The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_proc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/10.0/sys/kern/kern_proc.c 258885 2013-12-03 19:40:32Z kib $");
   34 
   35 #include "opt_compat.h"
   36 #include "opt_ddb.h"
   37 #include "opt_kdtrace.h"
   38 #include "opt_ktrace.h"
   39 #include "opt_kstack_pages.h"
   40 #include "opt_stack.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/elf.h>
   45 #include <sys/exec.h>
   46 #include <sys/kernel.h>
   47 #include <sys/limits.h>
   48 #include <sys/lock.h>
   49 #include <sys/loginclass.h>
   50 #include <sys/malloc.h>
   51 #include <sys/mman.h>
   52 #include <sys/mount.h>
   53 #include <sys/mutex.h>
   54 #include <sys/proc.h>
   55 #include <sys/ptrace.h>
   56 #include <sys/refcount.h>
   57 #include <sys/resourcevar.h>
   58 #include <sys/rwlock.h>
   59 #include <sys/sbuf.h>
   60 #include <sys/sysent.h>
   61 #include <sys/sched.h>
   62 #include <sys/smp.h>
   63 #include <sys/stack.h>
   64 #include <sys/stat.h>
   65 #include <sys/sysctl.h>
   66 #include <sys/filedesc.h>
   67 #include <sys/tty.h>
   68 #include <sys/signalvar.h>
   69 #include <sys/sdt.h>
   70 #include <sys/sx.h>
   71 #include <sys/user.h>
   72 #include <sys/jail.h>
   73 #include <sys/vnode.h>
   74 #include <sys/eventhandler.h>
   75 
   76 #ifdef DDB
   77 #include <ddb/ddb.h>
   78 #endif
   79 
   80 #include <vm/vm.h>
   81 #include <vm/vm_param.h>
   82 #include <vm/vm_extern.h>
   83 #include <vm/pmap.h>
   84 #include <vm/vm_map.h>
   85 #include <vm/vm_object.h>
   86 #include <vm/vm_page.h>
   87 #include <vm/uma.h>
   88 
   89 #ifdef COMPAT_FREEBSD32
   90 #include <compat/freebsd32/freebsd32.h>
   91 #include <compat/freebsd32/freebsd32_util.h>
   92 #endif
   93 
   94 SDT_PROVIDER_DEFINE(proc);
   95 SDT_PROBE_DEFINE4(proc, kernel, ctor, entry, entry, "struct proc *", "int",
   96     "void *", "int");
   97 SDT_PROBE_DEFINE4(proc, kernel, ctor, return, return, "struct proc *", "int",
   98     "void *", "int");
   99 SDT_PROBE_DEFINE4(proc, kernel, dtor, entry, entry, "struct proc *", "int",
  100     "void *", "struct thread *");
  101 SDT_PROBE_DEFINE3(proc, kernel, dtor, return, return, "struct proc *", "int",
  102     "void *");
  103 SDT_PROBE_DEFINE3(proc, kernel, init, entry, entry, "struct proc *", "int",
  104     "int");
  105 SDT_PROBE_DEFINE3(proc, kernel, init, return, return, "struct proc *", "int",
  106     "int");
  107 
  108 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
  109 MALLOC_DEFINE(M_SESSION, "session", "session header");
  110 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
  111 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
  112 
  113 static void doenterpgrp(struct proc *, struct pgrp *);
  114 static void orphanpg(struct pgrp *pg);
  115 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
  116 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
  117 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
  118     int preferthread);
  119 static void pgadjustjobc(struct pgrp *pgrp, int entering);
  120 static void pgdelete(struct pgrp *);
  121 static int proc_ctor(void *mem, int size, void *arg, int flags);
  122 static void proc_dtor(void *mem, int size, void *arg);
  123 static int proc_init(void *mem, int size, int flags);
  124 static void proc_fini(void *mem, int size);
  125 static void pargs_free(struct pargs *pa);
  126 static struct proc *zpfind_locked(pid_t pid);
  127 
  128 /*
  129  * Other process lists
  130  */
  131 struct pidhashhead *pidhashtbl;
  132 u_long pidhash;
  133 struct pgrphashhead *pgrphashtbl;
  134 u_long pgrphash;
  135 struct proclist allproc;
  136 struct proclist zombproc;
  137 struct sx allproc_lock;
  138 struct sx proctree_lock;
  139 struct mtx ppeers_lock;
  140 uma_zone_t proc_zone;
  141 
  142 int kstack_pages = KSTACK_PAGES;
  143 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
  144     "Kernel stack size in pages");
  145 
  146 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
  147 #ifdef COMPAT_FREEBSD32
  148 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
  149 #endif
  150 
  151 /*
  152  * Initialize global process hashing structures.
  153  */
  154 void
  155 procinit()
  156 {
  157 
  158         sx_init(&allproc_lock, "allproc");
  159         sx_init(&proctree_lock, "proctree");
  160         mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
  161         LIST_INIT(&allproc);
  162         LIST_INIT(&zombproc);
  163         pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
  164         pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
  165         proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
  166             proc_ctor, proc_dtor, proc_init, proc_fini,
  167             UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  168         uihashinit();
  169 }
  170 
  171 /*
  172  * Prepare a proc for use.
  173  */
  174 static int
  175 proc_ctor(void *mem, int size, void *arg, int flags)
  176 {
  177         struct proc *p;
  178 
  179         p = (struct proc *)mem;
  180         SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
  181         EVENTHANDLER_INVOKE(process_ctor, p);
  182         SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
  183         return (0);
  184 }
  185 
  186 /*
  187  * Reclaim a proc after use.
  188  */
  189 static void
  190 proc_dtor(void *mem, int size, void *arg)
  191 {
  192         struct proc *p;
  193         struct thread *td;
  194 
  195         /* INVARIANTS checks go here */
  196         p = (struct proc *)mem;
  197         td = FIRST_THREAD_IN_PROC(p);
  198         SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
  199         if (td != NULL) {
  200 #ifdef INVARIANTS
  201                 KASSERT((p->p_numthreads == 1),
  202                     ("bad number of threads in exiting process"));
  203                 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
  204 #endif
  205                 /* Free all OSD associated to this thread. */
  206                 osd_thread_exit(td);
  207         }
  208         EVENTHANDLER_INVOKE(process_dtor, p);
  209         if (p->p_ksi != NULL)
  210                 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
  211         SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
  212 }
  213 
  214 /*
  215  * Initialize type-stable parts of a proc (when newly created).
  216  */
  217 static int
  218 proc_init(void *mem, int size, int flags)
  219 {
  220         struct proc *p;
  221 
  222         p = (struct proc *)mem;
  223         SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
  224         p->p_sched = (struct p_sched *)&p[1];
  225         bzero(&p->p_mtx, sizeof(struct mtx));
  226         mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
  227         mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
  228         cv_init(&p->p_pwait, "ppwait");
  229         cv_init(&p->p_dbgwait, "dbgwait");
  230         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
  231         EVENTHANDLER_INVOKE(process_init, p);
  232         p->p_stats = pstats_alloc();
  233         SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
  234         return (0);
  235 }
  236 
  237 /*
  238  * UMA should ensure that this function is never called.
  239  * Freeing a proc structure would violate type stability.
  240  */
  241 static void
  242 proc_fini(void *mem, int size)
  243 {
  244 #ifdef notnow
  245         struct proc *p;
  246 
  247         p = (struct proc *)mem;
  248         EVENTHANDLER_INVOKE(process_fini, p);
  249         pstats_free(p->p_stats);
  250         thread_free(FIRST_THREAD_IN_PROC(p));
  251         mtx_destroy(&p->p_mtx);
  252         if (p->p_ksi != NULL)
  253                 ksiginfo_free(p->p_ksi);
  254 #else
  255         panic("proc reclaimed");
  256 #endif
  257 }
  258 
  259 /*
  260  * Is p an inferior of the current process?
  261  */
  262 int
  263 inferior(p)
  264         register struct proc *p;
  265 {
  266 
  267         sx_assert(&proctree_lock, SX_LOCKED);
  268         for (; p != curproc; p = p->p_pptr)
  269                 if (p->p_pid == 0)
  270                         return (0);
  271         return (1);
  272 }
  273 
  274 struct proc *
  275 pfind_locked(pid_t pid)
  276 {
  277         struct proc *p;
  278 
  279         sx_assert(&allproc_lock, SX_LOCKED);
  280         LIST_FOREACH(p, PIDHASH(pid), p_hash) {
  281                 if (p->p_pid == pid) {
  282                         PROC_LOCK(p);
  283                         if (p->p_state == PRS_NEW) {
  284                                 PROC_UNLOCK(p);
  285                                 p = NULL;
  286                         }
  287                         break;
  288                 }
  289         }
  290         return (p);
  291 }
  292 
  293 /*
  294  * Locate a process by number; return only "live" processes -- i.e., neither
  295  * zombies nor newly born but incompletely initialized processes.  By not
  296  * returning processes in the PRS_NEW state, we allow callers to avoid
  297  * testing for that condition to avoid dereferencing p_ucred, et al.
  298  */
  299 struct proc *
  300 pfind(pid_t pid)
  301 {
  302         struct proc *p;
  303 
  304         sx_slock(&allproc_lock);
  305         p = pfind_locked(pid);
  306         sx_sunlock(&allproc_lock);
  307         return (p);
  308 }
  309 
  310 static struct proc *
  311 pfind_tid_locked(pid_t tid)
  312 {
  313         struct proc *p;
  314         struct thread *td;
  315 
  316         sx_assert(&allproc_lock, SX_LOCKED);
  317         FOREACH_PROC_IN_SYSTEM(p) {
  318                 PROC_LOCK(p);
  319                 if (p->p_state == PRS_NEW) {
  320                         PROC_UNLOCK(p);
  321                         continue;
  322                 }
  323                 FOREACH_THREAD_IN_PROC(p, td) {
  324                         if (td->td_tid == tid)
  325                                 goto found;
  326                 }
  327                 PROC_UNLOCK(p);
  328         }
  329 found:
  330         return (p);
  331 }
  332 
  333 /*
  334  * Locate a process group by number.
  335  * The caller must hold proctree_lock.
  336  */
  337 struct pgrp *
  338 pgfind(pgid)
  339         register pid_t pgid;
  340 {
  341         register struct pgrp *pgrp;
  342 
  343         sx_assert(&proctree_lock, SX_LOCKED);
  344 
  345         LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
  346                 if (pgrp->pg_id == pgid) {
  347                         PGRP_LOCK(pgrp);
  348                         return (pgrp);
  349                 }
  350         }
  351         return (NULL);
  352 }
  353 
  354 /*
  355  * Locate process and do additional manipulations, depending on flags.
  356  */
  357 int
  358 pget(pid_t pid, int flags, struct proc **pp)
  359 {
  360         struct proc *p;
  361         int error;
  362 
  363         sx_slock(&allproc_lock);
  364         if (pid <= PID_MAX) {
  365                 p = pfind_locked(pid);
  366                 if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
  367                         p = zpfind_locked(pid);
  368         } else if ((flags & PGET_NOTID) == 0) {
  369                 p = pfind_tid_locked(pid);
  370         } else {
  371                 p = NULL;
  372         }
  373         sx_sunlock(&allproc_lock);
  374         if (p == NULL)
  375                 return (ESRCH);
  376         if ((flags & PGET_CANSEE) != 0) {
  377                 error = p_cansee(curthread, p);
  378                 if (error != 0)
  379                         goto errout;
  380         }
  381         if ((flags & PGET_CANDEBUG) != 0) {
  382                 error = p_candebug(curthread, p);
  383                 if (error != 0)
  384                         goto errout;
  385         }
  386         if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
  387                 error = EPERM;
  388                 goto errout;
  389         }
  390         if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
  391                 error = ESRCH;
  392                 goto errout;
  393         }
  394         if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
  395                 /*
  396                  * XXXRW: Not clear ESRCH is the right error during proc
  397                  * execve().
  398                  */
  399                 error = ESRCH;
  400                 goto errout;
  401         }
  402         if ((flags & PGET_HOLD) != 0) {
  403                 _PHOLD(p);
  404                 PROC_UNLOCK(p);
  405         }
  406         *pp = p;
  407         return (0);
  408 errout:
  409         PROC_UNLOCK(p);
  410         return (error);
  411 }
  412 
  413 /*
  414  * Create a new process group.
  415  * pgid must be equal to the pid of p.
  416  * Begin a new session if required.
  417  */
  418 int
  419 enterpgrp(p, pgid, pgrp, sess)
  420         register struct proc *p;
  421         pid_t pgid;
  422         struct pgrp *pgrp;
  423         struct session *sess;
  424 {
  425 
  426         sx_assert(&proctree_lock, SX_XLOCKED);
  427 
  428         KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
  429         KASSERT(p->p_pid == pgid,
  430             ("enterpgrp: new pgrp and pid != pgid"));
  431         KASSERT(pgfind(pgid) == NULL,
  432             ("enterpgrp: pgrp with pgid exists"));
  433         KASSERT(!SESS_LEADER(p),
  434             ("enterpgrp: session leader attempted setpgrp"));
  435 
  436         mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
  437 
  438         if (sess != NULL) {
  439                 /*
  440                  * new session
  441                  */
  442                 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
  443                 PROC_LOCK(p);
  444                 p->p_flag &= ~P_CONTROLT;
  445                 PROC_UNLOCK(p);
  446                 PGRP_LOCK(pgrp);
  447                 sess->s_leader = p;
  448                 sess->s_sid = p->p_pid;
  449                 refcount_init(&sess->s_count, 1);
  450                 sess->s_ttyvp = NULL;
  451                 sess->s_ttydp = NULL;
  452                 sess->s_ttyp = NULL;
  453                 bcopy(p->p_session->s_login, sess->s_login,
  454                             sizeof(sess->s_login));
  455                 pgrp->pg_session = sess;
  456                 KASSERT(p == curproc,
  457                     ("enterpgrp: mksession and p != curproc"));
  458         } else {
  459                 pgrp->pg_session = p->p_session;
  460                 sess_hold(pgrp->pg_session);
  461                 PGRP_LOCK(pgrp);
  462         }
  463         pgrp->pg_id = pgid;
  464         LIST_INIT(&pgrp->pg_members);
  465 
  466         /*
  467          * As we have an exclusive lock of proctree_lock,
  468          * this should not deadlock.
  469          */
  470         LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
  471         pgrp->pg_jobc = 0;
  472         SLIST_INIT(&pgrp->pg_sigiolst);
  473         PGRP_UNLOCK(pgrp);
  474 
  475         doenterpgrp(p, pgrp);
  476 
  477         return (0);
  478 }
  479 
  480 /*
  481  * Move p to an existing process group
  482  */
  483 int
  484 enterthispgrp(p, pgrp)
  485         register struct proc *p;
  486         struct pgrp *pgrp;
  487 {
  488 
  489         sx_assert(&proctree_lock, SX_XLOCKED);
  490         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  491         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  492         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  493         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  494         KASSERT(pgrp->pg_session == p->p_session,
  495                 ("%s: pgrp's session %p, p->p_session %p.\n",
  496                 __func__,
  497                 pgrp->pg_session,
  498                 p->p_session));
  499         KASSERT(pgrp != p->p_pgrp,
  500                 ("%s: p belongs to pgrp.", __func__));
  501 
  502         doenterpgrp(p, pgrp);
  503 
  504         return (0);
  505 }
  506 
  507 /*
  508  * Move p to a process group
  509  */
  510 static void
  511 doenterpgrp(p, pgrp)
  512         struct proc *p;
  513         struct pgrp *pgrp;
  514 {
  515         struct pgrp *savepgrp;
  516 
  517         sx_assert(&proctree_lock, SX_XLOCKED);
  518         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  519         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  520         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  521         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  522 
  523         savepgrp = p->p_pgrp;
  524 
  525         /*
  526          * Adjust eligibility of affected pgrps to participate in job control.
  527          * Increment eligibility counts before decrementing, otherwise we
  528          * could reach 0 spuriously during the first call.
  529          */
  530         fixjobc(p, pgrp, 1);
  531         fixjobc(p, p->p_pgrp, 0);
  532 
  533         PGRP_LOCK(pgrp);
  534         PGRP_LOCK(savepgrp);
  535         PROC_LOCK(p);
  536         LIST_REMOVE(p, p_pglist);
  537         p->p_pgrp = pgrp;
  538         PROC_UNLOCK(p);
  539         LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
  540         PGRP_UNLOCK(savepgrp);
  541         PGRP_UNLOCK(pgrp);
  542         if (LIST_EMPTY(&savepgrp->pg_members))
  543                 pgdelete(savepgrp);
  544 }
  545 
  546 /*
  547  * remove process from process group
  548  */
  549 int
  550 leavepgrp(p)
  551         register struct proc *p;
  552 {
  553         struct pgrp *savepgrp;
  554 
  555         sx_assert(&proctree_lock, SX_XLOCKED);
  556         savepgrp = p->p_pgrp;
  557         PGRP_LOCK(savepgrp);
  558         PROC_LOCK(p);
  559         LIST_REMOVE(p, p_pglist);
  560         p->p_pgrp = NULL;
  561         PROC_UNLOCK(p);
  562         PGRP_UNLOCK(savepgrp);
  563         if (LIST_EMPTY(&savepgrp->pg_members))
  564                 pgdelete(savepgrp);
  565         return (0);
  566 }
  567 
  568 /*
  569  * delete a process group
  570  */
  571 static void
  572 pgdelete(pgrp)
  573         register struct pgrp *pgrp;
  574 {
  575         struct session *savesess;
  576         struct tty *tp;
  577 
  578         sx_assert(&proctree_lock, SX_XLOCKED);
  579         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  580         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  581 
  582         /*
  583          * Reset any sigio structures pointing to us as a result of
  584          * F_SETOWN with our pgid.
  585          */
  586         funsetownlst(&pgrp->pg_sigiolst);
  587 
  588         PGRP_LOCK(pgrp);
  589         tp = pgrp->pg_session->s_ttyp;
  590         LIST_REMOVE(pgrp, pg_hash);
  591         savesess = pgrp->pg_session;
  592         PGRP_UNLOCK(pgrp);
  593 
  594         /* Remove the reference to the pgrp before deallocating it. */
  595         if (tp != NULL) {
  596                 tty_lock(tp);
  597                 tty_rel_pgrp(tp, pgrp);
  598         }
  599 
  600         mtx_destroy(&pgrp->pg_mtx);
  601         free(pgrp, M_PGRP);
  602         sess_release(savesess);
  603 }
  604 
  605 static void
  606 pgadjustjobc(pgrp, entering)
  607         struct pgrp *pgrp;
  608         int entering;
  609 {
  610 
  611         PGRP_LOCK(pgrp);
  612         if (entering)
  613                 pgrp->pg_jobc++;
  614         else {
  615                 --pgrp->pg_jobc;
  616                 if (pgrp->pg_jobc == 0)
  617                         orphanpg(pgrp);
  618         }
  619         PGRP_UNLOCK(pgrp);
  620 }
  621 
  622 /*
  623  * Adjust pgrp jobc counters when specified process changes process group.
  624  * We count the number of processes in each process group that "qualify"
  625  * the group for terminal job control (those with a parent in a different
  626  * process group of the same session).  If that count reaches zero, the
  627  * process group becomes orphaned.  Check both the specified process'
  628  * process group and that of its children.
  629  * entering == 0 => p is leaving specified group.
  630  * entering == 1 => p is entering specified group.
  631  */
  632 void
  633 fixjobc(p, pgrp, entering)
  634         register struct proc *p;
  635         register struct pgrp *pgrp;
  636         int entering;
  637 {
  638         register struct pgrp *hispgrp;
  639         register struct session *mysession;
  640 
  641         sx_assert(&proctree_lock, SX_LOCKED);
  642         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  643         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  644         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  645 
  646         /*
  647          * Check p's parent to see whether p qualifies its own process
  648          * group; if so, adjust count for p's process group.
  649          */
  650         mysession = pgrp->pg_session;
  651         if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
  652             hispgrp->pg_session == mysession)
  653                 pgadjustjobc(pgrp, entering);
  654 
  655         /*
  656          * Check this process' children to see whether they qualify
  657          * their process groups; if so, adjust counts for children's
  658          * process groups.
  659          */
  660         LIST_FOREACH(p, &p->p_children, p_sibling) {
  661                 hispgrp = p->p_pgrp;
  662                 if (hispgrp == pgrp ||
  663                     hispgrp->pg_session != mysession)
  664                         continue;
  665                 PROC_LOCK(p);
  666                 if (p->p_state == PRS_ZOMBIE) {
  667                         PROC_UNLOCK(p);
  668                         continue;
  669                 }
  670                 PROC_UNLOCK(p);
  671                 pgadjustjobc(hispgrp, entering);
  672         }
  673 }
  674 
  675 /*
  676  * A process group has become orphaned;
  677  * if there are any stopped processes in the group,
  678  * hang-up all process in that group.
  679  */
  680 static void
  681 orphanpg(pg)
  682         struct pgrp *pg;
  683 {
  684         register struct proc *p;
  685 
  686         PGRP_LOCK_ASSERT(pg, MA_OWNED);
  687 
  688         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  689                 PROC_LOCK(p);
  690                 if (P_SHOULDSTOP(p)) {
  691                         PROC_UNLOCK(p);
  692                         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  693                                 PROC_LOCK(p);
  694                                 kern_psignal(p, SIGHUP);
  695                                 kern_psignal(p, SIGCONT);
  696                                 PROC_UNLOCK(p);
  697                         }
  698                         return;
  699                 }
  700                 PROC_UNLOCK(p);
  701         }
  702 }
  703 
  704 void
  705 sess_hold(struct session *s)
  706 {
  707 
  708         refcount_acquire(&s->s_count);
  709 }
  710 
  711 void
  712 sess_release(struct session *s)
  713 {
  714 
  715         if (refcount_release(&s->s_count)) {
  716                 if (s->s_ttyp != NULL) {
  717                         tty_lock(s->s_ttyp);
  718                         tty_rel_sess(s->s_ttyp, s);
  719                 }
  720                 mtx_destroy(&s->s_mtx);
  721                 free(s, M_SESSION);
  722         }
  723 }
  724 
  725 #ifdef DDB
  726 
  727 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
  728 {
  729         register struct pgrp *pgrp;
  730         register struct proc *p;
  731         register int i;
  732 
  733         for (i = 0; i <= pgrphash; i++) {
  734                 if (!LIST_EMPTY(&pgrphashtbl[i])) {
  735                         printf("\tindx %d\n", i);
  736                         LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
  737                                 printf(
  738                         "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
  739                                     (void *)pgrp, (long)pgrp->pg_id,
  740                                     (void *)pgrp->pg_session,
  741                                     pgrp->pg_session->s_count,
  742                                     (void *)LIST_FIRST(&pgrp->pg_members));
  743                                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
  744                                         printf("\t\tpid %ld addr %p pgrp %p\n", 
  745                                             (long)p->p_pid, (void *)p,
  746                                             (void *)p->p_pgrp);
  747                                 }
  748                         }
  749                 }
  750         }
  751 }
  752 #endif /* DDB */
  753 
  754 /*
  755  * Calculate the kinfo_proc members which contain process-wide
  756  * informations.
  757  * Must be called with the target process locked.
  758  */
  759 static void
  760 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
  761 {
  762         struct thread *td;
  763 
  764         PROC_LOCK_ASSERT(p, MA_OWNED);
  765 
  766         kp->ki_estcpu = 0;
  767         kp->ki_pctcpu = 0;
  768         FOREACH_THREAD_IN_PROC(p, td) {
  769                 thread_lock(td);
  770                 kp->ki_pctcpu += sched_pctcpu(td);
  771                 kp->ki_estcpu += td->td_estcpu;
  772                 thread_unlock(td);
  773         }
  774 }
  775 
  776 /*
  777  * Clear kinfo_proc and fill in any information that is common
  778  * to all threads in the process.
  779  * Must be called with the target process locked.
  780  */
  781 static void
  782 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
  783 {
  784         struct thread *td0;
  785         struct tty *tp;
  786         struct session *sp;
  787         struct ucred *cred;
  788         struct sigacts *ps;
  789 
  790         PROC_LOCK_ASSERT(p, MA_OWNED);
  791         bzero(kp, sizeof(*kp));
  792 
  793         kp->ki_structsize = sizeof(*kp);
  794         kp->ki_paddr = p;
  795         kp->ki_addr =/* p->p_addr; */0; /* XXX */
  796         kp->ki_args = p->p_args;
  797         kp->ki_textvp = p->p_textvp;
  798 #ifdef KTRACE
  799         kp->ki_tracep = p->p_tracevp;
  800         kp->ki_traceflag = p->p_traceflag;
  801 #endif
  802         kp->ki_fd = p->p_fd;
  803         kp->ki_vmspace = p->p_vmspace;
  804         kp->ki_flag = p->p_flag;
  805         kp->ki_flag2 = p->p_flag2;
  806         cred = p->p_ucred;
  807         if (cred) {
  808                 kp->ki_uid = cred->cr_uid;
  809                 kp->ki_ruid = cred->cr_ruid;
  810                 kp->ki_svuid = cred->cr_svuid;
  811                 kp->ki_cr_flags = 0;
  812                 if (cred->cr_flags & CRED_FLAG_CAPMODE)
  813                         kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
  814                 /* XXX bde doesn't like KI_NGROUPS */
  815                 if (cred->cr_ngroups > KI_NGROUPS) {
  816                         kp->ki_ngroups = KI_NGROUPS;
  817                         kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
  818                 } else
  819                         kp->ki_ngroups = cred->cr_ngroups;
  820                 bcopy(cred->cr_groups, kp->ki_groups,
  821                     kp->ki_ngroups * sizeof(gid_t));
  822                 kp->ki_rgid = cred->cr_rgid;
  823                 kp->ki_svgid = cred->cr_svgid;
  824                 /* If jailed(cred), emulate the old P_JAILED flag. */
  825                 if (jailed(cred)) {
  826                         kp->ki_flag |= P_JAILED;
  827                         /* If inside the jail, use 0 as a jail ID. */
  828                         if (cred->cr_prison != curthread->td_ucred->cr_prison)
  829                                 kp->ki_jid = cred->cr_prison->pr_id;
  830                 }
  831                 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
  832                     sizeof(kp->ki_loginclass));
  833         }
  834         ps = p->p_sigacts;
  835         if (ps) {
  836                 mtx_lock(&ps->ps_mtx);
  837                 kp->ki_sigignore = ps->ps_sigignore;
  838                 kp->ki_sigcatch = ps->ps_sigcatch;
  839                 mtx_unlock(&ps->ps_mtx);
  840         }
  841         if (p->p_state != PRS_NEW &&
  842             p->p_state != PRS_ZOMBIE &&
  843             p->p_vmspace != NULL) {
  844                 struct vmspace *vm = p->p_vmspace;
  845 
  846                 kp->ki_size = vm->vm_map.size;
  847                 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
  848                 FOREACH_THREAD_IN_PROC(p, td0) {
  849                         if (!TD_IS_SWAPPED(td0))
  850                                 kp->ki_rssize += td0->td_kstack_pages;
  851                 }
  852                 kp->ki_swrss = vm->vm_swrss;
  853                 kp->ki_tsize = vm->vm_tsize;
  854                 kp->ki_dsize = vm->vm_dsize;
  855                 kp->ki_ssize = vm->vm_ssize;
  856         } else if (p->p_state == PRS_ZOMBIE)
  857                 kp->ki_stat = SZOMB;
  858         if (kp->ki_flag & P_INMEM)
  859                 kp->ki_sflag = PS_INMEM;
  860         else
  861                 kp->ki_sflag = 0;
  862         /* Calculate legacy swtime as seconds since 'swtick'. */
  863         kp->ki_swtime = (ticks - p->p_swtick) / hz;
  864         kp->ki_pid = p->p_pid;
  865         kp->ki_nice = p->p_nice;
  866         kp->ki_fibnum = p->p_fibnum;
  867         kp->ki_start = p->p_stats->p_start;
  868         timevaladd(&kp->ki_start, &boottime);
  869         PROC_SLOCK(p);
  870         rufetch(p, &kp->ki_rusage);
  871         kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
  872         calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
  873         PROC_SUNLOCK(p);
  874         calccru(p, &kp->ki_childutime, &kp->ki_childstime);
  875         /* Some callers want child times in a single value. */
  876         kp->ki_childtime = kp->ki_childstime;
  877         timevaladd(&kp->ki_childtime, &kp->ki_childutime);
  878 
  879         FOREACH_THREAD_IN_PROC(p, td0)
  880                 kp->ki_cow += td0->td_cow;
  881 
  882         tp = NULL;
  883         if (p->p_pgrp) {
  884                 kp->ki_pgid = p->p_pgrp->pg_id;
  885                 kp->ki_jobc = p->p_pgrp->pg_jobc;
  886                 sp = p->p_pgrp->pg_session;
  887 
  888                 if (sp != NULL) {
  889                         kp->ki_sid = sp->s_sid;
  890                         SESS_LOCK(sp);
  891                         strlcpy(kp->ki_login, sp->s_login,
  892                             sizeof(kp->ki_login));
  893                         if (sp->s_ttyvp)
  894                                 kp->ki_kiflag |= KI_CTTY;
  895                         if (SESS_LEADER(p))
  896                                 kp->ki_kiflag |= KI_SLEADER;
  897                         /* XXX proctree_lock */
  898                         tp = sp->s_ttyp;
  899                         SESS_UNLOCK(sp);
  900                 }
  901         }
  902         if ((p->p_flag & P_CONTROLT) && tp != NULL) {
  903                 kp->ki_tdev = tty_udev(tp);
  904                 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
  905                 if (tp->t_session)
  906                         kp->ki_tsid = tp->t_session->s_sid;
  907         } else
  908                 kp->ki_tdev = NODEV;
  909         if (p->p_comm[0] != '\0')
  910                 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
  911         if (p->p_sysent && p->p_sysent->sv_name != NULL &&
  912             p->p_sysent->sv_name[0] != '\0')
  913                 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
  914         kp->ki_siglist = p->p_siglist;
  915         kp->ki_xstat = p->p_xstat;
  916         kp->ki_acflag = p->p_acflag;
  917         kp->ki_lock = p->p_lock;
  918         if (p->p_pptr)
  919                 kp->ki_ppid = p->p_pptr->p_pid;
  920 }
  921 
  922 /*
  923  * Fill in information that is thread specific.  Must be called with
  924  * target process locked.  If 'preferthread' is set, overwrite certain
  925  * process-related fields that are maintained for both threads and
  926  * processes.
  927  */
  928 static void
  929 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
  930 {
  931         struct proc *p;
  932 
  933         p = td->td_proc;
  934         kp->ki_tdaddr = td;
  935         PROC_LOCK_ASSERT(p, MA_OWNED);
  936 
  937         if (preferthread)
  938                 PROC_SLOCK(p);
  939         thread_lock(td);
  940         if (td->td_wmesg != NULL)
  941                 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
  942         else
  943                 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
  944         strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname));
  945         if (TD_ON_LOCK(td)) {
  946                 kp->ki_kiflag |= KI_LOCKBLOCK;
  947                 strlcpy(kp->ki_lockname, td->td_lockname,
  948                     sizeof(kp->ki_lockname));
  949         } else {
  950                 kp->ki_kiflag &= ~KI_LOCKBLOCK;
  951                 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
  952         }
  953 
  954         if (p->p_state == PRS_NORMAL) { /* approximate. */
  955                 if (TD_ON_RUNQ(td) ||
  956                     TD_CAN_RUN(td) ||
  957                     TD_IS_RUNNING(td)) {
  958                         kp->ki_stat = SRUN;
  959                 } else if (P_SHOULDSTOP(p)) {
  960                         kp->ki_stat = SSTOP;
  961                 } else if (TD_IS_SLEEPING(td)) {
  962                         kp->ki_stat = SSLEEP;
  963                 } else if (TD_ON_LOCK(td)) {
  964                         kp->ki_stat = SLOCK;
  965                 } else {
  966                         kp->ki_stat = SWAIT;
  967                 }
  968         } else if (p->p_state == PRS_ZOMBIE) {
  969                 kp->ki_stat = SZOMB;
  970         } else {
  971                 kp->ki_stat = SIDL;
  972         }
  973 
  974         /* Things in the thread */
  975         kp->ki_wchan = td->td_wchan;
  976         kp->ki_pri.pri_level = td->td_priority;
  977         kp->ki_pri.pri_native = td->td_base_pri;
  978         kp->ki_lastcpu = td->td_lastcpu;
  979         kp->ki_oncpu = td->td_oncpu;
  980         kp->ki_tdflags = td->td_flags;
  981         kp->ki_tid = td->td_tid;
  982         kp->ki_numthreads = p->p_numthreads;
  983         kp->ki_pcb = td->td_pcb;
  984         kp->ki_kstack = (void *)td->td_kstack;
  985         kp->ki_slptime = (ticks - td->td_slptick) / hz;
  986         kp->ki_pri.pri_class = td->td_pri_class;
  987         kp->ki_pri.pri_user = td->td_user_pri;
  988 
  989         if (preferthread) {
  990                 rufetchtd(td, &kp->ki_rusage);
  991                 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
  992                 kp->ki_pctcpu = sched_pctcpu(td);
  993                 kp->ki_estcpu = td->td_estcpu;
  994                 kp->ki_cow = td->td_cow;
  995         }
  996 
  997         /* We can't get this anymore but ps etc never used it anyway. */
  998         kp->ki_rqindex = 0;
  999 
 1000         if (preferthread)
 1001                 kp->ki_siglist = td->td_siglist;
 1002         kp->ki_sigmask = td->td_sigmask;
 1003         thread_unlock(td);
 1004         if (preferthread)
 1005                 PROC_SUNLOCK(p);
 1006 }
 1007 
 1008 /*
 1009  * Fill in a kinfo_proc structure for the specified process.
 1010  * Must be called with the target process locked.
 1011  */
 1012 void
 1013 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
 1014 {
 1015 
 1016         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1017 
 1018         fill_kinfo_proc_only(p, kp);
 1019         fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
 1020         fill_kinfo_aggregate(p, kp);
 1021 }
 1022 
 1023 struct pstats *
 1024 pstats_alloc(void)
 1025 {
 1026 
 1027         return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
 1028 }
 1029 
 1030 /*
 1031  * Copy parts of p_stats; zero the rest of p_stats (statistics).
 1032  */
 1033 void
 1034 pstats_fork(struct pstats *src, struct pstats *dst)
 1035 {
 1036 
 1037         bzero(&dst->pstat_startzero,
 1038             __rangeof(struct pstats, pstat_startzero, pstat_endzero));
 1039         bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
 1040             __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
 1041 }
 1042 
 1043 void
 1044 pstats_free(struct pstats *ps)
 1045 {
 1046 
 1047         free(ps, M_SUBPROC);
 1048 }
 1049 
 1050 static struct proc *
 1051 zpfind_locked(pid_t pid)
 1052 {
 1053         struct proc *p;
 1054 
 1055         sx_assert(&allproc_lock, SX_LOCKED);
 1056         LIST_FOREACH(p, &zombproc, p_list) {
 1057                 if (p->p_pid == pid) {
 1058                         PROC_LOCK(p);
 1059                         break;
 1060                 }
 1061         }
 1062         return (p);
 1063 }
 1064 
 1065 /*
 1066  * Locate a zombie process by number
 1067  */
 1068 struct proc *
 1069 zpfind(pid_t pid)
 1070 {
 1071         struct proc *p;
 1072 
 1073         sx_slock(&allproc_lock);
 1074         p = zpfind_locked(pid);
 1075         sx_sunlock(&allproc_lock);
 1076         return (p);
 1077 }
 1078 
 1079 #ifdef COMPAT_FREEBSD32
 1080 
 1081 /*
 1082  * This function is typically used to copy out the kernel address, so
 1083  * it can be replaced by assignment of zero.
 1084  */
 1085 static inline uint32_t
 1086 ptr32_trim(void *ptr)
 1087 {
 1088         uintptr_t uptr;
 1089 
 1090         uptr = (uintptr_t)ptr;
 1091         return ((uptr > UINT_MAX) ? 0 : uptr);
 1092 }
 1093 
 1094 #define PTRTRIM_CP(src,dst,fld) \
 1095         do { (dst).fld = ptr32_trim((src).fld); } while (0)
 1096 
 1097 static void
 1098 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
 1099 {
 1100         int i;
 1101 
 1102         bzero(ki32, sizeof(struct kinfo_proc32));
 1103         ki32->ki_structsize = sizeof(struct kinfo_proc32);
 1104         CP(*ki, *ki32, ki_layout);
 1105         PTRTRIM_CP(*ki, *ki32, ki_args);
 1106         PTRTRIM_CP(*ki, *ki32, ki_paddr);
 1107         PTRTRIM_CP(*ki, *ki32, ki_addr);
 1108         PTRTRIM_CP(*ki, *ki32, ki_tracep);
 1109         PTRTRIM_CP(*ki, *ki32, ki_textvp);
 1110         PTRTRIM_CP(*ki, *ki32, ki_fd);
 1111         PTRTRIM_CP(*ki, *ki32, ki_vmspace);
 1112         PTRTRIM_CP(*ki, *ki32, ki_wchan);
 1113         CP(*ki, *ki32, ki_pid);
 1114         CP(*ki, *ki32, ki_ppid);
 1115         CP(*ki, *ki32, ki_pgid);
 1116         CP(*ki, *ki32, ki_tpgid);
 1117         CP(*ki, *ki32, ki_sid);
 1118         CP(*ki, *ki32, ki_tsid);
 1119         CP(*ki, *ki32, ki_jobc);
 1120         CP(*ki, *ki32, ki_tdev);
 1121         CP(*ki, *ki32, ki_siglist);
 1122         CP(*ki, *ki32, ki_sigmask);
 1123         CP(*ki, *ki32, ki_sigignore);
 1124         CP(*ki, *ki32, ki_sigcatch);
 1125         CP(*ki, *ki32, ki_uid);
 1126         CP(*ki, *ki32, ki_ruid);
 1127         CP(*ki, *ki32, ki_svuid);
 1128         CP(*ki, *ki32, ki_rgid);
 1129         CP(*ki, *ki32, ki_svgid);
 1130         CP(*ki, *ki32, ki_ngroups);
 1131         for (i = 0; i < KI_NGROUPS; i++)
 1132                 CP(*ki, *ki32, ki_groups[i]);
 1133         CP(*ki, *ki32, ki_size);
 1134         CP(*ki, *ki32, ki_rssize);
 1135         CP(*ki, *ki32, ki_swrss);
 1136         CP(*ki, *ki32, ki_tsize);
 1137         CP(*ki, *ki32, ki_dsize);
 1138         CP(*ki, *ki32, ki_ssize);
 1139         CP(*ki, *ki32, ki_xstat);
 1140         CP(*ki, *ki32, ki_acflag);
 1141         CP(*ki, *ki32, ki_pctcpu);
 1142         CP(*ki, *ki32, ki_estcpu);
 1143         CP(*ki, *ki32, ki_slptime);
 1144         CP(*ki, *ki32, ki_swtime);
 1145         CP(*ki, *ki32, ki_cow);
 1146         CP(*ki, *ki32, ki_runtime);
 1147         TV_CP(*ki, *ki32, ki_start);
 1148         TV_CP(*ki, *ki32, ki_childtime);
 1149         CP(*ki, *ki32, ki_flag);
 1150         CP(*ki, *ki32, ki_kiflag);
 1151         CP(*ki, *ki32, ki_traceflag);
 1152         CP(*ki, *ki32, ki_stat);
 1153         CP(*ki, *ki32, ki_nice);
 1154         CP(*ki, *ki32, ki_lock);
 1155         CP(*ki, *ki32, ki_rqindex);
 1156         CP(*ki, *ki32, ki_oncpu);
 1157         CP(*ki, *ki32, ki_lastcpu);
 1158         bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
 1159         bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
 1160         bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
 1161         bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
 1162         bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
 1163         bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
 1164         bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
 1165         CP(*ki, *ki32, ki_flag2);
 1166         CP(*ki, *ki32, ki_fibnum);
 1167         CP(*ki, *ki32, ki_cr_flags);
 1168         CP(*ki, *ki32, ki_jid);
 1169         CP(*ki, *ki32, ki_numthreads);
 1170         CP(*ki, *ki32, ki_tid);
 1171         CP(*ki, *ki32, ki_pri);
 1172         freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
 1173         freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
 1174         PTRTRIM_CP(*ki, *ki32, ki_pcb);
 1175         PTRTRIM_CP(*ki, *ki32, ki_kstack);
 1176         PTRTRIM_CP(*ki, *ki32, ki_udata);
 1177         CP(*ki, *ki32, ki_sflag);
 1178         CP(*ki, *ki32, ki_tdflags);
 1179 }
 1180 #endif
 1181 
 1182 int
 1183 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
 1184 {
 1185         struct thread *td;
 1186         struct kinfo_proc ki;
 1187 #ifdef COMPAT_FREEBSD32
 1188         struct kinfo_proc32 ki32;
 1189 #endif
 1190         int error;
 1191 
 1192         PROC_LOCK_ASSERT(p, MA_OWNED);
 1193         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1194 
 1195         error = 0;
 1196         fill_kinfo_proc(p, &ki);
 1197         if ((flags & KERN_PROC_NOTHREADS) != 0) {
 1198 #ifdef COMPAT_FREEBSD32
 1199                 if ((flags & KERN_PROC_MASK32) != 0) {
 1200                         freebsd32_kinfo_proc_out(&ki, &ki32);
 1201                         error = sbuf_bcat(sb, &ki32, sizeof(ki32));
 1202                 } else
 1203 #endif
 1204                         error = sbuf_bcat(sb, &ki, sizeof(ki));
 1205         } else {
 1206                 FOREACH_THREAD_IN_PROC(p, td) {
 1207                         fill_kinfo_thread(td, &ki, 1);
 1208 #ifdef COMPAT_FREEBSD32
 1209                         if ((flags & KERN_PROC_MASK32) != 0) {
 1210                                 freebsd32_kinfo_proc_out(&ki, &ki32);
 1211                                 error = sbuf_bcat(sb, &ki32, sizeof(ki32));
 1212                         } else
 1213 #endif
 1214                                 error = sbuf_bcat(sb, &ki, sizeof(ki));
 1215                         if (error)
 1216                                 break;
 1217                 }
 1218         }
 1219         PROC_UNLOCK(p);
 1220         return (error);
 1221 }
 1222 
 1223 static int
 1224 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
 1225     int doingzomb)
 1226 {
 1227         struct sbuf sb;
 1228         struct kinfo_proc ki;
 1229         struct proc *np;
 1230         int error, error2;
 1231         pid_t pid;
 1232 
 1233         pid = p->p_pid;
 1234         sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
 1235         error = kern_proc_out(p, &sb, flags);
 1236         error2 = sbuf_finish(&sb);
 1237         sbuf_delete(&sb);
 1238         if (error != 0)
 1239                 return (error);
 1240         else if (error2 != 0)
 1241                 return (error2);
 1242         if (doingzomb)
 1243                 np = zpfind(pid);
 1244         else {
 1245                 if (pid == 0)
 1246                         return (0);
 1247                 np = pfind(pid);
 1248         }
 1249         if (np == NULL)
 1250                 return (ESRCH);
 1251         if (np != p) {
 1252                 PROC_UNLOCK(np);
 1253                 return (ESRCH);
 1254         }
 1255         PROC_UNLOCK(np);
 1256         return (0);
 1257 }
 1258 
 1259 static int
 1260 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
 1261 {
 1262         int *name = (int *)arg1;
 1263         u_int namelen = arg2;
 1264         struct proc *p;
 1265         int flags, doingzomb, oid_number;
 1266         int error = 0;
 1267 
 1268         oid_number = oidp->oid_number;
 1269         if (oid_number != KERN_PROC_ALL &&
 1270             (oid_number & KERN_PROC_INC_THREAD) == 0)
 1271                 flags = KERN_PROC_NOTHREADS;
 1272         else {
 1273                 flags = 0;
 1274                 oid_number &= ~KERN_PROC_INC_THREAD;
 1275         }
 1276 #ifdef COMPAT_FREEBSD32
 1277         if (req->flags & SCTL_MASK32)
 1278                 flags |= KERN_PROC_MASK32;
 1279 #endif
 1280         if (oid_number == KERN_PROC_PID) {
 1281                 if (namelen != 1)
 1282                         return (EINVAL);
 1283                 error = sysctl_wire_old_buffer(req, 0);
 1284                 if (error)
 1285                         return (error);
 1286                 error = pget((pid_t)name[0], PGET_CANSEE, &p);
 1287                 if (error != 0)
 1288                         return (error);
 1289                 error = sysctl_out_proc(p, req, flags, 0);
 1290                 return (error);
 1291         }
 1292 
 1293         switch (oid_number) {
 1294         case KERN_PROC_ALL:
 1295                 if (namelen != 0)
 1296                         return (EINVAL);
 1297                 break;
 1298         case KERN_PROC_PROC:
 1299                 if (namelen != 0 && namelen != 1)
 1300                         return (EINVAL);
 1301                 break;
 1302         default:
 1303                 if (namelen != 1)
 1304                         return (EINVAL);
 1305                 break;
 1306         }
 1307 
 1308         if (!req->oldptr) {
 1309                 /* overestimate by 5 procs */
 1310                 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
 1311                 if (error)
 1312                         return (error);
 1313         }
 1314         error = sysctl_wire_old_buffer(req, 0);
 1315         if (error != 0)
 1316                 return (error);
 1317         sx_slock(&allproc_lock);
 1318         for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
 1319                 if (!doingzomb)
 1320                         p = LIST_FIRST(&allproc);
 1321                 else
 1322                         p = LIST_FIRST(&zombproc);
 1323                 for (; p != 0; p = LIST_NEXT(p, p_list)) {
 1324                         /*
 1325                          * Skip embryonic processes.
 1326                          */
 1327                         PROC_LOCK(p);
 1328                         if (p->p_state == PRS_NEW) {
 1329                                 PROC_UNLOCK(p);
 1330                                 continue;
 1331                         }
 1332                         KASSERT(p->p_ucred != NULL,
 1333                             ("process credential is NULL for non-NEW proc"));
 1334                         /*
 1335                          * Show a user only appropriate processes.
 1336                          */
 1337                         if (p_cansee(curthread, p)) {
 1338                                 PROC_UNLOCK(p);
 1339                                 continue;
 1340                         }
 1341                         /*
 1342                          * TODO - make more efficient (see notes below).
 1343                          * do by session.
 1344                          */
 1345                         switch (oid_number) {
 1346 
 1347                         case KERN_PROC_GID:
 1348                                 if (p->p_ucred->cr_gid != (gid_t)name[0]) {
 1349                                         PROC_UNLOCK(p);
 1350                                         continue;
 1351                                 }
 1352                                 break;
 1353 
 1354                         case KERN_PROC_PGRP:
 1355                                 /* could do this by traversing pgrp */
 1356                                 if (p->p_pgrp == NULL ||
 1357                                     p->p_pgrp->pg_id != (pid_t)name[0]) {
 1358                                         PROC_UNLOCK(p);
 1359                                         continue;
 1360                                 }
 1361                                 break;
 1362 
 1363                         case KERN_PROC_RGID:
 1364                                 if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
 1365                                         PROC_UNLOCK(p);
 1366                                         continue;
 1367                                 }
 1368                                 break;
 1369 
 1370                         case KERN_PROC_SESSION:
 1371                                 if (p->p_session == NULL ||
 1372                                     p->p_session->s_sid != (pid_t)name[0]) {
 1373                                         PROC_UNLOCK(p);
 1374                                         continue;
 1375                                 }
 1376                                 break;
 1377 
 1378                         case KERN_PROC_TTY:
 1379                                 if ((p->p_flag & P_CONTROLT) == 0 ||
 1380                                     p->p_session == NULL) {
 1381                                         PROC_UNLOCK(p);
 1382                                         continue;
 1383                                 }
 1384                                 /* XXX proctree_lock */
 1385                                 SESS_LOCK(p->p_session);
 1386                                 if (p->p_session->s_ttyp == NULL ||
 1387                                     tty_udev(p->p_session->s_ttyp) !=
 1388                                     (dev_t)name[0]) {
 1389                                         SESS_UNLOCK(p->p_session);
 1390                                         PROC_UNLOCK(p);
 1391                                         continue;
 1392                                 }
 1393                                 SESS_UNLOCK(p->p_session);
 1394                                 break;
 1395 
 1396                         case KERN_PROC_UID:
 1397                                 if (p->p_ucred->cr_uid != (uid_t)name[0]) {
 1398                                         PROC_UNLOCK(p);
 1399                                         continue;
 1400                                 }
 1401                                 break;
 1402 
 1403                         case KERN_PROC_RUID:
 1404                                 if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
 1405                                         PROC_UNLOCK(p);
 1406                                         continue;
 1407                                 }
 1408                                 break;
 1409 
 1410                         case KERN_PROC_PROC:
 1411                                 break;
 1412 
 1413                         default:
 1414                                 break;
 1415 
 1416                         }
 1417 
 1418                         error = sysctl_out_proc(p, req, flags, doingzomb);
 1419                         if (error) {
 1420                                 sx_sunlock(&allproc_lock);
 1421                                 return (error);
 1422                         }
 1423                 }
 1424         }
 1425         sx_sunlock(&allproc_lock);
 1426         return (0);
 1427 }
 1428 
 1429 struct pargs *
 1430 pargs_alloc(int len)
 1431 {
 1432         struct pargs *pa;
 1433 
 1434         pa = malloc(sizeof(struct pargs) + len, M_PARGS,
 1435                 M_WAITOK);
 1436         refcount_init(&pa->ar_ref, 1);
 1437         pa->ar_length = len;
 1438         return (pa);
 1439 }
 1440 
 1441 static void
 1442 pargs_free(struct pargs *pa)
 1443 {
 1444 
 1445         free(pa, M_PARGS);
 1446 }
 1447 
 1448 void
 1449 pargs_hold(struct pargs *pa)
 1450 {
 1451 
 1452         if (pa == NULL)
 1453                 return;
 1454         refcount_acquire(&pa->ar_ref);
 1455 }
 1456 
 1457 void
 1458 pargs_drop(struct pargs *pa)
 1459 {
 1460 
 1461         if (pa == NULL)
 1462                 return;
 1463         if (refcount_release(&pa->ar_ref))
 1464                 pargs_free(pa);
 1465 }
 1466 
 1467 static int
 1468 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf,
 1469     size_t len)
 1470 {
 1471         struct iovec iov;
 1472         struct uio uio;
 1473 
 1474         iov.iov_base = (caddr_t)buf;
 1475         iov.iov_len = len;
 1476         uio.uio_iov = &iov;
 1477         uio.uio_iovcnt = 1;
 1478         uio.uio_offset = offset;
 1479         uio.uio_resid = (ssize_t)len;
 1480         uio.uio_segflg = UIO_SYSSPACE;
 1481         uio.uio_rw = UIO_READ;
 1482         uio.uio_td = td;
 1483 
 1484         return (proc_rwmem(p, &uio));
 1485 }
 1486 
 1487 static int
 1488 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
 1489     size_t len)
 1490 {
 1491         size_t i;
 1492         int error;
 1493 
 1494         error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len);
 1495         /*
 1496          * Reading the chunk may validly return EFAULT if the string is shorter
 1497          * than the chunk and is aligned at the end of the page, assuming the
 1498          * next page is not mapped.  So if EFAULT is returned do a fallback to
 1499          * one byte read loop.
 1500          */
 1501         if (error == EFAULT) {
 1502                 for (i = 0; i < len; i++, buf++, sptr++) {
 1503                         error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1);
 1504                         if (error != 0)
 1505                                 return (error);
 1506                         if (*buf == '\0')
 1507                                 break;
 1508                 }
 1509                 error = 0;
 1510         }
 1511         return (error);
 1512 }
 1513 
 1514 #define PROC_AUXV_MAX   256     /* Safety limit on auxv size. */
 1515 
 1516 enum proc_vector_type {
 1517         PROC_ARG,
 1518         PROC_ENV,
 1519         PROC_AUX,
 1520 };
 1521 
 1522 #ifdef COMPAT_FREEBSD32
 1523 static int
 1524 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
 1525     size_t *vsizep, enum proc_vector_type type)
 1526 {
 1527         struct freebsd32_ps_strings pss;
 1528         Elf32_Auxinfo aux;
 1529         vm_offset_t vptr, ptr;
 1530         uint32_t *proc_vector32;
 1531         char **proc_vector;
 1532         size_t vsize, size;
 1533         int i, error;
 1534 
 1535         error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
 1536             &pss, sizeof(pss));
 1537         if (error != 0)
 1538                 return (error);
 1539         switch (type) {
 1540         case PROC_ARG:
 1541                 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
 1542                 vsize = pss.ps_nargvstr;
 1543                 if (vsize > ARG_MAX)
 1544                         return (ENOEXEC);
 1545                 size = vsize * sizeof(int32_t);
 1546                 break;
 1547         case PROC_ENV:
 1548                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
 1549                 vsize = pss.ps_nenvstr;
 1550                 if (vsize > ARG_MAX)
 1551                         return (ENOEXEC);
 1552                 size = vsize * sizeof(int32_t);
 1553                 break;
 1554         case PROC_AUX:
 1555                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
 1556                     (pss.ps_nenvstr + 1) * sizeof(int32_t);
 1557                 if (vptr % 4 != 0)
 1558                         return (ENOEXEC);
 1559                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 1560                         error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
 1561                         if (error != 0)
 1562                                 return (error);
 1563                         if (aux.a_type == AT_NULL)
 1564                                 break;
 1565                         ptr += sizeof(aux);
 1566                 }
 1567                 if (aux.a_type != AT_NULL)
 1568                         return (ENOEXEC);
 1569                 vsize = i + 1;
 1570                 size = vsize * sizeof(aux);
 1571                 break;
 1572         default:
 1573                 KASSERT(0, ("Wrong proc vector type: %d", type));
 1574                 return (EINVAL);
 1575         }
 1576         proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
 1577         error = proc_read_mem(td, p, vptr, proc_vector32, size);
 1578         if (error != 0)
 1579                 goto done;
 1580         if (type == PROC_AUX) {
 1581                 *proc_vectorp = (char **)proc_vector32;
 1582                 *vsizep = vsize;
 1583                 return (0);
 1584         }
 1585         proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
 1586         for (i = 0; i < (int)vsize; i++)
 1587                 proc_vector[i] = PTRIN(proc_vector32[i]);
 1588         *proc_vectorp = proc_vector;
 1589         *vsizep = vsize;
 1590 done:
 1591         free(proc_vector32, M_TEMP);
 1592         return (error);
 1593 }
 1594 #endif
 1595 
 1596 static int
 1597 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
 1598     size_t *vsizep, enum proc_vector_type type)
 1599 {
 1600         struct ps_strings pss;
 1601         Elf_Auxinfo aux;
 1602         vm_offset_t vptr, ptr;
 1603         char **proc_vector;
 1604         size_t vsize, size;
 1605         int error, i;
 1606 
 1607 #ifdef COMPAT_FREEBSD32
 1608         if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 1609                 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
 1610 #endif
 1611         error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
 1612             &pss, sizeof(pss));
 1613         if (error != 0)
 1614                 return (error);
 1615         switch (type) {
 1616         case PROC_ARG:
 1617                 vptr = (vm_offset_t)pss.ps_argvstr;
 1618                 vsize = pss.ps_nargvstr;
 1619                 if (vsize > ARG_MAX)
 1620                         return (ENOEXEC);
 1621                 size = vsize * sizeof(char *);
 1622                 break;
 1623         case PROC_ENV:
 1624                 vptr = (vm_offset_t)pss.ps_envstr;
 1625                 vsize = pss.ps_nenvstr;
 1626                 if (vsize > ARG_MAX)
 1627                         return (ENOEXEC);
 1628                 size = vsize * sizeof(char *);
 1629                 break;
 1630         case PROC_AUX:
 1631                 /*
 1632                  * The aux array is just above env array on the stack. Check
 1633                  * that the address is naturally aligned.
 1634                  */
 1635                 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
 1636                     * sizeof(char *);
 1637 #if __ELF_WORD_SIZE == 64
 1638                 if (vptr % sizeof(uint64_t) != 0)
 1639 #else
 1640                 if (vptr % sizeof(uint32_t) != 0)
 1641 #endif
 1642                         return (ENOEXEC);
 1643                 /*
 1644                  * We count the array size reading the aux vectors from the
 1645                  * stack until AT_NULL vector is returned.  So (to keep the code
 1646                  * simple) we read the process stack twice: the first time here
 1647                  * to find the size and the second time when copying the vectors
 1648                  * to the allocated proc_vector.
 1649                  */
 1650                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 1651                         error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
 1652                         if (error != 0)
 1653                                 return (error);
 1654                         if (aux.a_type == AT_NULL)
 1655                                 break;
 1656                         ptr += sizeof(aux);
 1657                 }
 1658                 /*
 1659                  * If the PROC_AUXV_MAX entries are iterated over, and we have
 1660                  * not reached AT_NULL, it is most likely we are reading wrong
 1661                  * data: either the process doesn't have auxv array or data has
 1662                  * been modified. Return the error in this case.
 1663                  */
 1664                 if (aux.a_type != AT_NULL)
 1665                         return (ENOEXEC);
 1666                 vsize = i + 1;
 1667                 size = vsize * sizeof(aux);
 1668                 break;
 1669         default:
 1670                 KASSERT(0, ("Wrong proc vector type: %d", type));
 1671                 return (EINVAL); /* In case we are built without INVARIANTS. */
 1672         }
 1673         proc_vector = malloc(size, M_TEMP, M_WAITOK);
 1674         if (proc_vector == NULL)
 1675                 return (ENOMEM);
 1676         error = proc_read_mem(td, p, vptr, proc_vector, size);
 1677         if (error != 0) {
 1678                 free(proc_vector, M_TEMP);
 1679                 return (error);
 1680         }
 1681         *proc_vectorp = proc_vector;
 1682         *vsizep = vsize;
 1683 
 1684         return (0);
 1685 }
 1686 
 1687 #define GET_PS_STRINGS_CHUNK_SZ 256     /* Chunk size (bytes) for ps_strings operations. */
 1688 
 1689 static int
 1690 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
 1691     enum proc_vector_type type)
 1692 {
 1693         size_t done, len, nchr, vsize;
 1694         int error, i;
 1695         char **proc_vector, *sptr;
 1696         char pss_string[GET_PS_STRINGS_CHUNK_SZ];
 1697 
 1698         PROC_ASSERT_HELD(p);
 1699 
 1700         /*
 1701          * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
 1702          */
 1703         nchr = 2 * (PATH_MAX + ARG_MAX);
 1704 
 1705         error = get_proc_vector(td, p, &proc_vector, &vsize, type);
 1706         if (error != 0)
 1707                 return (error);
 1708         for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
 1709                 /*
 1710                  * The program may have scribbled into its argv array, e.g. to
 1711                  * remove some arguments.  If that has happened, break out
 1712                  * before trying to read from NULL.
 1713                  */
 1714                 if (proc_vector[i] == NULL)
 1715                         break;
 1716                 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
 1717                         error = proc_read_string(td, p, sptr, pss_string,
 1718                             sizeof(pss_string));
 1719                         if (error != 0)
 1720                                 goto done;
 1721                         len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
 1722                         if (done + len >= nchr)
 1723                                 len = nchr - done - 1;
 1724                         sbuf_bcat(sb, pss_string, len);
 1725                         if (len != GET_PS_STRINGS_CHUNK_SZ)
 1726                                 break;
 1727                         done += GET_PS_STRINGS_CHUNK_SZ;
 1728                 }
 1729                 sbuf_bcat(sb, "", 1);
 1730                 done += len + 1;
 1731         }
 1732 done:
 1733         free(proc_vector, M_TEMP);
 1734         return (error);
 1735 }
 1736 
 1737 int
 1738 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
 1739 {
 1740 
 1741         return (get_ps_strings(curthread, p, sb, PROC_ARG));
 1742 }
 1743 
 1744 int
 1745 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
 1746 {
 1747 
 1748         return (get_ps_strings(curthread, p, sb, PROC_ENV));
 1749 }
 1750 
 1751 int
 1752 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
 1753 {
 1754         size_t vsize, size;
 1755         char **auxv;
 1756         int error;
 1757 
 1758         error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
 1759         if (error == 0) {
 1760 #ifdef COMPAT_FREEBSD32
 1761                 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 1762                         size = vsize * sizeof(Elf32_Auxinfo);
 1763                 else
 1764 #endif
 1765                         size = vsize * sizeof(Elf_Auxinfo);
 1766                 error = sbuf_bcat(sb, auxv, size);
 1767                 free(auxv, M_TEMP);
 1768         }
 1769         return (error);
 1770 }
 1771 
 1772 /*
 1773  * This sysctl allows a process to retrieve the argument list or process
 1774  * title for another process without groping around in the address space
 1775  * of the other process.  It also allow a process to set its own "process 
 1776  * title to a string of its own choice.
 1777  */
 1778 static int
 1779 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
 1780 {
 1781         int *name = (int *)arg1;
 1782         u_int namelen = arg2;
 1783         struct pargs *newpa, *pa;
 1784         struct proc *p;
 1785         struct sbuf sb;
 1786         int flags, error = 0, error2;
 1787 
 1788         if (namelen != 1)
 1789                 return (EINVAL);
 1790 
 1791         flags = PGET_CANSEE;
 1792         if (req->newptr != NULL)
 1793                 flags |= PGET_ISCURRENT;
 1794         error = pget((pid_t)name[0], flags, &p);
 1795         if (error)
 1796                 return (error);
 1797 
 1798         pa = p->p_args;
 1799         if (pa != NULL) {
 1800                 pargs_hold(pa);
 1801                 PROC_UNLOCK(p);
 1802                 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
 1803                 pargs_drop(pa);
 1804         } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
 1805                 _PHOLD(p);
 1806                 PROC_UNLOCK(p);
 1807                 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1808                 error = proc_getargv(curthread, p, &sb);
 1809                 error2 = sbuf_finish(&sb);
 1810                 PRELE(p);
 1811                 sbuf_delete(&sb);
 1812                 if (error == 0 && error2 != 0)
 1813                         error = error2;
 1814         } else {
 1815                 PROC_UNLOCK(p);
 1816         }
 1817         if (error != 0 || req->newptr == NULL)
 1818                 return (error);
 1819 
 1820         if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
 1821                 return (ENOMEM);
 1822         newpa = pargs_alloc(req->newlen);
 1823         error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
 1824         if (error != 0) {
 1825                 pargs_free(newpa);
 1826                 return (error);
 1827         }
 1828         PROC_LOCK(p);
 1829         pa = p->p_args;
 1830         p->p_args = newpa;
 1831         PROC_UNLOCK(p);
 1832         pargs_drop(pa);
 1833         return (0);
 1834 }
 1835 
 1836 /*
 1837  * This sysctl allows a process to retrieve environment of another process.
 1838  */
 1839 static int
 1840 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
 1841 {
 1842         int *name = (int *)arg1;
 1843         u_int namelen = arg2;
 1844         struct proc *p;
 1845         struct sbuf sb;
 1846         int error, error2;
 1847 
 1848         if (namelen != 1)
 1849                 return (EINVAL);
 1850 
 1851         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1852         if (error != 0)
 1853                 return (error);
 1854         if ((p->p_flag & P_SYSTEM) != 0) {
 1855                 PRELE(p);
 1856                 return (0);
 1857         }
 1858 
 1859         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1860         error = proc_getenvv(curthread, p, &sb);
 1861         error2 = sbuf_finish(&sb);
 1862         PRELE(p);
 1863         sbuf_delete(&sb);
 1864         return (error != 0 ? error : error2);
 1865 }
 1866 
 1867 /*
 1868  * This sysctl allows a process to retrieve ELF auxiliary vector of
 1869  * another process.
 1870  */
 1871 static int
 1872 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
 1873 {
 1874         int *name = (int *)arg1;
 1875         u_int namelen = arg2;
 1876         struct proc *p;
 1877         struct sbuf sb;
 1878         int error, error2;
 1879 
 1880         if (namelen != 1)
 1881                 return (EINVAL);
 1882 
 1883         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1884         if (error != 0)
 1885                 return (error);
 1886         if ((p->p_flag & P_SYSTEM) != 0) {
 1887                 PRELE(p);
 1888                 return (0);
 1889         }
 1890         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1891         error = proc_getauxv(curthread, p, &sb);
 1892         error2 = sbuf_finish(&sb);
 1893         PRELE(p);
 1894         sbuf_delete(&sb);
 1895         return (error != 0 ? error : error2);
 1896 }
 1897 
 1898 /*
 1899  * This sysctl allows a process to retrieve the path of the executable for
 1900  * itself or another process.
 1901  */
 1902 static int
 1903 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
 1904 {
 1905         pid_t *pidp = (pid_t *)arg1;
 1906         unsigned int arglen = arg2;
 1907         struct proc *p;
 1908         struct vnode *vp;
 1909         char *retbuf, *freebuf;
 1910         int error;
 1911 
 1912         if (arglen != 1)
 1913                 return (EINVAL);
 1914         if (*pidp == -1) {      /* -1 means this process */
 1915                 p = req->td->td_proc;
 1916         } else {
 1917                 error = pget(*pidp, PGET_CANSEE, &p);
 1918                 if (error != 0)
 1919                         return (error);
 1920         }
 1921 
 1922         vp = p->p_textvp;
 1923         if (vp == NULL) {
 1924                 if (*pidp != -1)
 1925                         PROC_UNLOCK(p);
 1926                 return (0);
 1927         }
 1928         vref(vp);
 1929         if (*pidp != -1)
 1930                 PROC_UNLOCK(p);
 1931         error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
 1932         vrele(vp);
 1933         if (error)
 1934                 return (error);
 1935         error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
 1936         free(freebuf, M_TEMP);
 1937         return (error);
 1938 }
 1939 
 1940 static int
 1941 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
 1942 {
 1943         struct proc *p;
 1944         char *sv_name;
 1945         int *name;
 1946         int namelen;
 1947         int error;
 1948 
 1949         namelen = arg2;
 1950         if (namelen != 1)
 1951                 return (EINVAL);
 1952 
 1953         name = (int *)arg1;
 1954         error = pget((pid_t)name[0], PGET_CANSEE, &p);
 1955         if (error != 0)
 1956                 return (error);
 1957         sv_name = p->p_sysent->sv_name;
 1958         PROC_UNLOCK(p);
 1959         return (sysctl_handle_string(oidp, sv_name, 0, req));
 1960 }
 1961 
 1962 #ifdef KINFO_OVMENTRY_SIZE
 1963 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
 1964 #endif
 1965 
 1966 #ifdef COMPAT_FREEBSD7
 1967 static int
 1968 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
 1969 {
 1970         vm_map_entry_t entry, tmp_entry;
 1971         unsigned int last_timestamp;
 1972         char *fullpath, *freepath;
 1973         struct kinfo_ovmentry *kve;
 1974         struct vattr va;
 1975         struct ucred *cred;
 1976         int error, *name;
 1977         struct vnode *vp;
 1978         struct proc *p;
 1979         vm_map_t map;
 1980         struct vmspace *vm;
 1981 
 1982         name = (int *)arg1;
 1983         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1984         if (error != 0)
 1985                 return (error);
 1986         vm = vmspace_acquire_ref(p);
 1987         if (vm == NULL) {
 1988                 PRELE(p);
 1989                 return (ESRCH);
 1990         }
 1991         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
 1992 
 1993         map = &vm->vm_map;
 1994         vm_map_lock_read(map);
 1995         for (entry = map->header.next; entry != &map->header;
 1996             entry = entry->next) {
 1997                 vm_object_t obj, tobj, lobj;
 1998                 vm_offset_t addr;
 1999 
 2000                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 2001                         continue;
 2002 
 2003                 bzero(kve, sizeof(*kve));
 2004                 kve->kve_structsize = sizeof(*kve);
 2005 
 2006                 kve->kve_private_resident = 0;
 2007                 obj = entry->object.vm_object;
 2008                 if (obj != NULL) {
 2009                         VM_OBJECT_RLOCK(obj);
 2010                         if (obj->shadow_count == 1)
 2011                                 kve->kve_private_resident =
 2012                                     obj->resident_page_count;
 2013                 }
 2014                 kve->kve_resident = 0;
 2015                 addr = entry->start;
 2016                 while (addr < entry->end) {
 2017                         if (pmap_extract(map->pmap, addr))
 2018                                 kve->kve_resident++;
 2019                         addr += PAGE_SIZE;
 2020                 }
 2021 
 2022                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
 2023                         if (tobj != obj)
 2024                                 VM_OBJECT_RLOCK(tobj);
 2025                         if (lobj != obj)
 2026                                 VM_OBJECT_RUNLOCK(lobj);
 2027                         lobj = tobj;
 2028                 }
 2029 
 2030                 kve->kve_start = (void*)entry->start;
 2031                 kve->kve_end = (void*)entry->end;
 2032                 kve->kve_offset = (off_t)entry->offset;
 2033 
 2034                 if (entry->protection & VM_PROT_READ)
 2035                         kve->kve_protection |= KVME_PROT_READ;
 2036                 if (entry->protection & VM_PROT_WRITE)
 2037                         kve->kve_protection |= KVME_PROT_WRITE;
 2038                 if (entry->protection & VM_PROT_EXECUTE)
 2039                         kve->kve_protection |= KVME_PROT_EXEC;
 2040 
 2041                 if (entry->eflags & MAP_ENTRY_COW)
 2042                         kve->kve_flags |= KVME_FLAG_COW;
 2043                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 2044                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 2045                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 2046                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 2047 
 2048                 last_timestamp = map->timestamp;
 2049                 vm_map_unlock_read(map);
 2050 
 2051                 kve->kve_fileid = 0;
 2052                 kve->kve_fsid = 0;
 2053                 freepath = NULL;
 2054                 fullpath = "";
 2055                 if (lobj) {
 2056                         vp = NULL;
 2057                         switch (lobj->type) {
 2058                         case OBJT_DEFAULT:
 2059                                 kve->kve_type = KVME_TYPE_DEFAULT;
 2060                                 break;
 2061                         case OBJT_VNODE:
 2062                                 kve->kve_type = KVME_TYPE_VNODE;
 2063                                 vp = lobj->handle;
 2064                                 vref(vp);
 2065                                 break;
 2066                         case OBJT_SWAP:
 2067                                 kve->kve_type = KVME_TYPE_SWAP;
 2068                                 break;
 2069                         case OBJT_DEVICE:
 2070                                 kve->kve_type = KVME_TYPE_DEVICE;
 2071                                 break;
 2072                         case OBJT_PHYS:
 2073                                 kve->kve_type = KVME_TYPE_PHYS;
 2074                                 break;
 2075                         case OBJT_DEAD:
 2076                                 kve->kve_type = KVME_TYPE_DEAD;
 2077                                 break;
 2078                         case OBJT_SG:
 2079                                 kve->kve_type = KVME_TYPE_SG;
 2080                                 break;
 2081                         default:
 2082                                 kve->kve_type = KVME_TYPE_UNKNOWN;
 2083                                 break;
 2084                         }
 2085                         if (lobj != obj)
 2086                                 VM_OBJECT_RUNLOCK(lobj);
 2087 
 2088                         kve->kve_ref_count = obj->ref_count;
 2089                         kve->kve_shadow_count = obj->shadow_count;
 2090                         VM_OBJECT_RUNLOCK(obj);
 2091                         if (vp != NULL) {
 2092                                 vn_fullpath(curthread, vp, &fullpath,
 2093                                     &freepath);
 2094                                 cred = curthread->td_ucred;
 2095                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2096                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 2097                                         kve->kve_fileid = va.va_fileid;
 2098                                         kve->kve_fsid = va.va_fsid;
 2099                                 }
 2100                                 vput(vp);
 2101                         }
 2102                 } else {
 2103                         kve->kve_type = KVME_TYPE_NONE;
 2104                         kve->kve_ref_count = 0;
 2105                         kve->kve_shadow_count = 0;
 2106                 }
 2107 
 2108                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 2109                 if (freepath != NULL)
 2110                         free(freepath, M_TEMP);
 2111 
 2112                 error = SYSCTL_OUT(req, kve, sizeof(*kve));
 2113                 vm_map_lock_read(map);
 2114                 if (error)
 2115                         break;
 2116                 if (last_timestamp != map->timestamp) {
 2117                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 2118                         entry = tmp_entry;
 2119                 }
 2120         }
 2121         vm_map_unlock_read(map);
 2122         vmspace_free(vm);
 2123         PRELE(p);
 2124         free(kve, M_TEMP);
 2125         return (error);
 2126 }
 2127 #endif  /* COMPAT_FREEBSD7 */
 2128 
 2129 #ifdef KINFO_VMENTRY_SIZE
 2130 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
 2131 #endif
 2132 
 2133 /*
 2134  * Must be called with the process locked and will return unlocked.
 2135  */
 2136 int
 2137 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb)
 2138 {
 2139         vm_map_entry_t entry, tmp_entry;
 2140         unsigned int last_timestamp;
 2141         char *fullpath, *freepath;
 2142         struct kinfo_vmentry *kve;
 2143         struct vattr va;
 2144         struct ucred *cred;
 2145         int error;
 2146         struct vnode *vp;
 2147         struct vmspace *vm;
 2148         vm_map_t map;
 2149 
 2150         PROC_LOCK_ASSERT(p, MA_OWNED);
 2151 
 2152         _PHOLD(p);
 2153         PROC_UNLOCK(p);
 2154         vm = vmspace_acquire_ref(p);
 2155         if (vm == NULL) {
 2156                 PRELE(p);
 2157                 return (ESRCH);
 2158         }
 2159         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
 2160 
 2161         error = 0;
 2162         map = &vm->vm_map;
 2163         vm_map_lock_read(map);
 2164         for (entry = map->header.next; entry != &map->header;
 2165             entry = entry->next) {
 2166                 vm_object_t obj, tobj, lobj;
 2167                 vm_offset_t addr;
 2168                 vm_paddr_t locked_pa;
 2169                 int mincoreinfo;
 2170 
 2171                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 2172                         continue;
 2173 
 2174                 bzero(kve, sizeof(*kve));
 2175 
 2176                 kve->kve_private_resident = 0;
 2177                 obj = entry->object.vm_object;
 2178                 if (obj != NULL) {
 2179                         VM_OBJECT_RLOCK(obj);
 2180                         if (obj->shadow_count == 1)
 2181                                 kve->kve_private_resident =
 2182                                     obj->resident_page_count;
 2183                 }
 2184                 kve->kve_resident = 0;
 2185                 addr = entry->start;
 2186                 while (addr < entry->end) {
 2187                         locked_pa = 0;
 2188                         mincoreinfo = pmap_mincore(map->pmap, addr, &locked_pa);
 2189                         if (locked_pa != 0)
 2190                                 vm_page_unlock(PHYS_TO_VM_PAGE(locked_pa));
 2191                         if (mincoreinfo & MINCORE_INCORE)
 2192                                 kve->kve_resident++;
 2193                         if (mincoreinfo & MINCORE_SUPER)
 2194                                 kve->kve_flags |= KVME_FLAG_SUPER;
 2195                         addr += PAGE_SIZE;
 2196                 }
 2197 
 2198                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
 2199                         if (tobj != obj)
 2200                                 VM_OBJECT_RLOCK(tobj);
 2201                         if (lobj != obj)
 2202                                 VM_OBJECT_RUNLOCK(lobj);
 2203                         lobj = tobj;
 2204                 }
 2205 
 2206                 kve->kve_start = entry->start;
 2207                 kve->kve_end = entry->end;
 2208                 kve->kve_offset = entry->offset;
 2209 
 2210                 if (entry->protection & VM_PROT_READ)
 2211                         kve->kve_protection |= KVME_PROT_READ;
 2212                 if (entry->protection & VM_PROT_WRITE)
 2213                         kve->kve_protection |= KVME_PROT_WRITE;
 2214                 if (entry->protection & VM_PROT_EXECUTE)
 2215                         kve->kve_protection |= KVME_PROT_EXEC;
 2216 
 2217                 if (entry->eflags & MAP_ENTRY_COW)
 2218                         kve->kve_flags |= KVME_FLAG_COW;
 2219                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 2220                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 2221                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 2222                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 2223                 if (entry->eflags & MAP_ENTRY_GROWS_UP)
 2224                         kve->kve_flags |= KVME_FLAG_GROWS_UP;
 2225                 if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
 2226                         kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
 2227 
 2228                 last_timestamp = map->timestamp;
 2229                 vm_map_unlock_read(map);
 2230 
 2231                 freepath = NULL;
 2232                 fullpath = "";
 2233                 if (lobj) {
 2234                         vp = NULL;
 2235                         switch (lobj->type) {
 2236                         case OBJT_DEFAULT:
 2237                                 kve->kve_type = KVME_TYPE_DEFAULT;
 2238                                 break;
 2239                         case OBJT_VNODE:
 2240                                 kve->kve_type = KVME_TYPE_VNODE;
 2241                                 vp = lobj->handle;
 2242                                 vref(vp);
 2243                                 break;
 2244                         case OBJT_SWAP:
 2245                                 kve->kve_type = KVME_TYPE_SWAP;
 2246                                 break;
 2247                         case OBJT_DEVICE:
 2248                                 kve->kve_type = KVME_TYPE_DEVICE;
 2249                                 break;
 2250                         case OBJT_PHYS:
 2251                                 kve->kve_type = KVME_TYPE_PHYS;
 2252                                 break;
 2253                         case OBJT_DEAD:
 2254                                 kve->kve_type = KVME_TYPE_DEAD;
 2255                                 break;
 2256                         case OBJT_SG:
 2257                                 kve->kve_type = KVME_TYPE_SG;
 2258                                 break;
 2259                         default:
 2260                                 kve->kve_type = KVME_TYPE_UNKNOWN;
 2261                                 break;
 2262                         }
 2263                         if (lobj != obj)
 2264                                 VM_OBJECT_RUNLOCK(lobj);
 2265 
 2266                         kve->kve_ref_count = obj->ref_count;
 2267                         kve->kve_shadow_count = obj->shadow_count;
 2268                         VM_OBJECT_RUNLOCK(obj);
 2269                         if (vp != NULL) {
 2270                                 vn_fullpath(curthread, vp, &fullpath,
 2271                                     &freepath);
 2272                                 kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
 2273                                 cred = curthread->td_ucred;
 2274                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2275                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 2276                                         kve->kve_vn_fileid = va.va_fileid;
 2277                                         kve->kve_vn_fsid = va.va_fsid;
 2278                                         kve->kve_vn_mode =
 2279                                             MAKEIMODE(va.va_type, va.va_mode);
 2280                                         kve->kve_vn_size = va.va_size;
 2281                                         kve->kve_vn_rdev = va.va_rdev;
 2282                                         kve->kve_status = KF_ATTR_VALID;
 2283                                 }
 2284                                 vput(vp);
 2285                         }
 2286                 } else {
 2287                         kve->kve_type = KVME_TYPE_NONE;
 2288                         kve->kve_ref_count = 0;
 2289                         kve->kve_shadow_count = 0;
 2290                 }
 2291 
 2292                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 2293                 if (freepath != NULL)
 2294                         free(freepath, M_TEMP);
 2295 
 2296                 /* Pack record size down */
 2297                 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
 2298                     strlen(kve->kve_path) + 1;
 2299                 kve->kve_structsize = roundup(kve->kve_structsize,
 2300                     sizeof(uint64_t));
 2301                 error = sbuf_bcat(sb, kve, kve->kve_structsize);
 2302                 vm_map_lock_read(map);
 2303                 if (error)
 2304                         break;
 2305                 if (last_timestamp != map->timestamp) {
 2306                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 2307                         entry = tmp_entry;
 2308                 }
 2309         }
 2310         vm_map_unlock_read(map);
 2311         vmspace_free(vm);
 2312         PRELE(p);
 2313         free(kve, M_TEMP);
 2314         return (error);
 2315 }
 2316 
 2317 static int
 2318 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
 2319 {
 2320         struct proc *p;
 2321         struct sbuf sb;
 2322         int error, error2, *name;
 2323 
 2324         name = (int *)arg1;
 2325         sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
 2326         error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
 2327         if (error != 0) {
 2328                 sbuf_delete(&sb);
 2329                 return (error);
 2330         }
 2331         error = kern_proc_vmmap_out(p, &sb);
 2332         error2 = sbuf_finish(&sb);
 2333         sbuf_delete(&sb);
 2334         return (error != 0 ? error : error2);
 2335 }
 2336 
 2337 #if defined(STACK) || defined(DDB)
 2338 static int
 2339 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
 2340 {
 2341         struct kinfo_kstack *kkstp;
 2342         int error, i, *name, numthreads;
 2343         lwpid_t *lwpidarray;
 2344         struct thread *td;
 2345         struct stack *st;
 2346         struct sbuf sb;
 2347         struct proc *p;
 2348 
 2349         name = (int *)arg1;
 2350         error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
 2351         if (error != 0)
 2352                 return (error);
 2353 
 2354         kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
 2355         st = stack_create();
 2356 
 2357         lwpidarray = NULL;
 2358         numthreads = 0;
 2359         PROC_LOCK(p);
 2360 repeat:
 2361         if (numthreads < p->p_numthreads) {
 2362                 if (lwpidarray != NULL) {
 2363                         free(lwpidarray, M_TEMP);
 2364                         lwpidarray = NULL;
 2365                 }
 2366                 numthreads = p->p_numthreads;
 2367                 PROC_UNLOCK(p);
 2368                 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
 2369                     M_WAITOK | M_ZERO);
 2370                 PROC_LOCK(p);
 2371                 goto repeat;
 2372         }
 2373         i = 0;
 2374 
 2375         /*
 2376          * XXXRW: During the below loop, execve(2) and countless other sorts
 2377          * of changes could have taken place.  Should we check to see if the
 2378          * vmspace has been replaced, or the like, in order to prevent
 2379          * giving a snapshot that spans, say, execve(2), with some threads
 2380          * before and some after?  Among other things, the credentials could
 2381          * have changed, in which case the right to extract debug info might
 2382          * no longer be assured.
 2383          */
 2384         FOREACH_THREAD_IN_PROC(p, td) {
 2385                 KASSERT(i < numthreads,
 2386                     ("sysctl_kern_proc_kstack: numthreads"));
 2387                 lwpidarray[i] = td->td_tid;
 2388                 i++;
 2389         }
 2390         numthreads = i;
 2391         for (i = 0; i < numthreads; i++) {
 2392                 td = thread_find(p, lwpidarray[i]);
 2393                 if (td == NULL) {
 2394                         continue;
 2395                 }
 2396                 bzero(kkstp, sizeof(*kkstp));
 2397                 (void)sbuf_new(&sb, kkstp->kkst_trace,
 2398                     sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
 2399                 thread_lock(td);
 2400                 kkstp->kkst_tid = td->td_tid;
 2401                 if (TD_IS_SWAPPED(td))
 2402                         kkstp->kkst_state = KKST_STATE_SWAPPED;
 2403                 else if (TD_IS_RUNNING(td))
 2404                         kkstp->kkst_state = KKST_STATE_RUNNING;
 2405                 else {
 2406                         kkstp->kkst_state = KKST_STATE_STACKOK;
 2407                         stack_save_td(st, td);
 2408                 }
 2409                 thread_unlock(td);
 2410                 PROC_UNLOCK(p);
 2411                 stack_sbuf_print(&sb, st);
 2412                 sbuf_finish(&sb);
 2413                 sbuf_delete(&sb);
 2414                 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
 2415                 PROC_LOCK(p);
 2416                 if (error)
 2417                         break;
 2418         }
 2419         _PRELE(p);
 2420         PROC_UNLOCK(p);
 2421         if (lwpidarray != NULL)
 2422                 free(lwpidarray, M_TEMP);
 2423         stack_destroy(st);
 2424         free(kkstp, M_TEMP);
 2425         return (error);
 2426 }
 2427 #endif
 2428 
 2429 /*
 2430  * This sysctl allows a process to retrieve the full list of groups from
 2431  * itself or another process.
 2432  */
 2433 static int
 2434 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
 2435 {
 2436         pid_t *pidp = (pid_t *)arg1;
 2437         unsigned int arglen = arg2;
 2438         struct proc *p;
 2439         struct ucred *cred;
 2440         int error;
 2441 
 2442         if (arglen != 1)
 2443                 return (EINVAL);
 2444         if (*pidp == -1) {      /* -1 means this process */
 2445                 p = req->td->td_proc;
 2446         } else {
 2447                 error = pget(*pidp, PGET_CANSEE, &p);
 2448                 if (error != 0)
 2449                         return (error);
 2450         }
 2451 
 2452         cred = crhold(p->p_ucred);
 2453         if (*pidp != -1)
 2454                 PROC_UNLOCK(p);
 2455 
 2456         error = SYSCTL_OUT(req, cred->cr_groups,
 2457             cred->cr_ngroups * sizeof(gid_t));
 2458         crfree(cred);
 2459         return (error);
 2460 }
 2461 
 2462 /*
 2463  * This sysctl allows a process to retrieve or/and set the resource limit for
 2464  * another process.
 2465  */
 2466 static int
 2467 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
 2468 {
 2469         int *name = (int *)arg1;
 2470         u_int namelen = arg2;
 2471         struct rlimit rlim;
 2472         struct proc *p;
 2473         u_int which;
 2474         int flags, error;
 2475 
 2476         if (namelen != 2)
 2477                 return (EINVAL);
 2478 
 2479         which = (u_int)name[1];
 2480         if (which >= RLIM_NLIMITS)
 2481                 return (EINVAL);
 2482 
 2483         if (req->newptr != NULL && req->newlen != sizeof(rlim))
 2484                 return (EINVAL);
 2485 
 2486         flags = PGET_HOLD | PGET_NOTWEXIT;
 2487         if (req->newptr != NULL)
 2488                 flags |= PGET_CANDEBUG;
 2489         else
 2490                 flags |= PGET_CANSEE;
 2491         error = pget((pid_t)name[0], flags, &p);
 2492         if (error != 0)
 2493                 return (error);
 2494 
 2495         /*
 2496          * Retrieve limit.
 2497          */
 2498         if (req->oldptr != NULL) {
 2499                 PROC_LOCK(p);
 2500                 lim_rlimit(p, which, &rlim);
 2501                 PROC_UNLOCK(p);
 2502         }
 2503         error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
 2504         if (error != 0)
 2505                 goto errout;
 2506 
 2507         /*
 2508          * Set limit.
 2509          */
 2510         if (req->newptr != NULL) {
 2511                 error = SYSCTL_IN(req, &rlim, sizeof(rlim));
 2512                 if (error == 0)
 2513                         error = kern_proc_setrlimit(curthread, p, which, &rlim);
 2514         }
 2515 
 2516 errout:
 2517         PRELE(p);
 2518         return (error);
 2519 }
 2520 
 2521 /*
 2522  * This sysctl allows a process to retrieve ps_strings structure location of
 2523  * another process.
 2524  */
 2525 static int
 2526 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
 2527 {
 2528         int *name = (int *)arg1;
 2529         u_int namelen = arg2;
 2530         struct proc *p;
 2531         vm_offset_t ps_strings;
 2532         int error;
 2533 #ifdef COMPAT_FREEBSD32
 2534         uint32_t ps_strings32;
 2535 #endif
 2536 
 2537         if (namelen != 1)
 2538                 return (EINVAL);
 2539 
 2540         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 2541         if (error != 0)
 2542                 return (error);
 2543 #ifdef COMPAT_FREEBSD32
 2544         if ((req->flags & SCTL_MASK32) != 0) {
 2545                 /*
 2546                  * We return 0 if the 32 bit emulation request is for a 64 bit
 2547                  * process.
 2548                  */
 2549                 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
 2550                     PTROUT(p->p_sysent->sv_psstrings) : 0;
 2551                 PROC_UNLOCK(p);
 2552                 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
 2553                 return (error);
 2554         }
 2555 #endif
 2556         ps_strings = p->p_sysent->sv_psstrings;
 2557         PROC_UNLOCK(p);
 2558         error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
 2559         return (error);
 2560 }
 2561 
 2562 /*
 2563  * This sysctl allows a process to retrieve umask of another process.
 2564  */
 2565 static int
 2566 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
 2567 {
 2568         int *name = (int *)arg1;
 2569         u_int namelen = arg2;
 2570         struct proc *p;
 2571         int error;
 2572         u_short fd_cmask;
 2573 
 2574         if (namelen != 1)
 2575                 return (EINVAL);
 2576 
 2577         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 2578         if (error != 0)
 2579                 return (error);
 2580 
 2581         FILEDESC_SLOCK(p->p_fd);
 2582         fd_cmask = p->p_fd->fd_cmask;
 2583         FILEDESC_SUNLOCK(p->p_fd);
 2584         PRELE(p);
 2585         error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
 2586         return (error);
 2587 }
 2588 
 2589 /*
 2590  * This sysctl allows a process to set and retrieve binary osreldate of
 2591  * another process.
 2592  */
 2593 static int
 2594 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
 2595 {
 2596         int *name = (int *)arg1;
 2597         u_int namelen = arg2;
 2598         struct proc *p;
 2599         int flags, error, osrel;
 2600 
 2601         if (namelen != 1)
 2602                 return (EINVAL);
 2603 
 2604         if (req->newptr != NULL && req->newlen != sizeof(osrel))
 2605                 return (EINVAL);
 2606 
 2607         flags = PGET_HOLD | PGET_NOTWEXIT;
 2608         if (req->newptr != NULL)
 2609                 flags |= PGET_CANDEBUG;
 2610         else
 2611                 flags |= PGET_CANSEE;
 2612         error = pget((pid_t)name[0], flags, &p);
 2613         if (error != 0)
 2614                 return (error);
 2615 
 2616         error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
 2617         if (error != 0)
 2618                 goto errout;
 2619 
 2620         if (req->newptr != NULL) {
 2621                 error = SYSCTL_IN(req, &osrel, sizeof(osrel));
 2622                 if (error != 0)
 2623                         goto errout;
 2624                 if (osrel < 0) {
 2625                         error = EINVAL;
 2626                         goto errout;
 2627                 }
 2628                 p->p_osrel = osrel;
 2629         }
 2630 errout:
 2631         PRELE(p);
 2632         return (error);
 2633 }
 2634 
 2635 static int
 2636 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
 2637 {
 2638         int *name = (int *)arg1;
 2639         u_int namelen = arg2;
 2640         struct proc *p;
 2641         struct kinfo_sigtramp kst;
 2642         const struct sysentvec *sv;
 2643         int error;
 2644 #ifdef COMPAT_FREEBSD32
 2645         struct kinfo_sigtramp32 kst32;
 2646 #endif
 2647 
 2648         if (namelen != 1)
 2649                 return (EINVAL);
 2650 
 2651         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 2652         if (error != 0)
 2653                 return (error);
 2654         sv = p->p_sysent;
 2655 #ifdef COMPAT_FREEBSD32
 2656         if ((req->flags & SCTL_MASK32) != 0) {
 2657                 bzero(&kst32, sizeof(kst32));
 2658                 if (SV_PROC_FLAG(p, SV_ILP32)) {
 2659                         if (sv->sv_sigcode_base != 0) {
 2660                                 kst32.ksigtramp_start = sv->sv_sigcode_base;
 2661                                 kst32.ksigtramp_end = sv->sv_sigcode_base +
 2662                                     *sv->sv_szsigcode;
 2663                         } else {
 2664                                 kst32.ksigtramp_start = sv->sv_psstrings -
 2665                                     *sv->sv_szsigcode;
 2666                                 kst32.ksigtramp_end = sv->sv_psstrings;
 2667                         }
 2668                 }
 2669                 PROC_UNLOCK(p);
 2670                 error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
 2671                 return (error);
 2672         }
 2673 #endif
 2674         bzero(&kst, sizeof(kst));
 2675         if (sv->sv_sigcode_base != 0) {
 2676                 kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
 2677                 kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
 2678                     *sv->sv_szsigcode;
 2679         } else {
 2680                 kst.ksigtramp_start = (char *)sv->sv_psstrings -
 2681                     *sv->sv_szsigcode;
 2682                 kst.ksigtramp_end = (char *)sv->sv_psstrings;
 2683         }
 2684         PROC_UNLOCK(p);
 2685         error = SYSCTL_OUT(req, &kst, sizeof(kst));
 2686         return (error);
 2687 }
 2688 
 2689 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
 2690 
 2691 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
 2692         CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
 2693         "Return entire process table");
 2694 
 2695 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2696         sysctl_kern_proc, "Process table");
 2697 
 2698 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2699         sysctl_kern_proc, "Process table");
 2700 
 2701 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2702         sysctl_kern_proc, "Process table");
 2703 
 2704 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
 2705         CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2706 
 2707 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2708         sysctl_kern_proc, "Process table");
 2709 
 2710 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2711         sysctl_kern_proc, "Process table");
 2712 
 2713 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2714         sysctl_kern_proc, "Process table");
 2715 
 2716 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2717         sysctl_kern_proc, "Process table");
 2718 
 2719 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2720         sysctl_kern_proc, "Return process table, no threads");
 2721 
 2722 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
 2723         CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
 2724         sysctl_kern_proc_args, "Process argument list");
 2725 
 2726 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2727         sysctl_kern_proc_env, "Process environment");
 2728 
 2729 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
 2730         CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
 2731 
 2732 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
 2733         CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
 2734 
 2735 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
 2736         CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
 2737         "Process syscall vector name (ABI type)");
 2738 
 2739 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
 2740         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2741 
 2742 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
 2743         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2744 
 2745 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
 2746         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2747 
 2748 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
 2749         sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2750 
 2751 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
 2752         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2753 
 2754 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
 2755         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2756 
 2757 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
 2758         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2759 
 2760 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
 2761         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2762 
 2763 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
 2764         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
 2765         "Return process table, no threads");
 2766 
 2767 #ifdef COMPAT_FREEBSD7
 2768 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
 2769         CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
 2770 #endif
 2771 
 2772 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
 2773         CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
 2774 
 2775 #if defined(STACK) || defined(DDB)
 2776 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
 2777         CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
 2778 #endif
 2779 
 2780 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
 2781         CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
 2782 
 2783 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
 2784         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
 2785         "Process resource limits");
 2786 
 2787 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
 2788         CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
 2789         "Process ps_strings location");
 2790 
 2791 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
 2792         CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
 2793 
 2794 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
 2795         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
 2796         "Process binary osreldate");
 2797 
 2798 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
 2799         CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
 2800         "Process signal trampoline location");

Cache object: f92fc95fd818f27de8a401e069ba022d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.