The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_proc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/10.1/sys/kern/kern_proc.c 270264 2014-08-21 10:46:19Z kib $");
   34 
   35 #include "opt_compat.h"
   36 #include "opt_ddb.h"
   37 #include "opt_kdtrace.h"
   38 #include "opt_ktrace.h"
   39 #include "opt_kstack_pages.h"
   40 #include "opt_stack.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/elf.h>
   45 #include <sys/exec.h>
   46 #include <sys/kernel.h>
   47 #include <sys/limits.h>
   48 #include <sys/lock.h>
   49 #include <sys/loginclass.h>
   50 #include <sys/malloc.h>
   51 #include <sys/mman.h>
   52 #include <sys/mount.h>
   53 #include <sys/mutex.h>
   54 #include <sys/proc.h>
   55 #include <sys/ptrace.h>
   56 #include <sys/refcount.h>
   57 #include <sys/resourcevar.h>
   58 #include <sys/rwlock.h>
   59 #include <sys/sbuf.h>
   60 #include <sys/sysent.h>
   61 #include <sys/sched.h>
   62 #include <sys/smp.h>
   63 #include <sys/stack.h>
   64 #include <sys/stat.h>
   65 #include <sys/sysctl.h>
   66 #include <sys/filedesc.h>
   67 #include <sys/tty.h>
   68 #include <sys/signalvar.h>
   69 #include <sys/sdt.h>
   70 #include <sys/sx.h>
   71 #include <sys/user.h>
   72 #include <sys/jail.h>
   73 #include <sys/vnode.h>
   74 #include <sys/eventhandler.h>
   75 
   76 #ifdef DDB
   77 #include <ddb/ddb.h>
   78 #endif
   79 
   80 #include <vm/vm.h>
   81 #include <vm/vm_param.h>
   82 #include <vm/vm_extern.h>
   83 #include <vm/pmap.h>
   84 #include <vm/vm_map.h>
   85 #include <vm/vm_object.h>
   86 #include <vm/vm_page.h>
   87 #include <vm/uma.h>
   88 
   89 #ifdef COMPAT_FREEBSD32
   90 #include <compat/freebsd32/freebsd32.h>
   91 #include <compat/freebsd32/freebsd32_util.h>
   92 #endif
   93 
   94 SDT_PROVIDER_DEFINE(proc);
   95 SDT_PROBE_DEFINE4(proc, kernel, ctor, entry, "struct proc *", "int",
   96     "void *", "int");
   97 SDT_PROBE_DEFINE4(proc, kernel, ctor, return, "struct proc *", "int",
   98     "void *", "int");
   99 SDT_PROBE_DEFINE4(proc, kernel, dtor, entry, "struct proc *", "int",
  100     "void *", "struct thread *");
  101 SDT_PROBE_DEFINE3(proc, kernel, dtor, return, "struct proc *", "int",
  102     "void *");
  103 SDT_PROBE_DEFINE3(proc, kernel, init, entry, "struct proc *", "int",
  104     "int");
  105 SDT_PROBE_DEFINE3(proc, kernel, init, return, "struct proc *", "int",
  106     "int");
  107 
  108 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
  109 MALLOC_DEFINE(M_SESSION, "session", "session header");
  110 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
  111 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
  112 
  113 static void doenterpgrp(struct proc *, struct pgrp *);
  114 static void orphanpg(struct pgrp *pg);
  115 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
  116 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
  117 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
  118     int preferthread);
  119 static void pgadjustjobc(struct pgrp *pgrp, int entering);
  120 static void pgdelete(struct pgrp *);
  121 static int proc_ctor(void *mem, int size, void *arg, int flags);
  122 static void proc_dtor(void *mem, int size, void *arg);
  123 static int proc_init(void *mem, int size, int flags);
  124 static void proc_fini(void *mem, int size);
  125 static void pargs_free(struct pargs *pa);
  126 static struct proc *zpfind_locked(pid_t pid);
  127 
  128 /*
  129  * Other process lists
  130  */
  131 struct pidhashhead *pidhashtbl;
  132 u_long pidhash;
  133 struct pgrphashhead *pgrphashtbl;
  134 u_long pgrphash;
  135 struct proclist allproc;
  136 struct proclist zombproc;
  137 struct sx allproc_lock;
  138 struct sx proctree_lock;
  139 struct mtx ppeers_lock;
  140 uma_zone_t proc_zone;
  141 
  142 int kstack_pages = KSTACK_PAGES;
  143 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
  144     "Kernel stack size in pages");
  145 static int vmmap_skip_res_cnt = 0;
  146 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
  147     &vmmap_skip_res_cnt, 0,
  148     "Skip calculation of the pages resident count in kern.proc.vmmap");
  149 
  150 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
  151 #ifdef COMPAT_FREEBSD32
  152 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
  153 #endif
  154 
  155 /*
  156  * Initialize global process hashing structures.
  157  */
  158 void
  159 procinit()
  160 {
  161 
  162         sx_init(&allproc_lock, "allproc");
  163         sx_init(&proctree_lock, "proctree");
  164         mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
  165         LIST_INIT(&allproc);
  166         LIST_INIT(&zombproc);
  167         pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
  168         pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
  169         proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
  170             proc_ctor, proc_dtor, proc_init, proc_fini,
  171             UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  172         uihashinit();
  173 }
  174 
  175 /*
  176  * Prepare a proc for use.
  177  */
  178 static int
  179 proc_ctor(void *mem, int size, void *arg, int flags)
  180 {
  181         struct proc *p;
  182 
  183         p = (struct proc *)mem;
  184         SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
  185         EVENTHANDLER_INVOKE(process_ctor, p);
  186         SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
  187         return (0);
  188 }
  189 
  190 /*
  191  * Reclaim a proc after use.
  192  */
  193 static void
  194 proc_dtor(void *mem, int size, void *arg)
  195 {
  196         struct proc *p;
  197         struct thread *td;
  198 
  199         /* INVARIANTS checks go here */
  200         p = (struct proc *)mem;
  201         td = FIRST_THREAD_IN_PROC(p);
  202         SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
  203         if (td != NULL) {
  204 #ifdef INVARIANTS
  205                 KASSERT((p->p_numthreads == 1),
  206                     ("bad number of threads in exiting process"));
  207                 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
  208 #endif
  209                 /* Free all OSD associated to this thread. */
  210                 osd_thread_exit(td);
  211         }
  212         EVENTHANDLER_INVOKE(process_dtor, p);
  213         if (p->p_ksi != NULL)
  214                 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
  215         SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
  216 }
  217 
  218 /*
  219  * Initialize type-stable parts of a proc (when newly created).
  220  */
  221 static int
  222 proc_init(void *mem, int size, int flags)
  223 {
  224         struct proc *p;
  225 
  226         p = (struct proc *)mem;
  227         SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
  228         p->p_sched = (struct p_sched *)&p[1];
  229         bzero(&p->p_mtx, sizeof(struct mtx));
  230         mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
  231         mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
  232         cv_init(&p->p_pwait, "ppwait");
  233         cv_init(&p->p_dbgwait, "dbgwait");
  234         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
  235         EVENTHANDLER_INVOKE(process_init, p);
  236         p->p_stats = pstats_alloc();
  237         SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
  238         return (0);
  239 }
  240 
  241 /*
  242  * UMA should ensure that this function is never called.
  243  * Freeing a proc structure would violate type stability.
  244  */
  245 static void
  246 proc_fini(void *mem, int size)
  247 {
  248 #ifdef notnow
  249         struct proc *p;
  250 
  251         p = (struct proc *)mem;
  252         EVENTHANDLER_INVOKE(process_fini, p);
  253         pstats_free(p->p_stats);
  254         thread_free(FIRST_THREAD_IN_PROC(p));
  255         mtx_destroy(&p->p_mtx);
  256         if (p->p_ksi != NULL)
  257                 ksiginfo_free(p->p_ksi);
  258 #else
  259         panic("proc reclaimed");
  260 #endif
  261 }
  262 
  263 /*
  264  * Is p an inferior of the current process?
  265  */
  266 int
  267 inferior(struct proc *p)
  268 {
  269 
  270         sx_assert(&proctree_lock, SX_LOCKED);
  271         PROC_LOCK_ASSERT(p, MA_OWNED);
  272         for (; p != curproc; p = proc_realparent(p)) {
  273                 if (p->p_pid == 0)
  274                         return (0);
  275         }
  276         return (1);
  277 }
  278 
  279 struct proc *
  280 pfind_locked(pid_t pid)
  281 {
  282         struct proc *p;
  283 
  284         sx_assert(&allproc_lock, SX_LOCKED);
  285         LIST_FOREACH(p, PIDHASH(pid), p_hash) {
  286                 if (p->p_pid == pid) {
  287                         PROC_LOCK(p);
  288                         if (p->p_state == PRS_NEW) {
  289                                 PROC_UNLOCK(p);
  290                                 p = NULL;
  291                         }
  292                         break;
  293                 }
  294         }
  295         return (p);
  296 }
  297 
  298 /*
  299  * Locate a process by number; return only "live" processes -- i.e., neither
  300  * zombies nor newly born but incompletely initialized processes.  By not
  301  * returning processes in the PRS_NEW state, we allow callers to avoid
  302  * testing for that condition to avoid dereferencing p_ucred, et al.
  303  */
  304 struct proc *
  305 pfind(pid_t pid)
  306 {
  307         struct proc *p;
  308 
  309         sx_slock(&allproc_lock);
  310         p = pfind_locked(pid);
  311         sx_sunlock(&allproc_lock);
  312         return (p);
  313 }
  314 
  315 static struct proc *
  316 pfind_tid_locked(pid_t tid)
  317 {
  318         struct proc *p;
  319         struct thread *td;
  320 
  321         sx_assert(&allproc_lock, SX_LOCKED);
  322         FOREACH_PROC_IN_SYSTEM(p) {
  323                 PROC_LOCK(p);
  324                 if (p->p_state == PRS_NEW) {
  325                         PROC_UNLOCK(p);
  326                         continue;
  327                 }
  328                 FOREACH_THREAD_IN_PROC(p, td) {
  329                         if (td->td_tid == tid)
  330                                 goto found;
  331                 }
  332                 PROC_UNLOCK(p);
  333         }
  334 found:
  335         return (p);
  336 }
  337 
  338 /*
  339  * Locate a process group by number.
  340  * The caller must hold proctree_lock.
  341  */
  342 struct pgrp *
  343 pgfind(pgid)
  344         register pid_t pgid;
  345 {
  346         register struct pgrp *pgrp;
  347 
  348         sx_assert(&proctree_lock, SX_LOCKED);
  349 
  350         LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
  351                 if (pgrp->pg_id == pgid) {
  352                         PGRP_LOCK(pgrp);
  353                         return (pgrp);
  354                 }
  355         }
  356         return (NULL);
  357 }
  358 
  359 /*
  360  * Locate process and do additional manipulations, depending on flags.
  361  */
  362 int
  363 pget(pid_t pid, int flags, struct proc **pp)
  364 {
  365         struct proc *p;
  366         int error;
  367 
  368         sx_slock(&allproc_lock);
  369         if (pid <= PID_MAX) {
  370                 p = pfind_locked(pid);
  371                 if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
  372                         p = zpfind_locked(pid);
  373         } else if ((flags & PGET_NOTID) == 0) {
  374                 p = pfind_tid_locked(pid);
  375         } else {
  376                 p = NULL;
  377         }
  378         sx_sunlock(&allproc_lock);
  379         if (p == NULL)
  380                 return (ESRCH);
  381         if ((flags & PGET_CANSEE) != 0) {
  382                 error = p_cansee(curthread, p);
  383                 if (error != 0)
  384                         goto errout;
  385         }
  386         if ((flags & PGET_CANDEBUG) != 0) {
  387                 error = p_candebug(curthread, p);
  388                 if (error != 0)
  389                         goto errout;
  390         }
  391         if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
  392                 error = EPERM;
  393                 goto errout;
  394         }
  395         if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
  396                 error = ESRCH;
  397                 goto errout;
  398         }
  399         if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
  400                 /*
  401                  * XXXRW: Not clear ESRCH is the right error during proc
  402                  * execve().
  403                  */
  404                 error = ESRCH;
  405                 goto errout;
  406         }
  407         if ((flags & PGET_HOLD) != 0) {
  408                 _PHOLD(p);
  409                 PROC_UNLOCK(p);
  410         }
  411         *pp = p;
  412         return (0);
  413 errout:
  414         PROC_UNLOCK(p);
  415         return (error);
  416 }
  417 
  418 /*
  419  * Create a new process group.
  420  * pgid must be equal to the pid of p.
  421  * Begin a new session if required.
  422  */
  423 int
  424 enterpgrp(p, pgid, pgrp, sess)
  425         register struct proc *p;
  426         pid_t pgid;
  427         struct pgrp *pgrp;
  428         struct session *sess;
  429 {
  430 
  431         sx_assert(&proctree_lock, SX_XLOCKED);
  432 
  433         KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
  434         KASSERT(p->p_pid == pgid,
  435             ("enterpgrp: new pgrp and pid != pgid"));
  436         KASSERT(pgfind(pgid) == NULL,
  437             ("enterpgrp: pgrp with pgid exists"));
  438         KASSERT(!SESS_LEADER(p),
  439             ("enterpgrp: session leader attempted setpgrp"));
  440 
  441         mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
  442 
  443         if (sess != NULL) {
  444                 /*
  445                  * new session
  446                  */
  447                 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
  448                 PROC_LOCK(p);
  449                 p->p_flag &= ~P_CONTROLT;
  450                 PROC_UNLOCK(p);
  451                 PGRP_LOCK(pgrp);
  452                 sess->s_leader = p;
  453                 sess->s_sid = p->p_pid;
  454                 refcount_init(&sess->s_count, 1);
  455                 sess->s_ttyvp = NULL;
  456                 sess->s_ttydp = NULL;
  457                 sess->s_ttyp = NULL;
  458                 bcopy(p->p_session->s_login, sess->s_login,
  459                             sizeof(sess->s_login));
  460                 pgrp->pg_session = sess;
  461                 KASSERT(p == curproc,
  462                     ("enterpgrp: mksession and p != curproc"));
  463         } else {
  464                 pgrp->pg_session = p->p_session;
  465                 sess_hold(pgrp->pg_session);
  466                 PGRP_LOCK(pgrp);
  467         }
  468         pgrp->pg_id = pgid;
  469         LIST_INIT(&pgrp->pg_members);
  470 
  471         /*
  472          * As we have an exclusive lock of proctree_lock,
  473          * this should not deadlock.
  474          */
  475         LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
  476         pgrp->pg_jobc = 0;
  477         SLIST_INIT(&pgrp->pg_sigiolst);
  478         PGRP_UNLOCK(pgrp);
  479 
  480         doenterpgrp(p, pgrp);
  481 
  482         return (0);
  483 }
  484 
  485 /*
  486  * Move p to an existing process group
  487  */
  488 int
  489 enterthispgrp(p, pgrp)
  490         register struct proc *p;
  491         struct pgrp *pgrp;
  492 {
  493 
  494         sx_assert(&proctree_lock, SX_XLOCKED);
  495         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  496         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  497         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  498         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  499         KASSERT(pgrp->pg_session == p->p_session,
  500                 ("%s: pgrp's session %p, p->p_session %p.\n",
  501                 __func__,
  502                 pgrp->pg_session,
  503                 p->p_session));
  504         KASSERT(pgrp != p->p_pgrp,
  505                 ("%s: p belongs to pgrp.", __func__));
  506 
  507         doenterpgrp(p, pgrp);
  508 
  509         return (0);
  510 }
  511 
  512 /*
  513  * Move p to a process group
  514  */
  515 static void
  516 doenterpgrp(p, pgrp)
  517         struct proc *p;
  518         struct pgrp *pgrp;
  519 {
  520         struct pgrp *savepgrp;
  521 
  522         sx_assert(&proctree_lock, SX_XLOCKED);
  523         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  524         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  525         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  526         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  527 
  528         savepgrp = p->p_pgrp;
  529 
  530         /*
  531          * Adjust eligibility of affected pgrps to participate in job control.
  532          * Increment eligibility counts before decrementing, otherwise we
  533          * could reach 0 spuriously during the first call.
  534          */
  535         fixjobc(p, pgrp, 1);
  536         fixjobc(p, p->p_pgrp, 0);
  537 
  538         PGRP_LOCK(pgrp);
  539         PGRP_LOCK(savepgrp);
  540         PROC_LOCK(p);
  541         LIST_REMOVE(p, p_pglist);
  542         p->p_pgrp = pgrp;
  543         PROC_UNLOCK(p);
  544         LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
  545         PGRP_UNLOCK(savepgrp);
  546         PGRP_UNLOCK(pgrp);
  547         if (LIST_EMPTY(&savepgrp->pg_members))
  548                 pgdelete(savepgrp);
  549 }
  550 
  551 /*
  552  * remove process from process group
  553  */
  554 int
  555 leavepgrp(p)
  556         register struct proc *p;
  557 {
  558         struct pgrp *savepgrp;
  559 
  560         sx_assert(&proctree_lock, SX_XLOCKED);
  561         savepgrp = p->p_pgrp;
  562         PGRP_LOCK(savepgrp);
  563         PROC_LOCK(p);
  564         LIST_REMOVE(p, p_pglist);
  565         p->p_pgrp = NULL;
  566         PROC_UNLOCK(p);
  567         PGRP_UNLOCK(savepgrp);
  568         if (LIST_EMPTY(&savepgrp->pg_members))
  569                 pgdelete(savepgrp);
  570         return (0);
  571 }
  572 
  573 /*
  574  * delete a process group
  575  */
  576 static void
  577 pgdelete(pgrp)
  578         register struct pgrp *pgrp;
  579 {
  580         struct session *savesess;
  581         struct tty *tp;
  582 
  583         sx_assert(&proctree_lock, SX_XLOCKED);
  584         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  585         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  586 
  587         /*
  588          * Reset any sigio structures pointing to us as a result of
  589          * F_SETOWN with our pgid.
  590          */
  591         funsetownlst(&pgrp->pg_sigiolst);
  592 
  593         PGRP_LOCK(pgrp);
  594         tp = pgrp->pg_session->s_ttyp;
  595         LIST_REMOVE(pgrp, pg_hash);
  596         savesess = pgrp->pg_session;
  597         PGRP_UNLOCK(pgrp);
  598 
  599         /* Remove the reference to the pgrp before deallocating it. */
  600         if (tp != NULL) {
  601                 tty_lock(tp);
  602                 tty_rel_pgrp(tp, pgrp);
  603         }
  604 
  605         mtx_destroy(&pgrp->pg_mtx);
  606         free(pgrp, M_PGRP);
  607         sess_release(savesess);
  608 }
  609 
  610 static void
  611 pgadjustjobc(pgrp, entering)
  612         struct pgrp *pgrp;
  613         int entering;
  614 {
  615 
  616         PGRP_LOCK(pgrp);
  617         if (entering)
  618                 pgrp->pg_jobc++;
  619         else {
  620                 --pgrp->pg_jobc;
  621                 if (pgrp->pg_jobc == 0)
  622                         orphanpg(pgrp);
  623         }
  624         PGRP_UNLOCK(pgrp);
  625 }
  626 
  627 /*
  628  * Adjust pgrp jobc counters when specified process changes process group.
  629  * We count the number of processes in each process group that "qualify"
  630  * the group for terminal job control (those with a parent in a different
  631  * process group of the same session).  If that count reaches zero, the
  632  * process group becomes orphaned.  Check both the specified process'
  633  * process group and that of its children.
  634  * entering == 0 => p is leaving specified group.
  635  * entering == 1 => p is entering specified group.
  636  */
  637 void
  638 fixjobc(p, pgrp, entering)
  639         register struct proc *p;
  640         register struct pgrp *pgrp;
  641         int entering;
  642 {
  643         register struct pgrp *hispgrp;
  644         register struct session *mysession;
  645 
  646         sx_assert(&proctree_lock, SX_LOCKED);
  647         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  648         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  649         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  650 
  651         /*
  652          * Check p's parent to see whether p qualifies its own process
  653          * group; if so, adjust count for p's process group.
  654          */
  655         mysession = pgrp->pg_session;
  656         if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
  657             hispgrp->pg_session == mysession)
  658                 pgadjustjobc(pgrp, entering);
  659 
  660         /*
  661          * Check this process' children to see whether they qualify
  662          * their process groups; if so, adjust counts for children's
  663          * process groups.
  664          */
  665         LIST_FOREACH(p, &p->p_children, p_sibling) {
  666                 hispgrp = p->p_pgrp;
  667                 if (hispgrp == pgrp ||
  668                     hispgrp->pg_session != mysession)
  669                         continue;
  670                 PROC_LOCK(p);
  671                 if (p->p_state == PRS_ZOMBIE) {
  672                         PROC_UNLOCK(p);
  673                         continue;
  674                 }
  675                 PROC_UNLOCK(p);
  676                 pgadjustjobc(hispgrp, entering);
  677         }
  678 }
  679 
  680 /*
  681  * A process group has become orphaned;
  682  * if there are any stopped processes in the group,
  683  * hang-up all process in that group.
  684  */
  685 static void
  686 orphanpg(pg)
  687         struct pgrp *pg;
  688 {
  689         register struct proc *p;
  690 
  691         PGRP_LOCK_ASSERT(pg, MA_OWNED);
  692 
  693         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  694                 PROC_LOCK(p);
  695                 if (P_SHOULDSTOP(p)) {
  696                         PROC_UNLOCK(p);
  697                         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  698                                 PROC_LOCK(p);
  699                                 kern_psignal(p, SIGHUP);
  700                                 kern_psignal(p, SIGCONT);
  701                                 PROC_UNLOCK(p);
  702                         }
  703                         return;
  704                 }
  705                 PROC_UNLOCK(p);
  706         }
  707 }
  708 
  709 void
  710 sess_hold(struct session *s)
  711 {
  712 
  713         refcount_acquire(&s->s_count);
  714 }
  715 
  716 void
  717 sess_release(struct session *s)
  718 {
  719 
  720         if (refcount_release(&s->s_count)) {
  721                 if (s->s_ttyp != NULL) {
  722                         tty_lock(s->s_ttyp);
  723                         tty_rel_sess(s->s_ttyp, s);
  724                 }
  725                 mtx_destroy(&s->s_mtx);
  726                 free(s, M_SESSION);
  727         }
  728 }
  729 
  730 #ifdef DDB
  731 
  732 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
  733 {
  734         register struct pgrp *pgrp;
  735         register struct proc *p;
  736         register int i;
  737 
  738         for (i = 0; i <= pgrphash; i++) {
  739                 if (!LIST_EMPTY(&pgrphashtbl[i])) {
  740                         printf("\tindx %d\n", i);
  741                         LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
  742                                 printf(
  743                         "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
  744                                     (void *)pgrp, (long)pgrp->pg_id,
  745                                     (void *)pgrp->pg_session,
  746                                     pgrp->pg_session->s_count,
  747                                     (void *)LIST_FIRST(&pgrp->pg_members));
  748                                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
  749                                         printf("\t\tpid %ld addr %p pgrp %p\n", 
  750                                             (long)p->p_pid, (void *)p,
  751                                             (void *)p->p_pgrp);
  752                                 }
  753                         }
  754                 }
  755         }
  756 }
  757 #endif /* DDB */
  758 
  759 /*
  760  * Calculate the kinfo_proc members which contain process-wide
  761  * informations.
  762  * Must be called with the target process locked.
  763  */
  764 static void
  765 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
  766 {
  767         struct thread *td;
  768 
  769         PROC_LOCK_ASSERT(p, MA_OWNED);
  770 
  771         kp->ki_estcpu = 0;
  772         kp->ki_pctcpu = 0;
  773         FOREACH_THREAD_IN_PROC(p, td) {
  774                 thread_lock(td);
  775                 kp->ki_pctcpu += sched_pctcpu(td);
  776                 kp->ki_estcpu += td->td_estcpu;
  777                 thread_unlock(td);
  778         }
  779 }
  780 
  781 /*
  782  * Clear kinfo_proc and fill in any information that is common
  783  * to all threads in the process.
  784  * Must be called with the target process locked.
  785  */
  786 static void
  787 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
  788 {
  789         struct thread *td0;
  790         struct tty *tp;
  791         struct session *sp;
  792         struct ucred *cred;
  793         struct sigacts *ps;
  794 
  795         PROC_LOCK_ASSERT(p, MA_OWNED);
  796         bzero(kp, sizeof(*kp));
  797 
  798         kp->ki_structsize = sizeof(*kp);
  799         kp->ki_paddr = p;
  800         kp->ki_addr =/* p->p_addr; */0; /* XXX */
  801         kp->ki_args = p->p_args;
  802         kp->ki_textvp = p->p_textvp;
  803 #ifdef KTRACE
  804         kp->ki_tracep = p->p_tracevp;
  805         kp->ki_traceflag = p->p_traceflag;
  806 #endif
  807         kp->ki_fd = p->p_fd;
  808         kp->ki_vmspace = p->p_vmspace;
  809         kp->ki_flag = p->p_flag;
  810         kp->ki_flag2 = p->p_flag2;
  811         cred = p->p_ucred;
  812         if (cred) {
  813                 kp->ki_uid = cred->cr_uid;
  814                 kp->ki_ruid = cred->cr_ruid;
  815                 kp->ki_svuid = cred->cr_svuid;
  816                 kp->ki_cr_flags = 0;
  817                 if (cred->cr_flags & CRED_FLAG_CAPMODE)
  818                         kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
  819                 /* XXX bde doesn't like KI_NGROUPS */
  820                 if (cred->cr_ngroups > KI_NGROUPS) {
  821                         kp->ki_ngroups = KI_NGROUPS;
  822                         kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
  823                 } else
  824                         kp->ki_ngroups = cred->cr_ngroups;
  825                 bcopy(cred->cr_groups, kp->ki_groups,
  826                     kp->ki_ngroups * sizeof(gid_t));
  827                 kp->ki_rgid = cred->cr_rgid;
  828                 kp->ki_svgid = cred->cr_svgid;
  829                 /* If jailed(cred), emulate the old P_JAILED flag. */
  830                 if (jailed(cred)) {
  831                         kp->ki_flag |= P_JAILED;
  832                         /* If inside the jail, use 0 as a jail ID. */
  833                         if (cred->cr_prison != curthread->td_ucred->cr_prison)
  834                                 kp->ki_jid = cred->cr_prison->pr_id;
  835                 }
  836                 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
  837                     sizeof(kp->ki_loginclass));
  838         }
  839         ps = p->p_sigacts;
  840         if (ps) {
  841                 mtx_lock(&ps->ps_mtx);
  842                 kp->ki_sigignore = ps->ps_sigignore;
  843                 kp->ki_sigcatch = ps->ps_sigcatch;
  844                 mtx_unlock(&ps->ps_mtx);
  845         }
  846         if (p->p_state != PRS_NEW &&
  847             p->p_state != PRS_ZOMBIE &&
  848             p->p_vmspace != NULL) {
  849                 struct vmspace *vm = p->p_vmspace;
  850 
  851                 kp->ki_size = vm->vm_map.size;
  852                 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
  853                 FOREACH_THREAD_IN_PROC(p, td0) {
  854                         if (!TD_IS_SWAPPED(td0))
  855                                 kp->ki_rssize += td0->td_kstack_pages;
  856                 }
  857                 kp->ki_swrss = vm->vm_swrss;
  858                 kp->ki_tsize = vm->vm_tsize;
  859                 kp->ki_dsize = vm->vm_dsize;
  860                 kp->ki_ssize = vm->vm_ssize;
  861         } else if (p->p_state == PRS_ZOMBIE)
  862                 kp->ki_stat = SZOMB;
  863         if (kp->ki_flag & P_INMEM)
  864                 kp->ki_sflag = PS_INMEM;
  865         else
  866                 kp->ki_sflag = 0;
  867         /* Calculate legacy swtime as seconds since 'swtick'. */
  868         kp->ki_swtime = (ticks - p->p_swtick) / hz;
  869         kp->ki_pid = p->p_pid;
  870         kp->ki_nice = p->p_nice;
  871         kp->ki_fibnum = p->p_fibnum;
  872         kp->ki_start = p->p_stats->p_start;
  873         timevaladd(&kp->ki_start, &boottime);
  874         PROC_SLOCK(p);
  875         rufetch(p, &kp->ki_rusage);
  876         kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
  877         calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
  878         PROC_SUNLOCK(p);
  879         calccru(p, &kp->ki_childutime, &kp->ki_childstime);
  880         /* Some callers want child times in a single value. */
  881         kp->ki_childtime = kp->ki_childstime;
  882         timevaladd(&kp->ki_childtime, &kp->ki_childutime);
  883 
  884         FOREACH_THREAD_IN_PROC(p, td0)
  885                 kp->ki_cow += td0->td_cow;
  886 
  887         tp = NULL;
  888         if (p->p_pgrp) {
  889                 kp->ki_pgid = p->p_pgrp->pg_id;
  890                 kp->ki_jobc = p->p_pgrp->pg_jobc;
  891                 sp = p->p_pgrp->pg_session;
  892 
  893                 if (sp != NULL) {
  894                         kp->ki_sid = sp->s_sid;
  895                         SESS_LOCK(sp);
  896                         strlcpy(kp->ki_login, sp->s_login,
  897                             sizeof(kp->ki_login));
  898                         if (sp->s_ttyvp)
  899                                 kp->ki_kiflag |= KI_CTTY;
  900                         if (SESS_LEADER(p))
  901                                 kp->ki_kiflag |= KI_SLEADER;
  902                         /* XXX proctree_lock */
  903                         tp = sp->s_ttyp;
  904                         SESS_UNLOCK(sp);
  905                 }
  906         }
  907         if ((p->p_flag & P_CONTROLT) && tp != NULL) {
  908                 kp->ki_tdev = tty_udev(tp);
  909                 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
  910                 if (tp->t_session)
  911                         kp->ki_tsid = tp->t_session->s_sid;
  912         } else
  913                 kp->ki_tdev = NODEV;
  914         if (p->p_comm[0] != '\0')
  915                 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
  916         if (p->p_sysent && p->p_sysent->sv_name != NULL &&
  917             p->p_sysent->sv_name[0] != '\0')
  918                 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
  919         kp->ki_siglist = p->p_siglist;
  920         kp->ki_xstat = p->p_xstat;
  921         kp->ki_acflag = p->p_acflag;
  922         kp->ki_lock = p->p_lock;
  923         if (p->p_pptr)
  924                 kp->ki_ppid = p->p_pptr->p_pid;
  925 }
  926 
  927 /*
  928  * Fill in information that is thread specific.  Must be called with
  929  * target process locked.  If 'preferthread' is set, overwrite certain
  930  * process-related fields that are maintained for both threads and
  931  * processes.
  932  */
  933 static void
  934 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
  935 {
  936         struct proc *p;
  937 
  938         p = td->td_proc;
  939         kp->ki_tdaddr = td;
  940         PROC_LOCK_ASSERT(p, MA_OWNED);
  941 
  942         if (preferthread)
  943                 PROC_SLOCK(p);
  944         thread_lock(td);
  945         if (td->td_wmesg != NULL)
  946                 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
  947         else
  948                 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
  949         strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname));
  950         if (TD_ON_LOCK(td)) {
  951                 kp->ki_kiflag |= KI_LOCKBLOCK;
  952                 strlcpy(kp->ki_lockname, td->td_lockname,
  953                     sizeof(kp->ki_lockname));
  954         } else {
  955                 kp->ki_kiflag &= ~KI_LOCKBLOCK;
  956                 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
  957         }
  958 
  959         if (p->p_state == PRS_NORMAL) { /* approximate. */
  960                 if (TD_ON_RUNQ(td) ||
  961                     TD_CAN_RUN(td) ||
  962                     TD_IS_RUNNING(td)) {
  963                         kp->ki_stat = SRUN;
  964                 } else if (P_SHOULDSTOP(p)) {
  965                         kp->ki_stat = SSTOP;
  966                 } else if (TD_IS_SLEEPING(td)) {
  967                         kp->ki_stat = SSLEEP;
  968                 } else if (TD_ON_LOCK(td)) {
  969                         kp->ki_stat = SLOCK;
  970                 } else {
  971                         kp->ki_stat = SWAIT;
  972                 }
  973         } else if (p->p_state == PRS_ZOMBIE) {
  974                 kp->ki_stat = SZOMB;
  975         } else {
  976                 kp->ki_stat = SIDL;
  977         }
  978 
  979         /* Things in the thread */
  980         kp->ki_wchan = td->td_wchan;
  981         kp->ki_pri.pri_level = td->td_priority;
  982         kp->ki_pri.pri_native = td->td_base_pri;
  983         kp->ki_lastcpu = td->td_lastcpu;
  984         kp->ki_oncpu = td->td_oncpu;
  985         kp->ki_tdflags = td->td_flags;
  986         kp->ki_tid = td->td_tid;
  987         kp->ki_numthreads = p->p_numthreads;
  988         kp->ki_pcb = td->td_pcb;
  989         kp->ki_kstack = (void *)td->td_kstack;
  990         kp->ki_slptime = (ticks - td->td_slptick) / hz;
  991         kp->ki_pri.pri_class = td->td_pri_class;
  992         kp->ki_pri.pri_user = td->td_user_pri;
  993 
  994         if (preferthread) {
  995                 rufetchtd(td, &kp->ki_rusage);
  996                 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
  997                 kp->ki_pctcpu = sched_pctcpu(td);
  998                 kp->ki_estcpu = td->td_estcpu;
  999                 kp->ki_cow = td->td_cow;
 1000         }
 1001 
 1002         /* We can't get this anymore but ps etc never used it anyway. */
 1003         kp->ki_rqindex = 0;
 1004 
 1005         if (preferthread)
 1006                 kp->ki_siglist = td->td_siglist;
 1007         kp->ki_sigmask = td->td_sigmask;
 1008         thread_unlock(td);
 1009         if (preferthread)
 1010                 PROC_SUNLOCK(p);
 1011 }
 1012 
 1013 /*
 1014  * Fill in a kinfo_proc structure for the specified process.
 1015  * Must be called with the target process locked.
 1016  */
 1017 void
 1018 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
 1019 {
 1020 
 1021         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1022 
 1023         fill_kinfo_proc_only(p, kp);
 1024         fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
 1025         fill_kinfo_aggregate(p, kp);
 1026 }
 1027 
 1028 struct pstats *
 1029 pstats_alloc(void)
 1030 {
 1031 
 1032         return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
 1033 }
 1034 
 1035 /*
 1036  * Copy parts of p_stats; zero the rest of p_stats (statistics).
 1037  */
 1038 void
 1039 pstats_fork(struct pstats *src, struct pstats *dst)
 1040 {
 1041 
 1042         bzero(&dst->pstat_startzero,
 1043             __rangeof(struct pstats, pstat_startzero, pstat_endzero));
 1044         bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
 1045             __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
 1046 }
 1047 
 1048 void
 1049 pstats_free(struct pstats *ps)
 1050 {
 1051 
 1052         free(ps, M_SUBPROC);
 1053 }
 1054 
 1055 static struct proc *
 1056 zpfind_locked(pid_t pid)
 1057 {
 1058         struct proc *p;
 1059 
 1060         sx_assert(&allproc_lock, SX_LOCKED);
 1061         LIST_FOREACH(p, &zombproc, p_list) {
 1062                 if (p->p_pid == pid) {
 1063                         PROC_LOCK(p);
 1064                         break;
 1065                 }
 1066         }
 1067         return (p);
 1068 }
 1069 
 1070 /*
 1071  * Locate a zombie process by number
 1072  */
 1073 struct proc *
 1074 zpfind(pid_t pid)
 1075 {
 1076         struct proc *p;
 1077 
 1078         sx_slock(&allproc_lock);
 1079         p = zpfind_locked(pid);
 1080         sx_sunlock(&allproc_lock);
 1081         return (p);
 1082 }
 1083 
 1084 #ifdef COMPAT_FREEBSD32
 1085 
 1086 /*
 1087  * This function is typically used to copy out the kernel address, so
 1088  * it can be replaced by assignment of zero.
 1089  */
 1090 static inline uint32_t
 1091 ptr32_trim(void *ptr)
 1092 {
 1093         uintptr_t uptr;
 1094 
 1095         uptr = (uintptr_t)ptr;
 1096         return ((uptr > UINT_MAX) ? 0 : uptr);
 1097 }
 1098 
 1099 #define PTRTRIM_CP(src,dst,fld) \
 1100         do { (dst).fld = ptr32_trim((src).fld); } while (0)
 1101 
 1102 static void
 1103 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
 1104 {
 1105         int i;
 1106 
 1107         bzero(ki32, sizeof(struct kinfo_proc32));
 1108         ki32->ki_structsize = sizeof(struct kinfo_proc32);
 1109         CP(*ki, *ki32, ki_layout);
 1110         PTRTRIM_CP(*ki, *ki32, ki_args);
 1111         PTRTRIM_CP(*ki, *ki32, ki_paddr);
 1112         PTRTRIM_CP(*ki, *ki32, ki_addr);
 1113         PTRTRIM_CP(*ki, *ki32, ki_tracep);
 1114         PTRTRIM_CP(*ki, *ki32, ki_textvp);
 1115         PTRTRIM_CP(*ki, *ki32, ki_fd);
 1116         PTRTRIM_CP(*ki, *ki32, ki_vmspace);
 1117         PTRTRIM_CP(*ki, *ki32, ki_wchan);
 1118         CP(*ki, *ki32, ki_pid);
 1119         CP(*ki, *ki32, ki_ppid);
 1120         CP(*ki, *ki32, ki_pgid);
 1121         CP(*ki, *ki32, ki_tpgid);
 1122         CP(*ki, *ki32, ki_sid);
 1123         CP(*ki, *ki32, ki_tsid);
 1124         CP(*ki, *ki32, ki_jobc);
 1125         CP(*ki, *ki32, ki_tdev);
 1126         CP(*ki, *ki32, ki_siglist);
 1127         CP(*ki, *ki32, ki_sigmask);
 1128         CP(*ki, *ki32, ki_sigignore);
 1129         CP(*ki, *ki32, ki_sigcatch);
 1130         CP(*ki, *ki32, ki_uid);
 1131         CP(*ki, *ki32, ki_ruid);
 1132         CP(*ki, *ki32, ki_svuid);
 1133         CP(*ki, *ki32, ki_rgid);
 1134         CP(*ki, *ki32, ki_svgid);
 1135         CP(*ki, *ki32, ki_ngroups);
 1136         for (i = 0; i < KI_NGROUPS; i++)
 1137                 CP(*ki, *ki32, ki_groups[i]);
 1138         CP(*ki, *ki32, ki_size);
 1139         CP(*ki, *ki32, ki_rssize);
 1140         CP(*ki, *ki32, ki_swrss);
 1141         CP(*ki, *ki32, ki_tsize);
 1142         CP(*ki, *ki32, ki_dsize);
 1143         CP(*ki, *ki32, ki_ssize);
 1144         CP(*ki, *ki32, ki_xstat);
 1145         CP(*ki, *ki32, ki_acflag);
 1146         CP(*ki, *ki32, ki_pctcpu);
 1147         CP(*ki, *ki32, ki_estcpu);
 1148         CP(*ki, *ki32, ki_slptime);
 1149         CP(*ki, *ki32, ki_swtime);
 1150         CP(*ki, *ki32, ki_cow);
 1151         CP(*ki, *ki32, ki_runtime);
 1152         TV_CP(*ki, *ki32, ki_start);
 1153         TV_CP(*ki, *ki32, ki_childtime);
 1154         CP(*ki, *ki32, ki_flag);
 1155         CP(*ki, *ki32, ki_kiflag);
 1156         CP(*ki, *ki32, ki_traceflag);
 1157         CP(*ki, *ki32, ki_stat);
 1158         CP(*ki, *ki32, ki_nice);
 1159         CP(*ki, *ki32, ki_lock);
 1160         CP(*ki, *ki32, ki_rqindex);
 1161         CP(*ki, *ki32, ki_oncpu);
 1162         CP(*ki, *ki32, ki_lastcpu);
 1163         bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
 1164         bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
 1165         bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
 1166         bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
 1167         bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
 1168         bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
 1169         bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
 1170         CP(*ki, *ki32, ki_flag2);
 1171         CP(*ki, *ki32, ki_fibnum);
 1172         CP(*ki, *ki32, ki_cr_flags);
 1173         CP(*ki, *ki32, ki_jid);
 1174         CP(*ki, *ki32, ki_numthreads);
 1175         CP(*ki, *ki32, ki_tid);
 1176         CP(*ki, *ki32, ki_pri);
 1177         freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
 1178         freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
 1179         PTRTRIM_CP(*ki, *ki32, ki_pcb);
 1180         PTRTRIM_CP(*ki, *ki32, ki_kstack);
 1181         PTRTRIM_CP(*ki, *ki32, ki_udata);
 1182         CP(*ki, *ki32, ki_sflag);
 1183         CP(*ki, *ki32, ki_tdflags);
 1184 }
 1185 #endif
 1186 
 1187 int
 1188 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
 1189 {
 1190         struct thread *td;
 1191         struct kinfo_proc ki;
 1192 #ifdef COMPAT_FREEBSD32
 1193         struct kinfo_proc32 ki32;
 1194 #endif
 1195         int error;
 1196 
 1197         PROC_LOCK_ASSERT(p, MA_OWNED);
 1198         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1199 
 1200         error = 0;
 1201         fill_kinfo_proc(p, &ki);
 1202         if ((flags & KERN_PROC_NOTHREADS) != 0) {
 1203 #ifdef COMPAT_FREEBSD32
 1204                 if ((flags & KERN_PROC_MASK32) != 0) {
 1205                         freebsd32_kinfo_proc_out(&ki, &ki32);
 1206                         error = sbuf_bcat(sb, &ki32, sizeof(ki32));
 1207                 } else
 1208 #endif
 1209                         error = sbuf_bcat(sb, &ki, sizeof(ki));
 1210         } else {
 1211                 FOREACH_THREAD_IN_PROC(p, td) {
 1212                         fill_kinfo_thread(td, &ki, 1);
 1213 #ifdef COMPAT_FREEBSD32
 1214                         if ((flags & KERN_PROC_MASK32) != 0) {
 1215                                 freebsd32_kinfo_proc_out(&ki, &ki32);
 1216                                 error = sbuf_bcat(sb, &ki32, sizeof(ki32));
 1217                         } else
 1218 #endif
 1219                                 error = sbuf_bcat(sb, &ki, sizeof(ki));
 1220                         if (error)
 1221                                 break;
 1222                 }
 1223         }
 1224         PROC_UNLOCK(p);
 1225         return (error);
 1226 }
 1227 
 1228 static int
 1229 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
 1230     int doingzomb)
 1231 {
 1232         struct sbuf sb;
 1233         struct kinfo_proc ki;
 1234         struct proc *np;
 1235         int error, error2;
 1236         pid_t pid;
 1237 
 1238         pid = p->p_pid;
 1239         sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
 1240         error = kern_proc_out(p, &sb, flags);
 1241         error2 = sbuf_finish(&sb);
 1242         sbuf_delete(&sb);
 1243         if (error != 0)
 1244                 return (error);
 1245         else if (error2 != 0)
 1246                 return (error2);
 1247         if (doingzomb)
 1248                 np = zpfind(pid);
 1249         else {
 1250                 if (pid == 0)
 1251                         return (0);
 1252                 np = pfind(pid);
 1253         }
 1254         if (np == NULL)
 1255                 return (ESRCH);
 1256         if (np != p) {
 1257                 PROC_UNLOCK(np);
 1258                 return (ESRCH);
 1259         }
 1260         PROC_UNLOCK(np);
 1261         return (0);
 1262 }
 1263 
 1264 static int
 1265 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
 1266 {
 1267         int *name = (int *)arg1;
 1268         u_int namelen = arg2;
 1269         struct proc *p;
 1270         int flags, doingzomb, oid_number;
 1271         int error = 0;
 1272 
 1273         oid_number = oidp->oid_number;
 1274         if (oid_number != KERN_PROC_ALL &&
 1275             (oid_number & KERN_PROC_INC_THREAD) == 0)
 1276                 flags = KERN_PROC_NOTHREADS;
 1277         else {
 1278                 flags = 0;
 1279                 oid_number &= ~KERN_PROC_INC_THREAD;
 1280         }
 1281 #ifdef COMPAT_FREEBSD32
 1282         if (req->flags & SCTL_MASK32)
 1283                 flags |= KERN_PROC_MASK32;
 1284 #endif
 1285         if (oid_number == KERN_PROC_PID) {
 1286                 if (namelen != 1)
 1287                         return (EINVAL);
 1288                 error = sysctl_wire_old_buffer(req, 0);
 1289                 if (error)
 1290                         return (error);
 1291                 error = pget((pid_t)name[0], PGET_CANSEE, &p);
 1292                 if (error != 0)
 1293                         return (error);
 1294                 error = sysctl_out_proc(p, req, flags, 0);
 1295                 return (error);
 1296         }
 1297 
 1298         switch (oid_number) {
 1299         case KERN_PROC_ALL:
 1300                 if (namelen != 0)
 1301                         return (EINVAL);
 1302                 break;
 1303         case KERN_PROC_PROC:
 1304                 if (namelen != 0 && namelen != 1)
 1305                         return (EINVAL);
 1306                 break;
 1307         default:
 1308                 if (namelen != 1)
 1309                         return (EINVAL);
 1310                 break;
 1311         }
 1312 
 1313         if (!req->oldptr) {
 1314                 /* overestimate by 5 procs */
 1315                 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
 1316                 if (error)
 1317                         return (error);
 1318         }
 1319         error = sysctl_wire_old_buffer(req, 0);
 1320         if (error != 0)
 1321                 return (error);
 1322         sx_slock(&allproc_lock);
 1323         for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
 1324                 if (!doingzomb)
 1325                         p = LIST_FIRST(&allproc);
 1326                 else
 1327                         p = LIST_FIRST(&zombproc);
 1328                 for (; p != 0; p = LIST_NEXT(p, p_list)) {
 1329                         /*
 1330                          * Skip embryonic processes.
 1331                          */
 1332                         PROC_LOCK(p);
 1333                         if (p->p_state == PRS_NEW) {
 1334                                 PROC_UNLOCK(p);
 1335                                 continue;
 1336                         }
 1337                         KASSERT(p->p_ucred != NULL,
 1338                             ("process credential is NULL for non-NEW proc"));
 1339                         /*
 1340                          * Show a user only appropriate processes.
 1341                          */
 1342                         if (p_cansee(curthread, p)) {
 1343                                 PROC_UNLOCK(p);
 1344                                 continue;
 1345                         }
 1346                         /*
 1347                          * TODO - make more efficient (see notes below).
 1348                          * do by session.
 1349                          */
 1350                         switch (oid_number) {
 1351 
 1352                         case KERN_PROC_GID:
 1353                                 if (p->p_ucred->cr_gid != (gid_t)name[0]) {
 1354                                         PROC_UNLOCK(p);
 1355                                         continue;
 1356                                 }
 1357                                 break;
 1358 
 1359                         case KERN_PROC_PGRP:
 1360                                 /* could do this by traversing pgrp */
 1361                                 if (p->p_pgrp == NULL ||
 1362                                     p->p_pgrp->pg_id != (pid_t)name[0]) {
 1363                                         PROC_UNLOCK(p);
 1364                                         continue;
 1365                                 }
 1366                                 break;
 1367 
 1368                         case KERN_PROC_RGID:
 1369                                 if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
 1370                                         PROC_UNLOCK(p);
 1371                                         continue;
 1372                                 }
 1373                                 break;
 1374 
 1375                         case KERN_PROC_SESSION:
 1376                                 if (p->p_session == NULL ||
 1377                                     p->p_session->s_sid != (pid_t)name[0]) {
 1378                                         PROC_UNLOCK(p);
 1379                                         continue;
 1380                                 }
 1381                                 break;
 1382 
 1383                         case KERN_PROC_TTY:
 1384                                 if ((p->p_flag & P_CONTROLT) == 0 ||
 1385                                     p->p_session == NULL) {
 1386                                         PROC_UNLOCK(p);
 1387                                         continue;
 1388                                 }
 1389                                 /* XXX proctree_lock */
 1390                                 SESS_LOCK(p->p_session);
 1391                                 if (p->p_session->s_ttyp == NULL ||
 1392                                     tty_udev(p->p_session->s_ttyp) !=
 1393                                     (dev_t)name[0]) {
 1394                                         SESS_UNLOCK(p->p_session);
 1395                                         PROC_UNLOCK(p);
 1396                                         continue;
 1397                                 }
 1398                                 SESS_UNLOCK(p->p_session);
 1399                                 break;
 1400 
 1401                         case KERN_PROC_UID:
 1402                                 if (p->p_ucred->cr_uid != (uid_t)name[0]) {
 1403                                         PROC_UNLOCK(p);
 1404                                         continue;
 1405                                 }
 1406                                 break;
 1407 
 1408                         case KERN_PROC_RUID:
 1409                                 if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
 1410                                         PROC_UNLOCK(p);
 1411                                         continue;
 1412                                 }
 1413                                 break;
 1414 
 1415                         case KERN_PROC_PROC:
 1416                                 break;
 1417 
 1418                         default:
 1419                                 break;
 1420 
 1421                         }
 1422 
 1423                         error = sysctl_out_proc(p, req, flags, doingzomb);
 1424                         if (error) {
 1425                                 sx_sunlock(&allproc_lock);
 1426                                 return (error);
 1427                         }
 1428                 }
 1429         }
 1430         sx_sunlock(&allproc_lock);
 1431         return (0);
 1432 }
 1433 
 1434 struct pargs *
 1435 pargs_alloc(int len)
 1436 {
 1437         struct pargs *pa;
 1438 
 1439         pa = malloc(sizeof(struct pargs) + len, M_PARGS,
 1440                 M_WAITOK);
 1441         refcount_init(&pa->ar_ref, 1);
 1442         pa->ar_length = len;
 1443         return (pa);
 1444 }
 1445 
 1446 static void
 1447 pargs_free(struct pargs *pa)
 1448 {
 1449 
 1450         free(pa, M_PARGS);
 1451 }
 1452 
 1453 void
 1454 pargs_hold(struct pargs *pa)
 1455 {
 1456 
 1457         if (pa == NULL)
 1458                 return;
 1459         refcount_acquire(&pa->ar_ref);
 1460 }
 1461 
 1462 void
 1463 pargs_drop(struct pargs *pa)
 1464 {
 1465 
 1466         if (pa == NULL)
 1467                 return;
 1468         if (refcount_release(&pa->ar_ref))
 1469                 pargs_free(pa);
 1470 }
 1471 
 1472 static int
 1473 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf,
 1474     size_t len)
 1475 {
 1476         struct iovec iov;
 1477         struct uio uio;
 1478 
 1479         iov.iov_base = (caddr_t)buf;
 1480         iov.iov_len = len;
 1481         uio.uio_iov = &iov;
 1482         uio.uio_iovcnt = 1;
 1483         uio.uio_offset = offset;
 1484         uio.uio_resid = (ssize_t)len;
 1485         uio.uio_segflg = UIO_SYSSPACE;
 1486         uio.uio_rw = UIO_READ;
 1487         uio.uio_td = td;
 1488 
 1489         return (proc_rwmem(p, &uio));
 1490 }
 1491 
 1492 static int
 1493 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
 1494     size_t len)
 1495 {
 1496         size_t i;
 1497         int error;
 1498 
 1499         error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len);
 1500         /*
 1501          * Reading the chunk may validly return EFAULT if the string is shorter
 1502          * than the chunk and is aligned at the end of the page, assuming the
 1503          * next page is not mapped.  So if EFAULT is returned do a fallback to
 1504          * one byte read loop.
 1505          */
 1506         if (error == EFAULT) {
 1507                 for (i = 0; i < len; i++, buf++, sptr++) {
 1508                         error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1);
 1509                         if (error != 0)
 1510                                 return (error);
 1511                         if (*buf == '\0')
 1512                                 break;
 1513                 }
 1514                 error = 0;
 1515         }
 1516         return (error);
 1517 }
 1518 
 1519 #define PROC_AUXV_MAX   256     /* Safety limit on auxv size. */
 1520 
 1521 enum proc_vector_type {
 1522         PROC_ARG,
 1523         PROC_ENV,
 1524         PROC_AUX,
 1525 };
 1526 
 1527 #ifdef COMPAT_FREEBSD32
 1528 static int
 1529 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
 1530     size_t *vsizep, enum proc_vector_type type)
 1531 {
 1532         struct freebsd32_ps_strings pss;
 1533         Elf32_Auxinfo aux;
 1534         vm_offset_t vptr, ptr;
 1535         uint32_t *proc_vector32;
 1536         char **proc_vector;
 1537         size_t vsize, size;
 1538         int i, error;
 1539 
 1540         error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
 1541             &pss, sizeof(pss));
 1542         if (error != 0)
 1543                 return (error);
 1544         switch (type) {
 1545         case PROC_ARG:
 1546                 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
 1547                 vsize = pss.ps_nargvstr;
 1548                 if (vsize > ARG_MAX)
 1549                         return (ENOEXEC);
 1550                 size = vsize * sizeof(int32_t);
 1551                 break;
 1552         case PROC_ENV:
 1553                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
 1554                 vsize = pss.ps_nenvstr;
 1555                 if (vsize > ARG_MAX)
 1556                         return (ENOEXEC);
 1557                 size = vsize * sizeof(int32_t);
 1558                 break;
 1559         case PROC_AUX:
 1560                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
 1561                     (pss.ps_nenvstr + 1) * sizeof(int32_t);
 1562                 if (vptr % 4 != 0)
 1563                         return (ENOEXEC);
 1564                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 1565                         error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
 1566                         if (error != 0)
 1567                                 return (error);
 1568                         if (aux.a_type == AT_NULL)
 1569                                 break;
 1570                         ptr += sizeof(aux);
 1571                 }
 1572                 if (aux.a_type != AT_NULL)
 1573                         return (ENOEXEC);
 1574                 vsize = i + 1;
 1575                 size = vsize * sizeof(aux);
 1576                 break;
 1577         default:
 1578                 KASSERT(0, ("Wrong proc vector type: %d", type));
 1579                 return (EINVAL);
 1580         }
 1581         proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
 1582         error = proc_read_mem(td, p, vptr, proc_vector32, size);
 1583         if (error != 0)
 1584                 goto done;
 1585         if (type == PROC_AUX) {
 1586                 *proc_vectorp = (char **)proc_vector32;
 1587                 *vsizep = vsize;
 1588                 return (0);
 1589         }
 1590         proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
 1591         for (i = 0; i < (int)vsize; i++)
 1592                 proc_vector[i] = PTRIN(proc_vector32[i]);
 1593         *proc_vectorp = proc_vector;
 1594         *vsizep = vsize;
 1595 done:
 1596         free(proc_vector32, M_TEMP);
 1597         return (error);
 1598 }
 1599 #endif
 1600 
 1601 static int
 1602 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
 1603     size_t *vsizep, enum proc_vector_type type)
 1604 {
 1605         struct ps_strings pss;
 1606         Elf_Auxinfo aux;
 1607         vm_offset_t vptr, ptr;
 1608         char **proc_vector;
 1609         size_t vsize, size;
 1610         int error, i;
 1611 
 1612 #ifdef COMPAT_FREEBSD32
 1613         if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 1614                 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
 1615 #endif
 1616         error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
 1617             &pss, sizeof(pss));
 1618         if (error != 0)
 1619                 return (error);
 1620         switch (type) {
 1621         case PROC_ARG:
 1622                 vptr = (vm_offset_t)pss.ps_argvstr;
 1623                 vsize = pss.ps_nargvstr;
 1624                 if (vsize > ARG_MAX)
 1625                         return (ENOEXEC);
 1626                 size = vsize * sizeof(char *);
 1627                 break;
 1628         case PROC_ENV:
 1629                 vptr = (vm_offset_t)pss.ps_envstr;
 1630                 vsize = pss.ps_nenvstr;
 1631                 if (vsize > ARG_MAX)
 1632                         return (ENOEXEC);
 1633                 size = vsize * sizeof(char *);
 1634                 break;
 1635         case PROC_AUX:
 1636                 /*
 1637                  * The aux array is just above env array on the stack. Check
 1638                  * that the address is naturally aligned.
 1639                  */
 1640                 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
 1641                     * sizeof(char *);
 1642 #if __ELF_WORD_SIZE == 64
 1643                 if (vptr % sizeof(uint64_t) != 0)
 1644 #else
 1645                 if (vptr % sizeof(uint32_t) != 0)
 1646 #endif
 1647                         return (ENOEXEC);
 1648                 /*
 1649                  * We count the array size reading the aux vectors from the
 1650                  * stack until AT_NULL vector is returned.  So (to keep the code
 1651                  * simple) we read the process stack twice: the first time here
 1652                  * to find the size and the second time when copying the vectors
 1653                  * to the allocated proc_vector.
 1654                  */
 1655                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 1656                         error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
 1657                         if (error != 0)
 1658                                 return (error);
 1659                         if (aux.a_type == AT_NULL)
 1660                                 break;
 1661                         ptr += sizeof(aux);
 1662                 }
 1663                 /*
 1664                  * If the PROC_AUXV_MAX entries are iterated over, and we have
 1665                  * not reached AT_NULL, it is most likely we are reading wrong
 1666                  * data: either the process doesn't have auxv array or data has
 1667                  * been modified. Return the error in this case.
 1668                  */
 1669                 if (aux.a_type != AT_NULL)
 1670                         return (ENOEXEC);
 1671                 vsize = i + 1;
 1672                 size = vsize * sizeof(aux);
 1673                 break;
 1674         default:
 1675                 KASSERT(0, ("Wrong proc vector type: %d", type));
 1676                 return (EINVAL); /* In case we are built without INVARIANTS. */
 1677         }
 1678         proc_vector = malloc(size, M_TEMP, M_WAITOK);
 1679         if (proc_vector == NULL)
 1680                 return (ENOMEM);
 1681         error = proc_read_mem(td, p, vptr, proc_vector, size);
 1682         if (error != 0) {
 1683                 free(proc_vector, M_TEMP);
 1684                 return (error);
 1685         }
 1686         *proc_vectorp = proc_vector;
 1687         *vsizep = vsize;
 1688 
 1689         return (0);
 1690 }
 1691 
 1692 #define GET_PS_STRINGS_CHUNK_SZ 256     /* Chunk size (bytes) for ps_strings operations. */
 1693 
 1694 static int
 1695 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
 1696     enum proc_vector_type type)
 1697 {
 1698         size_t done, len, nchr, vsize;
 1699         int error, i;
 1700         char **proc_vector, *sptr;
 1701         char pss_string[GET_PS_STRINGS_CHUNK_SZ];
 1702 
 1703         PROC_ASSERT_HELD(p);
 1704 
 1705         /*
 1706          * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
 1707          */
 1708         nchr = 2 * (PATH_MAX + ARG_MAX);
 1709 
 1710         error = get_proc_vector(td, p, &proc_vector, &vsize, type);
 1711         if (error != 0)
 1712                 return (error);
 1713         for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
 1714                 /*
 1715                  * The program may have scribbled into its argv array, e.g. to
 1716                  * remove some arguments.  If that has happened, break out
 1717                  * before trying to read from NULL.
 1718                  */
 1719                 if (proc_vector[i] == NULL)
 1720                         break;
 1721                 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
 1722                         error = proc_read_string(td, p, sptr, pss_string,
 1723                             sizeof(pss_string));
 1724                         if (error != 0)
 1725                                 goto done;
 1726                         len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
 1727                         if (done + len >= nchr)
 1728                                 len = nchr - done - 1;
 1729                         sbuf_bcat(sb, pss_string, len);
 1730                         if (len != GET_PS_STRINGS_CHUNK_SZ)
 1731                                 break;
 1732                         done += GET_PS_STRINGS_CHUNK_SZ;
 1733                 }
 1734                 sbuf_bcat(sb, "", 1);
 1735                 done += len + 1;
 1736         }
 1737 done:
 1738         free(proc_vector, M_TEMP);
 1739         return (error);
 1740 }
 1741 
 1742 int
 1743 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
 1744 {
 1745 
 1746         return (get_ps_strings(curthread, p, sb, PROC_ARG));
 1747 }
 1748 
 1749 int
 1750 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
 1751 {
 1752 
 1753         return (get_ps_strings(curthread, p, sb, PROC_ENV));
 1754 }
 1755 
 1756 int
 1757 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
 1758 {
 1759         size_t vsize, size;
 1760         char **auxv;
 1761         int error;
 1762 
 1763         error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
 1764         if (error == 0) {
 1765 #ifdef COMPAT_FREEBSD32
 1766                 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 1767                         size = vsize * sizeof(Elf32_Auxinfo);
 1768                 else
 1769 #endif
 1770                         size = vsize * sizeof(Elf_Auxinfo);
 1771                 error = sbuf_bcat(sb, auxv, size);
 1772                 free(auxv, M_TEMP);
 1773         }
 1774         return (error);
 1775 }
 1776 
 1777 /*
 1778  * This sysctl allows a process to retrieve the argument list or process
 1779  * title for another process without groping around in the address space
 1780  * of the other process.  It also allow a process to set its own "process 
 1781  * title to a string of its own choice.
 1782  */
 1783 static int
 1784 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
 1785 {
 1786         int *name = (int *)arg1;
 1787         u_int namelen = arg2;
 1788         struct pargs *newpa, *pa;
 1789         struct proc *p;
 1790         struct sbuf sb;
 1791         int flags, error = 0, error2;
 1792 
 1793         if (namelen != 1)
 1794                 return (EINVAL);
 1795 
 1796         flags = PGET_CANSEE;
 1797         if (req->newptr != NULL)
 1798                 flags |= PGET_ISCURRENT;
 1799         error = pget((pid_t)name[0], flags, &p);
 1800         if (error)
 1801                 return (error);
 1802 
 1803         pa = p->p_args;
 1804         if (pa != NULL) {
 1805                 pargs_hold(pa);
 1806                 PROC_UNLOCK(p);
 1807                 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
 1808                 pargs_drop(pa);
 1809         } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
 1810                 _PHOLD(p);
 1811                 PROC_UNLOCK(p);
 1812                 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1813                 error = proc_getargv(curthread, p, &sb);
 1814                 error2 = sbuf_finish(&sb);
 1815                 PRELE(p);
 1816                 sbuf_delete(&sb);
 1817                 if (error == 0 && error2 != 0)
 1818                         error = error2;
 1819         } else {
 1820                 PROC_UNLOCK(p);
 1821         }
 1822         if (error != 0 || req->newptr == NULL)
 1823                 return (error);
 1824 
 1825         if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
 1826                 return (ENOMEM);
 1827         newpa = pargs_alloc(req->newlen);
 1828         error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
 1829         if (error != 0) {
 1830                 pargs_free(newpa);
 1831                 return (error);
 1832         }
 1833         PROC_LOCK(p);
 1834         pa = p->p_args;
 1835         p->p_args = newpa;
 1836         PROC_UNLOCK(p);
 1837         pargs_drop(pa);
 1838         return (0);
 1839 }
 1840 
 1841 /*
 1842  * This sysctl allows a process to retrieve environment of another process.
 1843  */
 1844 static int
 1845 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
 1846 {
 1847         int *name = (int *)arg1;
 1848         u_int namelen = arg2;
 1849         struct proc *p;
 1850         struct sbuf sb;
 1851         int error, error2;
 1852 
 1853         if (namelen != 1)
 1854                 return (EINVAL);
 1855 
 1856         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1857         if (error != 0)
 1858                 return (error);
 1859         if ((p->p_flag & P_SYSTEM) != 0) {
 1860                 PRELE(p);
 1861                 return (0);
 1862         }
 1863 
 1864         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1865         error = proc_getenvv(curthread, p, &sb);
 1866         error2 = sbuf_finish(&sb);
 1867         PRELE(p);
 1868         sbuf_delete(&sb);
 1869         return (error != 0 ? error : error2);
 1870 }
 1871 
 1872 /*
 1873  * This sysctl allows a process to retrieve ELF auxiliary vector of
 1874  * another process.
 1875  */
 1876 static int
 1877 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
 1878 {
 1879         int *name = (int *)arg1;
 1880         u_int namelen = arg2;
 1881         struct proc *p;
 1882         struct sbuf sb;
 1883         int error, error2;
 1884 
 1885         if (namelen != 1)
 1886                 return (EINVAL);
 1887 
 1888         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1889         if (error != 0)
 1890                 return (error);
 1891         if ((p->p_flag & P_SYSTEM) != 0) {
 1892                 PRELE(p);
 1893                 return (0);
 1894         }
 1895         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1896         error = proc_getauxv(curthread, p, &sb);
 1897         error2 = sbuf_finish(&sb);
 1898         PRELE(p);
 1899         sbuf_delete(&sb);
 1900         return (error != 0 ? error : error2);
 1901 }
 1902 
 1903 /*
 1904  * This sysctl allows a process to retrieve the path of the executable for
 1905  * itself or another process.
 1906  */
 1907 static int
 1908 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
 1909 {
 1910         pid_t *pidp = (pid_t *)arg1;
 1911         unsigned int arglen = arg2;
 1912         struct proc *p;
 1913         struct vnode *vp;
 1914         char *retbuf, *freebuf;
 1915         int error;
 1916 
 1917         if (arglen != 1)
 1918                 return (EINVAL);
 1919         if (*pidp == -1) {      /* -1 means this process */
 1920                 p = req->td->td_proc;
 1921         } else {
 1922                 error = pget(*pidp, PGET_CANSEE, &p);
 1923                 if (error != 0)
 1924                         return (error);
 1925         }
 1926 
 1927         vp = p->p_textvp;
 1928         if (vp == NULL) {
 1929                 if (*pidp != -1)
 1930                         PROC_UNLOCK(p);
 1931                 return (0);
 1932         }
 1933         vref(vp);
 1934         if (*pidp != -1)
 1935                 PROC_UNLOCK(p);
 1936         error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
 1937         vrele(vp);
 1938         if (error)
 1939                 return (error);
 1940         error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
 1941         free(freebuf, M_TEMP);
 1942         return (error);
 1943 }
 1944 
 1945 static int
 1946 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
 1947 {
 1948         struct proc *p;
 1949         char *sv_name;
 1950         int *name;
 1951         int namelen;
 1952         int error;
 1953 
 1954         namelen = arg2;
 1955         if (namelen != 1)
 1956                 return (EINVAL);
 1957 
 1958         name = (int *)arg1;
 1959         error = pget((pid_t)name[0], PGET_CANSEE, &p);
 1960         if (error != 0)
 1961                 return (error);
 1962         sv_name = p->p_sysent->sv_name;
 1963         PROC_UNLOCK(p);
 1964         return (sysctl_handle_string(oidp, sv_name, 0, req));
 1965 }
 1966 
 1967 #ifdef KINFO_OVMENTRY_SIZE
 1968 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
 1969 #endif
 1970 
 1971 #ifdef COMPAT_FREEBSD7
 1972 static int
 1973 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
 1974 {
 1975         vm_map_entry_t entry, tmp_entry;
 1976         unsigned int last_timestamp;
 1977         char *fullpath, *freepath;
 1978         struct kinfo_ovmentry *kve;
 1979         struct vattr va;
 1980         struct ucred *cred;
 1981         int error, *name;
 1982         struct vnode *vp;
 1983         struct proc *p;
 1984         vm_map_t map;
 1985         struct vmspace *vm;
 1986 
 1987         name = (int *)arg1;
 1988         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1989         if (error != 0)
 1990                 return (error);
 1991         vm = vmspace_acquire_ref(p);
 1992         if (vm == NULL) {
 1993                 PRELE(p);
 1994                 return (ESRCH);
 1995         }
 1996         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
 1997 
 1998         map = &vm->vm_map;
 1999         vm_map_lock_read(map);
 2000         for (entry = map->header.next; entry != &map->header;
 2001             entry = entry->next) {
 2002                 vm_object_t obj, tobj, lobj;
 2003                 vm_offset_t addr;
 2004 
 2005                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 2006                         continue;
 2007 
 2008                 bzero(kve, sizeof(*kve));
 2009                 kve->kve_structsize = sizeof(*kve);
 2010 
 2011                 kve->kve_private_resident = 0;
 2012                 obj = entry->object.vm_object;
 2013                 if (obj != NULL) {
 2014                         VM_OBJECT_RLOCK(obj);
 2015                         if (obj->shadow_count == 1)
 2016                                 kve->kve_private_resident =
 2017                                     obj->resident_page_count;
 2018                 }
 2019                 kve->kve_resident = 0;
 2020                 addr = entry->start;
 2021                 while (addr < entry->end) {
 2022                         if (pmap_extract(map->pmap, addr))
 2023                                 kve->kve_resident++;
 2024                         addr += PAGE_SIZE;
 2025                 }
 2026 
 2027                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
 2028                         if (tobj != obj)
 2029                                 VM_OBJECT_RLOCK(tobj);
 2030                         if (lobj != obj)
 2031                                 VM_OBJECT_RUNLOCK(lobj);
 2032                         lobj = tobj;
 2033                 }
 2034 
 2035                 kve->kve_start = (void*)entry->start;
 2036                 kve->kve_end = (void*)entry->end;
 2037                 kve->kve_offset = (off_t)entry->offset;
 2038 
 2039                 if (entry->protection & VM_PROT_READ)
 2040                         kve->kve_protection |= KVME_PROT_READ;
 2041                 if (entry->protection & VM_PROT_WRITE)
 2042                         kve->kve_protection |= KVME_PROT_WRITE;
 2043                 if (entry->protection & VM_PROT_EXECUTE)
 2044                         kve->kve_protection |= KVME_PROT_EXEC;
 2045 
 2046                 if (entry->eflags & MAP_ENTRY_COW)
 2047                         kve->kve_flags |= KVME_FLAG_COW;
 2048                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 2049                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 2050                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 2051                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 2052 
 2053                 last_timestamp = map->timestamp;
 2054                 vm_map_unlock_read(map);
 2055 
 2056                 kve->kve_fileid = 0;
 2057                 kve->kve_fsid = 0;
 2058                 freepath = NULL;
 2059                 fullpath = "";
 2060                 if (lobj) {
 2061                         vp = NULL;
 2062                         switch (lobj->type) {
 2063                         case OBJT_DEFAULT:
 2064                                 kve->kve_type = KVME_TYPE_DEFAULT;
 2065                                 break;
 2066                         case OBJT_VNODE:
 2067                                 kve->kve_type = KVME_TYPE_VNODE;
 2068                                 vp = lobj->handle;
 2069                                 vref(vp);
 2070                                 break;
 2071                         case OBJT_SWAP:
 2072                                 kve->kve_type = KVME_TYPE_SWAP;
 2073                                 break;
 2074                         case OBJT_DEVICE:
 2075                                 kve->kve_type = KVME_TYPE_DEVICE;
 2076                                 break;
 2077                         case OBJT_PHYS:
 2078                                 kve->kve_type = KVME_TYPE_PHYS;
 2079                                 break;
 2080                         case OBJT_DEAD:
 2081                                 kve->kve_type = KVME_TYPE_DEAD;
 2082                                 break;
 2083                         case OBJT_SG:
 2084                                 kve->kve_type = KVME_TYPE_SG;
 2085                                 break;
 2086                         default:
 2087                                 kve->kve_type = KVME_TYPE_UNKNOWN;
 2088                                 break;
 2089                         }
 2090                         if (lobj != obj)
 2091                                 VM_OBJECT_RUNLOCK(lobj);
 2092 
 2093                         kve->kve_ref_count = obj->ref_count;
 2094                         kve->kve_shadow_count = obj->shadow_count;
 2095                         VM_OBJECT_RUNLOCK(obj);
 2096                         if (vp != NULL) {
 2097                                 vn_fullpath(curthread, vp, &fullpath,
 2098                                     &freepath);
 2099                                 cred = curthread->td_ucred;
 2100                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2101                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 2102                                         kve->kve_fileid = va.va_fileid;
 2103                                         kve->kve_fsid = va.va_fsid;
 2104                                 }
 2105                                 vput(vp);
 2106                         }
 2107                 } else {
 2108                         kve->kve_type = KVME_TYPE_NONE;
 2109                         kve->kve_ref_count = 0;
 2110                         kve->kve_shadow_count = 0;
 2111                 }
 2112 
 2113                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 2114                 if (freepath != NULL)
 2115                         free(freepath, M_TEMP);
 2116 
 2117                 error = SYSCTL_OUT(req, kve, sizeof(*kve));
 2118                 vm_map_lock_read(map);
 2119                 if (error)
 2120                         break;
 2121                 if (last_timestamp != map->timestamp) {
 2122                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 2123                         entry = tmp_entry;
 2124                 }
 2125         }
 2126         vm_map_unlock_read(map);
 2127         vmspace_free(vm);
 2128         PRELE(p);
 2129         free(kve, M_TEMP);
 2130         return (error);
 2131 }
 2132 #endif  /* COMPAT_FREEBSD7 */
 2133 
 2134 #ifdef KINFO_VMENTRY_SIZE
 2135 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
 2136 #endif
 2137 
 2138 static void
 2139 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
 2140     struct kinfo_vmentry *kve)
 2141 {
 2142         vm_object_t obj, tobj;
 2143         vm_page_t m, m_adv;
 2144         vm_offset_t addr;
 2145         vm_paddr_t locked_pa;
 2146         vm_pindex_t pi, pi_adv, pindex;
 2147 
 2148         locked_pa = 0;
 2149         obj = entry->object.vm_object;
 2150         addr = entry->start;
 2151         m_adv = NULL;
 2152         pi = OFF_TO_IDX(entry->offset);
 2153         for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
 2154                 if (m_adv != NULL) {
 2155                         m = m_adv;
 2156                 } else {
 2157                         pi_adv = OFF_TO_IDX(entry->end - addr);
 2158                         pindex = pi;
 2159                         for (tobj = obj;; tobj = tobj->backing_object) {
 2160                                 m = vm_page_find_least(tobj, pindex);
 2161                                 if (m != NULL) {
 2162                                         if (m->pindex == pindex)
 2163                                                 break;
 2164                                         if (pi_adv > m->pindex - pindex) {
 2165                                                 pi_adv = m->pindex - pindex;
 2166                                                 m_adv = m;
 2167                                         }
 2168                                 }
 2169                                 if (tobj->backing_object == NULL)
 2170                                         goto next;
 2171                                 pindex += OFF_TO_IDX(tobj->
 2172                                     backing_object_offset);
 2173                         }
 2174                 }
 2175                 m_adv = NULL;
 2176                 if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
 2177                     (addr & (pagesizes[1] - 1)) == 0 &&
 2178                     (pmap_mincore(map->pmap, addr, &locked_pa) &
 2179                     MINCORE_SUPER) != 0) {
 2180                         kve->kve_flags |= KVME_FLAG_SUPER;
 2181                         pi_adv = OFF_TO_IDX(pagesizes[1]);
 2182                 } else {
 2183                         /*
 2184                          * We do not test the found page on validity.
 2185                          * Either the page is busy and being paged in,
 2186                          * or it was invalidated.  The first case
 2187                          * should be counted as resident, the second
 2188                          * is not so clear; we do account both.
 2189                          */
 2190                         pi_adv = 1;
 2191                 }
 2192                 kve->kve_resident += pi_adv;
 2193 next:;
 2194         }
 2195         PA_UNLOCK_COND(locked_pa);
 2196 }
 2197 
 2198 /*
 2199  * Must be called with the process locked and will return unlocked.
 2200  */
 2201 int
 2202 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb)
 2203 {
 2204         vm_map_entry_t entry, tmp_entry;
 2205         struct vattr va;
 2206         vm_map_t map;
 2207         vm_object_t obj, tobj, lobj;
 2208         char *fullpath, *freepath;
 2209         struct kinfo_vmentry *kve;
 2210         struct ucred *cred;
 2211         struct vnode *vp;
 2212         struct vmspace *vm;
 2213         vm_offset_t addr;
 2214         unsigned int last_timestamp;
 2215         int error;
 2216 
 2217         PROC_LOCK_ASSERT(p, MA_OWNED);
 2218 
 2219         _PHOLD(p);
 2220         PROC_UNLOCK(p);
 2221         vm = vmspace_acquire_ref(p);
 2222         if (vm == NULL) {
 2223                 PRELE(p);
 2224                 return (ESRCH);
 2225         }
 2226         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
 2227 
 2228         error = 0;
 2229         map = &vm->vm_map;
 2230         vm_map_lock_read(map);
 2231         for (entry = map->header.next; entry != &map->header;
 2232             entry = entry->next) {
 2233                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 2234                         continue;
 2235 
 2236                 addr = entry->end;
 2237                 bzero(kve, sizeof(*kve));
 2238                 obj = entry->object.vm_object;
 2239                 if (obj != NULL) {
 2240                         for (tobj = obj; tobj != NULL;
 2241                             tobj = tobj->backing_object) {
 2242                                 VM_OBJECT_RLOCK(tobj);
 2243                                 lobj = tobj;
 2244                         }
 2245                         if (obj->backing_object == NULL)
 2246                                 kve->kve_private_resident =
 2247                                     obj->resident_page_count;
 2248                         if (!vmmap_skip_res_cnt)
 2249                                 kern_proc_vmmap_resident(map, entry, kve);
 2250                         for (tobj = obj; tobj != NULL;
 2251                             tobj = tobj->backing_object) {
 2252                                 if (tobj != obj && tobj != lobj)
 2253                                         VM_OBJECT_RUNLOCK(tobj);
 2254                         }
 2255                 } else {
 2256                         lobj = NULL;
 2257                 }
 2258 
 2259                 kve->kve_start = entry->start;
 2260                 kve->kve_end = entry->end;
 2261                 kve->kve_offset = entry->offset;
 2262 
 2263                 if (entry->protection & VM_PROT_READ)
 2264                         kve->kve_protection |= KVME_PROT_READ;
 2265                 if (entry->protection & VM_PROT_WRITE)
 2266                         kve->kve_protection |= KVME_PROT_WRITE;
 2267                 if (entry->protection & VM_PROT_EXECUTE)
 2268                         kve->kve_protection |= KVME_PROT_EXEC;
 2269 
 2270                 if (entry->eflags & MAP_ENTRY_COW)
 2271                         kve->kve_flags |= KVME_FLAG_COW;
 2272                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 2273                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 2274                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 2275                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 2276                 if (entry->eflags & MAP_ENTRY_GROWS_UP)
 2277                         kve->kve_flags |= KVME_FLAG_GROWS_UP;
 2278                 if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
 2279                         kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
 2280 
 2281                 last_timestamp = map->timestamp;
 2282                 vm_map_unlock_read(map);
 2283 
 2284                 freepath = NULL;
 2285                 fullpath = "";
 2286                 if (lobj != NULL) {
 2287                         vp = NULL;
 2288                         switch (lobj->type) {
 2289                         case OBJT_DEFAULT:
 2290                                 kve->kve_type = KVME_TYPE_DEFAULT;
 2291                                 break;
 2292                         case OBJT_VNODE:
 2293                                 kve->kve_type = KVME_TYPE_VNODE;
 2294                                 vp = lobj->handle;
 2295                                 vref(vp);
 2296                                 break;
 2297                         case OBJT_SWAP:
 2298                                 kve->kve_type = KVME_TYPE_SWAP;
 2299                                 break;
 2300                         case OBJT_DEVICE:
 2301                                 kve->kve_type = KVME_TYPE_DEVICE;
 2302                                 break;
 2303                         case OBJT_PHYS:
 2304                                 kve->kve_type = KVME_TYPE_PHYS;
 2305                                 break;
 2306                         case OBJT_DEAD:
 2307                                 kve->kve_type = KVME_TYPE_DEAD;
 2308                                 break;
 2309                         case OBJT_SG:
 2310                                 kve->kve_type = KVME_TYPE_SG;
 2311                                 break;
 2312                         case OBJT_MGTDEVICE:
 2313                                 kve->kve_type = KVME_TYPE_MGTDEVICE;
 2314                                 break;
 2315                         default:
 2316                                 kve->kve_type = KVME_TYPE_UNKNOWN;
 2317                                 break;
 2318                         }
 2319                         if (lobj != obj)
 2320                                 VM_OBJECT_RUNLOCK(lobj);
 2321 
 2322                         kve->kve_ref_count = obj->ref_count;
 2323                         kve->kve_shadow_count = obj->shadow_count;
 2324                         VM_OBJECT_RUNLOCK(obj);
 2325                         if (vp != NULL) {
 2326                                 vn_fullpath(curthread, vp, &fullpath,
 2327                                     &freepath);
 2328                                 kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
 2329                                 cred = curthread->td_ucred;
 2330                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2331                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 2332                                         kve->kve_vn_fileid = va.va_fileid;
 2333                                         kve->kve_vn_fsid = va.va_fsid;
 2334                                         kve->kve_vn_mode =
 2335                                             MAKEIMODE(va.va_type, va.va_mode);
 2336                                         kve->kve_vn_size = va.va_size;
 2337                                         kve->kve_vn_rdev = va.va_rdev;
 2338                                         kve->kve_status = KF_ATTR_VALID;
 2339                                 }
 2340                                 vput(vp);
 2341                         }
 2342                 } else {
 2343                         kve->kve_type = KVME_TYPE_NONE;
 2344                         kve->kve_ref_count = 0;
 2345                         kve->kve_shadow_count = 0;
 2346                 }
 2347 
 2348                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 2349                 if (freepath != NULL)
 2350                         free(freepath, M_TEMP);
 2351 
 2352                 /* Pack record size down */
 2353                 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
 2354                     strlen(kve->kve_path) + 1;
 2355                 kve->kve_structsize = roundup(kve->kve_structsize,
 2356                     sizeof(uint64_t));
 2357                 error = sbuf_bcat(sb, kve, kve->kve_structsize);
 2358                 vm_map_lock_read(map);
 2359                 if (error)
 2360                         break;
 2361                 if (last_timestamp != map->timestamp) {
 2362                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 2363                         entry = tmp_entry;
 2364                 }
 2365         }
 2366         vm_map_unlock_read(map);
 2367         vmspace_free(vm);
 2368         PRELE(p);
 2369         free(kve, M_TEMP);
 2370         return (error);
 2371 }
 2372 
 2373 static int
 2374 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
 2375 {
 2376         struct proc *p;
 2377         struct sbuf sb;
 2378         int error, error2, *name;
 2379 
 2380         name = (int *)arg1;
 2381         sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
 2382         error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
 2383         if (error != 0) {
 2384                 sbuf_delete(&sb);
 2385                 return (error);
 2386         }
 2387         error = kern_proc_vmmap_out(p, &sb);
 2388         error2 = sbuf_finish(&sb);
 2389         sbuf_delete(&sb);
 2390         return (error != 0 ? error : error2);
 2391 }
 2392 
 2393 #if defined(STACK) || defined(DDB)
 2394 static int
 2395 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
 2396 {
 2397         struct kinfo_kstack *kkstp;
 2398         int error, i, *name, numthreads;
 2399         lwpid_t *lwpidarray;
 2400         struct thread *td;
 2401         struct stack *st;
 2402         struct sbuf sb;
 2403         struct proc *p;
 2404 
 2405         name = (int *)arg1;
 2406         error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
 2407         if (error != 0)
 2408                 return (error);
 2409 
 2410         kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
 2411         st = stack_create();
 2412 
 2413         lwpidarray = NULL;
 2414         numthreads = 0;
 2415         PROC_LOCK(p);
 2416 repeat:
 2417         if (numthreads < p->p_numthreads) {
 2418                 if (lwpidarray != NULL) {
 2419                         free(lwpidarray, M_TEMP);
 2420                         lwpidarray = NULL;
 2421                 }
 2422                 numthreads = p->p_numthreads;
 2423                 PROC_UNLOCK(p);
 2424                 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
 2425                     M_WAITOK | M_ZERO);
 2426                 PROC_LOCK(p);
 2427                 goto repeat;
 2428         }
 2429         i = 0;
 2430 
 2431         /*
 2432          * XXXRW: During the below loop, execve(2) and countless other sorts
 2433          * of changes could have taken place.  Should we check to see if the
 2434          * vmspace has been replaced, or the like, in order to prevent
 2435          * giving a snapshot that spans, say, execve(2), with some threads
 2436          * before and some after?  Among other things, the credentials could
 2437          * have changed, in which case the right to extract debug info might
 2438          * no longer be assured.
 2439          */
 2440         FOREACH_THREAD_IN_PROC(p, td) {
 2441                 KASSERT(i < numthreads,
 2442                     ("sysctl_kern_proc_kstack: numthreads"));
 2443                 lwpidarray[i] = td->td_tid;
 2444                 i++;
 2445         }
 2446         numthreads = i;
 2447         for (i = 0; i < numthreads; i++) {
 2448                 td = thread_find(p, lwpidarray[i]);
 2449                 if (td == NULL) {
 2450                         continue;
 2451                 }
 2452                 bzero(kkstp, sizeof(*kkstp));
 2453                 (void)sbuf_new(&sb, kkstp->kkst_trace,
 2454                     sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
 2455                 thread_lock(td);
 2456                 kkstp->kkst_tid = td->td_tid;
 2457                 if (TD_IS_SWAPPED(td))
 2458                         kkstp->kkst_state = KKST_STATE_SWAPPED;
 2459                 else if (TD_IS_RUNNING(td))
 2460                         kkstp->kkst_state = KKST_STATE_RUNNING;
 2461                 else {
 2462                         kkstp->kkst_state = KKST_STATE_STACKOK;
 2463                         stack_save_td(st, td);
 2464                 }
 2465                 thread_unlock(td);
 2466                 PROC_UNLOCK(p);
 2467                 stack_sbuf_print(&sb, st);
 2468                 sbuf_finish(&sb);
 2469                 sbuf_delete(&sb);
 2470                 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
 2471                 PROC_LOCK(p);
 2472                 if (error)
 2473                         break;
 2474         }
 2475         _PRELE(p);
 2476         PROC_UNLOCK(p);
 2477         if (lwpidarray != NULL)
 2478                 free(lwpidarray, M_TEMP);
 2479         stack_destroy(st);
 2480         free(kkstp, M_TEMP);
 2481         return (error);
 2482 }
 2483 #endif
 2484 
 2485 /*
 2486  * This sysctl allows a process to retrieve the full list of groups from
 2487  * itself or another process.
 2488  */
 2489 static int
 2490 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
 2491 {
 2492         pid_t *pidp = (pid_t *)arg1;
 2493         unsigned int arglen = arg2;
 2494         struct proc *p;
 2495         struct ucred *cred;
 2496         int error;
 2497 
 2498         if (arglen != 1)
 2499                 return (EINVAL);
 2500         if (*pidp == -1) {      /* -1 means this process */
 2501                 p = req->td->td_proc;
 2502         } else {
 2503                 error = pget(*pidp, PGET_CANSEE, &p);
 2504                 if (error != 0)
 2505                         return (error);
 2506         }
 2507 
 2508         cred = crhold(p->p_ucred);
 2509         if (*pidp != -1)
 2510                 PROC_UNLOCK(p);
 2511 
 2512         error = SYSCTL_OUT(req, cred->cr_groups,
 2513             cred->cr_ngroups * sizeof(gid_t));
 2514         crfree(cred);
 2515         return (error);
 2516 }
 2517 
 2518 /*
 2519  * This sysctl allows a process to retrieve or/and set the resource limit for
 2520  * another process.
 2521  */
 2522 static int
 2523 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
 2524 {
 2525         int *name = (int *)arg1;
 2526         u_int namelen = arg2;
 2527         struct rlimit rlim;
 2528         struct proc *p;
 2529         u_int which;
 2530         int flags, error;
 2531 
 2532         if (namelen != 2)
 2533                 return (EINVAL);
 2534 
 2535         which = (u_int)name[1];
 2536         if (which >= RLIM_NLIMITS)
 2537                 return (EINVAL);
 2538 
 2539         if (req->newptr != NULL && req->newlen != sizeof(rlim))
 2540                 return (EINVAL);
 2541 
 2542         flags = PGET_HOLD | PGET_NOTWEXIT;
 2543         if (req->newptr != NULL)
 2544                 flags |= PGET_CANDEBUG;
 2545         else
 2546                 flags |= PGET_CANSEE;
 2547         error = pget((pid_t)name[0], flags, &p);
 2548         if (error != 0)
 2549                 return (error);
 2550 
 2551         /*
 2552          * Retrieve limit.
 2553          */
 2554         if (req->oldptr != NULL) {
 2555                 PROC_LOCK(p);
 2556                 lim_rlimit(p, which, &rlim);
 2557                 PROC_UNLOCK(p);
 2558         }
 2559         error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
 2560         if (error != 0)
 2561                 goto errout;
 2562 
 2563         /*
 2564          * Set limit.
 2565          */
 2566         if (req->newptr != NULL) {
 2567                 error = SYSCTL_IN(req, &rlim, sizeof(rlim));
 2568                 if (error == 0)
 2569                         error = kern_proc_setrlimit(curthread, p, which, &rlim);
 2570         }
 2571 
 2572 errout:
 2573         PRELE(p);
 2574         return (error);
 2575 }
 2576 
 2577 /*
 2578  * This sysctl allows a process to retrieve ps_strings structure location of
 2579  * another process.
 2580  */
 2581 static int
 2582 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
 2583 {
 2584         int *name = (int *)arg1;
 2585         u_int namelen = arg2;
 2586         struct proc *p;
 2587         vm_offset_t ps_strings;
 2588         int error;
 2589 #ifdef COMPAT_FREEBSD32
 2590         uint32_t ps_strings32;
 2591 #endif
 2592 
 2593         if (namelen != 1)
 2594                 return (EINVAL);
 2595 
 2596         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 2597         if (error != 0)
 2598                 return (error);
 2599 #ifdef COMPAT_FREEBSD32
 2600         if ((req->flags & SCTL_MASK32) != 0) {
 2601                 /*
 2602                  * We return 0 if the 32 bit emulation request is for a 64 bit
 2603                  * process.
 2604                  */
 2605                 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
 2606                     PTROUT(p->p_sysent->sv_psstrings) : 0;
 2607                 PROC_UNLOCK(p);
 2608                 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
 2609                 return (error);
 2610         }
 2611 #endif
 2612         ps_strings = p->p_sysent->sv_psstrings;
 2613         PROC_UNLOCK(p);
 2614         error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
 2615         return (error);
 2616 }
 2617 
 2618 /*
 2619  * This sysctl allows a process to retrieve umask of another process.
 2620  */
 2621 static int
 2622 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
 2623 {
 2624         int *name = (int *)arg1;
 2625         u_int namelen = arg2;
 2626         struct proc *p;
 2627         int error;
 2628         u_short fd_cmask;
 2629 
 2630         if (namelen != 1)
 2631                 return (EINVAL);
 2632 
 2633         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 2634         if (error != 0)
 2635                 return (error);
 2636 
 2637         FILEDESC_SLOCK(p->p_fd);
 2638         fd_cmask = p->p_fd->fd_cmask;
 2639         FILEDESC_SUNLOCK(p->p_fd);
 2640         PRELE(p);
 2641         error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
 2642         return (error);
 2643 }
 2644 
 2645 /*
 2646  * This sysctl allows a process to set and retrieve binary osreldate of
 2647  * another process.
 2648  */
 2649 static int
 2650 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
 2651 {
 2652         int *name = (int *)arg1;
 2653         u_int namelen = arg2;
 2654         struct proc *p;
 2655         int flags, error, osrel;
 2656 
 2657         if (namelen != 1)
 2658                 return (EINVAL);
 2659 
 2660         if (req->newptr != NULL && req->newlen != sizeof(osrel))
 2661                 return (EINVAL);
 2662 
 2663         flags = PGET_HOLD | PGET_NOTWEXIT;
 2664         if (req->newptr != NULL)
 2665                 flags |= PGET_CANDEBUG;
 2666         else
 2667                 flags |= PGET_CANSEE;
 2668         error = pget((pid_t)name[0], flags, &p);
 2669         if (error != 0)
 2670                 return (error);
 2671 
 2672         error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
 2673         if (error != 0)
 2674                 goto errout;
 2675 
 2676         if (req->newptr != NULL) {
 2677                 error = SYSCTL_IN(req, &osrel, sizeof(osrel));
 2678                 if (error != 0)
 2679                         goto errout;
 2680                 if (osrel < 0) {
 2681                         error = EINVAL;
 2682                         goto errout;
 2683                 }
 2684                 p->p_osrel = osrel;
 2685         }
 2686 errout:
 2687         PRELE(p);
 2688         return (error);
 2689 }
 2690 
 2691 static int
 2692 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
 2693 {
 2694         int *name = (int *)arg1;
 2695         u_int namelen = arg2;
 2696         struct proc *p;
 2697         struct kinfo_sigtramp kst;
 2698         const struct sysentvec *sv;
 2699         int error;
 2700 #ifdef COMPAT_FREEBSD32
 2701         struct kinfo_sigtramp32 kst32;
 2702 #endif
 2703 
 2704         if (namelen != 1)
 2705                 return (EINVAL);
 2706 
 2707         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 2708         if (error != 0)
 2709                 return (error);
 2710         sv = p->p_sysent;
 2711 #ifdef COMPAT_FREEBSD32
 2712         if ((req->flags & SCTL_MASK32) != 0) {
 2713                 bzero(&kst32, sizeof(kst32));
 2714                 if (SV_PROC_FLAG(p, SV_ILP32)) {
 2715                         if (sv->sv_sigcode_base != 0) {
 2716                                 kst32.ksigtramp_start = sv->sv_sigcode_base;
 2717                                 kst32.ksigtramp_end = sv->sv_sigcode_base +
 2718                                     *sv->sv_szsigcode;
 2719                         } else {
 2720                                 kst32.ksigtramp_start = sv->sv_psstrings -
 2721                                     *sv->sv_szsigcode;
 2722                                 kst32.ksigtramp_end = sv->sv_psstrings;
 2723                         }
 2724                 }
 2725                 PROC_UNLOCK(p);
 2726                 error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
 2727                 return (error);
 2728         }
 2729 #endif
 2730         bzero(&kst, sizeof(kst));
 2731         if (sv->sv_sigcode_base != 0) {
 2732                 kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
 2733                 kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
 2734                     *sv->sv_szsigcode;
 2735         } else {
 2736                 kst.ksigtramp_start = (char *)sv->sv_psstrings -
 2737                     *sv->sv_szsigcode;
 2738                 kst.ksigtramp_end = (char *)sv->sv_psstrings;
 2739         }
 2740         PROC_UNLOCK(p);
 2741         error = SYSCTL_OUT(req, &kst, sizeof(kst));
 2742         return (error);
 2743 }
 2744 
 2745 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
 2746 
 2747 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
 2748         CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
 2749         "Return entire process table");
 2750 
 2751 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2752         sysctl_kern_proc, "Process table");
 2753 
 2754 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2755         sysctl_kern_proc, "Process table");
 2756 
 2757 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2758         sysctl_kern_proc, "Process table");
 2759 
 2760 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
 2761         CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2762 
 2763 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2764         sysctl_kern_proc, "Process table");
 2765 
 2766 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2767         sysctl_kern_proc, "Process table");
 2768 
 2769 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2770         sysctl_kern_proc, "Process table");
 2771 
 2772 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2773         sysctl_kern_proc, "Process table");
 2774 
 2775 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2776         sysctl_kern_proc, "Return process table, no threads");
 2777 
 2778 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
 2779         CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
 2780         sysctl_kern_proc_args, "Process argument list");
 2781 
 2782 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2783         sysctl_kern_proc_env, "Process environment");
 2784 
 2785 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
 2786         CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
 2787 
 2788 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
 2789         CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
 2790 
 2791 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
 2792         CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
 2793         "Process syscall vector name (ABI type)");
 2794 
 2795 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
 2796         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2797 
 2798 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
 2799         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2800 
 2801 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
 2802         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2803 
 2804 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
 2805         sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2806 
 2807 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
 2808         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2809 
 2810 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
 2811         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2812 
 2813 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
 2814         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2815 
 2816 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
 2817         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2818 
 2819 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
 2820         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
 2821         "Return process table, no threads");
 2822 
 2823 #ifdef COMPAT_FREEBSD7
 2824 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
 2825         CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
 2826 #endif
 2827 
 2828 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
 2829         CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
 2830 
 2831 #if defined(STACK) || defined(DDB)
 2832 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
 2833         CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
 2834 #endif
 2835 
 2836 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
 2837         CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
 2838 
 2839 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
 2840         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
 2841         "Process resource limits");
 2842 
 2843 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
 2844         CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
 2845         "Process ps_strings location");
 2846 
 2847 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
 2848         CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
 2849 
 2850 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
 2851         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
 2852         "Process binary osreldate");
 2853 
 2854 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
 2855         CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
 2856         "Process signal trampoline location");

Cache object: dae4334ccd2da62d1c0fcbed9993274d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.