FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_proc.c
1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
32 */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 #include "opt_ddb.h"
38 #include "opt_ktrace.h"
39 #include "opt_kstack_pages.h"
40 #include "opt_stack.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bitstring.h>
45 #include <sys/elf.h>
46 #include <sys/eventhandler.h>
47 #include <sys/exec.h>
48 #include <sys/fcntl.h>
49 #include <sys/jail.h>
50 #include <sys/kernel.h>
51 #include <sys/limits.h>
52 #include <sys/lock.h>
53 #include <sys/loginclass.h>
54 #include <sys/malloc.h>
55 #include <sys/mman.h>
56 #include <sys/mount.h>
57 #include <sys/mutex.h>
58 #include <sys/namei.h>
59 #include <sys/proc.h>
60 #include <sys/ptrace.h>
61 #include <sys/refcount.h>
62 #include <sys/resourcevar.h>
63 #include <sys/rwlock.h>
64 #include <sys/sbuf.h>
65 #include <sys/sysent.h>
66 #include <sys/sched.h>
67 #include <sys/smp.h>
68 #include <sys/stack.h>
69 #include <sys/stat.h>
70 #include <sys/dtrace_bsd.h>
71 #include <sys/sysctl.h>
72 #include <sys/filedesc.h>
73 #include <sys/tty.h>
74 #include <sys/signalvar.h>
75 #include <sys/sdt.h>
76 #include <sys/sx.h>
77 #include <sys/user.h>
78 #include <sys/vnode.h>
79 #include <sys/wait.h>
80 #ifdef KTRACE
81 #include <sys/ktrace.h>
82 #endif
83
84 #ifdef DDB
85 #include <ddb/ddb.h>
86 #endif
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/vm_extern.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_page.h>
95 #include <vm/uma.h>
96
97 #include <fs/devfs/devfs.h>
98
99 #ifdef COMPAT_FREEBSD32
100 #include <compat/freebsd32/freebsd32.h>
101 #include <compat/freebsd32/freebsd32_util.h>
102 #endif
103
104 SDT_PROVIDER_DEFINE(proc);
105
106 MALLOC_DEFINE(M_SESSION, "session", "session header");
107 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
108 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
109
110 static void doenterpgrp(struct proc *, struct pgrp *);
111 static void orphanpg(struct pgrp *pg);
112 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
113 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
114 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
115 int preferthread);
116 static void pgdelete(struct pgrp *);
117 static int pgrp_init(void *mem, int size, int flags);
118 static int proc_ctor(void *mem, int size, void *arg, int flags);
119 static void proc_dtor(void *mem, int size, void *arg);
120 static int proc_init(void *mem, int size, int flags);
121 static void proc_fini(void *mem, int size);
122 static void pargs_free(struct pargs *pa);
123
124 /*
125 * Other process lists
126 */
127 struct pidhashhead *pidhashtbl = NULL;
128 struct sx *pidhashtbl_lock;
129 u_long pidhash;
130 u_long pidhashlock;
131 struct pgrphashhead *pgrphashtbl;
132 u_long pgrphash;
133 struct proclist allproc = LIST_HEAD_INITIALIZER(allproc);
134 struct sx __exclusive_cache_line allproc_lock;
135 struct sx __exclusive_cache_line proctree_lock;
136 struct mtx __exclusive_cache_line ppeers_lock;
137 struct mtx __exclusive_cache_line procid_lock;
138 uma_zone_t proc_zone;
139 uma_zone_t pgrp_zone;
140
141 /*
142 * The offset of various fields in struct proc and struct thread.
143 * These are used by kernel debuggers to enumerate kernel threads and
144 * processes.
145 */
146 const int proc_off_p_pid = offsetof(struct proc, p_pid);
147 const int proc_off_p_comm = offsetof(struct proc, p_comm);
148 const int proc_off_p_list = offsetof(struct proc, p_list);
149 const int proc_off_p_hash = offsetof(struct proc, p_hash);
150 const int proc_off_p_threads = offsetof(struct proc, p_threads);
151 const int thread_off_td_tid = offsetof(struct thread, td_tid);
152 const int thread_off_td_name = offsetof(struct thread, td_name);
153 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
154 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
155 const int thread_off_td_plist = offsetof(struct thread, td_plist);
156
157 EVENTHANDLER_LIST_DEFINE(process_ctor);
158 EVENTHANDLER_LIST_DEFINE(process_dtor);
159 EVENTHANDLER_LIST_DEFINE(process_init);
160 EVENTHANDLER_LIST_DEFINE(process_fini);
161 EVENTHANDLER_LIST_DEFINE(process_exit);
162 EVENTHANDLER_LIST_DEFINE(process_fork);
163 EVENTHANDLER_LIST_DEFINE(process_exec);
164
165 int kstack_pages = KSTACK_PAGES;
166 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
167 "Kernel stack size in pages");
168 static int vmmap_skip_res_cnt = 0;
169 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
170 &vmmap_skip_res_cnt, 0,
171 "Skip calculation of the pages resident count in kern.proc.vmmap");
172
173 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
174 #ifdef COMPAT_FREEBSD32
175 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
176 #endif
177
178 /*
179 * Initialize global process hashing structures.
180 */
181 void
182 procinit(void)
183 {
184 u_long i;
185
186 sx_init(&allproc_lock, "allproc");
187 sx_init(&proctree_lock, "proctree");
188 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
189 mtx_init(&procid_lock, "procid", NULL, MTX_DEF);
190 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
191 pidhashlock = (pidhash + 1) / 64;
192 if (pidhashlock > 0)
193 pidhashlock--;
194 pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1),
195 M_PROC, M_WAITOK | M_ZERO);
196 for (i = 0; i < pidhashlock + 1; i++)
197 sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK);
198 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
199 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
200 proc_ctor, proc_dtor, proc_init, proc_fini,
201 UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
202 pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL,
203 pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
204 uihashinit();
205 }
206
207 /*
208 * Prepare a proc for use.
209 */
210 static int
211 proc_ctor(void *mem, int size, void *arg, int flags)
212 {
213 struct proc *p;
214 struct thread *td;
215
216 p = (struct proc *)mem;
217 #ifdef KDTRACE_HOOKS
218 kdtrace_proc_ctor(p);
219 #endif
220 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
221 td = FIRST_THREAD_IN_PROC(p);
222 if (td != NULL) {
223 /* Make sure all thread constructors are executed */
224 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
225 }
226 return (0);
227 }
228
229 /*
230 * Reclaim a proc after use.
231 */
232 static void
233 proc_dtor(void *mem, int size, void *arg)
234 {
235 struct proc *p;
236 struct thread *td;
237
238 /* INVARIANTS checks go here */
239 p = (struct proc *)mem;
240 td = FIRST_THREAD_IN_PROC(p);
241 if (td != NULL) {
242 #ifdef INVARIANTS
243 KASSERT((p->p_numthreads == 1),
244 ("bad number of threads in exiting process"));
245 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
246 #endif
247 /* Free all OSD associated to this thread. */
248 osd_thread_exit(td);
249 ast_kclear(td);
250
251 /* Make sure all thread destructors are executed */
252 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
253 }
254 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
255 #ifdef KDTRACE_HOOKS
256 kdtrace_proc_dtor(p);
257 #endif
258 if (p->p_ksi != NULL)
259 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
260 }
261
262 /*
263 * Initialize type-stable parts of a proc (when newly created).
264 */
265 static int
266 proc_init(void *mem, int size, int flags)
267 {
268 struct proc *p;
269
270 p = (struct proc *)mem;
271 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
272 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
273 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
274 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
275 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
276 cv_init(&p->p_pwait, "ppwait");
277 TAILQ_INIT(&p->p_threads); /* all threads in proc */
278 EVENTHANDLER_DIRECT_INVOKE(process_init, p);
279 p->p_stats = pstats_alloc();
280 p->p_pgrp = NULL;
281 return (0);
282 }
283
284 /*
285 * UMA should ensure that this function is never called.
286 * Freeing a proc structure would violate type stability.
287 */
288 static void
289 proc_fini(void *mem, int size)
290 {
291 #ifdef notnow
292 struct proc *p;
293
294 p = (struct proc *)mem;
295 EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
296 pstats_free(p->p_stats);
297 thread_free(FIRST_THREAD_IN_PROC(p));
298 mtx_destroy(&p->p_mtx);
299 if (p->p_ksi != NULL)
300 ksiginfo_free(p->p_ksi);
301 #else
302 panic("proc reclaimed");
303 #endif
304 }
305
306 static int
307 pgrp_init(void *mem, int size, int flags)
308 {
309 struct pgrp *pg;
310
311 pg = mem;
312 mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
313 return (0);
314 }
315
316 /*
317 * PID space management.
318 *
319 * These bitmaps are used by fork_findpid.
320 */
321 bitstr_t bit_decl(proc_id_pidmap, PID_MAX);
322 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX);
323 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX);
324 bitstr_t bit_decl(proc_id_reapmap, PID_MAX);
325
326 static bitstr_t *proc_id_array[] = {
327 proc_id_pidmap,
328 proc_id_grpidmap,
329 proc_id_sessidmap,
330 proc_id_reapmap,
331 };
332
333 void
334 proc_id_set(int type, pid_t id)
335 {
336
337 KASSERT(type >= 0 && type < nitems(proc_id_array),
338 ("invalid type %d\n", type));
339 mtx_lock(&procid_lock);
340 KASSERT(bit_test(proc_id_array[type], id) == 0,
341 ("bit %d already set in %d\n", id, type));
342 bit_set(proc_id_array[type], id);
343 mtx_unlock(&procid_lock);
344 }
345
346 void
347 proc_id_set_cond(int type, pid_t id)
348 {
349
350 KASSERT(type >= 0 && type < nitems(proc_id_array),
351 ("invalid type %d\n", type));
352 if (bit_test(proc_id_array[type], id))
353 return;
354 mtx_lock(&procid_lock);
355 bit_set(proc_id_array[type], id);
356 mtx_unlock(&procid_lock);
357 }
358
359 void
360 proc_id_clear(int type, pid_t id)
361 {
362
363 KASSERT(type >= 0 && type < nitems(proc_id_array),
364 ("invalid type %d\n", type));
365 mtx_lock(&procid_lock);
366 KASSERT(bit_test(proc_id_array[type], id) != 0,
367 ("bit %d not set in %d\n", id, type));
368 bit_clear(proc_id_array[type], id);
369 mtx_unlock(&procid_lock);
370 }
371
372 /*
373 * Is p an inferior of the current process?
374 */
375 int
376 inferior(struct proc *p)
377 {
378
379 sx_assert(&proctree_lock, SX_LOCKED);
380 PROC_LOCK_ASSERT(p, MA_OWNED);
381 for (; p != curproc; p = proc_realparent(p)) {
382 if (p->p_pid == 0)
383 return (0);
384 }
385 return (1);
386 }
387
388 /*
389 * Shared lock all the pid hash lists.
390 */
391 void
392 pidhash_slockall(void)
393 {
394 u_long i;
395
396 for (i = 0; i < pidhashlock + 1; i++)
397 sx_slock(&pidhashtbl_lock[i]);
398 }
399
400 /*
401 * Shared unlock all the pid hash lists.
402 */
403 void
404 pidhash_sunlockall(void)
405 {
406 u_long i;
407
408 for (i = 0; i < pidhashlock + 1; i++)
409 sx_sunlock(&pidhashtbl_lock[i]);
410 }
411
412 /*
413 * Similar to pfind_any(), this function finds zombies.
414 */
415 struct proc *
416 pfind_any_locked(pid_t pid)
417 {
418 struct proc *p;
419
420 sx_assert(PIDHASHLOCK(pid), SX_LOCKED);
421 LIST_FOREACH(p, PIDHASH(pid), p_hash) {
422 if (p->p_pid == pid) {
423 PROC_LOCK(p);
424 if (p->p_state == PRS_NEW) {
425 PROC_UNLOCK(p);
426 p = NULL;
427 }
428 break;
429 }
430 }
431 return (p);
432 }
433
434 /*
435 * Locate a process by number.
436 *
437 * By not returning processes in the PRS_NEW state, we allow callers to avoid
438 * testing for that condition to avoid dereferencing p_ucred, et al.
439 */
440 static __always_inline struct proc *
441 _pfind(pid_t pid, bool zombie)
442 {
443 struct proc *p;
444
445 p = curproc;
446 if (p->p_pid == pid) {
447 PROC_LOCK(p);
448 return (p);
449 }
450 sx_slock(PIDHASHLOCK(pid));
451 LIST_FOREACH(p, PIDHASH(pid), p_hash) {
452 if (p->p_pid == pid) {
453 PROC_LOCK(p);
454 if (p->p_state == PRS_NEW ||
455 (!zombie && p->p_state == PRS_ZOMBIE)) {
456 PROC_UNLOCK(p);
457 p = NULL;
458 }
459 break;
460 }
461 }
462 sx_sunlock(PIDHASHLOCK(pid));
463 return (p);
464 }
465
466 struct proc *
467 pfind(pid_t pid)
468 {
469
470 return (_pfind(pid, false));
471 }
472
473 /*
474 * Same as pfind but allow zombies.
475 */
476 struct proc *
477 pfind_any(pid_t pid)
478 {
479
480 return (_pfind(pid, true));
481 }
482
483 /*
484 * Locate a process group by number.
485 * The caller must hold proctree_lock.
486 */
487 struct pgrp *
488 pgfind(pid_t pgid)
489 {
490 struct pgrp *pgrp;
491
492 sx_assert(&proctree_lock, SX_LOCKED);
493
494 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
495 if (pgrp->pg_id == pgid) {
496 PGRP_LOCK(pgrp);
497 return (pgrp);
498 }
499 }
500 return (NULL);
501 }
502
503 /*
504 * Locate process and do additional manipulations, depending on flags.
505 */
506 int
507 pget(pid_t pid, int flags, struct proc **pp)
508 {
509 struct proc *p;
510 struct thread *td1;
511 int error;
512
513 p = curproc;
514 if (p->p_pid == pid) {
515 PROC_LOCK(p);
516 } else {
517 p = NULL;
518 if (pid <= PID_MAX) {
519 if ((flags & PGET_NOTWEXIT) == 0)
520 p = pfind_any(pid);
521 else
522 p = pfind(pid);
523 } else if ((flags & PGET_NOTID) == 0) {
524 td1 = tdfind(pid, -1);
525 if (td1 != NULL)
526 p = td1->td_proc;
527 }
528 if (p == NULL)
529 return (ESRCH);
530 if ((flags & PGET_CANSEE) != 0) {
531 error = p_cansee(curthread, p);
532 if (error != 0)
533 goto errout;
534 }
535 }
536 if ((flags & PGET_CANDEBUG) != 0) {
537 error = p_candebug(curthread, p);
538 if (error != 0)
539 goto errout;
540 }
541 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
542 error = EPERM;
543 goto errout;
544 }
545 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
546 error = ESRCH;
547 goto errout;
548 }
549 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
550 /*
551 * XXXRW: Not clear ESRCH is the right error during proc
552 * execve().
553 */
554 error = ESRCH;
555 goto errout;
556 }
557 if ((flags & PGET_HOLD) != 0) {
558 _PHOLD(p);
559 PROC_UNLOCK(p);
560 }
561 *pp = p;
562 return (0);
563 errout:
564 PROC_UNLOCK(p);
565 return (error);
566 }
567
568 /*
569 * Create a new process group.
570 * pgid must be equal to the pid of p.
571 * Begin a new session if required.
572 */
573 int
574 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
575 {
576
577 sx_assert(&proctree_lock, SX_XLOCKED);
578
579 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
580 KASSERT(p->p_pid == pgid,
581 ("enterpgrp: new pgrp and pid != pgid"));
582 KASSERT(pgfind(pgid) == NULL,
583 ("enterpgrp: pgrp with pgid exists"));
584 KASSERT(!SESS_LEADER(p),
585 ("enterpgrp: session leader attempted setpgrp"));
586
587 if (sess != NULL) {
588 /*
589 * new session
590 */
591 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
592 PROC_LOCK(p);
593 p->p_flag &= ~P_CONTROLT;
594 PROC_UNLOCK(p);
595 PGRP_LOCK(pgrp);
596 sess->s_leader = p;
597 sess->s_sid = p->p_pid;
598 proc_id_set(PROC_ID_SESSION, p->p_pid);
599 refcount_init(&sess->s_count, 1);
600 sess->s_ttyvp = NULL;
601 sess->s_ttydp = NULL;
602 sess->s_ttyp = NULL;
603 bcopy(p->p_session->s_login, sess->s_login,
604 sizeof(sess->s_login));
605 pgrp->pg_session = sess;
606 KASSERT(p == curproc,
607 ("enterpgrp: mksession and p != curproc"));
608 } else {
609 pgrp->pg_session = p->p_session;
610 sess_hold(pgrp->pg_session);
611 PGRP_LOCK(pgrp);
612 }
613 pgrp->pg_id = pgid;
614 proc_id_set(PROC_ID_GROUP, p->p_pid);
615 LIST_INIT(&pgrp->pg_members);
616 pgrp->pg_flags = 0;
617
618 /*
619 * As we have an exclusive lock of proctree_lock,
620 * this should not deadlock.
621 */
622 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
623 SLIST_INIT(&pgrp->pg_sigiolst);
624 PGRP_UNLOCK(pgrp);
625
626 doenterpgrp(p, pgrp);
627
628 return (0);
629 }
630
631 /*
632 * Move p to an existing process group
633 */
634 int
635 enterthispgrp(struct proc *p, struct pgrp *pgrp)
636 {
637
638 sx_assert(&proctree_lock, SX_XLOCKED);
639 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
640 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
641 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
642 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
643 KASSERT(pgrp->pg_session == p->p_session,
644 ("%s: pgrp's session %p, p->p_session %p proc %p\n",
645 __func__, pgrp->pg_session, p->p_session, p));
646 KASSERT(pgrp != p->p_pgrp,
647 ("%s: p %p belongs to pgrp %p", __func__, p, pgrp));
648
649 doenterpgrp(p, pgrp);
650
651 return (0);
652 }
653
654 /*
655 * If true, any child of q which belongs to group pgrp, qualifies the
656 * process group pgrp as not orphaned.
657 */
658 static bool
659 isjobproc(struct proc *q, struct pgrp *pgrp)
660 {
661 sx_assert(&proctree_lock, SX_LOCKED);
662
663 return (q->p_pgrp != pgrp &&
664 q->p_pgrp->pg_session == pgrp->pg_session);
665 }
666
667 static struct proc *
668 jobc_reaper(struct proc *p)
669 {
670 struct proc *pp;
671
672 sx_assert(&proctree_lock, SA_LOCKED);
673
674 for (pp = p;;) {
675 pp = pp->p_reaper;
676 if (pp->p_reaper == pp ||
677 (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
678 return (pp);
679 }
680 }
681
682 static struct proc *
683 jobc_parent(struct proc *p, struct proc *p_exiting)
684 {
685 struct proc *pp;
686
687 sx_assert(&proctree_lock, SA_LOCKED);
688
689 pp = proc_realparent(p);
690 if (pp->p_pptr == NULL || pp == p_exiting ||
691 (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
692 return (pp);
693 return (jobc_reaper(pp));
694 }
695
696 static int
697 pgrp_calc_jobc(struct pgrp *pgrp)
698 {
699 struct proc *q;
700 int cnt;
701
702 #ifdef INVARIANTS
703 if (!mtx_owned(&pgrp->pg_mtx))
704 sx_assert(&proctree_lock, SA_LOCKED);
705 #endif
706
707 cnt = 0;
708 LIST_FOREACH(q, &pgrp->pg_members, p_pglist) {
709 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 ||
710 q->p_pptr == NULL)
711 continue;
712 if (isjobproc(jobc_parent(q, NULL), pgrp))
713 cnt++;
714 }
715 return (cnt);
716 }
717
718 /*
719 * Move p to a process group
720 */
721 static void
722 doenterpgrp(struct proc *p, struct pgrp *pgrp)
723 {
724 struct pgrp *savepgrp;
725 struct proc *pp;
726
727 sx_assert(&proctree_lock, SX_XLOCKED);
728 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
729 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
730 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
731 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
732
733 savepgrp = p->p_pgrp;
734 pp = jobc_parent(p, NULL);
735
736 PGRP_LOCK(pgrp);
737 PGRP_LOCK(savepgrp);
738 if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1)
739 orphanpg(savepgrp);
740 PROC_LOCK(p);
741 LIST_REMOVE(p, p_pglist);
742 p->p_pgrp = pgrp;
743 PROC_UNLOCK(p);
744 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
745 if (isjobproc(pp, pgrp))
746 pgrp->pg_flags &= ~PGRP_ORPHANED;
747 PGRP_UNLOCK(savepgrp);
748 PGRP_UNLOCK(pgrp);
749 if (LIST_EMPTY(&savepgrp->pg_members))
750 pgdelete(savepgrp);
751 }
752
753 /*
754 * remove process from process group
755 */
756 int
757 leavepgrp(struct proc *p)
758 {
759 struct pgrp *savepgrp;
760
761 sx_assert(&proctree_lock, SX_XLOCKED);
762 savepgrp = p->p_pgrp;
763 PGRP_LOCK(savepgrp);
764 PROC_LOCK(p);
765 LIST_REMOVE(p, p_pglist);
766 p->p_pgrp = NULL;
767 PROC_UNLOCK(p);
768 PGRP_UNLOCK(savepgrp);
769 if (LIST_EMPTY(&savepgrp->pg_members))
770 pgdelete(savepgrp);
771 return (0);
772 }
773
774 /*
775 * delete a process group
776 */
777 static void
778 pgdelete(struct pgrp *pgrp)
779 {
780 struct session *savesess;
781 struct tty *tp;
782
783 sx_assert(&proctree_lock, SX_XLOCKED);
784 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
785 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
786
787 /*
788 * Reset any sigio structures pointing to us as a result of
789 * F_SETOWN with our pgid. The proctree lock ensures that
790 * new sigio structures will not be added after this point.
791 */
792 funsetownlst(&pgrp->pg_sigiolst);
793
794 PGRP_LOCK(pgrp);
795 tp = pgrp->pg_session->s_ttyp;
796 LIST_REMOVE(pgrp, pg_hash);
797 savesess = pgrp->pg_session;
798 PGRP_UNLOCK(pgrp);
799
800 /* Remove the reference to the pgrp before deallocating it. */
801 if (tp != NULL) {
802 tty_lock(tp);
803 tty_rel_pgrp(tp, pgrp);
804 }
805
806 proc_id_clear(PROC_ID_GROUP, pgrp->pg_id);
807 uma_zfree(pgrp_zone, pgrp);
808 sess_release(savesess);
809 }
810
811
812 static void
813 fixjobc_kill(struct proc *p)
814 {
815 struct proc *q;
816 struct pgrp *pgrp;
817
818 sx_assert(&proctree_lock, SX_LOCKED);
819 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
820 pgrp = p->p_pgrp;
821 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
822 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
823
824 /*
825 * p no longer affects process group orphanage for children.
826 * It is marked by the flag because p is only physically
827 * removed from its process group on wait(2).
828 */
829 MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0);
830 p->p_treeflag |= P_TREE_GRPEXITED;
831
832 /*
833 * Check if exiting p orphans its own group.
834 */
835 pgrp = p->p_pgrp;
836 if (isjobproc(jobc_parent(p, NULL), pgrp)) {
837 PGRP_LOCK(pgrp);
838 if (pgrp_calc_jobc(pgrp) == 0)
839 orphanpg(pgrp);
840 PGRP_UNLOCK(pgrp);
841 }
842
843 /*
844 * Check this process' children to see whether they qualify
845 * their process groups after reparenting to reaper.
846 */
847 LIST_FOREACH(q, &p->p_children, p_sibling) {
848 pgrp = q->p_pgrp;
849 PGRP_LOCK(pgrp);
850 if (pgrp_calc_jobc(pgrp) == 0) {
851 /*
852 * We want to handle exactly the children that
853 * has p as realparent. Then, when calculating
854 * jobc_parent for children, we should ignore
855 * P_TREE_GRPEXITED flag already set on p.
856 */
857 if (jobc_parent(q, p) == p && isjobproc(p, pgrp))
858 orphanpg(pgrp);
859 } else
860 pgrp->pg_flags &= ~PGRP_ORPHANED;
861 PGRP_UNLOCK(pgrp);
862 }
863 LIST_FOREACH(q, &p->p_orphans, p_orphan) {
864 pgrp = q->p_pgrp;
865 PGRP_LOCK(pgrp);
866 if (pgrp_calc_jobc(pgrp) == 0) {
867 if (isjobproc(p, pgrp))
868 orphanpg(pgrp);
869 } else
870 pgrp->pg_flags &= ~PGRP_ORPHANED;
871 PGRP_UNLOCK(pgrp);
872 }
873 }
874
875 void
876 killjobc(void)
877 {
878 struct session *sp;
879 struct tty *tp;
880 struct proc *p;
881 struct vnode *ttyvp;
882
883 p = curproc;
884 MPASS(p->p_flag & P_WEXIT);
885 sx_assert(&proctree_lock, SX_LOCKED);
886
887 if (SESS_LEADER(p)) {
888 sp = p->p_session;
889
890 /*
891 * s_ttyp is not zero'd; we use this to indicate that
892 * the session once had a controlling terminal. (for
893 * logging and informational purposes)
894 */
895 SESS_LOCK(sp);
896 ttyvp = sp->s_ttyvp;
897 tp = sp->s_ttyp;
898 sp->s_ttyvp = NULL;
899 sp->s_ttydp = NULL;
900 sp->s_leader = NULL;
901 SESS_UNLOCK(sp);
902
903 /*
904 * Signal foreground pgrp and revoke access to
905 * controlling terminal if it has not been revoked
906 * already.
907 *
908 * Because the TTY may have been revoked in the mean
909 * time and could already have a new session associated
910 * with it, make sure we don't send a SIGHUP to a
911 * foreground process group that does not belong to this
912 * session.
913 */
914
915 if (tp != NULL) {
916 tty_lock(tp);
917 if (tp->t_session == sp)
918 tty_signal_pgrp(tp, SIGHUP);
919 tty_unlock(tp);
920 }
921
922 if (ttyvp != NULL) {
923 sx_xunlock(&proctree_lock);
924 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
925 VOP_REVOKE(ttyvp, REVOKEALL);
926 VOP_UNLOCK(ttyvp);
927 }
928 devfs_ctty_unref(ttyvp);
929 sx_xlock(&proctree_lock);
930 }
931 }
932 fixjobc_kill(p);
933 }
934
935 /*
936 * A process group has become orphaned, mark it as such for signal
937 * delivery code. If there are any stopped processes in the group,
938 * hang-up all process in that group.
939 */
940 static void
941 orphanpg(struct pgrp *pg)
942 {
943 struct proc *p;
944
945 PGRP_LOCK_ASSERT(pg, MA_OWNED);
946
947 pg->pg_flags |= PGRP_ORPHANED;
948
949 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
950 PROC_LOCK(p);
951 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
952 PROC_UNLOCK(p);
953 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
954 PROC_LOCK(p);
955 kern_psignal(p, SIGHUP);
956 kern_psignal(p, SIGCONT);
957 PROC_UNLOCK(p);
958 }
959 return;
960 }
961 PROC_UNLOCK(p);
962 }
963 }
964
965 void
966 sess_hold(struct session *s)
967 {
968
969 refcount_acquire(&s->s_count);
970 }
971
972 void
973 sess_release(struct session *s)
974 {
975
976 if (refcount_release(&s->s_count)) {
977 if (s->s_ttyp != NULL) {
978 tty_lock(s->s_ttyp);
979 tty_rel_sess(s->s_ttyp, s);
980 }
981 proc_id_clear(PROC_ID_SESSION, s->s_sid);
982 mtx_destroy(&s->s_mtx);
983 free(s, M_SESSION);
984 }
985 }
986
987 #ifdef DDB
988
989 static void
990 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p)
991 {
992 db_printf(
993 " pid %d at %p pr %d pgrp %p e %d jc %d\n",
994 p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid,
995 p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0,
996 p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp));
997 }
998
999 DB_SHOW_COMMAND_FLAGS(pgrpdump, pgrpdump, DB_CMD_MEMSAFE)
1000 {
1001 struct pgrp *pgrp;
1002 struct proc *p;
1003 int i;
1004
1005 for (i = 0; i <= pgrphash; i++) {
1006 if (!LIST_EMPTY(&pgrphashtbl[i])) {
1007 db_printf("indx %d\n", i);
1008 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
1009 db_printf(
1010 " pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n",
1011 pgrp, (int)pgrp->pg_id, pgrp->pg_session,
1012 pgrp->pg_session->s_count,
1013 LIST_FIRST(&pgrp->pg_members));
1014 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
1015 db_print_pgrp_one(pgrp, p);
1016 }
1017 }
1018 }
1019 }
1020 #endif /* DDB */
1021
1022 /*
1023 * Calculate the kinfo_proc members which contain process-wide
1024 * informations.
1025 * Must be called with the target process locked.
1026 */
1027 static void
1028 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
1029 {
1030 struct thread *td;
1031
1032 PROC_LOCK_ASSERT(p, MA_OWNED);
1033
1034 kp->ki_estcpu = 0;
1035 kp->ki_pctcpu = 0;
1036 FOREACH_THREAD_IN_PROC(p, td) {
1037 thread_lock(td);
1038 kp->ki_pctcpu += sched_pctcpu(td);
1039 kp->ki_estcpu += sched_estcpu(td);
1040 thread_unlock(td);
1041 }
1042 }
1043
1044 /*
1045 * Fill in any information that is common to all threads in the process.
1046 * Must be called with the target process locked.
1047 */
1048 static void
1049 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
1050 {
1051 struct thread *td0;
1052 struct ucred *cred;
1053 struct sigacts *ps;
1054 struct timeval boottime;
1055
1056 PROC_LOCK_ASSERT(p, MA_OWNED);
1057
1058 kp->ki_structsize = sizeof(*kp);
1059 kp->ki_paddr = p;
1060 kp->ki_addr =/* p->p_addr; */0; /* XXX */
1061 kp->ki_args = p->p_args;
1062 kp->ki_textvp = p->p_textvp;
1063 #ifdef KTRACE
1064 kp->ki_tracep = ktr_get_tracevp(p, false);
1065 kp->ki_traceflag = p->p_traceflag;
1066 #endif
1067 kp->ki_fd = p->p_fd;
1068 kp->ki_pd = p->p_pd;
1069 kp->ki_vmspace = p->p_vmspace;
1070 kp->ki_flag = p->p_flag;
1071 kp->ki_flag2 = p->p_flag2;
1072 cred = p->p_ucred;
1073 if (cred) {
1074 kp->ki_uid = cred->cr_uid;
1075 kp->ki_ruid = cred->cr_ruid;
1076 kp->ki_svuid = cred->cr_svuid;
1077 kp->ki_cr_flags = 0;
1078 if (cred->cr_flags & CRED_FLAG_CAPMODE)
1079 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
1080 /* XXX bde doesn't like KI_NGROUPS */
1081 if (cred->cr_ngroups > KI_NGROUPS) {
1082 kp->ki_ngroups = KI_NGROUPS;
1083 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
1084 } else
1085 kp->ki_ngroups = cred->cr_ngroups;
1086 bcopy(cred->cr_groups, kp->ki_groups,
1087 kp->ki_ngroups * sizeof(gid_t));
1088 kp->ki_rgid = cred->cr_rgid;
1089 kp->ki_svgid = cred->cr_svgid;
1090 /* If jailed(cred), emulate the old P_JAILED flag. */
1091 if (jailed(cred)) {
1092 kp->ki_flag |= P_JAILED;
1093 /* If inside the jail, use 0 as a jail ID. */
1094 if (cred->cr_prison != curthread->td_ucred->cr_prison)
1095 kp->ki_jid = cred->cr_prison->pr_id;
1096 }
1097 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
1098 sizeof(kp->ki_loginclass));
1099 }
1100 ps = p->p_sigacts;
1101 if (ps) {
1102 mtx_lock(&ps->ps_mtx);
1103 kp->ki_sigignore = ps->ps_sigignore;
1104 kp->ki_sigcatch = ps->ps_sigcatch;
1105 mtx_unlock(&ps->ps_mtx);
1106 }
1107 if (p->p_state != PRS_NEW &&
1108 p->p_state != PRS_ZOMBIE &&
1109 p->p_vmspace != NULL) {
1110 struct vmspace *vm = p->p_vmspace;
1111
1112 kp->ki_size = vm->vm_map.size;
1113 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
1114 FOREACH_THREAD_IN_PROC(p, td0) {
1115 if (!TD_IS_SWAPPED(td0))
1116 kp->ki_rssize += td0->td_kstack_pages;
1117 }
1118 kp->ki_swrss = vm->vm_swrss;
1119 kp->ki_tsize = vm->vm_tsize;
1120 kp->ki_dsize = vm->vm_dsize;
1121 kp->ki_ssize = vm->vm_ssize;
1122 } else if (p->p_state == PRS_ZOMBIE)
1123 kp->ki_stat = SZOMB;
1124 if (kp->ki_flag & P_INMEM)
1125 kp->ki_sflag = PS_INMEM;
1126 else
1127 kp->ki_sflag = 0;
1128 /* Calculate legacy swtime as seconds since 'swtick'. */
1129 kp->ki_swtime = (ticks - p->p_swtick) / hz;
1130 kp->ki_pid = p->p_pid;
1131 kp->ki_nice = p->p_nice;
1132 kp->ki_fibnum = p->p_fibnum;
1133 kp->ki_start = p->p_stats->p_start;
1134 getboottime(&boottime);
1135 timevaladd(&kp->ki_start, &boottime);
1136 PROC_STATLOCK(p);
1137 rufetch(p, &kp->ki_rusage);
1138 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
1139 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
1140 PROC_STATUNLOCK(p);
1141 calccru(p, &kp->ki_childutime, &kp->ki_childstime);
1142 /* Some callers want child times in a single value. */
1143 kp->ki_childtime = kp->ki_childstime;
1144 timevaladd(&kp->ki_childtime, &kp->ki_childutime);
1145
1146 FOREACH_THREAD_IN_PROC(p, td0)
1147 kp->ki_cow += td0->td_cow;
1148
1149 if (p->p_comm[0] != '\0')
1150 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
1151 if (p->p_sysent && p->p_sysent->sv_name != NULL &&
1152 p->p_sysent->sv_name[0] != '\0')
1153 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
1154 kp->ki_siglist = p->p_siglist;
1155 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1156 kp->ki_acflag = p->p_acflag;
1157 kp->ki_lock = p->p_lock;
1158 if (p->p_pptr) {
1159 kp->ki_ppid = p->p_oppid;
1160 if (p->p_flag & P_TRACED)
1161 kp->ki_tracer = p->p_pptr->p_pid;
1162 }
1163 }
1164
1165 /*
1166 * Fill job-related process information.
1167 */
1168 static void
1169 fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp)
1170 {
1171 struct tty *tp;
1172 struct session *sp;
1173 struct pgrp *pgrp;
1174
1175 sx_assert(&proctree_lock, SA_LOCKED);
1176 PROC_LOCK_ASSERT(p, MA_OWNED);
1177
1178 pgrp = p->p_pgrp;
1179 if (pgrp == NULL)
1180 return;
1181
1182 kp->ki_pgid = pgrp->pg_id;
1183 kp->ki_jobc = pgrp_calc_jobc(pgrp);
1184
1185 sp = pgrp->pg_session;
1186 tp = NULL;
1187
1188 if (sp != NULL) {
1189 kp->ki_sid = sp->s_sid;
1190 SESS_LOCK(sp);
1191 strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login));
1192 if (sp->s_ttyvp)
1193 kp->ki_kiflag |= KI_CTTY;
1194 if (SESS_LEADER(p))
1195 kp->ki_kiflag |= KI_SLEADER;
1196 tp = sp->s_ttyp;
1197 SESS_UNLOCK(sp);
1198 }
1199
1200 if ((p->p_flag & P_CONTROLT) && tp != NULL) {
1201 kp->ki_tdev = tty_udev(tp);
1202 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1203 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1204 if (tp->t_session)
1205 kp->ki_tsid = tp->t_session->s_sid;
1206 } else {
1207 kp->ki_tdev = NODEV;
1208 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1209 }
1210 }
1211
1212 /*
1213 * Fill in information that is thread specific. Must be called with
1214 * target process locked. If 'preferthread' is set, overwrite certain
1215 * process-related fields that are maintained for both threads and
1216 * processes.
1217 */
1218 static void
1219 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1220 {
1221 struct proc *p;
1222
1223 p = td->td_proc;
1224 kp->ki_tdaddr = td;
1225 PROC_LOCK_ASSERT(p, MA_OWNED);
1226
1227 if (preferthread)
1228 PROC_STATLOCK(p);
1229 thread_lock(td);
1230 if (td->td_wmesg != NULL)
1231 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1232 else
1233 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1234 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
1235 sizeof(kp->ki_tdname)) {
1236 strlcpy(kp->ki_moretdname,
1237 td->td_name + sizeof(kp->ki_tdname) - 1,
1238 sizeof(kp->ki_moretdname));
1239 } else {
1240 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
1241 }
1242 if (TD_ON_LOCK(td)) {
1243 kp->ki_kiflag |= KI_LOCKBLOCK;
1244 strlcpy(kp->ki_lockname, td->td_lockname,
1245 sizeof(kp->ki_lockname));
1246 } else {
1247 kp->ki_kiflag &= ~KI_LOCKBLOCK;
1248 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1249 }
1250
1251 if (p->p_state == PRS_NORMAL) { /* approximate. */
1252 if (TD_ON_RUNQ(td) ||
1253 TD_CAN_RUN(td) ||
1254 TD_IS_RUNNING(td)) {
1255 kp->ki_stat = SRUN;
1256 } else if (P_SHOULDSTOP(p)) {
1257 kp->ki_stat = SSTOP;
1258 } else if (TD_IS_SLEEPING(td)) {
1259 kp->ki_stat = SSLEEP;
1260 } else if (TD_ON_LOCK(td)) {
1261 kp->ki_stat = SLOCK;
1262 } else {
1263 kp->ki_stat = SWAIT;
1264 }
1265 } else if (p->p_state == PRS_ZOMBIE) {
1266 kp->ki_stat = SZOMB;
1267 } else {
1268 kp->ki_stat = SIDL;
1269 }
1270
1271 /* Things in the thread */
1272 kp->ki_wchan = td->td_wchan;
1273 kp->ki_pri.pri_level = td->td_priority;
1274 kp->ki_pri.pri_native = td->td_base_pri;
1275
1276 /*
1277 * Note: legacy fields; clamp at the old NOCPU value and/or
1278 * the maximum u_char CPU value.
1279 */
1280 if (td->td_lastcpu == NOCPU)
1281 kp->ki_lastcpu_old = NOCPU_OLD;
1282 else if (td->td_lastcpu > MAXCPU_OLD)
1283 kp->ki_lastcpu_old = MAXCPU_OLD;
1284 else
1285 kp->ki_lastcpu_old = td->td_lastcpu;
1286
1287 if (td->td_oncpu == NOCPU)
1288 kp->ki_oncpu_old = NOCPU_OLD;
1289 else if (td->td_oncpu > MAXCPU_OLD)
1290 kp->ki_oncpu_old = MAXCPU_OLD;
1291 else
1292 kp->ki_oncpu_old = td->td_oncpu;
1293
1294 kp->ki_lastcpu = td->td_lastcpu;
1295 kp->ki_oncpu = td->td_oncpu;
1296 kp->ki_tdflags = td->td_flags;
1297 kp->ki_tid = td->td_tid;
1298 kp->ki_numthreads = p->p_numthreads;
1299 kp->ki_pcb = td->td_pcb;
1300 kp->ki_kstack = (void *)td->td_kstack;
1301 kp->ki_slptime = (ticks - td->td_slptick) / hz;
1302 kp->ki_pri.pri_class = td->td_pri_class;
1303 kp->ki_pri.pri_user = td->td_user_pri;
1304
1305 if (preferthread) {
1306 rufetchtd(td, &kp->ki_rusage);
1307 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1308 kp->ki_pctcpu = sched_pctcpu(td);
1309 kp->ki_estcpu = sched_estcpu(td);
1310 kp->ki_cow = td->td_cow;
1311 }
1312
1313 /* We can't get this anymore but ps etc never used it anyway. */
1314 kp->ki_rqindex = 0;
1315
1316 if (preferthread)
1317 kp->ki_siglist = td->td_siglist;
1318 kp->ki_sigmask = td->td_sigmask;
1319 thread_unlock(td);
1320 if (preferthread)
1321 PROC_STATUNLOCK(p);
1322 }
1323
1324 /*
1325 * Fill in a kinfo_proc structure for the specified process.
1326 * Must be called with the target process locked.
1327 */
1328 void
1329 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1330 {
1331 MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1332
1333 bzero(kp, sizeof(*kp));
1334
1335 fill_kinfo_proc_pgrp(p,kp);
1336 fill_kinfo_proc_only(p, kp);
1337 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1338 fill_kinfo_aggregate(p, kp);
1339 }
1340
1341 struct pstats *
1342 pstats_alloc(void)
1343 {
1344
1345 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1346 }
1347
1348 /*
1349 * Copy parts of p_stats; zero the rest of p_stats (statistics).
1350 */
1351 void
1352 pstats_fork(struct pstats *src, struct pstats *dst)
1353 {
1354
1355 bzero(&dst->pstat_startzero,
1356 __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1357 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1358 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1359 }
1360
1361 void
1362 pstats_free(struct pstats *ps)
1363 {
1364
1365 free(ps, M_SUBPROC);
1366 }
1367
1368 #ifdef COMPAT_FREEBSD32
1369
1370 /*
1371 * This function is typically used to copy out the kernel address, so
1372 * it can be replaced by assignment of zero.
1373 */
1374 static inline uint32_t
1375 ptr32_trim(const void *ptr)
1376 {
1377 uintptr_t uptr;
1378
1379 uptr = (uintptr_t)ptr;
1380 return ((uptr > UINT_MAX) ? 0 : uptr);
1381 }
1382
1383 #define PTRTRIM_CP(src,dst,fld) \
1384 do { (dst).fld = ptr32_trim((src).fld); } while (0)
1385
1386 static void
1387 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1388 {
1389 int i;
1390
1391 bzero(ki32, sizeof(struct kinfo_proc32));
1392 ki32->ki_structsize = sizeof(struct kinfo_proc32);
1393 CP(*ki, *ki32, ki_layout);
1394 PTRTRIM_CP(*ki, *ki32, ki_args);
1395 PTRTRIM_CP(*ki, *ki32, ki_paddr);
1396 PTRTRIM_CP(*ki, *ki32, ki_addr);
1397 PTRTRIM_CP(*ki, *ki32, ki_tracep);
1398 PTRTRIM_CP(*ki, *ki32, ki_textvp);
1399 PTRTRIM_CP(*ki, *ki32, ki_fd);
1400 PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1401 PTRTRIM_CP(*ki, *ki32, ki_wchan);
1402 CP(*ki, *ki32, ki_pid);
1403 CP(*ki, *ki32, ki_ppid);
1404 CP(*ki, *ki32, ki_pgid);
1405 CP(*ki, *ki32, ki_tpgid);
1406 CP(*ki, *ki32, ki_sid);
1407 CP(*ki, *ki32, ki_tsid);
1408 CP(*ki, *ki32, ki_jobc);
1409 CP(*ki, *ki32, ki_tdev);
1410 CP(*ki, *ki32, ki_tdev_freebsd11);
1411 CP(*ki, *ki32, ki_siglist);
1412 CP(*ki, *ki32, ki_sigmask);
1413 CP(*ki, *ki32, ki_sigignore);
1414 CP(*ki, *ki32, ki_sigcatch);
1415 CP(*ki, *ki32, ki_uid);
1416 CP(*ki, *ki32, ki_ruid);
1417 CP(*ki, *ki32, ki_svuid);
1418 CP(*ki, *ki32, ki_rgid);
1419 CP(*ki, *ki32, ki_svgid);
1420 CP(*ki, *ki32, ki_ngroups);
1421 for (i = 0; i < KI_NGROUPS; i++)
1422 CP(*ki, *ki32, ki_groups[i]);
1423 CP(*ki, *ki32, ki_size);
1424 CP(*ki, *ki32, ki_rssize);
1425 CP(*ki, *ki32, ki_swrss);
1426 CP(*ki, *ki32, ki_tsize);
1427 CP(*ki, *ki32, ki_dsize);
1428 CP(*ki, *ki32, ki_ssize);
1429 CP(*ki, *ki32, ki_xstat);
1430 CP(*ki, *ki32, ki_acflag);
1431 CP(*ki, *ki32, ki_pctcpu);
1432 CP(*ki, *ki32, ki_estcpu);
1433 CP(*ki, *ki32, ki_slptime);
1434 CP(*ki, *ki32, ki_swtime);
1435 CP(*ki, *ki32, ki_cow);
1436 CP(*ki, *ki32, ki_runtime);
1437 TV_CP(*ki, *ki32, ki_start);
1438 TV_CP(*ki, *ki32, ki_childtime);
1439 CP(*ki, *ki32, ki_flag);
1440 CP(*ki, *ki32, ki_kiflag);
1441 CP(*ki, *ki32, ki_traceflag);
1442 CP(*ki, *ki32, ki_stat);
1443 CP(*ki, *ki32, ki_nice);
1444 CP(*ki, *ki32, ki_lock);
1445 CP(*ki, *ki32, ki_rqindex);
1446 CP(*ki, *ki32, ki_oncpu);
1447 CP(*ki, *ki32, ki_lastcpu);
1448
1449 /* XXX TODO: wrap cpu value as appropriate */
1450 CP(*ki, *ki32, ki_oncpu_old);
1451 CP(*ki, *ki32, ki_lastcpu_old);
1452
1453 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1454 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1455 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1456 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1457 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1458 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1459 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1460 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1461 CP(*ki, *ki32, ki_tracer);
1462 CP(*ki, *ki32, ki_flag2);
1463 CP(*ki, *ki32, ki_fibnum);
1464 CP(*ki, *ki32, ki_cr_flags);
1465 CP(*ki, *ki32, ki_jid);
1466 CP(*ki, *ki32, ki_numthreads);
1467 CP(*ki, *ki32, ki_tid);
1468 CP(*ki, *ki32, ki_pri);
1469 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1470 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1471 PTRTRIM_CP(*ki, *ki32, ki_pcb);
1472 PTRTRIM_CP(*ki, *ki32, ki_kstack);
1473 PTRTRIM_CP(*ki, *ki32, ki_udata);
1474 PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
1475 CP(*ki, *ki32, ki_sflag);
1476 CP(*ki, *ki32, ki_tdflags);
1477 }
1478 #endif
1479
1480 static ssize_t
1481 kern_proc_out_size(struct proc *p, int flags)
1482 {
1483 ssize_t size = 0;
1484
1485 PROC_LOCK_ASSERT(p, MA_OWNED);
1486
1487 if ((flags & KERN_PROC_NOTHREADS) != 0) {
1488 #ifdef COMPAT_FREEBSD32
1489 if ((flags & KERN_PROC_MASK32) != 0) {
1490 size += sizeof(struct kinfo_proc32);
1491 } else
1492 #endif
1493 size += sizeof(struct kinfo_proc);
1494 } else {
1495 #ifdef COMPAT_FREEBSD32
1496 if ((flags & KERN_PROC_MASK32) != 0)
1497 size += sizeof(struct kinfo_proc32) * p->p_numthreads;
1498 else
1499 #endif
1500 size += sizeof(struct kinfo_proc) * p->p_numthreads;
1501 }
1502 PROC_UNLOCK(p);
1503 return (size);
1504 }
1505
1506 int
1507 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1508 {
1509 struct thread *td;
1510 struct kinfo_proc ki;
1511 #ifdef COMPAT_FREEBSD32
1512 struct kinfo_proc32 ki32;
1513 #endif
1514 int error;
1515
1516 PROC_LOCK_ASSERT(p, MA_OWNED);
1517 MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1518
1519 error = 0;
1520 fill_kinfo_proc(p, &ki);
1521 if ((flags & KERN_PROC_NOTHREADS) != 0) {
1522 #ifdef COMPAT_FREEBSD32
1523 if ((flags & KERN_PROC_MASK32) != 0) {
1524 freebsd32_kinfo_proc_out(&ki, &ki32);
1525 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1526 error = ENOMEM;
1527 } else
1528 #endif
1529 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1530 error = ENOMEM;
1531 } else {
1532 FOREACH_THREAD_IN_PROC(p, td) {
1533 fill_kinfo_thread(td, &ki, 1);
1534 #ifdef COMPAT_FREEBSD32
1535 if ((flags & KERN_PROC_MASK32) != 0) {
1536 freebsd32_kinfo_proc_out(&ki, &ki32);
1537 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1538 error = ENOMEM;
1539 } else
1540 #endif
1541 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1542 error = ENOMEM;
1543 if (error != 0)
1544 break;
1545 }
1546 }
1547 PROC_UNLOCK(p);
1548 return (error);
1549 }
1550
1551 static int
1552 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1553 {
1554 struct sbuf sb;
1555 struct kinfo_proc ki;
1556 int error, error2;
1557
1558 if (req->oldptr == NULL)
1559 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags)));
1560
1561 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1562 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1563 error = kern_proc_out(p, &sb, flags);
1564 error2 = sbuf_finish(&sb);
1565 sbuf_delete(&sb);
1566 if (error != 0)
1567 return (error);
1568 else if (error2 != 0)
1569 return (error2);
1570 return (0);
1571 }
1572
1573 int
1574 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg)
1575 {
1576 struct proc *p;
1577 int error, i, j;
1578
1579 for (i = 0; i < pidhashlock + 1; i++) {
1580 sx_slock(&proctree_lock);
1581 sx_slock(&pidhashtbl_lock[i]);
1582 for (j = i; j <= pidhash; j += pidhashlock + 1) {
1583 LIST_FOREACH(p, &pidhashtbl[j], p_hash) {
1584 if (p->p_state == PRS_NEW)
1585 continue;
1586 error = cb(p, cbarg);
1587 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1588 if (error != 0) {
1589 sx_sunlock(&pidhashtbl_lock[i]);
1590 sx_sunlock(&proctree_lock);
1591 return (error);
1592 }
1593 }
1594 }
1595 sx_sunlock(&pidhashtbl_lock[i]);
1596 sx_sunlock(&proctree_lock);
1597 }
1598 return (0);
1599 }
1600
1601 struct kern_proc_out_args {
1602 struct sysctl_req *req;
1603 int flags;
1604 int oid_number;
1605 int *name;
1606 };
1607
1608 static int
1609 sysctl_kern_proc_iterate(struct proc *p, void *origarg)
1610 {
1611 struct kern_proc_out_args *arg = origarg;
1612 int *name = arg->name;
1613 int oid_number = arg->oid_number;
1614 int flags = arg->flags;
1615 struct sysctl_req *req = arg->req;
1616 int error = 0;
1617
1618 PROC_LOCK(p);
1619
1620 KASSERT(p->p_ucred != NULL,
1621 ("process credential is NULL for non-NEW proc"));
1622 /*
1623 * Show a user only appropriate processes.
1624 */
1625 if (p_cansee(curthread, p))
1626 goto skip;
1627 /*
1628 * TODO - make more efficient (see notes below).
1629 * do by session.
1630 */
1631 switch (oid_number) {
1632 case KERN_PROC_GID:
1633 if (p->p_ucred->cr_gid != (gid_t)name[0])
1634 goto skip;
1635 break;
1636
1637 case KERN_PROC_PGRP:
1638 /* could do this by traversing pgrp */
1639 if (p->p_pgrp == NULL ||
1640 p->p_pgrp->pg_id != (pid_t)name[0])
1641 goto skip;
1642 break;
1643
1644 case KERN_PROC_RGID:
1645 if (p->p_ucred->cr_rgid != (gid_t)name[0])
1646 goto skip;
1647 break;
1648
1649 case KERN_PROC_SESSION:
1650 if (p->p_session == NULL ||
1651 p->p_session->s_sid != (pid_t)name[0])
1652 goto skip;
1653 break;
1654
1655 case KERN_PROC_TTY:
1656 if ((p->p_flag & P_CONTROLT) == 0 ||
1657 p->p_session == NULL)
1658 goto skip;
1659 /* XXX proctree_lock */
1660 SESS_LOCK(p->p_session);
1661 if (p->p_session->s_ttyp == NULL ||
1662 tty_udev(p->p_session->s_ttyp) !=
1663 (dev_t)name[0]) {
1664 SESS_UNLOCK(p->p_session);
1665 goto skip;
1666 }
1667 SESS_UNLOCK(p->p_session);
1668 break;
1669
1670 case KERN_PROC_UID:
1671 if (p->p_ucred->cr_uid != (uid_t)name[0])
1672 goto skip;
1673 break;
1674
1675 case KERN_PROC_RUID:
1676 if (p->p_ucred->cr_ruid != (uid_t)name[0])
1677 goto skip;
1678 break;
1679
1680 case KERN_PROC_PROC:
1681 break;
1682
1683 default:
1684 break;
1685 }
1686 error = sysctl_out_proc(p, req, flags);
1687 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1688 return (error);
1689 skip:
1690 PROC_UNLOCK(p);
1691 return (0);
1692 }
1693
1694 static int
1695 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1696 {
1697 struct kern_proc_out_args iterarg;
1698 int *name = (int *)arg1;
1699 u_int namelen = arg2;
1700 struct proc *p;
1701 int flags, oid_number;
1702 int error = 0;
1703
1704 oid_number = oidp->oid_number;
1705 if (oid_number != KERN_PROC_ALL &&
1706 (oid_number & KERN_PROC_INC_THREAD) == 0)
1707 flags = KERN_PROC_NOTHREADS;
1708 else {
1709 flags = 0;
1710 oid_number &= ~KERN_PROC_INC_THREAD;
1711 }
1712 #ifdef COMPAT_FREEBSD32
1713 if (req->flags & SCTL_MASK32)
1714 flags |= KERN_PROC_MASK32;
1715 #endif
1716 if (oid_number == KERN_PROC_PID) {
1717 if (namelen != 1)
1718 return (EINVAL);
1719 error = sysctl_wire_old_buffer(req, 0);
1720 if (error)
1721 return (error);
1722 sx_slock(&proctree_lock);
1723 error = pget((pid_t)name[0], PGET_CANSEE, &p);
1724 if (error == 0)
1725 error = sysctl_out_proc(p, req, flags);
1726 sx_sunlock(&proctree_lock);
1727 return (error);
1728 }
1729
1730 switch (oid_number) {
1731 case KERN_PROC_ALL:
1732 if (namelen != 0)
1733 return (EINVAL);
1734 break;
1735 case KERN_PROC_PROC:
1736 if (namelen != 0 && namelen != 1)
1737 return (EINVAL);
1738 break;
1739 default:
1740 if (namelen != 1)
1741 return (EINVAL);
1742 break;
1743 }
1744
1745 if (req->oldptr == NULL) {
1746 /* overestimate by 5 procs */
1747 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1748 if (error)
1749 return (error);
1750 } else {
1751 error = sysctl_wire_old_buffer(req, 0);
1752 if (error != 0)
1753 return (error);
1754 }
1755 iterarg.flags = flags;
1756 iterarg.oid_number = oid_number;
1757 iterarg.req = req;
1758 iterarg.name = name;
1759 error = proc_iterate(sysctl_kern_proc_iterate, &iterarg);
1760 return (error);
1761 }
1762
1763 struct pargs *
1764 pargs_alloc(int len)
1765 {
1766 struct pargs *pa;
1767
1768 pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1769 M_WAITOK);
1770 refcount_init(&pa->ar_ref, 1);
1771 pa->ar_length = len;
1772 return (pa);
1773 }
1774
1775 static void
1776 pargs_free(struct pargs *pa)
1777 {
1778
1779 free(pa, M_PARGS);
1780 }
1781
1782 void
1783 pargs_hold(struct pargs *pa)
1784 {
1785
1786 if (pa == NULL)
1787 return;
1788 refcount_acquire(&pa->ar_ref);
1789 }
1790
1791 void
1792 pargs_drop(struct pargs *pa)
1793 {
1794
1795 if (pa == NULL)
1796 return;
1797 if (refcount_release(&pa->ar_ref))
1798 pargs_free(pa);
1799 }
1800
1801 static int
1802 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1803 size_t len)
1804 {
1805 ssize_t n;
1806
1807 /*
1808 * This may return a short read if the string is shorter than the chunk
1809 * and is aligned at the end of the page, and the following page is not
1810 * mapped.
1811 */
1812 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1813 if (n <= 0)
1814 return (ENOMEM);
1815 return (0);
1816 }
1817
1818 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */
1819
1820 enum proc_vector_type {
1821 PROC_ARG,
1822 PROC_ENV,
1823 PROC_AUX,
1824 };
1825
1826 #ifdef COMPAT_FREEBSD32
1827 static int
1828 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1829 size_t *vsizep, enum proc_vector_type type)
1830 {
1831 struct freebsd32_ps_strings pss;
1832 Elf32_Auxinfo aux;
1833 vm_offset_t vptr, ptr;
1834 uint32_t *proc_vector32;
1835 char **proc_vector;
1836 size_t vsize, size;
1837 int i, error;
1838
1839 error = 0;
1840 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
1841 sizeof(pss))
1842 return (ENOMEM);
1843 switch (type) {
1844 case PROC_ARG:
1845 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1846 vsize = pss.ps_nargvstr;
1847 if (vsize > ARG_MAX)
1848 return (ENOEXEC);
1849 size = vsize * sizeof(int32_t);
1850 break;
1851 case PROC_ENV:
1852 vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1853 vsize = pss.ps_nenvstr;
1854 if (vsize > ARG_MAX)
1855 return (ENOEXEC);
1856 size = vsize * sizeof(int32_t);
1857 break;
1858 case PROC_AUX:
1859 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1860 (pss.ps_nenvstr + 1) * sizeof(int32_t);
1861 if (vptr % 4 != 0)
1862 return (ENOEXEC);
1863 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1864 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1865 sizeof(aux))
1866 return (ENOMEM);
1867 if (aux.a_type == AT_NULL)
1868 break;
1869 ptr += sizeof(aux);
1870 }
1871 if (aux.a_type != AT_NULL)
1872 return (ENOEXEC);
1873 vsize = i + 1;
1874 size = vsize * sizeof(aux);
1875 break;
1876 default:
1877 KASSERT(0, ("Wrong proc vector type: %d", type));
1878 return (EINVAL);
1879 }
1880 proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1881 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1882 error = ENOMEM;
1883 goto done;
1884 }
1885 if (type == PROC_AUX) {
1886 *proc_vectorp = (char **)proc_vector32;
1887 *vsizep = vsize;
1888 return (0);
1889 }
1890 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1891 for (i = 0; i < (int)vsize; i++)
1892 proc_vector[i] = PTRIN(proc_vector32[i]);
1893 *proc_vectorp = proc_vector;
1894 *vsizep = vsize;
1895 done:
1896 free(proc_vector32, M_TEMP);
1897 return (error);
1898 }
1899 #endif
1900
1901 static int
1902 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1903 size_t *vsizep, enum proc_vector_type type)
1904 {
1905 struct ps_strings pss;
1906 Elf_Auxinfo aux;
1907 vm_offset_t vptr, ptr;
1908 char **proc_vector;
1909 size_t vsize, size;
1910 int i;
1911
1912 #ifdef COMPAT_FREEBSD32
1913 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1914 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1915 #endif
1916 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
1917 sizeof(pss))
1918 return (ENOMEM);
1919 switch (type) {
1920 case PROC_ARG:
1921 vptr = (vm_offset_t)pss.ps_argvstr;
1922 vsize = pss.ps_nargvstr;
1923 if (vsize > ARG_MAX)
1924 return (ENOEXEC);
1925 size = vsize * sizeof(char *);
1926 break;
1927 case PROC_ENV:
1928 vptr = (vm_offset_t)pss.ps_envstr;
1929 vsize = pss.ps_nenvstr;
1930 if (vsize > ARG_MAX)
1931 return (ENOEXEC);
1932 size = vsize * sizeof(char *);
1933 break;
1934 case PROC_AUX:
1935 /*
1936 * The aux array is just above env array on the stack. Check
1937 * that the address is naturally aligned.
1938 */
1939 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1940 * sizeof(char *);
1941 #if __ELF_WORD_SIZE == 64
1942 if (vptr % sizeof(uint64_t) != 0)
1943 #else
1944 if (vptr % sizeof(uint32_t) != 0)
1945 #endif
1946 return (ENOEXEC);
1947 /*
1948 * We count the array size reading the aux vectors from the
1949 * stack until AT_NULL vector is returned. So (to keep the code
1950 * simple) we read the process stack twice: the first time here
1951 * to find the size and the second time when copying the vectors
1952 * to the allocated proc_vector.
1953 */
1954 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1955 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1956 sizeof(aux))
1957 return (ENOMEM);
1958 if (aux.a_type == AT_NULL)
1959 break;
1960 ptr += sizeof(aux);
1961 }
1962 /*
1963 * If the PROC_AUXV_MAX entries are iterated over, and we have
1964 * not reached AT_NULL, it is most likely we are reading wrong
1965 * data: either the process doesn't have auxv array or data has
1966 * been modified. Return the error in this case.
1967 */
1968 if (aux.a_type != AT_NULL)
1969 return (ENOEXEC);
1970 vsize = i + 1;
1971 size = vsize * sizeof(aux);
1972 break;
1973 default:
1974 KASSERT(0, ("Wrong proc vector type: %d", type));
1975 return (EINVAL); /* In case we are built without INVARIANTS. */
1976 }
1977 proc_vector = malloc(size, M_TEMP, M_WAITOK);
1978 if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
1979 free(proc_vector, M_TEMP);
1980 return (ENOMEM);
1981 }
1982 *proc_vectorp = proc_vector;
1983 *vsizep = vsize;
1984
1985 return (0);
1986 }
1987
1988 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */
1989
1990 static int
1991 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1992 enum proc_vector_type type)
1993 {
1994 size_t done, len, nchr, vsize;
1995 int error, i;
1996 char **proc_vector, *sptr;
1997 char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1998
1999 PROC_ASSERT_HELD(p);
2000
2001 /*
2002 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
2003 */
2004 nchr = 2 * (PATH_MAX + ARG_MAX);
2005
2006 error = get_proc_vector(td, p, &proc_vector, &vsize, type);
2007 if (error != 0)
2008 return (error);
2009 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
2010 /*
2011 * The program may have scribbled into its argv array, e.g. to
2012 * remove some arguments. If that has happened, break out
2013 * before trying to read from NULL.
2014 */
2015 if (proc_vector[i] == NULL)
2016 break;
2017 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
2018 error = proc_read_string(td, p, sptr, pss_string,
2019 sizeof(pss_string));
2020 if (error != 0)
2021 goto done;
2022 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
2023 if (done + len >= nchr)
2024 len = nchr - done - 1;
2025 sbuf_bcat(sb, pss_string, len);
2026 if (len != GET_PS_STRINGS_CHUNK_SZ)
2027 break;
2028 done += GET_PS_STRINGS_CHUNK_SZ;
2029 }
2030 sbuf_bcat(sb, "", 1);
2031 done += len + 1;
2032 }
2033 done:
2034 free(proc_vector, M_TEMP);
2035 return (error);
2036 }
2037
2038 int
2039 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
2040 {
2041
2042 return (get_ps_strings(curthread, p, sb, PROC_ARG));
2043 }
2044
2045 int
2046 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
2047 {
2048
2049 return (get_ps_strings(curthread, p, sb, PROC_ENV));
2050 }
2051
2052 int
2053 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
2054 {
2055 size_t vsize, size;
2056 char **auxv;
2057 int error;
2058
2059 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
2060 if (error == 0) {
2061 #ifdef COMPAT_FREEBSD32
2062 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
2063 size = vsize * sizeof(Elf32_Auxinfo);
2064 else
2065 #endif
2066 size = vsize * sizeof(Elf_Auxinfo);
2067 if (sbuf_bcat(sb, auxv, size) != 0)
2068 error = ENOMEM;
2069 free(auxv, M_TEMP);
2070 }
2071 return (error);
2072 }
2073
2074 /*
2075 * This sysctl allows a process to retrieve the argument list or process
2076 * title for another process without groping around in the address space
2077 * of the other process. It also allow a process to set its own "process
2078 * title to a string of its own choice.
2079 */
2080 static int
2081 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
2082 {
2083 int *name = (int *)arg1;
2084 u_int namelen = arg2;
2085 struct pargs *newpa, *pa;
2086 struct proc *p;
2087 struct sbuf sb;
2088 int flags, error = 0, error2;
2089 pid_t pid;
2090
2091 if (namelen != 1)
2092 return (EINVAL);
2093
2094 p = curproc;
2095 pid = (pid_t)name[0];
2096 if (pid == -1) {
2097 pid = p->p_pid;
2098 }
2099
2100 /*
2101 * If the query is for this process and it is single-threaded, there
2102 * is nobody to modify pargs, thus we can just read.
2103 */
2104 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL &&
2105 (pa = p->p_args) != NULL)
2106 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length));
2107
2108 flags = PGET_CANSEE;
2109 if (req->newptr != NULL)
2110 flags |= PGET_ISCURRENT;
2111 error = pget(pid, flags, &p);
2112 if (error)
2113 return (error);
2114
2115 pa = p->p_args;
2116 if (pa != NULL) {
2117 pargs_hold(pa);
2118 PROC_UNLOCK(p);
2119 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
2120 pargs_drop(pa);
2121 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
2122 _PHOLD(p);
2123 PROC_UNLOCK(p);
2124 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2125 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2126 error = proc_getargv(curthread, p, &sb);
2127 error2 = sbuf_finish(&sb);
2128 PRELE(p);
2129 sbuf_delete(&sb);
2130 if (error == 0 && error2 != 0)
2131 error = error2;
2132 } else {
2133 PROC_UNLOCK(p);
2134 }
2135 if (error != 0 || req->newptr == NULL)
2136 return (error);
2137
2138 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
2139 return (ENOMEM);
2140
2141 if (req->newlen == 0) {
2142 /*
2143 * Clear the argument pointer, so that we'll fetch arguments
2144 * with proc_getargv() until further notice.
2145 */
2146 newpa = NULL;
2147 } else {
2148 newpa = pargs_alloc(req->newlen);
2149 error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
2150 if (error != 0) {
2151 pargs_free(newpa);
2152 return (error);
2153 }
2154 }
2155 PROC_LOCK(p);
2156 pa = p->p_args;
2157 p->p_args = newpa;
2158 PROC_UNLOCK(p);
2159 pargs_drop(pa);
2160 return (0);
2161 }
2162
2163 /*
2164 * This sysctl allows a process to retrieve environment of another process.
2165 */
2166 static int
2167 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
2168 {
2169 int *name = (int *)arg1;
2170 u_int namelen = arg2;
2171 struct proc *p;
2172 struct sbuf sb;
2173 int error, error2;
2174
2175 if (namelen != 1)
2176 return (EINVAL);
2177
2178 error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2179 if (error != 0)
2180 return (error);
2181 if ((p->p_flag & P_SYSTEM) != 0) {
2182 PRELE(p);
2183 return (0);
2184 }
2185
2186 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2187 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2188 error = proc_getenvv(curthread, p, &sb);
2189 error2 = sbuf_finish(&sb);
2190 PRELE(p);
2191 sbuf_delete(&sb);
2192 return (error != 0 ? error : error2);
2193 }
2194
2195 /*
2196 * This sysctl allows a process to retrieve ELF auxiliary vector of
2197 * another process.
2198 */
2199 static int
2200 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
2201 {
2202 int *name = (int *)arg1;
2203 u_int namelen = arg2;
2204 struct proc *p;
2205 struct sbuf sb;
2206 int error, error2;
2207
2208 if (namelen != 1)
2209 return (EINVAL);
2210
2211 error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2212 if (error != 0)
2213 return (error);
2214 if ((p->p_flag & P_SYSTEM) != 0) {
2215 PRELE(p);
2216 return (0);
2217 }
2218 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2219 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2220 error = proc_getauxv(curthread, p, &sb);
2221 error2 = sbuf_finish(&sb);
2222 PRELE(p);
2223 sbuf_delete(&sb);
2224 return (error != 0 ? error : error2);
2225 }
2226
2227 /*
2228 * Look up the canonical executable path running in the specified process.
2229 * It tries to return the same hardlink name as was used for execve(2).
2230 * This allows the programs that modify their behavior based on their progname,
2231 * to operate correctly.
2232 *
2233 * Result is returned in retbuf, it must not be freed, similar to vn_fullpath()
2234 * calling conventions.
2235 * binname is a pointer to temporary string buffer of length MAXPATHLEN,
2236 * allocated and freed by caller.
2237 * freebuf should be freed by caller, from the M_TEMP malloc type.
2238 */
2239 int
2240 proc_get_binpath(struct proc *p, char *binname, char **retbuf,
2241 char **freebuf)
2242 {
2243 struct nameidata nd;
2244 struct vnode *vp, *dvp;
2245 size_t freepath_size;
2246 int error;
2247 bool do_fullpath;
2248
2249 PROC_LOCK_ASSERT(p, MA_OWNED);
2250
2251 vp = p->p_textvp;
2252 if (vp == NULL) {
2253 PROC_UNLOCK(p);
2254 *retbuf = "";
2255 *freebuf = NULL;
2256 return (0);
2257 }
2258 vref(vp);
2259 dvp = p->p_textdvp;
2260 if (dvp != NULL)
2261 vref(dvp);
2262 if (p->p_binname != NULL)
2263 strlcpy(binname, p->p_binname, MAXPATHLEN);
2264 PROC_UNLOCK(p);
2265
2266 do_fullpath = true;
2267 *freebuf = NULL;
2268 if (dvp != NULL && binname[0] != '\0') {
2269 freepath_size = MAXPATHLEN;
2270 if (vn_fullpath_hardlink(vp, dvp, binname, strlen(binname),
2271 retbuf, freebuf, &freepath_size) == 0) {
2272 /*
2273 * Recheck the looked up path. The binary
2274 * might have been renamed or replaced, in
2275 * which case we should not report old name.
2276 */
2277 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, *retbuf);
2278 error = namei(&nd);
2279 if (error == 0) {
2280 if (nd.ni_vp == vp)
2281 do_fullpath = false;
2282 vrele(nd.ni_vp);
2283 NDFREE_PNBUF(&nd);
2284 }
2285 }
2286 }
2287 if (do_fullpath) {
2288 free(*freebuf, M_TEMP);
2289 *freebuf = NULL;
2290 error = vn_fullpath(vp, retbuf, freebuf);
2291 }
2292 vrele(vp);
2293 if (dvp != NULL)
2294 vrele(dvp);
2295 return (error);
2296 }
2297
2298 /*
2299 * This sysctl allows a process to retrieve the path of the executable for
2300 * itself or another process.
2301 */
2302 static int
2303 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2304 {
2305 pid_t *pidp = (pid_t *)arg1;
2306 unsigned int arglen = arg2;
2307 struct proc *p;
2308 char *retbuf, *freebuf, *binname;
2309 int error;
2310
2311 if (arglen != 1)
2312 return (EINVAL);
2313 binname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
2314 binname[0] = '\0';
2315 if (*pidp == -1) { /* -1 means this process */
2316 error = 0;
2317 p = req->td->td_proc;
2318 PROC_LOCK(p);
2319 } else {
2320 error = pget(*pidp, PGET_CANSEE, &p);
2321 }
2322
2323 if (error == 0)
2324 error = proc_get_binpath(p, binname, &retbuf, &freebuf);
2325 free(binname, M_TEMP);
2326 if (error != 0)
2327 return (error);
2328 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2329 free(freebuf, M_TEMP);
2330 return (error);
2331 }
2332
2333 static int
2334 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2335 {
2336 struct proc *p;
2337 char *sv_name;
2338 int *name;
2339 int namelen;
2340 int error;
2341
2342 namelen = arg2;
2343 if (namelen != 1)
2344 return (EINVAL);
2345
2346 name = (int *)arg1;
2347 error = pget((pid_t)name[0], PGET_CANSEE, &p);
2348 if (error != 0)
2349 return (error);
2350 sv_name = p->p_sysent->sv_name;
2351 PROC_UNLOCK(p);
2352 return (sysctl_handle_string(oidp, sv_name, 0, req));
2353 }
2354
2355 #ifdef KINFO_OVMENTRY_SIZE
2356 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2357 #endif
2358
2359 #ifdef COMPAT_FREEBSD7
2360 static int
2361 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2362 {
2363 vm_map_entry_t entry, tmp_entry;
2364 unsigned int last_timestamp, namelen;
2365 char *fullpath, *freepath;
2366 struct kinfo_ovmentry *kve;
2367 struct vattr va;
2368 struct ucred *cred;
2369 int error, *name;
2370 struct vnode *vp;
2371 struct proc *p;
2372 vm_map_t map;
2373 struct vmspace *vm;
2374
2375 namelen = arg2;
2376 if (namelen != 1)
2377 return (EINVAL);
2378
2379 name = (int *)arg1;
2380 error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2381 if (error != 0)
2382 return (error);
2383 vm = vmspace_acquire_ref(p);
2384 if (vm == NULL) {
2385 PRELE(p);
2386 return (ESRCH);
2387 }
2388 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2389
2390 map = &vm->vm_map;
2391 vm_map_lock_read(map);
2392 VM_MAP_ENTRY_FOREACH(entry, map) {
2393 vm_object_t obj, tobj, lobj;
2394 vm_offset_t addr;
2395
2396 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2397 continue;
2398
2399 bzero(kve, sizeof(*kve));
2400 kve->kve_structsize = sizeof(*kve);
2401
2402 kve->kve_private_resident = 0;
2403 obj = entry->object.vm_object;
2404 if (obj != NULL) {
2405 VM_OBJECT_RLOCK(obj);
2406 if (obj->shadow_count == 1)
2407 kve->kve_private_resident =
2408 obj->resident_page_count;
2409 }
2410 kve->kve_resident = 0;
2411 addr = entry->start;
2412 while (addr < entry->end) {
2413 if (pmap_extract(map->pmap, addr))
2414 kve->kve_resident++;
2415 addr += PAGE_SIZE;
2416 }
2417
2418 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2419 if (tobj != obj) {
2420 VM_OBJECT_RLOCK(tobj);
2421 kve->kve_offset += tobj->backing_object_offset;
2422 }
2423 if (lobj != obj)
2424 VM_OBJECT_RUNLOCK(lobj);
2425 lobj = tobj;
2426 }
2427
2428 kve->kve_start = (void*)entry->start;
2429 kve->kve_end = (void*)entry->end;
2430 kve->kve_offset += (off_t)entry->offset;
2431
2432 if (entry->protection & VM_PROT_READ)
2433 kve->kve_protection |= KVME_PROT_READ;
2434 if (entry->protection & VM_PROT_WRITE)
2435 kve->kve_protection |= KVME_PROT_WRITE;
2436 if (entry->protection & VM_PROT_EXECUTE)
2437 kve->kve_protection |= KVME_PROT_EXEC;
2438
2439 if (entry->eflags & MAP_ENTRY_COW)
2440 kve->kve_flags |= KVME_FLAG_COW;
2441 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2442 kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2443 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2444 kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2445
2446 last_timestamp = map->timestamp;
2447 vm_map_unlock_read(map);
2448
2449 kve->kve_fileid = 0;
2450 kve->kve_fsid = 0;
2451 freepath = NULL;
2452 fullpath = "";
2453 if (lobj) {
2454 kve->kve_type = vm_object_kvme_type(lobj, &vp);
2455 if (kve->kve_type == KVME_TYPE_MGTDEVICE)
2456 kve->kve_type = KVME_TYPE_UNKNOWN;
2457 if (vp != NULL)
2458 vref(vp);
2459 if (lobj != obj)
2460 VM_OBJECT_RUNLOCK(lobj);
2461
2462 kve->kve_ref_count = obj->ref_count;
2463 kve->kve_shadow_count = obj->shadow_count;
2464 VM_OBJECT_RUNLOCK(obj);
2465 if (vp != NULL) {
2466 vn_fullpath(vp, &fullpath, &freepath);
2467 cred = curthread->td_ucred;
2468 vn_lock(vp, LK_SHARED | LK_RETRY);
2469 if (VOP_GETATTR(vp, &va, cred) == 0) {
2470 kve->kve_fileid = va.va_fileid;
2471 /* truncate */
2472 kve->kve_fsid = va.va_fsid;
2473 }
2474 vput(vp);
2475 }
2476 } else {
2477 kve->kve_type = KVME_TYPE_NONE;
2478 kve->kve_ref_count = 0;
2479 kve->kve_shadow_count = 0;
2480 }
2481
2482 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2483 if (freepath != NULL)
2484 free(freepath, M_TEMP);
2485
2486 error = SYSCTL_OUT(req, kve, sizeof(*kve));
2487 vm_map_lock_read(map);
2488 if (error)
2489 break;
2490 if (last_timestamp != map->timestamp) {
2491 vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2492 entry = tmp_entry;
2493 }
2494 }
2495 vm_map_unlock_read(map);
2496 vmspace_free(vm);
2497 PRELE(p);
2498 free(kve, M_TEMP);
2499 return (error);
2500 }
2501 #endif /* COMPAT_FREEBSD7 */
2502
2503 #ifdef KINFO_VMENTRY_SIZE
2504 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2505 #endif
2506
2507 void
2508 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2509 int *resident_count, bool *super)
2510 {
2511 vm_object_t obj, tobj;
2512 vm_page_t m, m_adv;
2513 vm_offset_t addr;
2514 vm_paddr_t pa;
2515 vm_pindex_t pi, pi_adv, pindex;
2516
2517 *super = false;
2518 *resident_count = 0;
2519 if (vmmap_skip_res_cnt)
2520 return;
2521
2522 pa = 0;
2523 obj = entry->object.vm_object;
2524 addr = entry->start;
2525 m_adv = NULL;
2526 pi = OFF_TO_IDX(entry->offset);
2527 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2528 if (m_adv != NULL) {
2529 m = m_adv;
2530 } else {
2531 pi_adv = atop(entry->end - addr);
2532 pindex = pi;
2533 for (tobj = obj;; tobj = tobj->backing_object) {
2534 m = vm_page_find_least(tobj, pindex);
2535 if (m != NULL) {
2536 if (m->pindex == pindex)
2537 break;
2538 if (pi_adv > m->pindex - pindex) {
2539 pi_adv = m->pindex - pindex;
2540 m_adv = m;
2541 }
2542 }
2543 if (tobj->backing_object == NULL)
2544 goto next;
2545 pindex += OFF_TO_IDX(tobj->
2546 backing_object_offset);
2547 }
2548 }
2549 m_adv = NULL;
2550 if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2551 (addr & (pagesizes[1] - 1)) == 0 &&
2552 (pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) {
2553 *super = true;
2554 pi_adv = atop(pagesizes[1]);
2555 } else {
2556 /*
2557 * We do not test the found page on validity.
2558 * Either the page is busy and being paged in,
2559 * or it was invalidated. The first case
2560 * should be counted as resident, the second
2561 * is not so clear; we do account both.
2562 */
2563 pi_adv = 1;
2564 }
2565 *resident_count += pi_adv;
2566 next:;
2567 }
2568 }
2569
2570 /*
2571 * Must be called with the process locked and will return unlocked.
2572 */
2573 int
2574 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2575 {
2576 vm_map_entry_t entry, tmp_entry;
2577 struct vattr va;
2578 vm_map_t map;
2579 vm_object_t lobj, nobj, obj, tobj;
2580 char *fullpath, *freepath;
2581 struct kinfo_vmentry *kve;
2582 struct ucred *cred;
2583 struct vnode *vp;
2584 struct vmspace *vm;
2585 vm_offset_t addr;
2586 unsigned int last_timestamp;
2587 int error;
2588 bool guard, super;
2589
2590 PROC_LOCK_ASSERT(p, MA_OWNED);
2591
2592 _PHOLD(p);
2593 PROC_UNLOCK(p);
2594 vm = vmspace_acquire_ref(p);
2595 if (vm == NULL) {
2596 PRELE(p);
2597 return (ESRCH);
2598 }
2599 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2600
2601 error = 0;
2602 map = &vm->vm_map;
2603 vm_map_lock_read(map);
2604 VM_MAP_ENTRY_FOREACH(entry, map) {
2605 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2606 continue;
2607
2608 addr = entry->end;
2609 bzero(kve, sizeof(*kve));
2610 obj = entry->object.vm_object;
2611 if (obj != NULL) {
2612 if ((obj->flags & OBJ_ANON) != 0)
2613 kve->kve_obj = (uintptr_t)obj;
2614
2615 for (tobj = obj; tobj != NULL;
2616 tobj = tobj->backing_object) {
2617 VM_OBJECT_RLOCK(tobj);
2618 kve->kve_offset += tobj->backing_object_offset;
2619 lobj = tobj;
2620 }
2621 if (obj->backing_object == NULL)
2622 kve->kve_private_resident =
2623 obj->resident_page_count;
2624 kern_proc_vmmap_resident(map, entry,
2625 &kve->kve_resident, &super);
2626 if (super)
2627 kve->kve_flags |= KVME_FLAG_SUPER;
2628 for (tobj = obj; tobj != NULL; tobj = nobj) {
2629 nobj = tobj->backing_object;
2630 if (tobj != obj && tobj != lobj)
2631 VM_OBJECT_RUNLOCK(tobj);
2632 }
2633 } else {
2634 lobj = NULL;
2635 }
2636
2637 kve->kve_start = entry->start;
2638 kve->kve_end = entry->end;
2639 kve->kve_offset += entry->offset;
2640
2641 if (entry->protection & VM_PROT_READ)
2642 kve->kve_protection |= KVME_PROT_READ;
2643 if (entry->protection & VM_PROT_WRITE)
2644 kve->kve_protection |= KVME_PROT_WRITE;
2645 if (entry->protection & VM_PROT_EXECUTE)
2646 kve->kve_protection |= KVME_PROT_EXEC;
2647
2648 if (entry->eflags & MAP_ENTRY_COW)
2649 kve->kve_flags |= KVME_FLAG_COW;
2650 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2651 kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2652 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2653 kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2654 if (entry->eflags & MAP_ENTRY_GROWS_UP)
2655 kve->kve_flags |= KVME_FLAG_GROWS_UP;
2656 if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2657 kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2658 if (entry->eflags & MAP_ENTRY_USER_WIRED)
2659 kve->kve_flags |= KVME_FLAG_USER_WIRED;
2660
2661 guard = (entry->eflags & MAP_ENTRY_GUARD) != 0;
2662
2663 last_timestamp = map->timestamp;
2664 vm_map_unlock_read(map);
2665
2666 freepath = NULL;
2667 fullpath = "";
2668 if (lobj != NULL) {
2669 kve->kve_type = vm_object_kvme_type(lobj, &vp);
2670 if (vp != NULL)
2671 vref(vp);
2672 if (lobj != obj)
2673 VM_OBJECT_RUNLOCK(lobj);
2674
2675 kve->kve_ref_count = obj->ref_count;
2676 kve->kve_shadow_count = obj->shadow_count;
2677 VM_OBJECT_RUNLOCK(obj);
2678 if (vp != NULL) {
2679 vn_fullpath(vp, &fullpath, &freepath);
2680 kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2681 cred = curthread->td_ucred;
2682 vn_lock(vp, LK_SHARED | LK_RETRY);
2683 if (VOP_GETATTR(vp, &va, cred) == 0) {
2684 kve->kve_vn_fileid = va.va_fileid;
2685 kve->kve_vn_fsid = va.va_fsid;
2686 kve->kve_vn_fsid_freebsd11 =
2687 kve->kve_vn_fsid; /* truncate */
2688 kve->kve_vn_mode =
2689 MAKEIMODE(va.va_type, va.va_mode);
2690 kve->kve_vn_size = va.va_size;
2691 kve->kve_vn_rdev = va.va_rdev;
2692 kve->kve_vn_rdev_freebsd11 =
2693 kve->kve_vn_rdev; /* truncate */
2694 kve->kve_status = KF_ATTR_VALID;
2695 }
2696 vput(vp);
2697 }
2698 } else {
2699 kve->kve_type = guard ? KVME_TYPE_GUARD :
2700 KVME_TYPE_NONE;
2701 kve->kve_ref_count = 0;
2702 kve->kve_shadow_count = 0;
2703 }
2704
2705 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2706 if (freepath != NULL)
2707 free(freepath, M_TEMP);
2708
2709 /* Pack record size down */
2710 if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2711 kve->kve_structsize =
2712 offsetof(struct kinfo_vmentry, kve_path) +
2713 strlen(kve->kve_path) + 1;
2714 else
2715 kve->kve_structsize = sizeof(*kve);
2716 kve->kve_structsize = roundup(kve->kve_structsize,
2717 sizeof(uint64_t));
2718
2719 /* Halt filling and truncate rather than exceeding maxlen */
2720 if (maxlen != -1 && maxlen < kve->kve_structsize) {
2721 error = 0;
2722 vm_map_lock_read(map);
2723 break;
2724 } else if (maxlen != -1)
2725 maxlen -= kve->kve_structsize;
2726
2727 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2728 error = ENOMEM;
2729 vm_map_lock_read(map);
2730 if (error != 0)
2731 break;
2732 if (last_timestamp != map->timestamp) {
2733 vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2734 entry = tmp_entry;
2735 }
2736 }
2737 vm_map_unlock_read(map);
2738 vmspace_free(vm);
2739 PRELE(p);
2740 free(kve, M_TEMP);
2741 return (error);
2742 }
2743
2744 static int
2745 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2746 {
2747 struct proc *p;
2748 struct sbuf sb;
2749 u_int namelen;
2750 int error, error2, *name;
2751
2752 namelen = arg2;
2753 if (namelen != 1)
2754 return (EINVAL);
2755
2756 name = (int *)arg1;
2757 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2758 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2759 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2760 if (error != 0) {
2761 sbuf_delete(&sb);
2762 return (error);
2763 }
2764 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2765 error2 = sbuf_finish(&sb);
2766 sbuf_delete(&sb);
2767 return (error != 0 ? error : error2);
2768 }
2769
2770 #if defined(STACK) || defined(DDB)
2771 static int
2772 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2773 {
2774 struct kinfo_kstack *kkstp;
2775 int error, i, *name, numthreads;
2776 lwpid_t *lwpidarray;
2777 struct thread *td;
2778 struct stack *st;
2779 struct sbuf sb;
2780 struct proc *p;
2781 u_int namelen;
2782
2783 namelen = arg2;
2784 if (namelen != 1)
2785 return (EINVAL);
2786
2787 name = (int *)arg1;
2788 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2789 if (error != 0)
2790 return (error);
2791
2792 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2793 st = stack_create(M_WAITOK);
2794
2795 lwpidarray = NULL;
2796 PROC_LOCK(p);
2797 do {
2798 if (lwpidarray != NULL) {
2799 free(lwpidarray, M_TEMP);
2800 lwpidarray = NULL;
2801 }
2802 numthreads = p->p_numthreads;
2803 PROC_UNLOCK(p);
2804 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2805 M_WAITOK | M_ZERO);
2806 PROC_LOCK(p);
2807 } while (numthreads < p->p_numthreads);
2808
2809 /*
2810 * XXXRW: During the below loop, execve(2) and countless other sorts
2811 * of changes could have taken place. Should we check to see if the
2812 * vmspace has been replaced, or the like, in order to prevent
2813 * giving a snapshot that spans, say, execve(2), with some threads
2814 * before and some after? Among other things, the credentials could
2815 * have changed, in which case the right to extract debug info might
2816 * no longer be assured.
2817 */
2818 i = 0;
2819 FOREACH_THREAD_IN_PROC(p, td) {
2820 KASSERT(i < numthreads,
2821 ("sysctl_kern_proc_kstack: numthreads"));
2822 lwpidarray[i] = td->td_tid;
2823 i++;
2824 }
2825 PROC_UNLOCK(p);
2826 numthreads = i;
2827 for (i = 0; i < numthreads; i++) {
2828 td = tdfind(lwpidarray[i], p->p_pid);
2829 if (td == NULL) {
2830 continue;
2831 }
2832 bzero(kkstp, sizeof(*kkstp));
2833 (void)sbuf_new(&sb, kkstp->kkst_trace,
2834 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2835 thread_lock(td);
2836 kkstp->kkst_tid = td->td_tid;
2837 if (TD_IS_SWAPPED(td))
2838 kkstp->kkst_state = KKST_STATE_SWAPPED;
2839 else if (stack_save_td(st, td) == 0)
2840 kkstp->kkst_state = KKST_STATE_STACKOK;
2841 else
2842 kkstp->kkst_state = KKST_STATE_RUNNING;
2843 thread_unlock(td);
2844 PROC_UNLOCK(p);
2845 stack_sbuf_print(&sb, st);
2846 sbuf_finish(&sb);
2847 sbuf_delete(&sb);
2848 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2849 if (error)
2850 break;
2851 }
2852 PRELE(p);
2853 if (lwpidarray != NULL)
2854 free(lwpidarray, M_TEMP);
2855 stack_destroy(st);
2856 free(kkstp, M_TEMP);
2857 return (error);
2858 }
2859 #endif
2860
2861 /*
2862 * This sysctl allows a process to retrieve the full list of groups from
2863 * itself or another process.
2864 */
2865 static int
2866 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2867 {
2868 pid_t *pidp = (pid_t *)arg1;
2869 unsigned int arglen = arg2;
2870 struct proc *p;
2871 struct ucred *cred;
2872 int error;
2873
2874 if (arglen != 1)
2875 return (EINVAL);
2876 if (*pidp == -1) { /* -1 means this process */
2877 p = req->td->td_proc;
2878 PROC_LOCK(p);
2879 } else {
2880 error = pget(*pidp, PGET_CANSEE, &p);
2881 if (error != 0)
2882 return (error);
2883 }
2884
2885 cred = crhold(p->p_ucred);
2886 PROC_UNLOCK(p);
2887
2888 error = SYSCTL_OUT(req, cred->cr_groups,
2889 cred->cr_ngroups * sizeof(gid_t));
2890 crfree(cred);
2891 return (error);
2892 }
2893
2894 /*
2895 * This sysctl allows a process to retrieve or/and set the resource limit for
2896 * another process.
2897 */
2898 static int
2899 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2900 {
2901 int *name = (int *)arg1;
2902 u_int namelen = arg2;
2903 struct rlimit rlim;
2904 struct proc *p;
2905 u_int which;
2906 int flags, error;
2907
2908 if (namelen != 2)
2909 return (EINVAL);
2910
2911 which = (u_int)name[1];
2912 if (which >= RLIM_NLIMITS)
2913 return (EINVAL);
2914
2915 if (req->newptr != NULL && req->newlen != sizeof(rlim))
2916 return (EINVAL);
2917
2918 flags = PGET_HOLD | PGET_NOTWEXIT;
2919 if (req->newptr != NULL)
2920 flags |= PGET_CANDEBUG;
2921 else
2922 flags |= PGET_CANSEE;
2923 error = pget((pid_t)name[0], flags, &p);
2924 if (error != 0)
2925 return (error);
2926
2927 /*
2928 * Retrieve limit.
2929 */
2930 if (req->oldptr != NULL) {
2931 PROC_LOCK(p);
2932 lim_rlimit_proc(p, which, &rlim);
2933 PROC_UNLOCK(p);
2934 }
2935 error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2936 if (error != 0)
2937 goto errout;
2938
2939 /*
2940 * Set limit.
2941 */
2942 if (req->newptr != NULL) {
2943 error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2944 if (error == 0)
2945 error = kern_proc_setrlimit(curthread, p, which, &rlim);
2946 }
2947
2948 errout:
2949 PRELE(p);
2950 return (error);
2951 }
2952
2953 /*
2954 * This sysctl allows a process to retrieve ps_strings structure location of
2955 * another process.
2956 */
2957 static int
2958 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2959 {
2960 int *name = (int *)arg1;
2961 u_int namelen = arg2;
2962 struct proc *p;
2963 vm_offset_t ps_strings;
2964 int error;
2965 #ifdef COMPAT_FREEBSD32
2966 uint32_t ps_strings32;
2967 #endif
2968
2969 if (namelen != 1)
2970 return (EINVAL);
2971
2972 error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2973 if (error != 0)
2974 return (error);
2975 #ifdef COMPAT_FREEBSD32
2976 if ((req->flags & SCTL_MASK32) != 0) {
2977 /*
2978 * We return 0 if the 32 bit emulation request is for a 64 bit
2979 * process.
2980 */
2981 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2982 PTROUT(PROC_PS_STRINGS(p)) : 0;
2983 PROC_UNLOCK(p);
2984 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2985 return (error);
2986 }
2987 #endif
2988 ps_strings = PROC_PS_STRINGS(p);
2989 PROC_UNLOCK(p);
2990 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2991 return (error);
2992 }
2993
2994 /*
2995 * This sysctl allows a process to retrieve umask of another process.
2996 */
2997 static int
2998 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2999 {
3000 int *name = (int *)arg1;
3001 u_int namelen = arg2;
3002 struct proc *p;
3003 int error;
3004 u_short cmask;
3005 pid_t pid;
3006
3007 if (namelen != 1)
3008 return (EINVAL);
3009
3010 pid = (pid_t)name[0];
3011 p = curproc;
3012 if (pid == p->p_pid || pid == 0) {
3013 cmask = p->p_pd->pd_cmask;
3014 goto out;
3015 }
3016
3017 error = pget(pid, PGET_WANTREAD, &p);
3018 if (error != 0)
3019 return (error);
3020
3021 cmask = p->p_pd->pd_cmask;
3022 PRELE(p);
3023 out:
3024 error = SYSCTL_OUT(req, &cmask, sizeof(cmask));
3025 return (error);
3026 }
3027
3028 /*
3029 * This sysctl allows a process to set and retrieve binary osreldate of
3030 * another process.
3031 */
3032 static int
3033 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
3034 {
3035 int *name = (int *)arg1;
3036 u_int namelen = arg2;
3037 struct proc *p;
3038 int flags, error, osrel;
3039
3040 if (namelen != 1)
3041 return (EINVAL);
3042
3043 if (req->newptr != NULL && req->newlen != sizeof(osrel))
3044 return (EINVAL);
3045
3046 flags = PGET_HOLD | PGET_NOTWEXIT;
3047 if (req->newptr != NULL)
3048 flags |= PGET_CANDEBUG;
3049 else
3050 flags |= PGET_CANSEE;
3051 error = pget((pid_t)name[0], flags, &p);
3052 if (error != 0)
3053 return (error);
3054
3055 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
3056 if (error != 0)
3057 goto errout;
3058
3059 if (req->newptr != NULL) {
3060 error = SYSCTL_IN(req, &osrel, sizeof(osrel));
3061 if (error != 0)
3062 goto errout;
3063 if (osrel < 0) {
3064 error = EINVAL;
3065 goto errout;
3066 }
3067 p->p_osrel = osrel;
3068 }
3069 errout:
3070 PRELE(p);
3071 return (error);
3072 }
3073
3074 static int
3075 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
3076 {
3077 int *name = (int *)arg1;
3078 u_int namelen = arg2;
3079 struct proc *p;
3080 struct kinfo_sigtramp kst;
3081 const struct sysentvec *sv;
3082 int error;
3083 #ifdef COMPAT_FREEBSD32
3084 struct kinfo_sigtramp32 kst32;
3085 #endif
3086
3087 if (namelen != 1)
3088 return (EINVAL);
3089
3090 error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3091 if (error != 0)
3092 return (error);
3093 sv = p->p_sysent;
3094 #ifdef COMPAT_FREEBSD32
3095 if ((req->flags & SCTL_MASK32) != 0) {
3096 bzero(&kst32, sizeof(kst32));
3097 if (SV_PROC_FLAG(p, SV_ILP32)) {
3098 if (PROC_HAS_SHP(p)) {
3099 kst32.ksigtramp_start = PROC_SIGCODE(p);
3100 kst32.ksigtramp_end = kst32.ksigtramp_start +
3101 ((sv->sv_flags & SV_DSO_SIG) == 0 ?
3102 *sv->sv_szsigcode :
3103 (uintptr_t)sv->sv_szsigcode);
3104 } else {
3105 kst32.ksigtramp_start = PROC_PS_STRINGS(p) -
3106 *sv->sv_szsigcode;
3107 kst32.ksigtramp_end = PROC_PS_STRINGS(p);
3108 }
3109 }
3110 PROC_UNLOCK(p);
3111 error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
3112 return (error);
3113 }
3114 #endif
3115 bzero(&kst, sizeof(kst));
3116 if (PROC_HAS_SHP(p)) {
3117 kst.ksigtramp_start = (char *)PROC_SIGCODE(p);
3118 kst.ksigtramp_end = (char *)kst.ksigtramp_start +
3119 ((sv->sv_flags & SV_DSO_SIG) == 0 ? *sv->sv_szsigcode :
3120 (uintptr_t)sv->sv_szsigcode);
3121 } else {
3122 kst.ksigtramp_start = (char *)PROC_PS_STRINGS(p) -
3123 *sv->sv_szsigcode;
3124 kst.ksigtramp_end = (char *)PROC_PS_STRINGS(p);
3125 }
3126 PROC_UNLOCK(p);
3127 error = SYSCTL_OUT(req, &kst, sizeof(kst));
3128 return (error);
3129 }
3130
3131 static int
3132 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)
3133 {
3134 int *name = (int *)arg1;
3135 u_int namelen = arg2;
3136 pid_t pid;
3137 struct proc *p;
3138 struct thread *td1;
3139 uintptr_t addr;
3140 #ifdef COMPAT_FREEBSD32
3141 uint32_t addr32;
3142 #endif
3143 int error;
3144
3145 if (namelen != 1 || req->newptr != NULL)
3146 return (EINVAL);
3147
3148 pid = (pid_t)name[0];
3149 error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p);
3150 if (error != 0)
3151 return (error);
3152
3153 PROC_LOCK(p);
3154 #ifdef COMPAT_FREEBSD32
3155 if (SV_CURPROC_FLAG(SV_ILP32)) {
3156 if (!SV_PROC_FLAG(p, SV_ILP32)) {
3157 error = EINVAL;
3158 goto errlocked;
3159 }
3160 }
3161 #endif
3162 if (pid <= PID_MAX) {
3163 td1 = FIRST_THREAD_IN_PROC(p);
3164 } else {
3165 FOREACH_THREAD_IN_PROC(p, td1) {
3166 if (td1->td_tid == pid)
3167 break;
3168 }
3169 }
3170 if (td1 == NULL) {
3171 error = ESRCH;
3172 goto errlocked;
3173 }
3174 /*
3175 * The access to the private thread flags. It is fine as far
3176 * as no out-of-thin-air values are read from td_pflags, and
3177 * usermode read of the td_sigblock_ptr is racy inherently,
3178 * since target process might have already changed it
3179 * meantime.
3180 */
3181 if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0)
3182 addr = (uintptr_t)td1->td_sigblock_ptr;
3183 else
3184 error = ENOTTY;
3185
3186 errlocked:
3187 _PRELE(p);
3188 PROC_UNLOCK(p);
3189 if (error != 0)
3190 return (error);
3191
3192 #ifdef COMPAT_FREEBSD32
3193 if (SV_CURPROC_FLAG(SV_ILP32)) {
3194 addr32 = addr;
3195 error = SYSCTL_OUT(req, &addr32, sizeof(addr32));
3196 } else
3197 #endif
3198 error = SYSCTL_OUT(req, &addr, sizeof(addr));
3199 return (error);
3200 }
3201
3202 static int
3203 sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS)
3204 {
3205 struct kinfo_vm_layout kvm;
3206 struct proc *p;
3207 struct vmspace *vmspace;
3208 int error, *name;
3209
3210 name = (int *)arg1;
3211 if ((u_int)arg2 != 1)
3212 return (EINVAL);
3213
3214 error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3215 if (error != 0)
3216 return (error);
3217 #ifdef COMPAT_FREEBSD32
3218 if (SV_CURPROC_FLAG(SV_ILP32)) {
3219 if (!SV_PROC_FLAG(p, SV_ILP32)) {
3220 PROC_UNLOCK(p);
3221 return (EINVAL);
3222 }
3223 }
3224 #endif
3225 vmspace = vmspace_acquire_ref(p);
3226 PROC_UNLOCK(p);
3227
3228 memset(&kvm, 0, sizeof(kvm));
3229 kvm.kvm_min_user_addr = vm_map_min(&vmspace->vm_map);
3230 kvm.kvm_max_user_addr = vm_map_max(&vmspace->vm_map);
3231 kvm.kvm_text_addr = (uintptr_t)vmspace->vm_taddr;
3232 kvm.kvm_text_size = vmspace->vm_tsize;
3233 kvm.kvm_data_addr = (uintptr_t)vmspace->vm_daddr;
3234 kvm.kvm_data_size = vmspace->vm_dsize;
3235 kvm.kvm_stack_addr = (uintptr_t)vmspace->vm_maxsaddr;
3236 kvm.kvm_stack_size = vmspace->vm_ssize;
3237 kvm.kvm_shp_addr = vmspace->vm_shp_base;
3238 kvm.kvm_shp_size = p->p_sysent->sv_shared_page_len;
3239 if ((vmspace->vm_map.flags & MAP_WIREFUTURE) != 0)
3240 kvm.kvm_map_flags |= KMAP_FLAG_WIREFUTURE;
3241 if ((vmspace->vm_map.flags & MAP_ASLR) != 0)
3242 kvm.kvm_map_flags |= KMAP_FLAG_ASLR;
3243 if ((vmspace->vm_map.flags & MAP_ASLR_IGNSTART) != 0)
3244 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_IGNSTART;
3245 if ((vmspace->vm_map.flags & MAP_WXORX) != 0)
3246 kvm.kvm_map_flags |= KMAP_FLAG_WXORX;
3247 if ((vmspace->vm_map.flags & MAP_ASLR_STACK) != 0)
3248 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_STACK;
3249 if (vmspace->vm_shp_base != p->p_sysent->sv_shared_page_base &&
3250 PROC_HAS_SHP(p))
3251 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_SHARED_PAGE;
3252
3253 #ifdef COMPAT_FREEBSD32
3254 if (SV_CURPROC_FLAG(SV_ILP32)) {
3255 struct kinfo_vm_layout32 kvm32;
3256
3257 memset(&kvm32, 0, sizeof(kvm32));
3258 kvm32.kvm_min_user_addr = (uint32_t)kvm.kvm_min_user_addr;
3259 kvm32.kvm_max_user_addr = (uint32_t)kvm.kvm_max_user_addr;
3260 kvm32.kvm_text_addr = (uint32_t)kvm.kvm_text_addr;
3261 kvm32.kvm_text_size = (uint32_t)kvm.kvm_text_size;
3262 kvm32.kvm_data_addr = (uint32_t)kvm.kvm_data_addr;
3263 kvm32.kvm_data_size = (uint32_t)kvm.kvm_data_size;
3264 kvm32.kvm_stack_addr = (uint32_t)kvm.kvm_stack_addr;
3265 kvm32.kvm_stack_size = (uint32_t)kvm.kvm_stack_size;
3266 kvm32.kvm_shp_addr = (uint32_t)kvm.kvm_shp_addr;
3267 kvm32.kvm_shp_size = (uint32_t)kvm.kvm_shp_size;
3268 kvm32.kvm_map_flags = kvm.kvm_map_flags;
3269 vmspace_free(vmspace);
3270 error = SYSCTL_OUT(req, &kvm32, sizeof(kvm32));
3271 goto out;
3272 }
3273 #endif
3274
3275 error = SYSCTL_OUT(req, &kvm, sizeof(kvm));
3276 #ifdef COMPAT_FREEBSD32
3277 out:
3278 #endif
3279 vmspace_free(vmspace);
3280 return (error);
3281 }
3282
3283 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
3284 "Process table");
3285
3286 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
3287 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
3288 "Return entire process table");
3289
3290 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3291 sysctl_kern_proc, "Process table");
3292
3293 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
3294 sysctl_kern_proc, "Process table");
3295
3296 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3297 sysctl_kern_proc, "Process table");
3298
3299 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
3300 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3301
3302 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
3303 sysctl_kern_proc, "Process table");
3304
3305 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3306 sysctl_kern_proc, "Process table");
3307
3308 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3309 sysctl_kern_proc, "Process table");
3310
3311 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3312 sysctl_kern_proc, "Process table");
3313
3314 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
3315 sysctl_kern_proc, "Return process table, no threads");
3316
3317 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
3318 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
3319 sysctl_kern_proc_args, "Process argument list");
3320
3321 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
3322 sysctl_kern_proc_env, "Process environment");
3323
3324 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
3325 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
3326
3327 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
3328 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
3329
3330 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
3331 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
3332 "Process syscall vector name (ABI type)");
3333
3334 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
3335 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3336
3337 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
3338 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3339
3340 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
3341 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3342
3343 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
3344 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3345
3346 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
3347 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3348
3349 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
3350 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3351
3352 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
3353 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3354
3355 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
3356 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3357
3358 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
3359 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
3360 "Return process table, including threads");
3361
3362 #ifdef COMPAT_FREEBSD7
3363 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
3364 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
3365 #endif
3366
3367 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
3368 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
3369
3370 #if defined(STACK) || defined(DDB)
3371 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
3372 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
3373 #endif
3374
3375 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
3376 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
3377
3378 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
3379 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
3380 "Process resource limits");
3381
3382 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
3383 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
3384 "Process ps_strings location");
3385
3386 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
3387 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
3388
3389 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
3390 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
3391 "Process binary osreldate");
3392
3393 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
3394 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
3395 "Process signal trampoline location");
3396
3397 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD |
3398 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk,
3399 "Thread sigfastblock address");
3400
3401 static SYSCTL_NODE(_kern_proc, KERN_PROC_VM_LAYOUT, vm_layout, CTLFLAG_RD |
3402 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_vm_layout,
3403 "Process virtual address space layout info");
3404
3405 static struct sx stop_all_proc_blocker;
3406 SX_SYSINIT(stop_all_proc_blocker, &stop_all_proc_blocker, "sapblk");
3407
3408 bool
3409 stop_all_proc_block(void)
3410 {
3411 return (sx_xlock_sig(&stop_all_proc_blocker) == 0);
3412 }
3413
3414 void
3415 stop_all_proc_unblock(void)
3416 {
3417 sx_xunlock(&stop_all_proc_blocker);
3418 }
3419
3420 int allproc_gen;
3421
3422 /*
3423 * stop_all_proc() purpose is to stop all process which have usermode,
3424 * except current process for obvious reasons. This makes it somewhat
3425 * unreliable when invoked from multithreaded process. The service
3426 * must not be user-callable anyway.
3427 */
3428 void
3429 stop_all_proc(void)
3430 {
3431 struct proc *cp, *p;
3432 int r, gen;
3433 bool restart, seen_stopped, seen_exiting, stopped_some;
3434
3435 if (!stop_all_proc_block())
3436 return;
3437
3438 cp = curproc;
3439 allproc_loop:
3440 sx_xlock(&allproc_lock);
3441 gen = allproc_gen;
3442 seen_exiting = seen_stopped = stopped_some = restart = false;
3443 LIST_REMOVE(cp, p_list);
3444 LIST_INSERT_HEAD(&allproc, cp, p_list);
3445 for (;;) {
3446 p = LIST_NEXT(cp, p_list);
3447 if (p == NULL)
3448 break;
3449 LIST_REMOVE(cp, p_list);
3450 LIST_INSERT_AFTER(p, cp, p_list);
3451 PROC_LOCK(p);
3452 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) {
3453 PROC_UNLOCK(p);
3454 continue;
3455 }
3456 if ((p->p_flag2 & P2_WEXIT) != 0) {
3457 seen_exiting = true;
3458 PROC_UNLOCK(p);
3459 continue;
3460 }
3461 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3462 /*
3463 * Stopped processes are tolerated when there
3464 * are no other processes which might continue
3465 * them. P_STOPPED_SINGLE but not
3466 * P_TOTAL_STOP process still has at least one
3467 * thread running.
3468 */
3469 seen_stopped = true;
3470 PROC_UNLOCK(p);
3471 continue;
3472 }
3473 sx_xunlock(&allproc_lock);
3474 _PHOLD(p);
3475 r = thread_single(p, SINGLE_ALLPROC);
3476 if (r != 0)
3477 restart = true;
3478 else
3479 stopped_some = true;
3480 _PRELE(p);
3481 PROC_UNLOCK(p);
3482 sx_xlock(&allproc_lock);
3483 }
3484 /* Catch forked children we did not see in iteration. */
3485 if (gen != allproc_gen)
3486 restart = true;
3487 sx_xunlock(&allproc_lock);
3488 if (restart || stopped_some || seen_exiting || seen_stopped) {
3489 kern_yield(PRI_USER);
3490 goto allproc_loop;
3491 }
3492 }
3493
3494 void
3495 resume_all_proc(void)
3496 {
3497 struct proc *cp, *p;
3498
3499 cp = curproc;
3500 sx_xlock(&allproc_lock);
3501 again:
3502 LIST_REMOVE(cp, p_list);
3503 LIST_INSERT_HEAD(&allproc, cp, p_list);
3504 for (;;) {
3505 p = LIST_NEXT(cp, p_list);
3506 if (p == NULL)
3507 break;
3508 LIST_REMOVE(cp, p_list);
3509 LIST_INSERT_AFTER(p, cp, p_list);
3510 PROC_LOCK(p);
3511 if ((p->p_flag & P_TOTAL_STOP) != 0) {
3512 sx_xunlock(&allproc_lock);
3513 _PHOLD(p);
3514 thread_single_end(p, SINGLE_ALLPROC);
3515 _PRELE(p);
3516 PROC_UNLOCK(p);
3517 sx_xlock(&allproc_lock);
3518 } else {
3519 PROC_UNLOCK(p);
3520 }
3521 }
3522 /* Did the loop above missed any stopped process ? */
3523 FOREACH_PROC_IN_SYSTEM(p) {
3524 /* No need for proc lock. */
3525 if ((p->p_flag & P_TOTAL_STOP) != 0)
3526 goto again;
3527 }
3528 sx_xunlock(&allproc_lock);
3529
3530 stop_all_proc_unblock();
3531 }
3532
3533 /* #define TOTAL_STOP_DEBUG 1 */
3534 #ifdef TOTAL_STOP_DEBUG
3535 volatile static int ap_resume;
3536 #include <sys/mount.h>
3537
3538 static int
3539 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3540 {
3541 int error, val;
3542
3543 val = 0;
3544 ap_resume = 0;
3545 error = sysctl_handle_int(oidp, &val, 0, req);
3546 if (error != 0 || req->newptr == NULL)
3547 return (error);
3548 if (val != 0) {
3549 stop_all_proc();
3550 syncer_suspend();
3551 while (ap_resume == 0)
3552 ;
3553 syncer_resume();
3554 resume_all_proc();
3555 }
3556 return (0);
3557 }
3558
3559 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3560 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3561 sysctl_debug_stop_all_proc, "I",
3562 "");
3563 #endif
Cache object: cb0062eed53120a2fbbc8f10cef27f61
|