNK_SZ;
 2029                 }
 2030                 sbuf_bcat(sb, "", 1);
 2031                 done += len + 1;
 2032         }
 2033 done:
 2034         free(proc_vector, M_TEMP);
 2035         return (error);
 2036 }
 2037 
 2038 int
 2039 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
 2040 {
 2041 
 2042         return (get_ps_strings(curthread, p, sb, PROC_ARG));
 2043 }
 2044 
 2045 int
 2046 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
 2047 {
 2048 
 2049         return (get_ps_strings(curthread, p, sb, PROC_ENV));
 2050 }
 2051 
 2052 int
 2053 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
 2054 {
 2055         size_t vsize, size;
 2056         char **auxv;
 2057         int error;
 2058 
 2059         error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
 2060         if (error == 0) {
 2061 #ifdef COMPAT_FREEBSD32
 2062                 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 2063                         size = vsize * sizeof(Elf32_Auxinfo);
 2064                 else
 2065 #endif
 2066                         size = vsize * sizeof(Elf_Auxinfo);
 2067                 if (sbuf_bcat(sb, auxv, size) != 0)
 2068                         error = ENOMEM;
 2069                 free(auxv, M_TEMP);
 2070         }
 2071         return (error);
 2072 }
 2073 
 2074 /*
 2075  * This sysctl allows a process to retrieve the argument list or process
 2076  * title for another process without groping around in the address space
 2077  * of the other process.  It also allow a process to set its own "process 
 2078  * title to a string of its own choice.
 2079  */
 2080 static int
 2081 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
 2082 {
 2083         int *name = (int *)arg1;
 2084         u_int namelen = arg2;
 2085         struct pargs *newpa, *pa;
 2086         struct proc *p;
 2087         struct sbuf sb;
 2088         int flags, error = 0, error2;
 2089         pid_t pid;
 2090 
 2091         if (namelen != 1)
 2092                 return (EINVAL);
 2093 
 2094         p = curproc;
 2095         pid = (pid_t)name[0];
 2096         if (pid == -1) {
 2097                 pid = p->p_pid;
 2098         }
 2099 
 2100         /*
 2101          * If the query is for this process and it is single-threaded, there
 2102          * is nobody to modify pargs, thus we can just read.
 2103          */
 2104         if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL &&
 2105             (pa = p->p_args) != NULL)
 2106                 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length));
 2107 
 2108         flags = PGET_CANSEE;
 2109         if (req->newptr != NULL)
 2110                 flags |= PGET_ISCURRENT;
 2111         error = pget(pid, flags, &p);
 2112         if (error)
 2113                 return (error);
 2114 
 2115         pa = p->p_args;
 2116         if (pa != NULL) {
 2117                 pargs_hold(pa);
 2118                 PROC_UNLOCK(p);
 2119                 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
 2120                 pargs_drop(pa);
 2121         } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
 2122                 _PHOLD(p);
 2123                 PROC_UNLOCK(p);
 2124                 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 2125                 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 2126                 error = proc_getargv(curthread, p, &sb);
 2127                 error2 = sbuf_finish(&sb);
 2128                 PRELE(p);
 2129                 sbuf_delete(&sb);
 2130                 if (error == 0 && error2 != 0)
 2131                         error = error2;
 2132         } else {
 2133                 PROC_UNLOCK(p);
 2134         }
 2135         if (error != 0 || req->newptr == NULL)
 2136                 return (error);
 2137 
 2138         if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
 2139                 return (ENOMEM);
 2140 
 2141         if (req->newlen == 0) {
 2142                 /*
 2143                  * Clear the argument pointer, so that we'll fetch arguments
 2144                  * with proc_getargv() until further notice.
 2145                  */
 2146                 newpa = NULL;
 2147         } else {
 2148                 newpa = pargs_alloc(req->newlen);
 2149                 error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
 2150                 if (error != 0) {
 2151                         pargs_free(newpa);
 2152                         return (error);
 2153                 }
 2154         }
 2155         PROC_LOCK(p);
 2156         pa = p->p_args;
 2157         p->p_args = newpa;
 2158         PROC_UNLOCK(p);
 2159         pargs_drop(pa);
 2160         return (0);
 2161 }
 2162 
 2163 /*
 2164  * This sysctl allows a process to retrieve environment of another process.
 2165  */
 2166 static int
 2167 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
 2168 {
 2169         int *name = (int *)arg1;
 2170         u_int namelen = arg2;
 2171         struct proc *p;
 2172         struct sbuf sb;
 2173         int error, error2;
 2174 
 2175         if (namelen != 1)
 2176                 return (EINVAL);
 2177 
 2178         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 2179         if (error != 0)
 2180                 return (error);
 2181         if ((p->p_flag & P_SYSTEM) != 0) {
 2182                 PRELE(p);
 2183                 return (0);
 2184         }
 2185 
 2186         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 2187         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 2188         error = proc_getenvv(curthread, p, &sb);
 2189         error2 = sbuf_finish(&sb);
 2190         PRELE(p);
 2191         sbuf_delete(&sb);
 2192         return (error != 0 ? error : error2);
 2193 }
 2194 
 2195 /*
 2196  * This sysctl allows a process to retrieve ELF auxiliary vector of
 2197  * another process.
 2198  */
 2199 static int
 2200 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
 2201 {
 2202         int *name = (int *)arg1;
 2203         u_int namelen = arg2;
 2204         struct proc *p;
 2205         struct sbuf sb;
 2206         int error, error2;
 2207 
 2208         if (namelen != 1)
 2209                 return (EINVAL);
 2210 
 2211         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 2212         if (error != 0)
 2213                 return (error);
 2214         if ((p->p_flag & P_SYSTEM) != 0) {
 2215                 PRELE(p);
 2216                 return (0);
 2217         }
 2218         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 2219         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 2220         error = proc_getauxv(curthread, p, &sb);
 2221         error2 = sbuf_finish(&sb);
 2222         PRELE(p);
 2223         sbuf_delete(&sb);
 2224         return (error != 0 ? error : error2);
 2225 }
 2226 
 2227 /*
 2228  * Look up the canonical executable path running in the specified process.
 2229  * It tries to return the same hardlink name as was used for execve(2).
 2230  * This allows the programs that modify their behavior based on their progname,
 2231  * to operate correctly.
 2232  *
 2233  * Result is returned in retbuf, it must not be freed, similar to vn_fullpath()
 2234  *   calling conventions.
 2235  * binname is a pointer to temporary string buffer of length MAXPATHLEN,
 2236  *   allocated and freed by caller.
 2237  * freebuf should be freed by caller, from the M_TEMP malloc type.
 2238  */
 2239 int
 2240 proc_get_binpath(struct proc *p, char *binname, char **retbuf,
 2241     char **freebuf)
 2242 {
 2243         struct nameidata nd;
 2244         struct vnode *vp, *dvp;
 2245         size_t freepath_size;
 2246         int error;
 2247         bool do_fullpath;
 2248 
 2249         PROC_LOCK_ASSERT(p, MA_OWNED);
 2250 
 2251         vp = p->p_textvp;
 2252         if (vp == NULL) {
 2253                 PROC_UNLOCK(p);
 2254                 *retbuf = "";
 2255                 *freebuf = NULL;
 2256                 return (0);
 2257         }
 2258         vref(vp);
 2259         dvp = p->p_textdvp;
 2260         if (dvp != NULL)
 2261                 vref(dvp);
 2262         if (p->p_binname != NULL)
 2263                 strlcpy(binname, p->p_binname, MAXPATHLEN);
 2264         PROC_UNLOCK(p);
 2265 
 2266         do_fullpath = true;
 2267         *freebuf = NULL;
 2268         if (dvp != NULL && binname[0] != '\0') {
 2269                 freepath_size = MAXPATHLEN;
 2270                 if (vn_fullpath_hardlink(vp, dvp, binname, strlen(binname),
 2271                     retbuf, freebuf, &freepath_size) == 0) {
 2272                         /*
 2273                          * Recheck the looked up path.  The binary
 2274                          * might have been renamed or replaced, in
 2275                          * which case we should not report old name.
 2276                          */
 2277                         NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, *retbuf);
 2278                         error = namei(&nd);
 2279                         if (error == 0) {
 2280                                 if (nd.ni_vp == vp)
 2281                                         do_fullpath = false;
 2282                                 vrele(nd.ni_vp);
 2283                                 NDFREE_PNBUF(&nd);
 2284                         }
 2285                 }
 2286         }
 2287         if (do_fullpath) {
 2288                 free(*freebuf, M_TEMP);
 2289                 *freebuf = NULL;
 2290                 error = vn_fullpath(vp, retbuf, freebuf);
 2291         }
 2292         vrele(vp);
 2293         if (dvp != NULL)
 2294                 vrele(dvp);
 2295         return (error);
 2296 }
 2297 
 2298 /*
 2299  * This sysctl allows a process to retrieve the path of the executable for
 2300  * itself or another process.
 2301  */
 2302 static int
 2303 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
 2304 {
 2305         pid_t *pidp = (pid_t *)arg1;
 2306         unsigned int arglen = arg2;
 2307         struct proc *p;
 2308         char *retbuf, *freebuf, *binname;
 2309         int error;
 2310 
 2311         if (arglen != 1)
 2312                 return (EINVAL);
 2313         binname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
 2314         binname[0] = '\0';
 2315         if (*pidp == -1) {      /* -1 means this process */
 2316                 error = 0;
 2317                 p = req->td->td_proc;
 2318                 PROC_LOCK(p);
 2319         } else {
 2320                 error = pget(*pidp, PGET_CANSEE, &p);
 2321         }
 2322 
 2323         if (error == 0)
 2324                 error = proc_get_binpath(p, binname, &retbuf, &freebuf);
 2325         free(binname, M_TEMP);
 2326         if (error != 0)
 2327                 return (error);
 2328         error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
 2329         free(freebuf, M_TEMP);
 2330         return (error);
 2331 }
 2332 
 2333 static int
 2334 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
 2335 {
 2336         struct proc *p;
 2337         char *sv_name;
 2338         int *name;
 2339         int namelen;
 2340         int error;
 2341 
 2342         namelen = arg2;
 2343         if (namelen != 1)
 2344                 return (EINVAL);
 2345 
 2346         name = (int *)arg1;
 2347         error = pget((pid_t)name[0], PGET_CANSEE, &p);
 2348         if (error != 0)
 2349                 return (error);
 2350         sv_name = p->p_sysent->sv_name;
 2351         PROC_UNLOCK(p);
 2352         return (sysctl_handle_string(oidp, sv_name, 0, req));
 2353 }
 2354 
 2355 #ifdef KINFO_OVMENTRY_SIZE
 2356 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
 2357 #endif
 2358 
 2359 #ifdef COMPAT_FREEBSD7
 2360 static int
 2361 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
 2362 {
 2363         vm_map_entry_t entry, tmp_entry;
 2364         unsigned int last_timestamp, namelen;
 2365         char *fullpath, *freepath;
 2366         struct kinfo_ovmentry *kve;
 2367         struct vattr va;
 2368         struct ucred *cred;
 2369         int error, *name;
 2370         struct vnode *vp;
 2371         struct proc *p;
 2372         vm_map_t map;
 2373         struct vmspace *vm;
 2374 
 2375         namelen = arg2;
 2376         if (namelen != 1)
 2377                 return (EINVAL);
 2378 
 2379         name = (int *)arg1;
 2380         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 2381         if (error != 0)
 2382                 return (error);
 2383         vm = vmspace_acquire_ref(p);
 2384         if (vm == NULL) {
 2385                 PRELE(p);
 2386                 return (ESRCH);
 2387         }
 2388         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
 2389 
 2390         map = &vm->vm_map;
 2391         vm_map_lock_read(map);
 2392         VM_MAP_ENTRY_FOREACH(entry, map) {
 2393                 vm_object_t obj, tobj, lobj;
 2394                 vm_offset_t addr;
 2395 
 2396                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 2397                         continue;
 2398 
 2399                 bzero(kve, sizeof(*kve));
 2400                 kve->kve_structsize = sizeof(*kve);
 2401 
 2402                 kve->kve_private_resident = 0;
 2403                 obj = entry->object.vm_object;
 2404                 if (obj != NULL) {
 2405                         VM_OBJECT_RLOCK(obj);
 2406                         if (obj->shadow_count == 1)
 2407                                 kve->kve_private_resident =
 2408                                     obj->resident_page_count;
 2409                 }
 2410                 kve->kve_resident = 0;
 2411                 addr = entry->start;
 2412                 while (addr < entry->end) {
 2413                         if (pmap_extract(map->pmap, addr))
 2414                                 kve->kve_resident++;
 2415                         addr += PAGE_SIZE;
 2416                 }
 2417 
 2418                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
 2419                         if (tobj != obj) {
 2420                                 VM_OBJECT_RLOCK(tobj);
 2421                                 kve->kve_offset += tobj->backing_object_offset;
 2422                         }
 2423                         if (lobj != obj)
 2424                                 VM_OBJECT_RUNLOCK(lobj);
 2425                         lobj = tobj;
 2426                 }
 2427 
 2428                 kve->kve_start = (void*)entry->start;
 2429                 kve->kve_end = (void*)entry->end;
 2430                 kve->kve_offset += (off_t)entry->offset;
 2431 
 2432                 if (entry->protection & VM_PROT_READ)
 2433                         kve->kve_protection |= KVME_PROT_READ;
 2434                 if (entry->protection & VM_PROT_WRITE)
 2435                         kve->kve_protection |= KVME_PROT_WRITE;
 2436                 if (entry->protection & VM_PROT_EXECUTE)
 2437                         kve->kve_protection |= KVME_PROT_EXEC;
 2438 
 2439                 if (entry->eflags & MAP_ENTRY_COW)
 2440                         kve->kve_flags |= KVME_FLAG_COW;
 2441                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 2442                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 2443                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 2444                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 2445 
 2446                 last_timestamp = map->timestamp;
 2447                 vm_map_unlock_read(map);
 2448 
 2449                 kve->kve_fileid = 0;
 2450                 kve->kve_fsid = 0;
 2451                 freepath = NULL;
 2452                 fullpath = "";
 2453                 if (lobj) {
 2454                         kve->kve_type = vm_object_kvme_type(lobj, &vp);
 2455                         if (kve->kve_type == KVME_TYPE_MGTDEVICE)
 2456                                 kve->kve_type = KVME_TYPE_UNKNOWN;
 2457                         if (vp != NULL)
 2458                                 vref(vp);
 2459                         if (lobj != obj)
 2460                                 VM_OBJECT_RUNLOCK(lobj);
 2461 
 2462                         kve->kve_ref_count = obj->ref_count;
 2463                         kve->kve_shadow_count = obj->shadow_count;
 2464                         VM_OBJECT_RUNLOCK(obj);
 2465                         if (vp != NULL) {
 2466                                 vn_fullpath(vp, &fullpath, &freepath);
 2467                                 cred = curthread->td_ucred;
 2468                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2469                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 2470                                         kve->kve_fileid = va.va_fileid;
 2471                                         /* truncate */
 2472                                         kve->kve_fsid = va.va_fsid;
 2473                                 }
 2474                                 vput(vp);
 2475                         }
 2476                 } else {
 2477                         kve->kve_type = KVME_TYPE_NONE;
 2478                         kve->kve_ref_count = 0;
 2479                         kve->kve_shadow_count = 0;
 2480                 }
 2481 
 2482                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 2483                 if (freepath != NULL)
 2484                         free(freepath, M_TEMP);
 2485 
 2486                 error = SYSCTL_OUT(req, kve, sizeof(*kve));
 2487                 vm_map_lock_read(map);
 2488                 if (error)
 2489                         break;
 2490                 if (last_timestamp != map->timestamp) {
 2491                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 2492                         entry = tmp_entry;
 2493                 }
 2494         }
 2495         vm_map_unlock_read(map);
 2496         vmspace_free(vm);
 2497         PRELE(p);
 2498         free(kve, M_TEMP);
 2499         return (error);
 2500 }
 2501 #endif  /* COMPAT_FREEBSD7 */
 2502 
 2503 #ifdef KINFO_VMENTRY_SIZE
 2504 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
 2505 #endif
 2506 
 2507 void
 2508 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
 2509     int *resident_count, bool *super)
 2510 {
 2511         vm_object_t obj, tobj;
 2512         vm_page_t m, m_adv;
 2513         vm_offset_t addr;
 2514         vm_paddr_t pa;
 2515         vm_pindex_t pi, pi_adv, pindex;
 2516 
 2517         *super = false;
 2518         *resident_count = 0;
 2519         if (vmmap_skip_res_cnt)
 2520                 return;
 2521 
 2522         pa = 0;
 2523         obj = entry->object.vm_object;
 2524         addr = entry->start;
 2525         m_adv = NULL;
 2526         pi = OFF_TO_IDX(entry->offset);
 2527         for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
 2528                 if (m_adv != NULL) {
 2529                         m = m_adv;
 2530                 } else {
 2531                         pi_adv = atop(entry->end - addr);
 2532                         pindex = pi;
 2533                         for (tobj = obj;; tobj = tobj->backing_object) {
 2534                                 m = vm_page_find_least(tobj, pindex);
 2535                                 if (m != NULL) {
 2536                                         if (m->pindex == pindex)
 2537                                                 break;
 2538                                         if (pi_adv > m->pindex - pindex) {
 2539                                                 pi_adv = m->pindex - pindex;
 2540                                                 m_adv = m;
 2541                                         }
 2542                                 }
 2543                                 if (tobj->backing_object == NULL)
 2544                                         goto next;
 2545                                 pindex += OFF_TO_IDX(tobj->
 2546                                     backing_object_offset);
 2547                         }
 2548                 }
 2549                 m_adv = NULL;
 2550                 if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
 2551                     (addr & (pagesizes[1] - 1)) == 0 &&
 2552                     (pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) {
 2553                         *super = true;
 2554                         pi_adv = atop(pagesizes[1]);
 2555                 } else {
 2556                         /*
 2557                          * We do not test the found page on validity.
 2558                          * Either the page is busy and being paged in,
 2559                          * or it was invalidated.  The first case
 2560                          * should be counted as resident, the second
 2561                          * is not so clear; we do account both.
 2562                          */
 2563                         pi_adv = 1;
 2564                 }
 2565                 *resident_count += pi_adv;
 2566 next:;
 2567         }
 2568 }
 2569 
 2570 /*
 2571  * Must be called with the process locked and will return unlocked.
 2572  */
 2573 int
 2574 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
 2575 {
 2576         vm_map_entry_t entry, tmp_entry;
 2577         struct vattr va;
 2578         vm_map_t map;
 2579         vm_object_t lobj, nobj, obj, tobj;
 2580         char *fullpath, *freepath;
 2581         struct kinfo_vmentry *kve;
 2582         struct ucred *cred;
 2583         struct vnode *vp;
 2584         struct vmspace *vm;
 2585         vm_offset_t addr;
 2586         unsigned int last_timestamp;
 2587         int error;
 2588         bool guard, super;
 2589 
 2590         PROC_LOCK_ASSERT(p, MA_OWNED);
 2591 
 2592         _PHOLD(p);
 2593         PROC_UNLOCK(p);
 2594         vm = vmspace_acquire_ref(p);
 2595         if (vm == NULL) {
 2596                 PRELE(p);
 2597                 return (ESRCH);
 2598         }
 2599         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
 2600 
 2601         error = 0;
 2602         map = &vm->vm_map;
 2603         vm_map_lock_read(map);
 2604         VM_MAP_ENTRY_FOREACH(entry, map) {
 2605                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 2606                         continue;
 2607 
 2608                 addr = entry->end;
 2609                 bzero(kve, sizeof(*kve));
 2610                 obj = entry->object.vm_object;
 2611                 if (obj != NULL) {
 2612                         if ((obj->flags & OBJ_ANON) != 0)
 2613                                 kve->kve_obj = (uintptr_t)obj;
 2614 
 2615                         for (tobj = obj; tobj != NULL;
 2616                             tobj = tobj->backing_object) {
 2617                                 VM_OBJECT_RLOCK(tobj);
 2618                                 kve->kve_offset += tobj->backing_object_offset;
 2619                                 lobj = tobj;
 2620                         }
 2621                         if (obj->backing_object == NULL)
 2622                                 kve->kve_private_resident =
 2623                                     obj->resident_page_count;
 2624                         kern_proc_vmmap_resident(map, entry,
 2625                             &kve->kve_resident, &super);
 2626                         if (super)
 2627                                 kve->kve_flags |= KVME_FLAG_SUPER;
 2628                         for (tobj = obj; tobj != NULL; tobj = nobj) {
 2629                                 nobj = tobj->backing_object;
 2630                                 if (tobj != obj && tobj != lobj)
 2631                                         VM_OBJECT_RUNLOCK(tobj);
 2632                         }
 2633                 } else {
 2634                         lobj = NULL;
 2635                 }
 2636 
 2637                 kve->kve_start = entry->start;
 2638                 kve->kve_end = entry->end;
 2639                 kve->kve_offset += entry->offset;
 2640 
 2641                 if (entry->protection & VM_PROT_READ)
 2642                         kve->kve_protection |= KVME_PROT_READ;
 2643                 if (entry->protection & VM_PROT_WRITE)
 2644                         kve->kve_protection |= KVME_PROT_WRITE;
 2645                 if (entry->protection & VM_PROT_EXECUTE)
 2646                         kve->kve_protection |= KVME_PROT_EXEC;
 2647 
 2648                 if (entry->eflags & MAP_ENTRY_COW)
 2649                         kve->kve_flags |= KVME_FLAG_COW;
 2650                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 2651                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 2652                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 2653                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 2654                 if (entry->eflags & MAP_ENTRY_GROWS_UP)
 2655                         kve->kve_flags |= KVME_FLAG_GROWS_UP;
 2656                 if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
 2657                         kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
 2658                 if (entry->eflags & MAP_ENTRY_USER_WIRED)
 2659                         kve->kve_flags |= KVME_FLAG_USER_WIRED;
 2660 
 2661                 guard = (entry->eflags & MAP_ENTRY_GUARD) != 0;
 2662 
 2663                 last_timestamp = map->timestamp;
 2664                 vm_map_unlock_read(map);
 2665 
 2666                 freepath = NULL;
 2667                 fullpath = "";
 2668                 if (lobj != NULL) {
 2669                         kve->kve_type = vm_object_kvme_type(lobj, &vp);
 2670                         if (vp != NULL)
 2671                                 vref(vp);
 2672                         if (lobj != obj)
 2673                                 VM_OBJECT_RUNLOCK(lobj);
 2674 
 2675                         kve->kve_ref_count = obj->ref_count;
 2676                         kve->kve_shadow_count = obj->shadow_count;
 2677                         VM_OBJECT_RUNLOCK(obj);
 2678                         if (vp != NULL) {
 2679                                 vn_fullpath(vp, &fullpath, &freepath);
 2680                                 kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
 2681                                 cred = curthread->td_ucred;
 2682                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2683                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 2684                                         kve->kve_vn_fileid = va.va_fileid;
 2685                                         kve->kve_vn_fsid = va.va_fsid;
 2686                                         kve->kve_vn_fsid_freebsd11 =
 2687                                             kve->kve_vn_fsid; /* truncate */
 2688                                         kve->kve_vn_mode =
 2689                                             MAKEIMODE(va.va_type, va.va_mode);
 2690                                         kve->kve_vn_size = va.va_size;
 2691                                         kve->kve_vn_rdev = va.va_rdev;
 2692                                         kve->kve_vn_rdev_freebsd11 =
 2693                                             kve->kve_vn_rdev; /* truncate */
 2694                                         kve->kve_status = KF_ATTR_VALID;
 2695                                 }
 2696                                 vput(vp);
 2697                         }
 2698                 } else {
 2699                         kve->kve_type = guard ? KVME_TYPE_GUARD :
 2700                             KVME_TYPE_NONE;
 2701                         kve->kve_ref_count = 0;
 2702                         kve->kve_shadow_count = 0;
 2703                 }
 2704 
 2705                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 2706                 if (freepath != NULL)
 2707                         free(freepath, M_TEMP);
 2708 
 2709                 /* Pack record size down */
 2710                 if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
 2711                         kve->kve_structsize =
 2712                             offsetof(struct kinfo_vmentry, kve_path) +
 2713                             strlen(kve->kve_path) + 1;
 2714                 else
 2715                         kve->kve_structsize = sizeof(*kve);
 2716                 kve->kve_structsize = roundup(kve->kve_structsize,
 2717                     sizeof(uint64_t));
 2718 
 2719                 /* Halt filling and truncate rather than exceeding maxlen */
 2720                 if (maxlen != -1 && maxlen < kve->kve_structsize) {
 2721                         error = 0;
 2722                         vm_map_lock_read(map);
 2723                         break;
 2724                 } else if (maxlen != -1)
 2725                         maxlen -= kve->kve_structsize;
 2726 
 2727                 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
 2728                         error = ENOMEM;
 2729                 vm_map_lock_read(map);
 2730                 if (error != 0)
 2731                         break;
 2732                 if (last_timestamp != map->timestamp) {
 2733                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 2734                         entry = tmp_entry;
 2735                 }
 2736         }
 2737         vm_map_unlock_read(map);
 2738         vmspace_free(vm);
 2739         PRELE(p);
 2740         free(kve, M_TEMP);
 2741         return (error);
 2742 }
 2743 
 2744 static int
 2745 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
 2746 {
 2747         struct proc *p;
 2748         struct sbuf sb;
 2749         u_int namelen;
 2750         int error, error2, *name;
 2751 
 2752         namelen = arg2;
 2753         if (namelen != 1)
 2754                 return (EINVAL);
 2755 
 2756         name = (int *)arg1;
 2757         sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
 2758         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 2759         error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
 2760         if (error != 0) {
 2761                 sbuf_delete(&sb);
 2762                 return (error);
 2763         }
 2764         error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
 2765         error2 = sbuf_finish(&sb);
 2766         sbuf_delete(&sb);
 2767         return (error != 0 ? error : error2);
 2768 }
 2769 
 2770 #if defined(STACK) || defined(DDB)
 2771 static int
 2772 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
 2773 {
 2774         struct kinfo_kstack *kkstp;
 2775         int error, i, *name, numthreads;
 2776         lwpid_t *lwpidarray;
 2777         struct thread *td;
 2778         struct stack *st;
 2779         struct sbuf sb;
 2780         struct proc *p;
 2781         u_int namelen;
 2782 
 2783         namelen = arg2;
 2784         if (namelen != 1)
 2785                 return (EINVAL);
 2786 
 2787         name = (int *)arg1;
 2788         error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
 2789         if (error != 0)
 2790                 return (error);
 2791 
 2792         kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
 2793         st = stack_create(M_WAITOK);
 2794 
 2795         lwpidarray = NULL;
 2796         PROC_LOCK(p);
 2797         do {
 2798                 if (lwpidarray != NULL) {
 2799                         free(lwpidarray, M_TEMP);
 2800                         lwpidarray = NULL;
 2801                 }
 2802                 numthreads = p->p_numthreads;
 2803                 PROC_UNLOCK(p);
 2804                 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
 2805                     M_WAITOK | M_ZERO);
 2806                 PROC_LOCK(p);
 2807         } while (numthreads < p->p_numthreads);
 2808 
 2809         /*
 2810          * XXXRW: During the below loop, execve(2) and countless other sorts
 2811          * of changes could have taken place.  Should we check to see if the
 2812          * vmspace has been replaced, or the like, in order to prevent
 2813          * giving a snapshot that spans, say, execve(2), with some threads
 2814          * before and some after?  Among other things, the credentials could
 2815          * have changed, in which case the right to extract debug info might
 2816          * no longer be assured.
 2817          */
 2818         i = 0;
 2819         FOREACH_THREAD_IN_PROC(p, td) {
 2820                 KASSERT(i < numthreads,
 2821                     ("sysctl_kern_proc_kstack: numthreads"));
 2822                 lwpidarray[i] = td->td_tid;
 2823                 i++;
 2824         }
 2825         PROC_UNLOCK(p);
 2826         numthreads = i;
 2827         for (i = 0; i < numthreads; i++) {
 2828                 td = tdfind(lwpidarray[i], p->p_pid);
 2829                 if (td == NULL) {
 2830                         continue;
 2831                 }
 2832                 bzero(kkstp, sizeof(*kkstp));
 2833                 (void)sbuf_new(&sb, kkstp->kkst_trace,
 2834                     sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
 2835                 thread_lock(td);
 2836                 kkstp->kkst_tid = td->td_tid;
 2837                 if (TD_IS_SWAPPED(td))
 2838                         kkstp->kkst_state = KKST_STATE_SWAPPED;
 2839                 else if (stack_save_td(st, td) == 0)
 2840                         kkstp->kkst_state = KKST_STATE_STACKOK;
 2841                 else
 2842                         kkstp->kkst_state = KKST_STATE_RUNNING;
 2843                 thread_unlock(td);
 2844                 PROC_UNLOCK(p);
 2845                 stack_sbuf_print(&sb, st);
 2846                 sbuf_finish(&sb);
 2847                 sbuf_delete(&sb);
 2848                 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
 2849                 if (error)
 2850                         break;
 2851         }
 2852         PRELE(p);
 2853         if (lwpidarray != NULL)
 2854                 free(lwpidarray, M_TEMP);
 2855         stack_destroy(st);
 2856         free(kkstp, M_TEMP);
 2857         return (error);
 2858 }
 2859 #endif
 2860 
 2861 /*
 2862  * This sysctl allows a process to retrieve the full list of groups from
 2863  * itself or another process.
 2864  */
 2865 static int
 2866 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
 2867 {
 2868         pid_t *pidp = (pid_t *)arg1;
 2869         unsigned int arglen = arg2;
 2870         struct proc *p;
 2871         struct ucred *cred;
 2872         int error;
 2873 
 2874         if (arglen != 1)
 2875                 return (EINVAL);
 2876         if (*pidp == -1) {      /* -1 means this process */
 2877                 p = req->td->td_proc;
 2878                 PROC_LOCK(p);
 2879         } else {
 2880                 error = pget(*pidp, PGET_CANSEE, &p);
 2881                 if (error != 0)
 2882                         return (error);
 2883         }
 2884 
 2885         cred = crhold(p->p_ucred);
 2886         PROC_UNLOCK(p);
 2887 
 2888         error = SYSCTL_OUT(req, cred->cr_groups,
 2889             cred->cr_ngroups * sizeof(gid_t));
 2890         crfree(cred);
 2891         return (error);
 2892 }
 2893 
 2894 /*
 2895  * This sysctl allows a process to retrieve or/and set the resource limit for
 2896  * another process.
 2897  */
 2898 static int
 2899 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
 2900 {
 2901         int *name = (int *)arg1;
 2902         u_int namelen = arg2;
 2903         struct rlimit rlim;
 2904         struct proc *p;
 2905         u_int which;
 2906         int flags, error;
 2907 
 2908         if (namelen != 2)
 2909                 return (EINVAL);
 2910 
 2911         which = (u_int)name[1];
 2912         if (which >= RLIM_NLIMITS)
 2913                 return (EINVAL);
 2914 
 2915         if (req->newptr != NULL && req->newlen != sizeof(rlim))
 2916                 return (EINVAL);
 2917 
 2918         flags = PGET_HOLD | PGET_NOTWEXIT;
 2919         if (req->newptr != NULL)
 2920                 flags |= PGET_CANDEBUG;
 2921         else
 2922                 flags |= PGET_CANSEE;
 2923         error = pget((pid_t)name[0], flags, &p);
 2924         if (error != 0)
 2925                 return (error);
 2926 
 2927         /*
 2928          * Retrieve limit.
 2929          */
 2930         if (req->oldptr != NULL) {
 2931                 PROC_LOCK(p);
 2932                 lim_rlimit_proc(p, which, &rlim);
 2933                 PROC_UNLOCK(p);
 2934         }
 2935         error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
 2936         if (error != 0)
 2937                 goto errout;
 2938 
 2939         /*
 2940          * Set limit.
 2941          */
 2942         if (req->newptr != NULL) {
 2943                 error = SYSCTL_IN(req, &rlim, sizeof(rlim));
 2944                 if (error == 0)
 2945                         error = kern_proc_setrlimit(curthread, p, which, &rlim);
 2946         }
 2947 
 2948 errout:
 2949         PRELE(p);
 2950         return (error);
 2951 }
 2952 
 2953 /*
 2954  * This sysctl allows a process to retrieve ps_strings structure location of
 2955  * another process.
 2956  */
 2957 static int
 2958 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
 2959 {
 2960         int *name = (int *)arg1;
 2961         u_int namelen = arg2;
 2962         struct proc *p;
 2963         vm_offset_t ps_strings;
 2964         int error;
 2965 #ifdef COMPAT_FREEBSD32
 2966         uint32_t ps_strings32;
 2967 #endif
 2968 
 2969         if (namelen != 1)
 2970                 return (EINVAL);
 2971 
 2972         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 2973         if (error != 0)
 2974                 return (error);
 2975 #ifdef COMPAT_FREEBSD32
 2976         if ((req->flags & SCTL_MASK32) != 0) {
 2977                 /*
 2978                  * We return 0 if the 32 bit emulation request is for a 64 bit
 2979                  * process.
 2980                  */
 2981                 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
 2982                     PTROUT(PROC_PS_STRINGS(p)) : 0;
 2983                 PROC_UNLOCK(p);
 2984                 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
 2985                 return (error);
 2986         }
 2987 #endif
 2988         ps_strings = PROC_PS_STRINGS(p);
 2989         PROC_UNLOCK(p);
 2990         error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
 2991         return (error);
 2992 }
 2993 
 2994 /*
 2995  * This sysctl allows a process to retrieve umask of another process.
 2996  */
 2997 static int
 2998 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
 2999 {
 3000         int *name = (int *)arg1;
 3001         u_int namelen = arg2;
 3002         struct proc *p;
 3003         int error;
 3004         u_short cmask;
 3005         pid_t pid;
 3006 
 3007         if (namelen != 1)
 3008                 return (EINVAL);
 3009 
 3010         pid = (pid_t)name[0];
 3011         p = curproc;
 3012         if (pid == p->p_pid || pid == 0) {
 3013                 cmask = p->p_pd->pd_cmask;
 3014                 goto out;
 3015         }
 3016 
 3017         error = pget(pid, PGET_WANTREAD, &p);
 3018         if (error != 0)
 3019                 return (error);
 3020 
 3021         cmask = p->p_pd->pd_cmask;
 3022         PRELE(p);
 3023 out:
 3024         error = SYSCTL_OUT(req, &cmask, sizeof(cmask));
 3025         return (error);
 3026 }
 3027 
 3028 /*
 3029  * This sysctl allows a process to set and retrieve binary osreldate of
 3030  * another process.
 3031  */
 3032 static int
 3033 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
 3034 {
 3035         int *name = (int *)arg1;
 3036         u_int namelen = arg2;
 3037         struct proc *p;
 3038         int flags, error, osrel;
 3039 
 3040         if (namelen != 1)
 3041                 return (EINVAL);
 3042 
 3043         if (req->newptr != NULL && req->newlen != sizeof(osrel))
 3044                 return (EINVAL);
 3045 
 3046         flags = PGET_HOLD | PGET_NOTWEXIT;
 3047         if (req->newptr != NULL)
 3048                 flags |= PGET_CANDEBUG;
 3049         else
 3050                 flags |= PGET_CANSEE;
 3051         error = pget((pid_t)name[0], flags, &p);
 3052         if (error != 0)
 3053                 return (error);
 3054 
 3055         error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
 3056         if (error != 0)
 3057                 goto errout;
 3058 
 3059         if (req->newptr != NULL) {
 3060                 error = SYSCTL_IN(req, &osrel, sizeof(osrel));
 3061                 if (error != 0)
 3062                         goto errout;
 3063                 if (osrel < 0) {
 3064                         error = EINVAL;
 3065                         goto errout;
 3066                 }
 3067                 p->p_osrel = osrel;
 3068         }
 3069 errout:
 3070         PRELE(p);
 3071         return (error);
 3072 }
 3073 
 3074 static int
 3075 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
 3076 {
 3077         int *name = (int *)arg1;
 3078         u_int namelen = arg2;
 3079         struct proc *p;
 3080         struct kinfo_sigtramp kst;
 3081         const struct sysentvec *sv;
 3082         int error;
 3083 #ifdef COMPAT_FREEBSD32
 3084         struct kinfo_sigtramp32 kst32;
 3085 #endif
 3086 
 3087         if (namelen != 1)
 3088                 return (EINVAL);
 3089 
 3090         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 3091         if (error != 0)
 3092                 return (error);
 3093         sv = p->p_sysent;
 3094 #ifdef COMPAT_FREEBSD32
 3095         if ((req->flags & SCTL_MASK32) != 0) {
 3096                 bzero(&kst32, sizeof(kst32));
 3097                 if (SV_PROC_FLAG(p, SV_ILP32)) {
 3098                         if (PROC_HAS_SHP(p)) {
 3099                                 kst32.ksigtramp_start = PROC_SIGCODE(p);
 3100                                 kst32.ksigtramp_end = kst32.ksigtramp_start +
 3101                                     ((sv->sv_flags & SV_DSO_SIG) == 0 ?
 3102                                     *sv->sv_szsigcode :
 3103                                     (uintptr_t)sv->sv_szsigcode);
 3104                         } else {
 3105                                 kst32.ksigtramp_start = PROC_PS_STRINGS(p) -
 3106                                     *sv->sv_szsigcode;
 3107                                 kst32.ksigtramp_end = PROC_PS_STRINGS(p);
 3108                         }
 3109                 }
 3110                 PROC_UNLOCK(p);
 3111                 error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
 3112                 return (error);
 3113         }
 3114 #endif
 3115         bzero(&kst, sizeof(kst));
 3116         if (PROC_HAS_SHP(p)) {
 3117                 kst.ksigtramp_start = (char *)PROC_SIGCODE(p);
 3118                 kst.ksigtramp_end = (char *)kst.ksigtramp_start +
 3119                     ((sv->sv_flags & SV_DSO_SIG) == 0 ? *sv->sv_szsigcode :
 3120                     (uintptr_t)sv->sv_szsigcode);
 3121         } else {
 3122                 kst.ksigtramp_start = (char *)PROC_PS_STRINGS(p) -
 3123                     *sv->sv_szsigcode;
 3124                 kst.ksigtramp_end = (char *)PROC_PS_STRINGS(p);
 3125         }
 3126         PROC_UNLOCK(p);
 3127         error = SYSCTL_OUT(req, &kst, sizeof(kst));
 3128         return (error);
 3129 }
 3130 
 3131 static int
 3132 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)
 3133 {
 3134         int *name = (int *)arg1;
 3135         u_int namelen = arg2;
 3136         pid_t pid;
 3137         struct proc *p;
 3138         struct thread *td1;
 3139         uintptr_t addr;
 3140 #ifdef COMPAT_FREEBSD32
 3141         uint32_t addr32;
 3142 #endif
 3143         int error;
 3144 
 3145         if (namelen != 1 || req->newptr != NULL)
 3146                 return (EINVAL);
 3147 
 3148         pid = (pid_t)name[0];
 3149         error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p);
 3150         if (error != 0)
 3151                 return (error);
 3152 
 3153         PROC_LOCK(p);
 3154 #ifdef COMPAT_FREEBSD32
 3155         if (SV_CURPROC_FLAG(SV_ILP32)) {
 3156                 if (!SV_PROC_FLAG(p, SV_ILP32)) {
 3157                         error = EINVAL;
 3158                         goto errlocked;
 3159                 }
 3160         }
 3161 #endif
 3162         if (pid <= PID_MAX) {
 3163                 td1 = FIRST_THREAD_IN_PROC(p);
 3164         } else {
 3165                 FOREACH_THREAD_IN_PROC(p, td1) {
 3166                         if (td1->td_tid == pid)
 3167                                 break;
 3168                 }
 3169         }
 3170         if (td1 == NULL) {
 3171                 error = ESRCH;
 3172                 goto errlocked;
 3173         }
 3174         /*
 3175          * The access to the private thread flags.  It is fine as far
 3176          * as no out-of-thin-air values are read from td_pflags, and
 3177          * usermode read of the td_sigblock_ptr is racy inherently,
 3178          * since target process might have already changed it
 3179          * meantime.
 3180          */
 3181         if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0)
 3182                 addr = (uintptr_t)td1->td_sigblock_ptr;
 3183         else
 3184                 error = ENOTTY;
 3185 
 3186 errlocked:
 3187         _PRELE(p);
 3188         PROC_UNLOCK(p);
 3189         if (error != 0)
 3190                 return (error);
 3191 
 3192 #ifdef COMPAT_FREEBSD32
 3193         if (SV_CURPROC_FLAG(SV_ILP32)) {
 3194                 addr32 = addr;
 3195                 error = SYSCTL_OUT(req, &addr32, sizeof(addr32));
 3196         } else
 3197 #endif
 3198                 error = SYSCTL_OUT(req, &addr, sizeof(addr));
 3199         return (error);
 3200 }
 3201 
 3202 static int
 3203 sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS)
 3204 {
 3205         struct kinfo_vm_layout kvm;
 3206         struct proc *p;
 3207         struct vmspace *vmspace;
 3208         int error, *name;
 3209 
 3210         name = (int *)arg1;
 3211         if ((u_int)arg2 != 1)
 3212                 return (EINVAL);
 3213 
 3214         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 3215         if (error != 0)
 3216                 return (error);
 3217 #ifdef COMPAT_FREEBSD32
 3218         if (SV_CURPROC_FLAG(SV_ILP32)) {
 3219                 if (!SV_PROC_FLAG(p, SV_ILP32)) {
 3220                         PROC_UNLOCK(p);
 3221                         return (EINVAL);
 3222                 }
 3223         }
 3224 #endif
 3225         vmspace = vmspace_acquire_ref(p);
 3226         PROC_UNLOCK(p);
 3227 
 3228         memset(&kvm, 0, sizeof(kvm));
 3229         kvm.kvm_min_user_addr = vm_map_min(&vmspace->vm_map);
 3230         kvm.kvm_max_user_addr = vm_map_max(&vmspace->vm_map);
 3231         kvm.kvm_text_addr = (uintptr_t)vmspace->vm_taddr;
 3232         kvm.kvm_text_size = vmspace->vm_tsize;
 3233         kvm.kvm_data_addr = (uintptr_t)vmspace->vm_daddr;
 3234         kvm.kvm_data_size = vmspace->vm_dsize;
 3235         kvm.kvm_stack_addr = (uintptr_t)vmspace->vm_maxsaddr;
 3236         kvm.kvm_stack_size = vmspace->vm_ssize;
 3237         kvm.kvm_shp_addr = vmspace->vm_shp_base;
 3238         kvm.kvm_shp_size = p->p_sysent->sv_shared_page_len;
 3239         if ((vmspace->vm_map.flags & MAP_WIREFUTURE) != 0)
 3240                 kvm.kvm_map_flags |= KMAP_FLAG_WIREFUTURE;
 3241         if ((vmspace->vm_map.flags & MAP_ASLR) != 0)
 3242                 kvm.kvm_map_flags |= KMAP_FLAG_ASLR;
 3243         if ((vmspace->vm_map.flags & MAP_ASLR_IGNSTART) != 0)
 3244                 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_IGNSTART;
 3245         if ((vmspace->vm_map.flags & MAP_WXORX) != 0)
 3246                 kvm.kvm_map_flags |= KMAP_FLAG_WXORX;
 3247         if ((vmspace->vm_map.flags & MAP_ASLR_STACK) != 0)
 3248                 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_STACK;
 3249         if (vmspace->vm_shp_base != p->p_sysent->sv_shared_page_base &&
 3250             PROC_HAS_SHP(p))
 3251                 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_SHARED_PAGE;
 3252 
 3253 #ifdef COMPAT_FREEBSD32
 3254         if (SV_CURPROC_FLAG(SV_ILP32)) {
 3255                 struct kinfo_vm_layout32 kvm32;
 3256 
 3257                 memset(&kvm32, 0, sizeof(kvm32));
 3258                 kvm32.kvm_min_user_addr = (uint32_t)kvm.kvm_min_user_addr;
 3259                 kvm32.kvm_max_user_addr = (uint32_t)kvm.kvm_max_user_addr;
 3260                 kvm32.kvm_text_addr = (uint32_t)kvm.kvm_text_addr;
 3261                 kvm32.kvm_text_size = (uint32_t)kvm.kvm_text_size;
 3262                 kvm32.kvm_data_addr = (uint32_t)kvm.kvm_data_addr;
 3263                 kvm32.kvm_data_size = (uint32_t)kvm.kvm_data_size;
 3264                 kvm32.kvm_stack_addr = (uint32_t)kvm.kvm_stack_addr;
 3265                 kvm32.kvm_stack_size = (uint32_t)kvm.kvm_stack_size;
 3266                 kvm32.kvm_shp_addr = (uint32_t)kvm.kvm_shp_addr;
 3267                 kvm32.kvm_shp_size = (uint32_t)kvm.kvm_shp_size;
 3268                 kvm32.kvm_map_flags = kvm.kvm_map_flags;
 3269                 vmspace_free(vmspace);
 3270                 error = SYSCTL_OUT(req, &kvm32, sizeof(kvm32));
 3271                 goto out;
 3272         }
 3273 #endif
 3274 
 3275         error = SYSCTL_OUT(req, &kvm, sizeof(kvm));
 3276 #ifdef COMPAT_FREEBSD32
 3277 out:
 3278 #endif
 3279         vmspace_free(vmspace);
 3280         return (error);
 3281 }
 3282 
 3283 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,  0,
 3284     "Process table");
 3285 
 3286 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
 3287         CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
 3288         "Return entire process table");
 3289 
 3290 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 3291         sysctl_kern_proc, "Process table");
 3292 
 3293 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
 3294         sysctl_kern_proc, "Process table");
 3295 
 3296 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 3297         sysctl_kern_proc, "Process table");
 3298 
 3299 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
 3300         CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 3301 
 3302 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
 3303         sysctl_kern_proc, "Process table");
 3304 
 3305 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 3306         sysctl_kern_proc, "Process table");
 3307 
 3308 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 3309         sysctl_kern_proc, "Process table");
 3310 
 3311 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 3312         sysctl_kern_proc, "Process table");
 3313 
 3314 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
 3315         sysctl_kern_proc, "Return process table, no threads");
 3316 
 3317 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
 3318         CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
 3319         sysctl_kern_proc_args, "Process argument list");
 3320 
 3321 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
 3322         sysctl_kern_proc_env, "Process environment");
 3323 
 3324 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
 3325         CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
 3326 
 3327 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
 3328         CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
 3329 
 3330 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
 3331         CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
 3332         "Process syscall vector name (ABI type)");
 3333 
 3334 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
 3335         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 3336 
 3337 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
 3338         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 3339 
 3340 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
 3341         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 3342 
 3343 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
 3344         sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 3345 
 3346 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
 3347         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 3348 
 3349 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
 3350         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 3351 
 3352 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
 3353         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 3354 
 3355 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
 3356         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 3357 
 3358 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
 3359         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
 3360         "Return process table, including threads");
 3361 
 3362 #ifdef COMPAT_FREEBSD7
 3363 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
 3364         CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
 3365 #endif
 3366 
 3367 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
 3368         CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
 3369 
 3370 #if defined(STACK) || defined(DDB)
 3371 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
 3372         CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
 3373 #endif
 3374 
 3375 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
 3376         CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
 3377 
 3378 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
 3379         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
 3380         "Process resource limits");
 3381 
 3382 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
 3383         CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
 3384         "Process ps_strings location");
 3385 
 3386 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
 3387         CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
 3388 
 3389 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
 3390         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
 3391         "Process binary osreldate");
 3392 
 3393 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
 3394         CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
 3395         "Process signal trampoline location");
 3396 
 3397 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD |
 3398         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk,
 3399         "Thread sigfastblock address");
 3400 
 3401 static SYSCTL_NODE(_kern_proc, KERN_PROC_VM_LAYOUT, vm_layout, CTLFLAG_RD |
 3402         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_vm_layout,
 3403         "Process virtual address space layout info");
 3404 
 3405 static struct sx stop_all_proc_blocker;
 3406 SX_SYSINIT(stop_all_proc_blocker, &stop_all_proc_blocker, "sapblk");
 3407 
 3408 bool
 3409 stop_all_proc_block(void)
 3410 {
 3411         return (sx_xlock_sig(&stop_all_proc_blocker) == 0);
 3412 }
 3413 
 3414 void
 3415 stop_all_proc_unblock(void)
 3416 {
 3417         sx_xunlock(&stop_all_proc_blocker);
 3418 }
 3419 
 3420 int allproc_gen;
 3421 
 3422 /*
 3423  * stop_all_proc() purpose is to stop all process which have usermode,
 3424  * except current process for obvious reasons.  This makes it somewhat
 3425  * unreliable when invoked from multithreaded process.  The service
 3426  * must not be user-callable anyway.
 3427  */
 3428 void
 3429 stop_all_proc(void)
 3430 {
 3431         struct proc *cp, *p;
 3432         int r, gen;
 3433         bool restart, seen_stopped, seen_exiting, stopped_some;
 3434 
 3435         if (!stop_all_proc_block())
 3436                 return;
 3437 
 3438         cp = curproc;
 3439 allproc_loop:
 3440         sx_xlock(&allproc_lock);
 3441         gen = allproc_gen;
 3442         seen_exiting = seen_stopped = stopped_some = restart = false;
 3443         LIST_REMOVE(cp, p_list);
 3444         LIST_INSERT_HEAD(&allproc, cp, p_list);
 3445         for (;;) {
 3446                 p = LIST_NEXT(cp, p_list);
 3447                 if (p == NULL)
 3448                         break;
 3449                 LIST_REMOVE(cp, p_list);
 3450                 LIST_INSERT_AFTER(p, cp, p_list);
 3451                 PROC_LOCK(p);
 3452                 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) {
 3453                         PROC_UNLOCK(p);
 3454                         continue;
 3455                 }
 3456                 if ((p->p_flag2 & P2_WEXIT) != 0) {
 3457                         seen_exiting = true;
 3458                         PROC_UNLOCK(p);
 3459                         continue;
 3460                 }
 3461                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
 3462                         /*
 3463                          * Stopped processes are tolerated when there
 3464                          * are no other processes which might continue
 3465                          * them.  P_STOPPED_SINGLE but not
 3466                          * P_TOTAL_STOP process still has at least one
 3467                          * thread running.
 3468                          */
 3469                         seen_stopped = true;
 3470                         PROC_UNLOCK(p);
 3471                         continue;
 3472                 }
 3473                 sx_xunlock(&allproc_lock);
 3474                 _PHOLD(p);
 3475                 r = thread_single(p, SINGLE_ALLPROC);
 3476                 if (r != 0)
 3477                         restart = true;
 3478                 else
 3479                         stopped_some = true;
 3480                 _PRELE(p);
 3481                 PROC_UNLOCK(p);
 3482                 sx_xlock(&allproc_lock);
 3483         }
 3484         /* Catch forked children we did not see in iteration. */
 3485         if (gen != allproc_gen)
 3486                 restart = true;
 3487         sx_xunlock(&allproc_lock);
 3488         if (restart || stopped_some || seen_exiting || seen_stopped) {
 3489                 kern_yield(PRI_USER);
 3490                 goto allproc_loop;
 3491         }
 3492 }
 3493 
 3494 void
 3495 resume_all_proc(void)
 3496 {
 3497         struct proc *cp, *p;
 3498 
 3499         cp = curproc;
 3500         sx_xlock(&allproc_lock);
 3501 again:
 3502         LIST_REMOVE(cp, p_list);
 3503         LIST_INSERT_HEAD(&allproc, cp, p_list);
 3504         for (;;) {
 3505                 p = LIST_NEXT(cp, p_list);
 3506                 if (p == NULL)
 3507                         break;
 3508                 LIST_REMOVE(cp, p_list);
 3509                 LIST_INSERT_AFTER(p, cp, p_list);
 3510                 PROC_LOCK(p);
 3511                 if ((p->p_flag & P_TOTAL_STOP) != 0) {
 3512                         sx_xunlock(&allproc_lock);
 3513                         _PHOLD(p);
 3514                         thread_single_end(p, SINGLE_ALLPROC);
 3515                         _PRELE(p);
 3516                         PROC_UNLOCK(p);
 3517                         sx_xlock(&allproc_lock);
 3518                 } else {
 3519                         PROC_UNLOCK(p);
 3520                 }
 3521         }
 3522         /*  Did the loop above missed any stopped process ? */
 3523         FOREACH_PROC_IN_SYSTEM(p) {
 3524                 /* No need for proc lock. */
 3525                 if ((p->p_flag & P_TOTAL_STOP) != 0)
 3526                         goto again;
 3527         }
 3528         sx_xunlock(&allproc_lock);
 3529 
 3530         stop_all_proc_unblock();
 3531 }
 3532 
 3533 /* #define      TOTAL_STOP_DEBUG        1 */
 3534 #ifdef TOTAL_STOP_DEBUG
 3535 volatile static int ap_resume;
 3536 #include <sys/mount.h>
 3537 
 3538 static int
 3539 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
 3540 {
 3541         int error, val;
 3542 
 3543         val = 0;
 3544         ap_resume = 0;
 3545         error = sysctl_handle_int(oidp, &val, 0, req);
 3546         if (error != 0 || req->newptr == NULL)
 3547                 return (error);
 3548         if (val != 0) {
 3549                 stop_all_proc();
 3550                 syncer_suspend();
 3551                 while (ap_resume == 0)
 3552                         ;
 3553                 syncer_resume();
 3554                 resume_all_proc();
 3555         }
 3556         return (0);
 3557 }
 3558 
 3559 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
 3560     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
 3561     sysctl_debug_stop_all_proc, "I",
 3562     "");
 3563 #endif

Cache object: cb0062eed53120a2fbbc8f10cef27f61


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.