The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_proc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/10.2/sys/kern/kern_proc.c 279926 2015-03-12 16:05:52Z kib $");
   34 
   35 #include "opt_compat.h"
   36 #include "opt_ddb.h"
   37 #include "opt_kdtrace.h"
   38 #include "opt_ktrace.h"
   39 #include "opt_kstack_pages.h"
   40 #include "opt_stack.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/elf.h>
   45 #include <sys/exec.h>
   46 #include <sys/kernel.h>
   47 #include <sys/limits.h>
   48 #include <sys/lock.h>
   49 #include <sys/loginclass.h>
   50 #include <sys/malloc.h>
   51 #include <sys/mman.h>
   52 #include <sys/mount.h>
   53 #include <sys/mutex.h>
   54 #include <sys/proc.h>
   55 #include <sys/ptrace.h>
   56 #include <sys/refcount.h>
   57 #include <sys/resourcevar.h>
   58 #include <sys/rwlock.h>
   59 #include <sys/sbuf.h>
   60 #include <sys/sysent.h>
   61 #include <sys/sched.h>
   62 #include <sys/smp.h>
   63 #include <sys/stack.h>
   64 #include <sys/stat.h>
   65 #include <sys/sysctl.h>
   66 #include <sys/filedesc.h>
   67 #include <sys/tty.h>
   68 #include <sys/signalvar.h>
   69 #include <sys/sdt.h>
   70 #include <sys/sx.h>
   71 #include <sys/user.h>
   72 #include <sys/jail.h>
   73 #include <sys/vnode.h>
   74 #include <sys/eventhandler.h>
   75 
   76 #ifdef DDB
   77 #include <ddb/ddb.h>
   78 #endif
   79 
   80 #include <vm/vm.h>
   81 #include <vm/vm_param.h>
   82 #include <vm/vm_extern.h>
   83 #include <vm/pmap.h>
   84 #include <vm/vm_map.h>
   85 #include <vm/vm_object.h>
   86 #include <vm/vm_page.h>
   87 #include <vm/uma.h>
   88 
   89 #ifdef COMPAT_FREEBSD32
   90 #include <compat/freebsd32/freebsd32.h>
   91 #include <compat/freebsd32/freebsd32_util.h>
   92 #endif
   93 
   94 SDT_PROVIDER_DEFINE(proc);
   95 SDT_PROBE_DEFINE4(proc, kernel, ctor, entry, "struct proc *", "int",
   96     "void *", "int");
   97 SDT_PROBE_DEFINE4(proc, kernel, ctor, return, "struct proc *", "int",
   98     "void *", "int");
   99 SDT_PROBE_DEFINE4(proc, kernel, dtor, entry, "struct proc *", "int",
  100     "void *", "struct thread *");
  101 SDT_PROBE_DEFINE3(proc, kernel, dtor, return, "struct proc *", "int",
  102     "void *");
  103 SDT_PROBE_DEFINE3(proc, kernel, init, entry, "struct proc *", "int",
  104     "int");
  105 SDT_PROBE_DEFINE3(proc, kernel, init, return, "struct proc *", "int",
  106     "int");
  107 
  108 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
  109 MALLOC_DEFINE(M_SESSION, "session", "session header");
  110 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
  111 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
  112 
  113 static void doenterpgrp(struct proc *, struct pgrp *);
  114 static void orphanpg(struct pgrp *pg);
  115 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
  116 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
  117 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
  118     int preferthread);
  119 static void pgadjustjobc(struct pgrp *pgrp, int entering);
  120 static void pgdelete(struct pgrp *);
  121 static int proc_ctor(void *mem, int size, void *arg, int flags);
  122 static void proc_dtor(void *mem, int size, void *arg);
  123 static int proc_init(void *mem, int size, int flags);
  124 static void proc_fini(void *mem, int size);
  125 static void pargs_free(struct pargs *pa);
  126 static struct proc *zpfind_locked(pid_t pid);
  127 
  128 /*
  129  * Other process lists
  130  */
  131 struct pidhashhead *pidhashtbl;
  132 u_long pidhash;
  133 struct pgrphashhead *pgrphashtbl;
  134 u_long pgrphash;
  135 struct proclist allproc;
  136 struct proclist zombproc;
  137 struct sx allproc_lock;
  138 struct sx proctree_lock;
  139 struct mtx ppeers_lock;
  140 uma_zone_t proc_zone;
  141 
  142 int kstack_pages = KSTACK_PAGES;
  143 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
  144     "Kernel stack size in pages");
  145 static int vmmap_skip_res_cnt = 0;
  146 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
  147     &vmmap_skip_res_cnt, 0,
  148     "Skip calculation of the pages resident count in kern.proc.vmmap");
  149 
  150 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
  151 #ifdef COMPAT_FREEBSD32
  152 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
  153 #endif
  154 
  155 /*
  156  * Initialize global process hashing structures.
  157  */
  158 void
  159 procinit()
  160 {
  161 
  162         sx_init(&allproc_lock, "allproc");
  163         sx_init(&proctree_lock, "proctree");
  164         mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
  165         LIST_INIT(&allproc);
  166         LIST_INIT(&zombproc);
  167         pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
  168         pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
  169         proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
  170             proc_ctor, proc_dtor, proc_init, proc_fini,
  171             UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  172         uihashinit();
  173 }
  174 
  175 /*
  176  * Prepare a proc for use.
  177  */
  178 static int
  179 proc_ctor(void *mem, int size, void *arg, int flags)
  180 {
  181         struct proc *p;
  182 
  183         p = (struct proc *)mem;
  184         SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
  185         EVENTHANDLER_INVOKE(process_ctor, p);
  186         SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
  187         return (0);
  188 }
  189 
  190 /*
  191  * Reclaim a proc after use.
  192  */
  193 static void
  194 proc_dtor(void *mem, int size, void *arg)
  195 {
  196         struct proc *p;
  197         struct thread *td;
  198 
  199         /* INVARIANTS checks go here */
  200         p = (struct proc *)mem;
  201         td = FIRST_THREAD_IN_PROC(p);
  202         SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
  203         if (td != NULL) {
  204 #ifdef INVARIANTS
  205                 KASSERT((p->p_numthreads == 1),
  206                     ("bad number of threads in exiting process"));
  207                 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
  208 #endif
  209                 /* Free all OSD associated to this thread. */
  210                 osd_thread_exit(td);
  211         }
  212         EVENTHANDLER_INVOKE(process_dtor, p);
  213         if (p->p_ksi != NULL)
  214                 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
  215         SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
  216 }
  217 
  218 /*
  219  * Initialize type-stable parts of a proc (when newly created).
  220  */
  221 static int
  222 proc_init(void *mem, int size, int flags)
  223 {
  224         struct proc *p;
  225 
  226         p = (struct proc *)mem;
  227         SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
  228         p->p_sched = (struct p_sched *)&p[1];
  229         bzero(&p->p_mtx, sizeof(struct mtx));
  230         mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
  231         mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
  232         cv_init(&p->p_pwait, "ppwait");
  233         cv_init(&p->p_dbgwait, "dbgwait");
  234         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
  235         EVENTHANDLER_INVOKE(process_init, p);
  236         p->p_stats = pstats_alloc();
  237         SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
  238         return (0);
  239 }
  240 
  241 /*
  242  * UMA should ensure that this function is never called.
  243  * Freeing a proc structure would violate type stability.
  244  */
  245 static void
  246 proc_fini(void *mem, int size)
  247 {
  248 #ifdef notnow
  249         struct proc *p;
  250 
  251         p = (struct proc *)mem;
  252         EVENTHANDLER_INVOKE(process_fini, p);
  253         pstats_free(p->p_stats);
  254         thread_free(FIRST_THREAD_IN_PROC(p));
  255         mtx_destroy(&p->p_mtx);
  256         if (p->p_ksi != NULL)
  257                 ksiginfo_free(p->p_ksi);
  258 #else
  259         panic("proc reclaimed");
  260 #endif
  261 }
  262 
  263 /*
  264  * Is p an inferior of the current process?
  265  */
  266 int
  267 inferior(struct proc *p)
  268 {
  269 
  270         sx_assert(&proctree_lock, SX_LOCKED);
  271         PROC_LOCK_ASSERT(p, MA_OWNED);
  272         for (; p != curproc; p = proc_realparent(p)) {
  273                 if (p->p_pid == 0)
  274                         return (0);
  275         }
  276         return (1);
  277 }
  278 
  279 struct proc *
  280 pfind_locked(pid_t pid)
  281 {
  282         struct proc *p;
  283 
  284         sx_assert(&allproc_lock, SX_LOCKED);
  285         LIST_FOREACH(p, PIDHASH(pid), p_hash) {
  286                 if (p->p_pid == pid) {
  287                         PROC_LOCK(p);
  288                         if (p->p_state == PRS_NEW) {
  289                                 PROC_UNLOCK(p);
  290                                 p = NULL;
  291                         }
  292                         break;
  293                 }
  294         }
  295         return (p);
  296 }
  297 
  298 /*
  299  * Locate a process by number; return only "live" processes -- i.e., neither
  300  * zombies nor newly born but incompletely initialized processes.  By not
  301  * returning processes in the PRS_NEW state, we allow callers to avoid
  302  * testing for that condition to avoid dereferencing p_ucred, et al.
  303  */
  304 struct proc *
  305 pfind(pid_t pid)
  306 {
  307         struct proc *p;
  308 
  309         sx_slock(&allproc_lock);
  310         p = pfind_locked(pid);
  311         sx_sunlock(&allproc_lock);
  312         return (p);
  313 }
  314 
  315 static struct proc *
  316 pfind_tid_locked(pid_t tid)
  317 {
  318         struct proc *p;
  319         struct thread *td;
  320 
  321         sx_assert(&allproc_lock, SX_LOCKED);
  322         FOREACH_PROC_IN_SYSTEM(p) {
  323                 PROC_LOCK(p);
  324                 if (p->p_state == PRS_NEW) {
  325                         PROC_UNLOCK(p);
  326                         continue;
  327                 }
  328                 FOREACH_THREAD_IN_PROC(p, td) {
  329                         if (td->td_tid == tid)
  330                                 goto found;
  331                 }
  332                 PROC_UNLOCK(p);
  333         }
  334 found:
  335         return (p);
  336 }
  337 
  338 /*
  339  * Locate a process group by number.
  340  * The caller must hold proctree_lock.
  341  */
  342 struct pgrp *
  343 pgfind(pgid)
  344         register pid_t pgid;
  345 {
  346         register struct pgrp *pgrp;
  347 
  348         sx_assert(&proctree_lock, SX_LOCKED);
  349 
  350         LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
  351                 if (pgrp->pg_id == pgid) {
  352                         PGRP_LOCK(pgrp);
  353                         return (pgrp);
  354                 }
  355         }
  356         return (NULL);
  357 }
  358 
  359 /*
  360  * Locate process and do additional manipulations, depending on flags.
  361  */
  362 int
  363 pget(pid_t pid, int flags, struct proc **pp)
  364 {
  365         struct proc *p;
  366         int error;
  367 
  368         sx_slock(&allproc_lock);
  369         if (pid <= PID_MAX) {
  370                 p = pfind_locked(pid);
  371                 if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
  372                         p = zpfind_locked(pid);
  373         } else if ((flags & PGET_NOTID) == 0) {
  374                 p = pfind_tid_locked(pid);
  375         } else {
  376                 p = NULL;
  377         }
  378         sx_sunlock(&allproc_lock);
  379         if (p == NULL)
  380                 return (ESRCH);
  381         if ((flags & PGET_CANSEE) != 0) {
  382                 error = p_cansee(curthread, p);
  383                 if (error != 0)
  384                         goto errout;
  385         }
  386         if ((flags & PGET_CANDEBUG) != 0) {
  387                 error = p_candebug(curthread, p);
  388                 if (error != 0)
  389                         goto errout;
  390         }
  391         if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
  392                 error = EPERM;
  393                 goto errout;
  394         }
  395         if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
  396                 error = ESRCH;
  397                 goto errout;
  398         }
  399         if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
  400                 /*
  401                  * XXXRW: Not clear ESRCH is the right error during proc
  402                  * execve().
  403                  */
  404                 error = ESRCH;
  405                 goto errout;
  406         }
  407         if ((flags & PGET_HOLD) != 0) {
  408                 _PHOLD(p);
  409                 PROC_UNLOCK(p);
  410         }
  411         *pp = p;
  412         return (0);
  413 errout:
  414         PROC_UNLOCK(p);
  415         return (error);
  416 }
  417 
  418 /*
  419  * Create a new process group.
  420  * pgid must be equal to the pid of p.
  421  * Begin a new session if required.
  422  */
  423 int
  424 enterpgrp(p, pgid, pgrp, sess)
  425         register struct proc *p;
  426         pid_t pgid;
  427         struct pgrp *pgrp;
  428         struct session *sess;
  429 {
  430 
  431         sx_assert(&proctree_lock, SX_XLOCKED);
  432 
  433         KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
  434         KASSERT(p->p_pid == pgid,
  435             ("enterpgrp: new pgrp and pid != pgid"));
  436         KASSERT(pgfind(pgid) == NULL,
  437             ("enterpgrp: pgrp with pgid exists"));
  438         KASSERT(!SESS_LEADER(p),
  439             ("enterpgrp: session leader attempted setpgrp"));
  440 
  441         mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
  442 
  443         if (sess != NULL) {
  444                 /*
  445                  * new session
  446                  */
  447                 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
  448                 PROC_LOCK(p);
  449                 p->p_flag &= ~P_CONTROLT;
  450                 PROC_UNLOCK(p);
  451                 PGRP_LOCK(pgrp);
  452                 sess->s_leader = p;
  453                 sess->s_sid = p->p_pid;
  454                 refcount_init(&sess->s_count, 1);
  455                 sess->s_ttyvp = NULL;
  456                 sess->s_ttydp = NULL;
  457                 sess->s_ttyp = NULL;
  458                 bcopy(p->p_session->s_login, sess->s_login,
  459                             sizeof(sess->s_login));
  460                 pgrp->pg_session = sess;
  461                 KASSERT(p == curproc,
  462                     ("enterpgrp: mksession and p != curproc"));
  463         } else {
  464                 pgrp->pg_session = p->p_session;
  465                 sess_hold(pgrp->pg_session);
  466                 PGRP_LOCK(pgrp);
  467         }
  468         pgrp->pg_id = pgid;
  469         LIST_INIT(&pgrp->pg_members);
  470 
  471         /*
  472          * As we have an exclusive lock of proctree_lock,
  473          * this should not deadlock.
  474          */
  475         LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
  476         pgrp->pg_jobc = 0;
  477         SLIST_INIT(&pgrp->pg_sigiolst);
  478         PGRP_UNLOCK(pgrp);
  479 
  480         doenterpgrp(p, pgrp);
  481 
  482         return (0);
  483 }
  484 
  485 /*
  486  * Move p to an existing process group
  487  */
  488 int
  489 enterthispgrp(p, pgrp)
  490         register struct proc *p;
  491         struct pgrp *pgrp;
  492 {
  493 
  494         sx_assert(&proctree_lock, SX_XLOCKED);
  495         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  496         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  497         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  498         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  499         KASSERT(pgrp->pg_session == p->p_session,
  500                 ("%s: pgrp's session %p, p->p_session %p.\n",
  501                 __func__,
  502                 pgrp->pg_session,
  503                 p->p_session));
  504         KASSERT(pgrp != p->p_pgrp,
  505                 ("%s: p belongs to pgrp.", __func__));
  506 
  507         doenterpgrp(p, pgrp);
  508 
  509         return (0);
  510 }
  511 
  512 /*
  513  * Move p to a process group
  514  */
  515 static void
  516 doenterpgrp(p, pgrp)
  517         struct proc *p;
  518         struct pgrp *pgrp;
  519 {
  520         struct pgrp *savepgrp;
  521 
  522         sx_assert(&proctree_lock, SX_XLOCKED);
  523         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  524         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  525         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  526         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  527 
  528         savepgrp = p->p_pgrp;
  529 
  530         /*
  531          * Adjust eligibility of affected pgrps to participate in job control.
  532          * Increment eligibility counts before decrementing, otherwise we
  533          * could reach 0 spuriously during the first call.
  534          */
  535         fixjobc(p, pgrp, 1);
  536         fixjobc(p, p->p_pgrp, 0);
  537 
  538         PGRP_LOCK(pgrp);
  539         PGRP_LOCK(savepgrp);
  540         PROC_LOCK(p);
  541         LIST_REMOVE(p, p_pglist);
  542         p->p_pgrp = pgrp;
  543         PROC_UNLOCK(p);
  544         LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
  545         PGRP_UNLOCK(savepgrp);
  546         PGRP_UNLOCK(pgrp);
  547         if (LIST_EMPTY(&savepgrp->pg_members))
  548                 pgdelete(savepgrp);
  549 }
  550 
  551 /*
  552  * remove process from process group
  553  */
  554 int
  555 leavepgrp(p)
  556         register struct proc *p;
  557 {
  558         struct pgrp *savepgrp;
  559 
  560         sx_assert(&proctree_lock, SX_XLOCKED);
  561         savepgrp = p->p_pgrp;
  562         PGRP_LOCK(savepgrp);
  563         PROC_LOCK(p);
  564         LIST_REMOVE(p, p_pglist);
  565         p->p_pgrp = NULL;
  566         PROC_UNLOCK(p);
  567         PGRP_UNLOCK(savepgrp);
  568         if (LIST_EMPTY(&savepgrp->pg_members))
  569                 pgdelete(savepgrp);
  570         return (0);
  571 }
  572 
  573 /*
  574  * delete a process group
  575  */
  576 static void
  577 pgdelete(pgrp)
  578         register struct pgrp *pgrp;
  579 {
  580         struct session *savesess;
  581         struct tty *tp;
  582 
  583         sx_assert(&proctree_lock, SX_XLOCKED);
  584         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  585         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  586 
  587         /*
  588          * Reset any sigio structures pointing to us as a result of
  589          * F_SETOWN with our pgid.
  590          */
  591         funsetownlst(&pgrp->pg_sigiolst);
  592 
  593         PGRP_LOCK(pgrp);
  594         tp = pgrp->pg_session->s_ttyp;
  595         LIST_REMOVE(pgrp, pg_hash);
  596         savesess = pgrp->pg_session;
  597         PGRP_UNLOCK(pgrp);
  598 
  599         /* Remove the reference to the pgrp before deallocating it. */
  600         if (tp != NULL) {
  601                 tty_lock(tp);
  602                 tty_rel_pgrp(tp, pgrp);
  603         }
  604 
  605         mtx_destroy(&pgrp->pg_mtx);
  606         free(pgrp, M_PGRP);
  607         sess_release(savesess);
  608 }
  609 
  610 static void
  611 pgadjustjobc(pgrp, entering)
  612         struct pgrp *pgrp;
  613         int entering;
  614 {
  615 
  616         PGRP_LOCK(pgrp);
  617         if (entering)
  618                 pgrp->pg_jobc++;
  619         else {
  620                 --pgrp->pg_jobc;
  621                 if (pgrp->pg_jobc == 0)
  622                         orphanpg(pgrp);
  623         }
  624         PGRP_UNLOCK(pgrp);
  625 }
  626 
  627 /*
  628  * Adjust pgrp jobc counters when specified process changes process group.
  629  * We count the number of processes in each process group that "qualify"
  630  * the group for terminal job control (those with a parent in a different
  631  * process group of the same session).  If that count reaches zero, the
  632  * process group becomes orphaned.  Check both the specified process'
  633  * process group and that of its children.
  634  * entering == 0 => p is leaving specified group.
  635  * entering == 1 => p is entering specified group.
  636  */
  637 void
  638 fixjobc(p, pgrp, entering)
  639         register struct proc *p;
  640         register struct pgrp *pgrp;
  641         int entering;
  642 {
  643         register struct pgrp *hispgrp;
  644         register struct session *mysession;
  645 
  646         sx_assert(&proctree_lock, SX_LOCKED);
  647         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  648         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  649         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  650 
  651         /*
  652          * Check p's parent to see whether p qualifies its own process
  653          * group; if so, adjust count for p's process group.
  654          */
  655         mysession = pgrp->pg_session;
  656         if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
  657             hispgrp->pg_session == mysession)
  658                 pgadjustjobc(pgrp, entering);
  659 
  660         /*
  661          * Check this process' children to see whether they qualify
  662          * their process groups; if so, adjust counts for children's
  663          * process groups.
  664          */
  665         LIST_FOREACH(p, &p->p_children, p_sibling) {
  666                 hispgrp = p->p_pgrp;
  667                 if (hispgrp == pgrp ||
  668                     hispgrp->pg_session != mysession)
  669                         continue;
  670                 PROC_LOCK(p);
  671                 if (p->p_state == PRS_ZOMBIE) {
  672                         PROC_UNLOCK(p);
  673                         continue;
  674                 }
  675                 PROC_UNLOCK(p);
  676                 pgadjustjobc(hispgrp, entering);
  677         }
  678 }
  679 
  680 /*
  681  * A process group has become orphaned;
  682  * if there are any stopped processes in the group,
  683  * hang-up all process in that group.
  684  */
  685 static void
  686 orphanpg(pg)
  687         struct pgrp *pg;
  688 {
  689         register struct proc *p;
  690 
  691         PGRP_LOCK_ASSERT(pg, MA_OWNED);
  692 
  693         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  694                 PROC_LOCK(p);
  695                 if (P_SHOULDSTOP(p)) {
  696                         PROC_UNLOCK(p);
  697                         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  698                                 PROC_LOCK(p);
  699                                 kern_psignal(p, SIGHUP);
  700                                 kern_psignal(p, SIGCONT);
  701                                 PROC_UNLOCK(p);
  702                         }
  703                         return;
  704                 }
  705                 PROC_UNLOCK(p);
  706         }
  707 }
  708 
  709 void
  710 sess_hold(struct session *s)
  711 {
  712 
  713         refcount_acquire(&s->s_count);
  714 }
  715 
  716 void
  717 sess_release(struct session *s)
  718 {
  719 
  720         if (refcount_release(&s->s_count)) {
  721                 if (s->s_ttyp != NULL) {
  722                         tty_lock(s->s_ttyp);
  723                         tty_rel_sess(s->s_ttyp, s);
  724                 }
  725                 mtx_destroy(&s->s_mtx);
  726                 free(s, M_SESSION);
  727         }
  728 }
  729 
  730 #ifdef DDB
  731 
  732 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
  733 {
  734         register struct pgrp *pgrp;
  735         register struct proc *p;
  736         register int i;
  737 
  738         for (i = 0; i <= pgrphash; i++) {
  739                 if (!LIST_EMPTY(&pgrphashtbl[i])) {
  740                         printf("\tindx %d\n", i);
  741                         LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
  742                                 printf(
  743                         "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
  744                                     (void *)pgrp, (long)pgrp->pg_id,
  745                                     (void *)pgrp->pg_session,
  746                                     pgrp->pg_session->s_count,
  747                                     (void *)LIST_FIRST(&pgrp->pg_members));
  748                                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
  749                                         printf("\t\tpid %ld addr %p pgrp %p\n", 
  750                                             (long)p->p_pid, (void *)p,
  751                                             (void *)p->p_pgrp);
  752                                 }
  753                         }
  754                 }
  755         }
  756 }
  757 #endif /* DDB */
  758 
  759 /*
  760  * Calculate the kinfo_proc members which contain process-wide
  761  * informations.
  762  * Must be called with the target process locked.
  763  */
  764 static void
  765 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
  766 {
  767         struct thread *td;
  768 
  769         PROC_LOCK_ASSERT(p, MA_OWNED);
  770 
  771         kp->ki_estcpu = 0;
  772         kp->ki_pctcpu = 0;
  773         FOREACH_THREAD_IN_PROC(p, td) {
  774                 thread_lock(td);
  775                 kp->ki_pctcpu += sched_pctcpu(td);
  776                 kp->ki_estcpu += td->td_estcpu;
  777                 thread_unlock(td);
  778         }
  779 }
  780 
  781 /*
  782  * Clear kinfo_proc and fill in any information that is common
  783  * to all threads in the process.
  784  * Must be called with the target process locked.
  785  */
  786 static void
  787 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
  788 {
  789         struct thread *td0;
  790         struct tty *tp;
  791         struct session *sp;
  792         struct ucred *cred;
  793         struct sigacts *ps;
  794 
  795         PROC_LOCK_ASSERT(p, MA_OWNED);
  796         bzero(kp, sizeof(*kp));
  797 
  798         kp->ki_structsize = sizeof(*kp);
  799         kp->ki_paddr = p;
  800         kp->ki_addr =/* p->p_addr; */0; /* XXX */
  801         kp->ki_args = p->p_args;
  802         kp->ki_textvp = p->p_textvp;
  803 #ifdef KTRACE
  804         kp->ki_tracep = p->p_tracevp;
  805         kp->ki_traceflag = p->p_traceflag;
  806 #endif
  807         kp->ki_fd = p->p_fd;
  808         kp->ki_vmspace = p->p_vmspace;
  809         kp->ki_flag = p->p_flag;
  810         kp->ki_flag2 = p->p_flag2;
  811         cred = p->p_ucred;
  812         if (cred) {
  813                 kp->ki_uid = cred->cr_uid;
  814                 kp->ki_ruid = cred->cr_ruid;
  815                 kp->ki_svuid = cred->cr_svuid;
  816                 kp->ki_cr_flags = 0;
  817                 if (cred->cr_flags & CRED_FLAG_CAPMODE)
  818                         kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
  819                 /* XXX bde doesn't like KI_NGROUPS */
  820                 if (cred->cr_ngroups > KI_NGROUPS) {
  821                         kp->ki_ngroups = KI_NGROUPS;
  822                         kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
  823                 } else
  824                         kp->ki_ngroups = cred->cr_ngroups;
  825                 bcopy(cred->cr_groups, kp->ki_groups,
  826                     kp->ki_ngroups * sizeof(gid_t));
  827                 kp->ki_rgid = cred->cr_rgid;
  828                 kp->ki_svgid = cred->cr_svgid;
  829                 /* If jailed(cred), emulate the old P_JAILED flag. */
  830                 if (jailed(cred)) {
  831                         kp->ki_flag |= P_JAILED;
  832                         /* If inside the jail, use 0 as a jail ID. */
  833                         if (cred->cr_prison != curthread->td_ucred->cr_prison)
  834                                 kp->ki_jid = cred->cr_prison->pr_id;
  835                 }
  836                 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
  837                     sizeof(kp->ki_loginclass));
  838         }
  839         ps = p->p_sigacts;
  840         if (ps) {
  841                 mtx_lock(&ps->ps_mtx);
  842                 kp->ki_sigignore = ps->ps_sigignore;
  843                 kp->ki_sigcatch = ps->ps_sigcatch;
  844                 mtx_unlock(&ps->ps_mtx);
  845         }
  846         if (p->p_state != PRS_NEW &&
  847             p->p_state != PRS_ZOMBIE &&
  848             p->p_vmspace != NULL) {
  849                 struct vmspace *vm = p->p_vmspace;
  850 
  851                 kp->ki_size = vm->vm_map.size;
  852                 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
  853                 FOREACH_THREAD_IN_PROC(p, td0) {
  854                         if (!TD_IS_SWAPPED(td0))
  855                                 kp->ki_rssize += td0->td_kstack_pages;
  856                 }
  857                 kp->ki_swrss = vm->vm_swrss;
  858                 kp->ki_tsize = vm->vm_tsize;
  859                 kp->ki_dsize = vm->vm_dsize;
  860                 kp->ki_ssize = vm->vm_ssize;
  861         } else if (p->p_state == PRS_ZOMBIE)
  862                 kp->ki_stat = SZOMB;
  863         if (kp->ki_flag & P_INMEM)
  864                 kp->ki_sflag = PS_INMEM;
  865         else
  866                 kp->ki_sflag = 0;
  867         /* Calculate legacy swtime as seconds since 'swtick'. */
  868         kp->ki_swtime = (ticks - p->p_swtick) / hz;
  869         kp->ki_pid = p->p_pid;
  870         kp->ki_nice = p->p_nice;
  871         kp->ki_fibnum = p->p_fibnum;
  872         kp->ki_start = p->p_stats->p_start;
  873         timevaladd(&kp->ki_start, &boottime);
  874         PROC_SLOCK(p);
  875         rufetch(p, &kp->ki_rusage);
  876         kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
  877         calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
  878         PROC_SUNLOCK(p);
  879         calccru(p, &kp->ki_childutime, &kp->ki_childstime);
  880         /* Some callers want child times in a single value. */
  881         kp->ki_childtime = kp->ki_childstime;
  882         timevaladd(&kp->ki_childtime, &kp->ki_childutime);
  883 
  884         FOREACH_THREAD_IN_PROC(p, td0)
  885                 kp->ki_cow += td0->td_cow;
  886 
  887         tp = NULL;
  888         if (p->p_pgrp) {
  889                 kp->ki_pgid = p->p_pgrp->pg_id;
  890                 kp->ki_jobc = p->p_pgrp->pg_jobc;
  891                 sp = p->p_pgrp->pg_session;
  892 
  893                 if (sp != NULL) {
  894                         kp->ki_sid = sp->s_sid;
  895                         SESS_LOCK(sp);
  896                         strlcpy(kp->ki_login, sp->s_login,
  897                             sizeof(kp->ki_login));
  898                         if (sp->s_ttyvp)
  899                                 kp->ki_kiflag |= KI_CTTY;
  900                         if (SESS_LEADER(p))
  901                                 kp->ki_kiflag |= KI_SLEADER;
  902                         /* XXX proctree_lock */
  903                         tp = sp->s_ttyp;
  904                         SESS_UNLOCK(sp);
  905                 }
  906         }
  907         if ((p->p_flag & P_CONTROLT) && tp != NULL) {
  908                 kp->ki_tdev = tty_udev(tp);
  909                 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
  910                 if (tp->t_session)
  911                         kp->ki_tsid = tp->t_session->s_sid;
  912         } else
  913                 kp->ki_tdev = NODEV;
  914         if (p->p_comm[0] != '\0')
  915                 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
  916         if (p->p_sysent && p->p_sysent->sv_name != NULL &&
  917             p->p_sysent->sv_name[0] != '\0')
  918                 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
  919         kp->ki_siglist = p->p_siglist;
  920         kp->ki_xstat = p->p_xstat;
  921         kp->ki_acflag = p->p_acflag;
  922         kp->ki_lock = p->p_lock;
  923         if (p->p_pptr)
  924                 kp->ki_ppid = p->p_pptr->p_pid;
  925 }
  926 
  927 /*
  928  * Fill in information that is thread specific.  Must be called with
  929  * target process locked.  If 'preferthread' is set, overwrite certain
  930  * process-related fields that are maintained for both threads and
  931  * processes.
  932  */
  933 static void
  934 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
  935 {
  936         struct proc *p;
  937 
  938         p = td->td_proc;
  939         kp->ki_tdaddr = td;
  940         PROC_LOCK_ASSERT(p, MA_OWNED);
  941 
  942         if (preferthread)
  943                 PROC_SLOCK(p);
  944         thread_lock(td);
  945         if (td->td_wmesg != NULL)
  946                 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
  947         else
  948                 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
  949         strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname));
  950         if (TD_ON_LOCK(td)) {
  951                 kp->ki_kiflag |= KI_LOCKBLOCK;
  952                 strlcpy(kp->ki_lockname, td->td_lockname,
  953                     sizeof(kp->ki_lockname));
  954         } else {
  955                 kp->ki_kiflag &= ~KI_LOCKBLOCK;
  956                 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
  957         }
  958 
  959         if (p->p_state == PRS_NORMAL) { /* approximate. */
  960                 if (TD_ON_RUNQ(td) ||
  961                     TD_CAN_RUN(td) ||
  962                     TD_IS_RUNNING(td)) {
  963                         kp->ki_stat = SRUN;
  964                 } else if (P_SHOULDSTOP(p)) {
  965                         kp->ki_stat = SSTOP;
  966                 } else if (TD_IS_SLEEPING(td)) {
  967                         kp->ki_stat = SSLEEP;
  968                 } else if (TD_ON_LOCK(td)) {
  969                         kp->ki_stat = SLOCK;
  970                 } else {
  971                         kp->ki_stat = SWAIT;
  972                 }
  973         } else if (p->p_state == PRS_ZOMBIE) {
  974                 kp->ki_stat = SZOMB;
  975         } else {
  976                 kp->ki_stat = SIDL;
  977         }
  978 
  979         /* Things in the thread */
  980         kp->ki_wchan = td->td_wchan;
  981         kp->ki_pri.pri_level = td->td_priority;
  982         kp->ki_pri.pri_native = td->td_base_pri;
  983         kp->ki_lastcpu = td->td_lastcpu;
  984         kp->ki_oncpu = td->td_oncpu;
  985         kp->ki_tdflags = td->td_flags;
  986         kp->ki_tid = td->td_tid;
  987         kp->ki_numthreads = p->p_numthreads;
  988         kp->ki_pcb = td->td_pcb;
  989         kp->ki_kstack = (void *)td->td_kstack;
  990         kp->ki_slptime = (ticks - td->td_slptick) / hz;
  991         kp->ki_pri.pri_class = td->td_pri_class;
  992         kp->ki_pri.pri_user = td->td_user_pri;
  993 
  994         if (preferthread) {
  995                 rufetchtd(td, &kp->ki_rusage);
  996                 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
  997                 kp->ki_pctcpu = sched_pctcpu(td);
  998                 kp->ki_estcpu = td->td_estcpu;
  999                 kp->ki_cow = td->td_cow;
 1000         }
 1001 
 1002         /* We can't get this anymore but ps etc never used it anyway. */
 1003         kp->ki_rqindex = 0;
 1004 
 1005         if (preferthread)
 1006                 kp->ki_siglist = td->td_siglist;
 1007         kp->ki_sigmask = td->td_sigmask;
 1008         thread_unlock(td);
 1009         if (preferthread)
 1010                 PROC_SUNLOCK(p);
 1011 }
 1012 
 1013 /*
 1014  * Fill in a kinfo_proc structure for the specified process.
 1015  * Must be called with the target process locked.
 1016  */
 1017 void
 1018 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
 1019 {
 1020 
 1021         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1022 
 1023         fill_kinfo_proc_only(p, kp);
 1024         fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
 1025         fill_kinfo_aggregate(p, kp);
 1026 }
 1027 
 1028 struct pstats *
 1029 pstats_alloc(void)
 1030 {
 1031 
 1032         return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
 1033 }
 1034 
 1035 /*
 1036  * Copy parts of p_stats; zero the rest of p_stats (statistics).
 1037  */
 1038 void
 1039 pstats_fork(struct pstats *src, struct pstats *dst)
 1040 {
 1041 
 1042         bzero(&dst->pstat_startzero,
 1043             __rangeof(struct pstats, pstat_startzero, pstat_endzero));
 1044         bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
 1045             __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
 1046 }
 1047 
 1048 void
 1049 pstats_free(struct pstats *ps)
 1050 {
 1051 
 1052         free(ps, M_SUBPROC);
 1053 }
 1054 
 1055 static struct proc *
 1056 zpfind_locked(pid_t pid)
 1057 {
 1058         struct proc *p;
 1059 
 1060         sx_assert(&allproc_lock, SX_LOCKED);
 1061         LIST_FOREACH(p, &zombproc, p_list) {
 1062                 if (p->p_pid == pid) {
 1063                         PROC_LOCK(p);
 1064                         break;
 1065                 }
 1066         }
 1067         return (p);
 1068 }
 1069 
 1070 /*
 1071  * Locate a zombie process by number
 1072  */
 1073 struct proc *
 1074 zpfind(pid_t pid)
 1075 {
 1076         struct proc *p;
 1077 
 1078         sx_slock(&allproc_lock);
 1079         p = zpfind_locked(pid);
 1080         sx_sunlock(&allproc_lock);
 1081         return (p);
 1082 }
 1083 
 1084 #ifdef COMPAT_FREEBSD32
 1085 
 1086 /*
 1087  * This function is typically used to copy out the kernel address, so
 1088  * it can be replaced by assignment of zero.
 1089  */
 1090 static inline uint32_t
 1091 ptr32_trim(void *ptr)
 1092 {
 1093         uintptr_t uptr;
 1094 
 1095         uptr = (uintptr_t)ptr;
 1096         return ((uptr > UINT_MAX) ? 0 : uptr);
 1097 }
 1098 
 1099 #define PTRTRIM_CP(src,dst,fld) \
 1100         do { (dst).fld = ptr32_trim((src).fld); } while (0)
 1101 
 1102 static void
 1103 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
 1104 {
 1105         int i;
 1106 
 1107         bzero(ki32, sizeof(struct kinfo_proc32));
 1108         ki32->ki_structsize = sizeof(struct kinfo_proc32);
 1109         CP(*ki, *ki32, ki_layout);
 1110         PTRTRIM_CP(*ki, *ki32, ki_args);
 1111         PTRTRIM_CP(*ki, *ki32, ki_paddr);
 1112         PTRTRIM_CP(*ki, *ki32, ki_addr);
 1113         PTRTRIM_CP(*ki, *ki32, ki_tracep);
 1114         PTRTRIM_CP(*ki, *ki32, ki_textvp);
 1115         PTRTRIM_CP(*ki, *ki32, ki_fd);
 1116         PTRTRIM_CP(*ki, *ki32, ki_vmspace);
 1117         PTRTRIM_CP(*ki, *ki32, ki_wchan);
 1118         CP(*ki, *ki32, ki_pid);
 1119         CP(*ki, *ki32, ki_ppid);
 1120         CP(*ki, *ki32, ki_pgid);
 1121         CP(*ki, *ki32, ki_tpgid);
 1122         CP(*ki, *ki32, ki_sid);
 1123         CP(*ki, *ki32, ki_tsid);
 1124         CP(*ki, *ki32, ki_jobc);
 1125         CP(*ki, *ki32, ki_tdev);
 1126         CP(*ki, *ki32, ki_siglist);
 1127         CP(*ki, *ki32, ki_sigmask);
 1128         CP(*ki, *ki32, ki_sigignore);
 1129         CP(*ki, *ki32, ki_sigcatch);
 1130         CP(*ki, *ki32, ki_uid);
 1131         CP(*ki, *ki32, ki_ruid);
 1132         CP(*ki, *ki32, ki_svuid);
 1133         CP(*ki, *ki32, ki_rgid);
 1134         CP(*ki, *ki32, ki_svgid);
 1135         CP(*ki, *ki32, ki_ngroups);
 1136         for (i = 0; i < KI_NGROUPS; i++)
 1137                 CP(*ki, *ki32, ki_groups[i]);
 1138         CP(*ki, *ki32, ki_size);
 1139         CP(*ki, *ki32, ki_rssize);
 1140         CP(*ki, *ki32, ki_swrss);
 1141         CP(*ki, *ki32, ki_tsize);
 1142         CP(*ki, *ki32, ki_dsize);
 1143         CP(*ki, *ki32, ki_ssize);
 1144         CP(*ki, *ki32, ki_xstat);
 1145         CP(*ki, *ki32, ki_acflag);
 1146         CP(*ki, *ki32, ki_pctcpu);
 1147         CP(*ki, *ki32, ki_estcpu);
 1148         CP(*ki, *ki32, ki_slptime);
 1149         CP(*ki, *ki32, ki_swtime);
 1150         CP(*ki, *ki32, ki_cow);
 1151         CP(*ki, *ki32, ki_runtime);
 1152         TV_CP(*ki, *ki32, ki_start);
 1153         TV_CP(*ki, *ki32, ki_childtime);
 1154         CP(*ki, *ki32, ki_flag);
 1155         CP(*ki, *ki32, ki_kiflag);
 1156         CP(*ki, *ki32, ki_traceflag);
 1157         CP(*ki, *ki32, ki_stat);
 1158         CP(*ki, *ki32, ki_nice);
 1159         CP(*ki, *ki32, ki_lock);
 1160         CP(*ki, *ki32, ki_rqindex);
 1161         CP(*ki, *ki32, ki_oncpu);
 1162         CP(*ki, *ki32, ki_lastcpu);
 1163         bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
 1164         bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
 1165         bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
 1166         bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
 1167         bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
 1168         bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
 1169         bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
 1170         CP(*ki, *ki32, ki_flag2);
 1171         CP(*ki, *ki32, ki_fibnum);
 1172         CP(*ki, *ki32, ki_cr_flags);
 1173         CP(*ki, *ki32, ki_jid);
 1174         CP(*ki, *ki32, ki_numthreads);
 1175         CP(*ki, *ki32, ki_tid);
 1176         CP(*ki, *ki32, ki_pri);
 1177         freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
 1178         freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
 1179         PTRTRIM_CP(*ki, *ki32, ki_pcb);
 1180         PTRTRIM_CP(*ki, *ki32, ki_kstack);
 1181         PTRTRIM_CP(*ki, *ki32, ki_udata);
 1182         CP(*ki, *ki32, ki_sflag);
 1183         CP(*ki, *ki32, ki_tdflags);
 1184 }
 1185 #endif
 1186 
 1187 int
 1188 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
 1189 {
 1190         struct thread *td;
 1191         struct kinfo_proc ki;
 1192 #ifdef COMPAT_FREEBSD32
 1193         struct kinfo_proc32 ki32;
 1194 #endif
 1195         int error;
 1196 
 1197         PROC_LOCK_ASSERT(p, MA_OWNED);
 1198         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1199 
 1200         error = 0;
 1201         fill_kinfo_proc(p, &ki);
 1202         if ((flags & KERN_PROC_NOTHREADS) != 0) {
 1203 #ifdef COMPAT_FREEBSD32
 1204                 if ((flags & KERN_PROC_MASK32) != 0) {
 1205                         freebsd32_kinfo_proc_out(&ki, &ki32);
 1206                         if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
 1207                                 error = ENOMEM;
 1208                 } else
 1209 #endif
 1210                         if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
 1211                                 error = ENOMEM;
 1212         } else {
 1213                 FOREACH_THREAD_IN_PROC(p, td) {
 1214                         fill_kinfo_thread(td, &ki, 1);
 1215 #ifdef COMPAT_FREEBSD32
 1216                         if ((flags & KERN_PROC_MASK32) != 0) {
 1217                                 freebsd32_kinfo_proc_out(&ki, &ki32);
 1218                                 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
 1219                                         error = ENOMEM;
 1220                         } else
 1221 #endif
 1222                                 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
 1223                                         error = ENOMEM;
 1224                         if (error != 0)
 1225                                 break;
 1226                 }
 1227         }
 1228         PROC_UNLOCK(p);
 1229         return (error);
 1230 }
 1231 
 1232 static int
 1233 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
 1234     int doingzomb)
 1235 {
 1236         struct sbuf sb;
 1237         struct kinfo_proc ki;
 1238         struct proc *np;
 1239         int error, error2;
 1240         pid_t pid;
 1241 
 1242         pid = p->p_pid;
 1243         sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
 1244         error = kern_proc_out(p, &sb, flags);
 1245         error2 = sbuf_finish(&sb);
 1246         sbuf_delete(&sb);
 1247         if (error != 0)
 1248                 return (error);
 1249         else if (error2 != 0)
 1250                 return (error2);
 1251         if (doingzomb)
 1252                 np = zpfind(pid);
 1253         else {
 1254                 if (pid == 0)
 1255                         return (0);
 1256                 np = pfind(pid);
 1257         }
 1258         if (np == NULL)
 1259                 return (ESRCH);
 1260         if (np != p) {
 1261                 PROC_UNLOCK(np);
 1262                 return (ESRCH);
 1263         }
 1264         PROC_UNLOCK(np);
 1265         return (0);
 1266 }
 1267 
 1268 static int
 1269 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
 1270 {
 1271         int *name = (int *)arg1;
 1272         u_int namelen = arg2;
 1273         struct proc *p;
 1274         int flags, doingzomb, oid_number;
 1275         int error = 0;
 1276 
 1277         oid_number = oidp->oid_number;
 1278         if (oid_number != KERN_PROC_ALL &&
 1279             (oid_number & KERN_PROC_INC_THREAD) == 0)
 1280                 flags = KERN_PROC_NOTHREADS;
 1281         else {
 1282                 flags = 0;
 1283                 oid_number &= ~KERN_PROC_INC_THREAD;
 1284         }
 1285 #ifdef COMPAT_FREEBSD32
 1286         if (req->flags & SCTL_MASK32)
 1287                 flags |= KERN_PROC_MASK32;
 1288 #endif
 1289         if (oid_number == KERN_PROC_PID) {
 1290                 if (namelen != 1)
 1291                         return (EINVAL);
 1292                 error = sysctl_wire_old_buffer(req, 0);
 1293                 if (error)
 1294                         return (error);
 1295                 error = pget((pid_t)name[0], PGET_CANSEE, &p);
 1296                 if (error != 0)
 1297                         return (error);
 1298                 error = sysctl_out_proc(p, req, flags, 0);
 1299                 return (error);
 1300         }
 1301 
 1302         switch (oid_number) {
 1303         case KERN_PROC_ALL:
 1304                 if (namelen != 0)
 1305                         return (EINVAL);
 1306                 break;
 1307         case KERN_PROC_PROC:
 1308                 if (namelen != 0 && namelen != 1)
 1309                         return (EINVAL);
 1310                 break;
 1311         default:
 1312                 if (namelen != 1)
 1313                         return (EINVAL);
 1314                 break;
 1315         }
 1316 
 1317         if (!req->oldptr) {
 1318                 /* overestimate by 5 procs */
 1319                 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
 1320                 if (error)
 1321                         return (error);
 1322         }
 1323         error = sysctl_wire_old_buffer(req, 0);
 1324         if (error != 0)
 1325                 return (error);
 1326         sx_slock(&allproc_lock);
 1327         for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
 1328                 if (!doingzomb)
 1329                         p = LIST_FIRST(&allproc);
 1330                 else
 1331                         p = LIST_FIRST(&zombproc);
 1332                 for (; p != 0; p = LIST_NEXT(p, p_list)) {
 1333                         /*
 1334                          * Skip embryonic processes.
 1335                          */
 1336                         PROC_LOCK(p);
 1337                         if (p->p_state == PRS_NEW) {
 1338                                 PROC_UNLOCK(p);
 1339                                 continue;
 1340                         }
 1341                         KASSERT(p->p_ucred != NULL,
 1342                             ("process credential is NULL for non-NEW proc"));
 1343                         /*
 1344                          * Show a user only appropriate processes.
 1345                          */
 1346                         if (p_cansee(curthread, p)) {
 1347                                 PROC_UNLOCK(p);
 1348                                 continue;
 1349                         }
 1350                         /*
 1351                          * TODO - make more efficient (see notes below).
 1352                          * do by session.
 1353                          */
 1354                         switch (oid_number) {
 1355 
 1356                         case KERN_PROC_GID:
 1357                                 if (p->p_ucred->cr_gid != (gid_t)name[0]) {
 1358                                         PROC_UNLOCK(p);
 1359                                         continue;
 1360                                 }
 1361                                 break;
 1362 
 1363                         case KERN_PROC_PGRP:
 1364                                 /* could do this by traversing pgrp */
 1365                                 if (p->p_pgrp == NULL ||
 1366                                     p->p_pgrp->pg_id != (pid_t)name[0]) {
 1367                                         PROC_UNLOCK(p);
 1368                                         continue;
 1369                                 }
 1370                                 break;
 1371 
 1372                         case KERN_PROC_RGID:
 1373                                 if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
 1374                                         PROC_UNLOCK(p);
 1375                                         continue;
 1376                                 }
 1377                                 break;
 1378 
 1379                         case KERN_PROC_SESSION:
 1380                                 if (p->p_session == NULL ||
 1381                                     p->p_session->s_sid != (pid_t)name[0]) {
 1382                                         PROC_UNLOCK(p);
 1383                                         continue;
 1384                                 }
 1385                                 break;
 1386 
 1387                         case KERN_PROC_TTY:
 1388                                 if ((p->p_flag & P_CONTROLT) == 0 ||
 1389                                     p->p_session == NULL) {
 1390                                         PROC_UNLOCK(p);
 1391                                         continue;
 1392                                 }
 1393                                 /* XXX proctree_lock */
 1394                                 SESS_LOCK(p->p_session);
 1395                                 if (p->p_session->s_ttyp == NULL ||
 1396                                     tty_udev(p->p_session->s_ttyp) !=
 1397                                     (dev_t)name[0]) {
 1398                                         SESS_UNLOCK(p->p_session);
 1399                                         PROC_UNLOCK(p);
 1400                                         continue;
 1401                                 }
 1402                                 SESS_UNLOCK(p->p_session);
 1403                                 break;
 1404 
 1405                         case KERN_PROC_UID:
 1406                                 if (p->p_ucred->cr_uid != (uid_t)name[0]) {
 1407                                         PROC_UNLOCK(p);
 1408                                         continue;
 1409                                 }
 1410                                 break;
 1411 
 1412                         case KERN_PROC_RUID:
 1413                                 if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
 1414                                         PROC_UNLOCK(p);
 1415                                         continue;
 1416                                 }
 1417                                 break;
 1418 
 1419                         case KERN_PROC_PROC:
 1420                                 break;
 1421 
 1422                         default:
 1423                                 break;
 1424 
 1425                         }
 1426 
 1427                         error = sysctl_out_proc(p, req, flags, doingzomb);
 1428                         if (error) {
 1429                                 sx_sunlock(&allproc_lock);
 1430                                 return (error);
 1431                         }
 1432                 }
 1433         }
 1434         sx_sunlock(&allproc_lock);
 1435         return (0);
 1436 }
 1437 
 1438 struct pargs *
 1439 pargs_alloc(int len)
 1440 {
 1441         struct pargs *pa;
 1442 
 1443         pa = malloc(sizeof(struct pargs) + len, M_PARGS,
 1444                 M_WAITOK);
 1445         refcount_init(&pa->ar_ref, 1);
 1446         pa->ar_length = len;
 1447         return (pa);
 1448 }
 1449 
 1450 static void
 1451 pargs_free(struct pargs *pa)
 1452 {
 1453 
 1454         free(pa, M_PARGS);
 1455 }
 1456 
 1457 void
 1458 pargs_hold(struct pargs *pa)
 1459 {
 1460 
 1461         if (pa == NULL)
 1462                 return;
 1463         refcount_acquire(&pa->ar_ref);
 1464 }
 1465 
 1466 void
 1467 pargs_drop(struct pargs *pa)
 1468 {
 1469 
 1470         if (pa == NULL)
 1471                 return;
 1472         if (refcount_release(&pa->ar_ref))
 1473                 pargs_free(pa);
 1474 }
 1475 
 1476 static int
 1477 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf,
 1478     size_t len)
 1479 {
 1480         struct iovec iov;
 1481         struct uio uio;
 1482 
 1483         iov.iov_base = (caddr_t)buf;
 1484         iov.iov_len = len;
 1485         uio.uio_iov = &iov;
 1486         uio.uio_iovcnt = 1;
 1487         uio.uio_offset = offset;
 1488         uio.uio_resid = (ssize_t)len;
 1489         uio.uio_segflg = UIO_SYSSPACE;
 1490         uio.uio_rw = UIO_READ;
 1491         uio.uio_td = td;
 1492 
 1493         return (proc_rwmem(p, &uio));
 1494 }
 1495 
 1496 static int
 1497 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
 1498     size_t len)
 1499 {
 1500         size_t i;
 1501         int error;
 1502 
 1503         error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len);
 1504         /*
 1505          * Reading the chunk may validly return EFAULT if the string is shorter
 1506          * than the chunk and is aligned at the end of the page, assuming the
 1507          * next page is not mapped.  So if EFAULT is returned do a fallback to
 1508          * one byte read loop.
 1509          */
 1510         if (error == EFAULT) {
 1511                 for (i = 0; i < len; i++, buf++, sptr++) {
 1512                         error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1);
 1513                         if (error != 0)
 1514                                 return (error);
 1515                         if (*buf == '\0')
 1516                                 break;
 1517                 }
 1518                 error = 0;
 1519         }
 1520         return (error);
 1521 }
 1522 
 1523 #define PROC_AUXV_MAX   256     /* Safety limit on auxv size. */
 1524 
 1525 enum proc_vector_type {
 1526         PROC_ARG,
 1527         PROC_ENV,
 1528         PROC_AUX,
 1529 };
 1530 
 1531 #ifdef COMPAT_FREEBSD32
 1532 static int
 1533 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
 1534     size_t *vsizep, enum proc_vector_type type)
 1535 {
 1536         struct freebsd32_ps_strings pss;
 1537         Elf32_Auxinfo aux;
 1538         vm_offset_t vptr, ptr;
 1539         uint32_t *proc_vector32;
 1540         char **proc_vector;
 1541         size_t vsize, size;
 1542         int i, error;
 1543 
 1544         error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
 1545             &pss, sizeof(pss));
 1546         if (error != 0)
 1547                 return (error);
 1548         switch (type) {
 1549         case PROC_ARG:
 1550                 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
 1551                 vsize = pss.ps_nargvstr;
 1552                 if (vsize > ARG_MAX)
 1553                         return (ENOEXEC);
 1554                 size = vsize * sizeof(int32_t);
 1555                 break;
 1556         case PROC_ENV:
 1557                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
 1558                 vsize = pss.ps_nenvstr;
 1559                 if (vsize > ARG_MAX)
 1560                         return (ENOEXEC);
 1561                 size = vsize * sizeof(int32_t);
 1562                 break;
 1563         case PROC_AUX:
 1564                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
 1565                     (pss.ps_nenvstr + 1) * sizeof(int32_t);
 1566                 if (vptr % 4 != 0)
 1567                         return (ENOEXEC);
 1568                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 1569                         error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
 1570                         if (error != 0)
 1571                                 return (error);
 1572                         if (aux.a_type == AT_NULL)
 1573                                 break;
 1574                         ptr += sizeof(aux);
 1575                 }
 1576                 if (aux.a_type != AT_NULL)
 1577                         return (ENOEXEC);
 1578                 vsize = i + 1;
 1579                 size = vsize * sizeof(aux);
 1580                 break;
 1581         default:
 1582                 KASSERT(0, ("Wrong proc vector type: %d", type));
 1583                 return (EINVAL);
 1584         }
 1585         proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
 1586         error = proc_read_mem(td, p, vptr, proc_vector32, size);
 1587         if (error != 0)
 1588                 goto done;
 1589         if (type == PROC_AUX) {
 1590                 *proc_vectorp = (char **)proc_vector32;
 1591                 *vsizep = vsize;
 1592                 return (0);
 1593         }
 1594         proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
 1595         for (i = 0; i < (int)vsize; i++)
 1596                 proc_vector[i] = PTRIN(proc_vector32[i]);
 1597         *proc_vectorp = proc_vector;
 1598         *vsizep = vsize;
 1599 done:
 1600         free(proc_vector32, M_TEMP);
 1601         return (error);
 1602 }
 1603 #endif
 1604 
 1605 static int
 1606 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
 1607     size_t *vsizep, enum proc_vector_type type)
 1608 {
 1609         struct ps_strings pss;
 1610         Elf_Auxinfo aux;
 1611         vm_offset_t vptr, ptr;
 1612         char **proc_vector;
 1613         size_t vsize, size;
 1614         int error, i;
 1615 
 1616 #ifdef COMPAT_FREEBSD32
 1617         if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 1618                 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
 1619 #endif
 1620         error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
 1621             &pss, sizeof(pss));
 1622         if (error != 0)
 1623                 return (error);
 1624         switch (type) {
 1625         case PROC_ARG:
 1626                 vptr = (vm_offset_t)pss.ps_argvstr;
 1627                 vsize = pss.ps_nargvstr;
 1628                 if (vsize > ARG_MAX)
 1629                         return (ENOEXEC);
 1630                 size = vsize * sizeof(char *);
 1631                 break;
 1632         case PROC_ENV:
 1633                 vptr = (vm_offset_t)pss.ps_envstr;
 1634                 vsize = pss.ps_nenvstr;
 1635                 if (vsize > ARG_MAX)
 1636                         return (ENOEXEC);
 1637                 size = vsize * sizeof(char *);
 1638                 break;
 1639         case PROC_AUX:
 1640                 /*
 1641                  * The aux array is just above env array on the stack. Check
 1642                  * that the address is naturally aligned.
 1643                  */
 1644                 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
 1645                     * sizeof(char *);
 1646 #if __ELF_WORD_SIZE == 64
 1647                 if (vptr % sizeof(uint64_t) != 0)
 1648 #else
 1649                 if (vptr % sizeof(uint32_t) != 0)
 1650 #endif
 1651                         return (ENOEXEC);
 1652                 /*
 1653                  * We count the array size reading the aux vectors from the
 1654                  * stack until AT_NULL vector is returned.  So (to keep the code
 1655                  * simple) we read the process stack twice: the first time here
 1656                  * to find the size and the second time when copying the vectors
 1657                  * to the allocated proc_vector.
 1658                  */
 1659                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 1660                         error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
 1661                         if (error != 0)
 1662                                 return (error);
 1663                         if (aux.a_type == AT_NULL)
 1664                                 break;
 1665                         ptr += sizeof(aux);
 1666                 }
 1667                 /*
 1668                  * If the PROC_AUXV_MAX entries are iterated over, and we have
 1669                  * not reached AT_NULL, it is most likely we are reading wrong
 1670                  * data: either the process doesn't have auxv array or data has
 1671                  * been modified. Return the error in this case.
 1672                  */
 1673                 if (aux.a_type != AT_NULL)
 1674                         return (ENOEXEC);
 1675                 vsize = i + 1;
 1676                 size = vsize * sizeof(aux);
 1677                 break;
 1678         default:
 1679                 KASSERT(0, ("Wrong proc vector type: %d", type));
 1680                 return (EINVAL); /* In case we are built without INVARIANTS. */
 1681         }
 1682         proc_vector = malloc(size, M_TEMP, M_WAITOK);
 1683         if (proc_vector == NULL)
 1684                 return (ENOMEM);
 1685         error = proc_read_mem(td, p, vptr, proc_vector, size);
 1686         if (error != 0) {
 1687                 free(proc_vector, M_TEMP);
 1688                 return (error);
 1689         }
 1690         *proc_vectorp = proc_vector;
 1691         *vsizep = vsize;
 1692 
 1693         return (0);
 1694 }
 1695 
 1696 #define GET_PS_STRINGS_CHUNK_SZ 256     /* Chunk size (bytes) for ps_strings operations. */
 1697 
 1698 static int
 1699 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
 1700     enum proc_vector_type type)
 1701 {
 1702         size_t done, len, nchr, vsize;
 1703         int error, i;
 1704         char **proc_vector, *sptr;
 1705         char pss_string[GET_PS_STRINGS_CHUNK_SZ];
 1706 
 1707         PROC_ASSERT_HELD(p);
 1708 
 1709         /*
 1710          * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
 1711          */
 1712         nchr = 2 * (PATH_MAX + ARG_MAX);
 1713 
 1714         error = get_proc_vector(td, p, &proc_vector, &vsize, type);
 1715         if (error != 0)
 1716                 return (error);
 1717         for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
 1718                 /*
 1719                  * The program may have scribbled into its argv array, e.g. to
 1720                  * remove some arguments.  If that has happened, break out
 1721                  * before trying to read from NULL.
 1722                  */
 1723                 if (proc_vector[i] == NULL)
 1724                         break;
 1725                 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
 1726                         error = proc_read_string(td, p, sptr, pss_string,
 1727                             sizeof(pss_string));
 1728                         if (error != 0)
 1729                                 goto done;
 1730                         len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
 1731                         if (done + len >= nchr)
 1732                                 len = nchr - done - 1;
 1733                         sbuf_bcat(sb, pss_string, len);
 1734                         if (len != GET_PS_STRINGS_CHUNK_SZ)
 1735                                 break;
 1736                         done += GET_PS_STRINGS_CHUNK_SZ;
 1737                 }
 1738                 sbuf_bcat(sb, "", 1);
 1739                 done += len + 1;
 1740         }
 1741 done:
 1742         free(proc_vector, M_TEMP);
 1743         return (error);
 1744 }
 1745 
 1746 int
 1747 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
 1748 {
 1749 
 1750         return (get_ps_strings(curthread, p, sb, PROC_ARG));
 1751 }
 1752 
 1753 int
 1754 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
 1755 {
 1756 
 1757         return (get_ps_strings(curthread, p, sb, PROC_ENV));
 1758 }
 1759 
 1760 int
 1761 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
 1762 {
 1763         size_t vsize, size;
 1764         char **auxv;
 1765         int error;
 1766 
 1767         error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
 1768         if (error == 0) {
 1769 #ifdef COMPAT_FREEBSD32
 1770                 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 1771                         size = vsize * sizeof(Elf32_Auxinfo);
 1772                 else
 1773 #endif
 1774                         size = vsize * sizeof(Elf_Auxinfo);
 1775                 if (sbuf_bcat(sb, auxv, size) != 0)
 1776                         error = ENOMEM;
 1777                 free(auxv, M_TEMP);
 1778         }
 1779         return (error);
 1780 }
 1781 
 1782 /*
 1783  * This sysctl allows a process to retrieve the argument list or process
 1784  * title for another process without groping around in the address space
 1785  * of the other process.  It also allow a process to set its own "process 
 1786  * title to a string of its own choice.
 1787  */
 1788 static int
 1789 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
 1790 {
 1791         int *name = (int *)arg1;
 1792         u_int namelen = arg2;
 1793         struct pargs *newpa, *pa;
 1794         struct proc *p;
 1795         struct sbuf sb;
 1796         int flags, error = 0, error2;
 1797 
 1798         if (namelen != 1)
 1799                 return (EINVAL);
 1800 
 1801         flags = PGET_CANSEE;
 1802         if (req->newptr != NULL)
 1803                 flags |= PGET_ISCURRENT;
 1804         error = pget((pid_t)name[0], flags, &p);
 1805         if (error)
 1806                 return (error);
 1807 
 1808         pa = p->p_args;
 1809         if (pa != NULL) {
 1810                 pargs_hold(pa);
 1811                 PROC_UNLOCK(p);
 1812                 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
 1813                 pargs_drop(pa);
 1814         } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
 1815                 _PHOLD(p);
 1816                 PROC_UNLOCK(p);
 1817                 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1818                 error = proc_getargv(curthread, p, &sb);
 1819                 error2 = sbuf_finish(&sb);
 1820                 PRELE(p);
 1821                 sbuf_delete(&sb);
 1822                 if (error == 0 && error2 != 0)
 1823                         error = error2;
 1824         } else {
 1825                 PROC_UNLOCK(p);
 1826         }
 1827         if (error != 0 || req->newptr == NULL)
 1828                 return (error);
 1829 
 1830         if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
 1831                 return (ENOMEM);
 1832         newpa = pargs_alloc(req->newlen);
 1833         error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
 1834         if (error != 0) {
 1835                 pargs_free(newpa);
 1836                 return (error);
 1837         }
 1838         PROC_LOCK(p);
 1839         pa = p->p_args;
 1840         p->p_args = newpa;
 1841         PROC_UNLOCK(p);
 1842         pargs_drop(pa);
 1843         return (0);
 1844 }
 1845 
 1846 /*
 1847  * This sysctl allows a process to retrieve environment of another process.
 1848  */
 1849 static int
 1850 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
 1851 {
 1852         int *name = (int *)arg1;
 1853         u_int namelen = arg2;
 1854         struct proc *p;
 1855         struct sbuf sb;
 1856         int error, error2;
 1857 
 1858         if (namelen != 1)
 1859                 return (EINVAL);
 1860 
 1861         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1862         if (error != 0)
 1863                 return (error);
 1864         if ((p->p_flag & P_SYSTEM) != 0) {
 1865                 PRELE(p);
 1866                 return (0);
 1867         }
 1868 
 1869         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1870         error = proc_getenvv(curthread, p, &sb);
 1871         error2 = sbuf_finish(&sb);
 1872         PRELE(p);
 1873         sbuf_delete(&sb);
 1874         return (error != 0 ? error : error2);
 1875 }
 1876 
 1877 /*
 1878  * This sysctl allows a process to retrieve ELF auxiliary vector of
 1879  * another process.
 1880  */
 1881 static int
 1882 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
 1883 {
 1884         int *name = (int *)arg1;
 1885         u_int namelen = arg2;
 1886         struct proc *p;
 1887         struct sbuf sb;
 1888         int error, error2;
 1889 
 1890         if (namelen != 1)
 1891                 return (EINVAL);
 1892 
 1893         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1894         if (error != 0)
 1895                 return (error);
 1896         if ((p->p_flag & P_SYSTEM) != 0) {
 1897                 PRELE(p);
 1898                 return (0);
 1899         }
 1900         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1901         error = proc_getauxv(curthread, p, &sb);
 1902         error2 = sbuf_finish(&sb);
 1903         PRELE(p);
 1904         sbuf_delete(&sb);
 1905         return (error != 0 ? error : error2);
 1906 }
 1907 
 1908 /*
 1909  * This sysctl allows a process to retrieve the path of the executable for
 1910  * itself or another process.
 1911  */
 1912 static int
 1913 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
 1914 {
 1915         pid_t *pidp = (pid_t *)arg1;
 1916         unsigned int arglen = arg2;
 1917         struct proc *p;
 1918         struct vnode *vp;
 1919         char *retbuf, *freebuf;
 1920         int error;
 1921 
 1922         if (arglen != 1)
 1923                 return (EINVAL);
 1924         if (*pidp == -1) {      /* -1 means this process */
 1925                 p = req->td->td_proc;
 1926         } else {
 1927                 error = pget(*pidp, PGET_CANSEE, &p);
 1928                 if (error != 0)
 1929                         return (error);
 1930         }
 1931 
 1932         vp = p->p_textvp;
 1933         if (vp == NULL) {
 1934                 if (*pidp != -1)
 1935                         PROC_UNLOCK(p);
 1936                 return (0);
 1937         }
 1938         vref(vp);
 1939         if (*pidp != -1)
 1940                 PROC_UNLOCK(p);
 1941         error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
 1942         vrele(vp);
 1943         if (error)
 1944                 return (error);
 1945         error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
 1946         free(freebuf, M_TEMP);
 1947         return (error);
 1948 }
 1949 
 1950 static int
 1951 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
 1952 {
 1953         struct proc *p;
 1954         char *sv_name;
 1955         int *name;
 1956         int namelen;
 1957         int error;
 1958 
 1959         namelen = arg2;
 1960         if (namelen != 1)
 1961                 return (EINVAL);
 1962 
 1963         name = (int *)arg1;
 1964         error = pget((pid_t)name[0], PGET_CANSEE, &p);
 1965         if (error != 0)
 1966                 return (error);
 1967         sv_name = p->p_sysent->sv_name;
 1968         PROC_UNLOCK(p);
 1969         return (sysctl_handle_string(oidp, sv_name, 0, req));
 1970 }
 1971 
 1972 #ifdef KINFO_OVMENTRY_SIZE
 1973 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
 1974 #endif
 1975 
 1976 #ifdef COMPAT_FREEBSD7
 1977 static int
 1978 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
 1979 {
 1980         vm_map_entry_t entry, tmp_entry;
 1981         unsigned int last_timestamp;
 1982         char *fullpath, *freepath;
 1983         struct kinfo_ovmentry *kve;
 1984         struct vattr va;
 1985         struct ucred *cred;
 1986         int error, *name;
 1987         struct vnode *vp;
 1988         struct proc *p;
 1989         vm_map_t map;
 1990         struct vmspace *vm;
 1991 
 1992         name = (int *)arg1;
 1993         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1994         if (error != 0)
 1995                 return (error);
 1996         vm = vmspace_acquire_ref(p);
 1997         if (vm == NULL) {
 1998                 PRELE(p);
 1999                 return (ESRCH);
 2000         }
 2001         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
 2002 
 2003         map = &vm->vm_map;
 2004         vm_map_lock_read(map);
 2005         for (entry = map->header.next; entry != &map->header;
 2006             entry = entry->next) {
 2007                 vm_object_t obj, tobj, lobj;
 2008                 vm_offset_t addr;
 2009 
 2010                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 2011                         continue;
 2012 
 2013                 bzero(kve, sizeof(*kve));
 2014                 kve->kve_structsize = sizeof(*kve);
 2015 
 2016                 kve->kve_private_resident = 0;
 2017                 obj = entry->object.vm_object;
 2018                 if (obj != NULL) {
 2019                         VM_OBJECT_RLOCK(obj);
 2020                         if (obj->shadow_count == 1)
 2021                                 kve->kve_private_resident =
 2022                                     obj->resident_page_count;
 2023                 }
 2024                 kve->kve_resident = 0;
 2025                 addr = entry->start;
 2026                 while (addr < entry->end) {
 2027                         if (pmap_extract(map->pmap, addr))
 2028                                 kve->kve_resident++;
 2029                         addr += PAGE_SIZE;
 2030                 }
 2031 
 2032                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
 2033                         if (tobj != obj)
 2034                                 VM_OBJECT_RLOCK(tobj);
 2035                         if (lobj != obj)
 2036                                 VM_OBJECT_RUNLOCK(lobj);
 2037                         lobj = tobj;
 2038                 }
 2039 
 2040                 kve->kve_start = (void*)entry->start;
 2041                 kve->kve_end = (void*)entry->end;
 2042                 kve->kve_offset = (off_t)entry->offset;
 2043 
 2044                 if (entry->protection & VM_PROT_READ)
 2045                         kve->kve_protection |= KVME_PROT_READ;
 2046                 if (entry->protection & VM_PROT_WRITE)
 2047                         kve->kve_protection |= KVME_PROT_WRITE;
 2048                 if (entry->protection & VM_PROT_EXECUTE)
 2049                         kve->kve_protection |= KVME_PROT_EXEC;
 2050 
 2051                 if (entry->eflags & MAP_ENTRY_COW)
 2052                         kve->kve_flags |= KVME_FLAG_COW;
 2053                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 2054                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 2055                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 2056                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 2057 
 2058                 last_timestamp = map->timestamp;
 2059                 vm_map_unlock_read(map);
 2060 
 2061                 kve->kve_fileid = 0;
 2062                 kve->kve_fsid = 0;
 2063                 freepath = NULL;
 2064                 fullpath = "";
 2065                 if (lobj) {
 2066                         vp = NULL;
 2067                         switch (lobj->type) {
 2068                         case OBJT_DEFAULT:
 2069                                 kve->kve_type = KVME_TYPE_DEFAULT;
 2070                                 break;
 2071                         case OBJT_VNODE:
 2072                                 kve->kve_type = KVME_TYPE_VNODE;
 2073                                 vp = lobj->handle;
 2074                                 vref(vp);
 2075                                 break;
 2076                         case OBJT_SWAP:
 2077                                 kve->kve_type = KVME_TYPE_SWAP;
 2078                                 break;
 2079                         case OBJT_DEVICE:
 2080                                 kve->kve_type = KVME_TYPE_DEVICE;
 2081                                 break;
 2082                         case OBJT_PHYS:
 2083                                 kve->kve_type = KVME_TYPE_PHYS;
 2084                                 break;
 2085                         case OBJT_DEAD:
 2086                                 kve->kve_type = KVME_TYPE_DEAD;
 2087                                 break;
 2088                         case OBJT_SG:
 2089                                 kve->kve_type = KVME_TYPE_SG;
 2090                                 break;
 2091                         default:
 2092                                 kve->kve_type = KVME_TYPE_UNKNOWN;
 2093                                 break;
 2094                         }
 2095                         if (lobj != obj)
 2096                                 VM_OBJECT_RUNLOCK(lobj);
 2097 
 2098                         kve->kve_ref_count = obj->ref_count;
 2099                         kve->kve_shadow_count = obj->shadow_count;
 2100                         VM_OBJECT_RUNLOCK(obj);
 2101                         if (vp != NULL) {
 2102                                 vn_fullpath(curthread, vp, &fullpath,
 2103                                     &freepath);
 2104                                 cred = curthread->td_ucred;
 2105                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2106                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 2107                                         kve->kve_fileid = va.va_fileid;
 2108                                         kve->kve_fsid = va.va_fsid;
 2109                                 }
 2110                                 vput(vp);
 2111                         }
 2112                 } else {
 2113                         kve->kve_type = KVME_TYPE_NONE;
 2114                         kve->kve_ref_count = 0;
 2115                         kve->kve_shadow_count = 0;
 2116                 }
 2117 
 2118                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 2119                 if (freepath != NULL)
 2120                         free(freepath, M_TEMP);
 2121 
 2122                 error = SYSCTL_OUT(req, kve, sizeof(*kve));
 2123                 vm_map_lock_read(map);
 2124                 if (error)
 2125                         break;
 2126                 if (last_timestamp != map->timestamp) {
 2127                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 2128                         entry = tmp_entry;
 2129                 }
 2130         }
 2131         vm_map_unlock_read(map);
 2132         vmspace_free(vm);
 2133         PRELE(p);
 2134         free(kve, M_TEMP);
 2135         return (error);
 2136 }
 2137 #endif  /* COMPAT_FREEBSD7 */
 2138 
 2139 #ifdef KINFO_VMENTRY_SIZE
 2140 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
 2141 #endif
 2142 
 2143 static void
 2144 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
 2145     struct kinfo_vmentry *kve)
 2146 {
 2147         vm_object_t obj, tobj;
 2148         vm_page_t m, m_adv;
 2149         vm_offset_t addr;
 2150         vm_paddr_t locked_pa;
 2151         vm_pindex_t pi, pi_adv, pindex;
 2152 
 2153         locked_pa = 0;
 2154         obj = entry->object.vm_object;
 2155         addr = entry->start;
 2156         m_adv = NULL;
 2157         pi = OFF_TO_IDX(entry->offset);
 2158         for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
 2159                 if (m_adv != NULL) {
 2160                         m = m_adv;
 2161                 } else {
 2162                         pi_adv = OFF_TO_IDX(entry->end - addr);
 2163                         pindex = pi;
 2164                         for (tobj = obj;; tobj = tobj->backing_object) {
 2165                                 m = vm_page_find_least(tobj, pindex);
 2166                                 if (m != NULL) {
 2167                                         if (m->pindex == pindex)
 2168                                                 break;
 2169                                         if (pi_adv > m->pindex - pindex) {
 2170                                                 pi_adv = m->pindex - pindex;
 2171                                                 m_adv = m;
 2172                                         }
 2173                                 }
 2174                                 if (tobj->backing_object == NULL)
 2175                                         goto next;
 2176                                 pindex += OFF_TO_IDX(tobj->
 2177                                     backing_object_offset);
 2178                         }
 2179                 }
 2180                 m_adv = NULL;
 2181                 if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
 2182                     (addr & (pagesizes[1] - 1)) == 0 &&
 2183                     (pmap_mincore(map->pmap, addr, &locked_pa) &
 2184                     MINCORE_SUPER) != 0) {
 2185                         kve->kve_flags |= KVME_FLAG_SUPER;
 2186                         pi_adv = OFF_TO_IDX(pagesizes[1]);
 2187                 } else {
 2188                         /*
 2189                          * We do not test the found page on validity.
 2190                          * Either the page is busy and being paged in,
 2191                          * or it was invalidated.  The first case
 2192                          * should be counted as resident, the second
 2193                          * is not so clear; we do account both.
 2194                          */
 2195                         pi_adv = 1;
 2196                 }
 2197                 kve->kve_resident += pi_adv;
 2198 next:;
 2199         }
 2200         PA_UNLOCK_COND(locked_pa);
 2201 }
 2202 
 2203 /*
 2204  * Must be called with the process locked and will return unlocked.
 2205  */
 2206 int
 2207 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb)
 2208 {
 2209         vm_map_entry_t entry, tmp_entry;
 2210         struct vattr va;
 2211         vm_map_t map;
 2212         vm_object_t obj, tobj, lobj;
 2213         char *fullpath, *freepath;
 2214         struct kinfo_vmentry *kve;
 2215         struct ucred *cred;
 2216         struct vnode *vp;
 2217         struct vmspace *vm;
 2218         vm_offset_t addr;
 2219         unsigned int last_timestamp;
 2220         int error;
 2221 
 2222         PROC_LOCK_ASSERT(p, MA_OWNED);
 2223 
 2224         _PHOLD(p);
 2225         PROC_UNLOCK(p);
 2226         vm = vmspace_acquire_ref(p);
 2227         if (vm == NULL) {
 2228                 PRELE(p);
 2229                 return (ESRCH);
 2230         }
 2231         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
 2232 
 2233         error = 0;
 2234         map = &vm->vm_map;
 2235         vm_map_lock_read(map);
 2236         for (entry = map->header.next; entry != &map->header;
 2237             entry = entry->next) {
 2238                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 2239                         continue;
 2240 
 2241                 addr = entry->end;
 2242                 bzero(kve, sizeof(*kve));
 2243                 obj = entry->object.vm_object;
 2244                 if (obj != NULL) {
 2245                         for (tobj = obj; tobj != NULL;
 2246                             tobj = tobj->backing_object) {
 2247                                 VM_OBJECT_RLOCK(tobj);
 2248                                 lobj = tobj;
 2249                         }
 2250                         if (obj->backing_object == NULL)
 2251                                 kve->kve_private_resident =
 2252                                     obj->resident_page_count;
 2253                         if (!vmmap_skip_res_cnt)
 2254                                 kern_proc_vmmap_resident(map, entry, kve);
 2255                         for (tobj = obj; tobj != NULL;
 2256                             tobj = tobj->backing_object) {
 2257                                 if (tobj != obj && tobj != lobj)
 2258                                         VM_OBJECT_RUNLOCK(tobj);
 2259                         }
 2260                 } else {
 2261                         lobj = NULL;
 2262                 }
 2263 
 2264                 kve->kve_start = entry->start;
 2265                 kve->kve_end = entry->end;
 2266                 kve->kve_offset = entry->offset;
 2267 
 2268                 if (entry->protection & VM_PROT_READ)
 2269                         kve->kve_protection |= KVME_PROT_READ;
 2270                 if (entry->protection & VM_PROT_WRITE)
 2271                         kve->kve_protection |= KVME_PROT_WRITE;
 2272                 if (entry->protection & VM_PROT_EXECUTE)
 2273                         kve->kve_protection |= KVME_PROT_EXEC;
 2274 
 2275                 if (entry->eflags & MAP_ENTRY_COW)
 2276                         kve->kve_flags |= KVME_FLAG_COW;
 2277                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 2278                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 2279                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 2280                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 2281                 if (entry->eflags & MAP_ENTRY_GROWS_UP)
 2282                         kve->kve_flags |= KVME_FLAG_GROWS_UP;
 2283                 if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
 2284                         kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
 2285 
 2286                 last_timestamp = map->timestamp;
 2287                 vm_map_unlock_read(map);
 2288 
 2289                 freepath = NULL;
 2290                 fullpath = "";
 2291                 if (lobj != NULL) {
 2292                         vp = NULL;
 2293                         switch (lobj->type) {
 2294                         case OBJT_DEFAULT:
 2295                                 kve->kve_type = KVME_TYPE_DEFAULT;
 2296                                 break;
 2297                         case OBJT_VNODE:
 2298                                 kve->kve_type = KVME_TYPE_VNODE;
 2299                                 vp = lobj->handle;
 2300                                 vref(vp);
 2301                                 break;
 2302                         case OBJT_SWAP:
 2303                                 kve->kve_type = KVME_TYPE_SWAP;
 2304                                 break;
 2305                         case OBJT_DEVICE:
 2306                                 kve->kve_type = KVME_TYPE_DEVICE;
 2307                                 break;
 2308                         case OBJT_PHYS:
 2309                                 kve->kve_type = KVME_TYPE_PHYS;
 2310                                 break;
 2311                         case OBJT_DEAD:
 2312                                 kve->kve_type = KVME_TYPE_DEAD;
 2313                                 break;
 2314                         case OBJT_SG:
 2315                                 kve->kve_type = KVME_TYPE_SG;
 2316                                 break;
 2317                         case OBJT_MGTDEVICE:
 2318                                 kve->kve_type = KVME_TYPE_MGTDEVICE;
 2319                                 break;
 2320                         default:
 2321                                 kve->kve_type = KVME_TYPE_UNKNOWN;
 2322                                 break;
 2323                         }
 2324                         if (lobj != obj)
 2325                                 VM_OBJECT_RUNLOCK(lobj);
 2326 
 2327                         kve->kve_ref_count = obj->ref_count;
 2328                         kve->kve_shadow_count = obj->shadow_count;
 2329                         VM_OBJECT_RUNLOCK(obj);
 2330                         if (vp != NULL) {
 2331                                 vn_fullpath(curthread, vp, &fullpath,
 2332                                     &freepath);
 2333                                 kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
 2334                                 cred = curthread->td_ucred;
 2335                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2336                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 2337                                         kve->kve_vn_fileid = va.va_fileid;
 2338                                         kve->kve_vn_fsid = va.va_fsid;
 2339                                         kve->kve_vn_mode =
 2340                                             MAKEIMODE(va.va_type, va.va_mode);
 2341                                         kve->kve_vn_size = va.va_size;
 2342                                         kve->kve_vn_rdev = va.va_rdev;
 2343                                         kve->kve_status = KF_ATTR_VALID;
 2344                                 }
 2345                                 vput(vp);
 2346                         }
 2347                 } else {
 2348                         kve->kve_type = KVME_TYPE_NONE;
 2349                         kve->kve_ref_count = 0;
 2350                         kve->kve_shadow_count = 0;
 2351                 }
 2352 
 2353                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 2354                 if (freepath != NULL)
 2355                         free(freepath, M_TEMP);
 2356 
 2357                 /* Pack record size down */
 2358                 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
 2359                     strlen(kve->kve_path) + 1;
 2360                 kve->kve_structsize = roundup(kve->kve_structsize,
 2361                     sizeof(uint64_t));
 2362                 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
 2363                         error = ENOMEM;
 2364                 vm_map_lock_read(map);
 2365                 if (error != 0)
 2366                         break;
 2367                 if (last_timestamp != map->timestamp) {
 2368                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 2369                         entry = tmp_entry;
 2370                 }
 2371         }
 2372         vm_map_unlock_read(map);
 2373         vmspace_free(vm);
 2374         PRELE(p);
 2375         free(kve, M_TEMP);
 2376         return (error);
 2377 }
 2378 
 2379 static int
 2380 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
 2381 {
 2382         struct proc *p;
 2383         struct sbuf sb;
 2384         int error, error2, *name;
 2385 
 2386         name = (int *)arg1;
 2387         sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
 2388         error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
 2389         if (error != 0) {
 2390                 sbuf_delete(&sb);
 2391                 return (error);
 2392         }
 2393         error = kern_proc_vmmap_out(p, &sb);
 2394         error2 = sbuf_finish(&sb);
 2395         sbuf_delete(&sb);
 2396         return (error != 0 ? error : error2);
 2397 }
 2398 
 2399 #if defined(STACK) || defined(DDB)
 2400 static int
 2401 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
 2402 {
 2403         struct kinfo_kstack *kkstp;
 2404         int error, i, *name, numthreads;
 2405         lwpid_t *lwpidarray;
 2406         struct thread *td;
 2407         struct stack *st;
 2408         struct sbuf sb;
 2409         struct proc *p;
 2410 
 2411         name = (int *)arg1;
 2412         error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
 2413         if (error != 0)
 2414                 return (error);
 2415 
 2416         kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
 2417         st = stack_create();
 2418 
 2419         lwpidarray = NULL;
 2420         numthreads = 0;
 2421         PROC_LOCK(p);
 2422 repeat:
 2423         if (numthreads < p->p_numthreads) {
 2424                 if (lwpidarray != NULL) {
 2425                         free(lwpidarray, M_TEMP);
 2426                         lwpidarray = NULL;
 2427                 }
 2428                 numthreads = p->p_numthreads;
 2429                 PROC_UNLOCK(p);
 2430                 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
 2431                     M_WAITOK | M_ZERO);
 2432                 PROC_LOCK(p);
 2433                 goto repeat;
 2434         }
 2435         i = 0;
 2436 
 2437         /*
 2438          * XXXRW: During the below loop, execve(2) and countless other sorts
 2439          * of changes could have taken place.  Should we check to see if the
 2440          * vmspace has been replaced, or the like, in order to prevent
 2441          * giving a snapshot that spans, say, execve(2), with some threads
 2442          * before and some after?  Among other things, the credentials could
 2443          * have changed, in which case the right to extract debug info might
 2444          * no longer be assured.
 2445          */
 2446         FOREACH_THREAD_IN_PROC(p, td) {
 2447                 KASSERT(i < numthreads,
 2448                     ("sysctl_kern_proc_kstack: numthreads"));
 2449                 lwpidarray[i] = td->td_tid;
 2450                 i++;
 2451         }
 2452         numthreads = i;
 2453         for (i = 0; i < numthreads; i++) {
 2454                 td = thread_find(p, lwpidarray[i]);
 2455                 if (td == NULL) {
 2456                         continue;
 2457                 }
 2458                 bzero(kkstp, sizeof(*kkstp));
 2459                 (void)sbuf_new(&sb, kkstp->kkst_trace,
 2460                     sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
 2461                 thread_lock(td);
 2462                 kkstp->kkst_tid = td->td_tid;
 2463                 if (TD_IS_SWAPPED(td))
 2464                         kkstp->kkst_state = KKST_STATE_SWAPPED;
 2465                 else if (TD_IS_RUNNING(td))
 2466                         kkstp->kkst_state = KKST_STATE_RUNNING;
 2467                 else {
 2468                         kkstp->kkst_state = KKST_STATE_STACKOK;
 2469                         stack_save_td(st, td);
 2470                 }
 2471                 thread_unlock(td);
 2472                 PROC_UNLOCK(p);
 2473                 stack_sbuf_print(&sb, st);
 2474                 sbuf_finish(&sb);
 2475                 sbuf_delete(&sb);
 2476                 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
 2477                 PROC_LOCK(p);
 2478                 if (error)
 2479                         break;
 2480         }
 2481         _PRELE(p);
 2482         PROC_UNLOCK(p);
 2483         if (lwpidarray != NULL)
 2484                 free(lwpidarray, M_TEMP);
 2485         stack_destroy(st);
 2486         free(kkstp, M_TEMP);
 2487         return (error);
 2488 }
 2489 #endif
 2490 
 2491 /*
 2492  * This sysctl allows a process to retrieve the full list of groups from
 2493  * itself or another process.
 2494  */
 2495 static int
 2496 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
 2497 {
 2498         pid_t *pidp = (pid_t *)arg1;
 2499         unsigned int arglen = arg2;
 2500         struct proc *p;
 2501         struct ucred *cred;
 2502         int error;
 2503 
 2504         if (arglen != 1)
 2505                 return (EINVAL);
 2506         if (*pidp == -1) {      /* -1 means this process */
 2507                 p = req->td->td_proc;
 2508         } else {
 2509                 error = pget(*pidp, PGET_CANSEE, &p);
 2510                 if (error != 0)
 2511                         return (error);
 2512         }
 2513 
 2514         cred = crhold(p->p_ucred);
 2515         if (*pidp != -1)
 2516                 PROC_UNLOCK(p);
 2517 
 2518         error = SYSCTL_OUT(req, cred->cr_groups,
 2519             cred->cr_ngroups * sizeof(gid_t));
 2520         crfree(cred);
 2521         return (error);
 2522 }
 2523 
 2524 /*
 2525  * This sysctl allows a process to retrieve or/and set the resource limit for
 2526  * another process.
 2527  */
 2528 static int
 2529 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
 2530 {
 2531         int *name = (int *)arg1;
 2532         u_int namelen = arg2;
 2533         struct rlimit rlim;
 2534         struct proc *p;
 2535         u_int which;
 2536         int flags, error;
 2537 
 2538         if (namelen != 2)
 2539                 return (EINVAL);
 2540 
 2541         which = (u_int)name[1];
 2542         if (which >= RLIM_NLIMITS)
 2543                 return (EINVAL);
 2544 
 2545         if (req->newptr != NULL && req->newlen != sizeof(rlim))
 2546                 return (EINVAL);
 2547 
 2548         flags = PGET_HOLD | PGET_NOTWEXIT;
 2549         if (req->newptr != NULL)
 2550                 flags |= PGET_CANDEBUG;
 2551         else
 2552                 flags |= PGET_CANSEE;
 2553         error = pget((pid_t)name[0], flags, &p);
 2554         if (error != 0)
 2555                 return (error);
 2556 
 2557         /*
 2558          * Retrieve limit.
 2559          */
 2560         if (req->oldptr != NULL) {
 2561                 PROC_LOCK(p);
 2562                 lim_rlimit(p, which, &rlim);
 2563                 PROC_UNLOCK(p);
 2564         }
 2565         error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
 2566         if (error != 0)
 2567                 goto errout;
 2568 
 2569         /*
 2570          * Set limit.
 2571          */
 2572         if (req->newptr != NULL) {
 2573                 error = SYSCTL_IN(req, &rlim, sizeof(rlim));
 2574                 if (error == 0)
 2575                         error = kern_proc_setrlimit(curthread, p, which, &rlim);
 2576         }
 2577 
 2578 errout:
 2579         PRELE(p);
 2580         return (error);
 2581 }
 2582 
 2583 /*
 2584  * This sysctl allows a process to retrieve ps_strings structure location of
 2585  * another process.
 2586  */
 2587 static int
 2588 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
 2589 {
 2590         int *name = (int *)arg1;
 2591         u_int namelen = arg2;
 2592         struct proc *p;
 2593         vm_offset_t ps_strings;
 2594         int error;
 2595 #ifdef COMPAT_FREEBSD32
 2596         uint32_t ps_strings32;
 2597 #endif
 2598 
 2599         if (namelen != 1)
 2600                 return (EINVAL);
 2601 
 2602         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 2603         if (error != 0)
 2604                 return (error);
 2605 #ifdef COMPAT_FREEBSD32
 2606         if ((req->flags & SCTL_MASK32) != 0) {
 2607                 /*
 2608                  * We return 0 if the 32 bit emulation request is for a 64 bit
 2609                  * process.
 2610                  */
 2611                 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
 2612                     PTROUT(p->p_sysent->sv_psstrings) : 0;
 2613                 PROC_UNLOCK(p);
 2614                 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
 2615                 return (error);
 2616         }
 2617 #endif
 2618         ps_strings = p->p_sysent->sv_psstrings;
 2619         PROC_UNLOCK(p);
 2620         error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
 2621         return (error);
 2622 }
 2623 
 2624 /*
 2625  * This sysctl allows a process to retrieve umask of another process.
 2626  */
 2627 static int
 2628 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
 2629 {
 2630         int *name = (int *)arg1;
 2631         u_int namelen = arg2;
 2632         struct proc *p;
 2633         int error;
 2634         u_short fd_cmask;
 2635 
 2636         if (namelen != 1)
 2637                 return (EINVAL);
 2638 
 2639         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 2640         if (error != 0)
 2641                 return (error);
 2642 
 2643         FILEDESC_SLOCK(p->p_fd);
 2644         fd_cmask = p->p_fd->fd_cmask;
 2645         FILEDESC_SUNLOCK(p->p_fd);
 2646         PRELE(p);
 2647         error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
 2648         return (error);
 2649 }
 2650 
 2651 /*
 2652  * This sysctl allows a process to set and retrieve binary osreldate of
 2653  * another process.
 2654  */
 2655 static int
 2656 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
 2657 {
 2658         int *name = (int *)arg1;
 2659         u_int namelen = arg2;
 2660         struct proc *p;
 2661         int flags, error, osrel;
 2662 
 2663         if (namelen != 1)
 2664                 return (EINVAL);
 2665 
 2666         if (req->newptr != NULL && req->newlen != sizeof(osrel))
 2667                 return (EINVAL);
 2668 
 2669         flags = PGET_HOLD | PGET_NOTWEXIT;
 2670         if (req->newptr != NULL)
 2671                 flags |= PGET_CANDEBUG;
 2672         else
 2673                 flags |= PGET_CANSEE;
 2674         error = pget((pid_t)name[0], flags, &p);
 2675         if (error != 0)
 2676                 return (error);
 2677 
 2678         error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
 2679         if (error != 0)
 2680                 goto errout;
 2681 
 2682         if (req->newptr != NULL) {
 2683                 error = SYSCTL_IN(req, &osrel, sizeof(osrel));
 2684                 if (error != 0)
 2685                         goto errout;
 2686                 if (osrel < 0) {
 2687                         error = EINVAL;
 2688                         goto errout;
 2689                 }
 2690                 p->p_osrel = osrel;
 2691         }
 2692 errout:
 2693         PRELE(p);
 2694         return (error);
 2695 }
 2696 
 2697 static int
 2698 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
 2699 {
 2700         int *name = (int *)arg1;
 2701         u_int namelen = arg2;
 2702         struct proc *p;
 2703         struct kinfo_sigtramp kst;
 2704         const struct sysentvec *sv;
 2705         int error;
 2706 #ifdef COMPAT_FREEBSD32
 2707         struct kinfo_sigtramp32 kst32;
 2708 #endif
 2709 
 2710         if (namelen != 1)
 2711                 return (EINVAL);
 2712 
 2713         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 2714         if (error != 0)
 2715                 return (error);
 2716         sv = p->p_sysent;
 2717 #ifdef COMPAT_FREEBSD32
 2718         if ((req->flags & SCTL_MASK32) != 0) {
 2719                 bzero(&kst32, sizeof(kst32));
 2720                 if (SV_PROC_FLAG(p, SV_ILP32)) {
 2721                         if (sv->sv_sigcode_base != 0) {
 2722                                 kst32.ksigtramp_start = sv->sv_sigcode_base;
 2723                                 kst32.ksigtramp_end = sv->sv_sigcode_base +
 2724                                     *sv->sv_szsigcode;
 2725                         } else {
 2726                                 kst32.ksigtramp_start = sv->sv_psstrings -
 2727                                     *sv->sv_szsigcode;
 2728                                 kst32.ksigtramp_end = sv->sv_psstrings;
 2729                         }
 2730                 }
 2731                 PROC_UNLOCK(p);
 2732                 error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
 2733                 return (error);
 2734         }
 2735 #endif
 2736         bzero(&kst, sizeof(kst));
 2737         if (sv->sv_sigcode_base != 0) {
 2738                 kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
 2739                 kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
 2740                     *sv->sv_szsigcode;
 2741         } else {
 2742                 kst.ksigtramp_start = (char *)sv->sv_psstrings -
 2743                     *sv->sv_szsigcode;
 2744                 kst.ksigtramp_end = (char *)sv->sv_psstrings;
 2745         }
 2746         PROC_UNLOCK(p);
 2747         error = SYSCTL_OUT(req, &kst, sizeof(kst));
 2748         return (error);
 2749 }
 2750 
 2751 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
 2752 
 2753 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
 2754         CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
 2755         "Return entire process table");
 2756 
 2757 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2758         sysctl_kern_proc, "Process table");
 2759 
 2760 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2761         sysctl_kern_proc, "Process table");
 2762 
 2763 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2764         sysctl_kern_proc, "Process table");
 2765 
 2766 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
 2767         CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2768 
 2769 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2770         sysctl_kern_proc, "Process table");
 2771 
 2772 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2773         sysctl_kern_proc, "Process table");
 2774 
 2775 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2776         sysctl_kern_proc, "Process table");
 2777 
 2778 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2779         sysctl_kern_proc, "Process table");
 2780 
 2781 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2782         sysctl_kern_proc, "Return process table, no threads");
 2783 
 2784 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
 2785         CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
 2786         sysctl_kern_proc_args, "Process argument list");
 2787 
 2788 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2789         sysctl_kern_proc_env, "Process environment");
 2790 
 2791 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
 2792         CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
 2793 
 2794 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
 2795         CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
 2796 
 2797 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
 2798         CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
 2799         "Process syscall vector name (ABI type)");
 2800 
 2801 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
 2802         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2803 
 2804 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
 2805         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2806 
 2807 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
 2808         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2809 
 2810 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
 2811         sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2812 
 2813 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
 2814         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2815 
 2816 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
 2817         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2818 
 2819 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
 2820         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2821 
 2822 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
 2823         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2824 
 2825 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
 2826         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
 2827         "Return process table, no threads");
 2828 
 2829 #ifdef COMPAT_FREEBSD7
 2830 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
 2831         CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
 2832 #endif
 2833 
 2834 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
 2835         CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
 2836 
 2837 #if defined(STACK) || defined(DDB)
 2838 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
 2839         CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
 2840 #endif
 2841 
 2842 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
 2843         CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
 2844 
 2845 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
 2846         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
 2847         "Process resource limits");
 2848 
 2849 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
 2850         CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
 2851         "Process ps_strings location");
 2852 
 2853 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
 2854         CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
 2855 
 2856 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
 2857         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
 2858         "Process binary osreldate");
 2859 
 2860 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
 2861         CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
 2862         "Process signal trampoline location");
 2863 
 2864 int allproc_gen;
 2865 
 2866 void
 2867 stop_all_proc(void)
 2868 {
 2869         struct proc *cp, *p;
 2870         int r, gen;
 2871         bool restart, seen_stopped, seen_exiting, stopped_some;
 2872 
 2873         cp = curproc;
 2874         /*
 2875          * stop_all_proc() assumes that all process which have
 2876          * usermode must be stopped, except current process, for
 2877          * obvious reasons.  Since other threads in the process
 2878          * establishing global stop could unstop something, disable
 2879          * calls from multithreaded processes as precaution.  The
 2880          * service must not be user-callable anyway.
 2881          */
 2882         KASSERT((cp->p_flag & P_HADTHREADS) == 0 ||
 2883             (cp->p_flag & P_KTHREAD) != 0, ("mt stop_all_proc"));
 2884 
 2885 allproc_loop:
 2886         sx_xlock(&allproc_lock);
 2887         gen = allproc_gen;
 2888         seen_exiting = seen_stopped = stopped_some = restart = false;
 2889         LIST_REMOVE(cp, p_list);
 2890         LIST_INSERT_HEAD(&allproc, cp, p_list);
 2891         for (;;) {
 2892                 p = LIST_NEXT(cp, p_list);
 2893                 if (p == NULL)
 2894                         break;
 2895                 LIST_REMOVE(cp, p_list);
 2896                 LIST_INSERT_AFTER(p, cp, p_list);
 2897                 PROC_LOCK(p);
 2898                 if ((p->p_flag & (P_KTHREAD | P_SYSTEM |
 2899                     P_TOTAL_STOP)) != 0) {
 2900                         PROC_UNLOCK(p);
 2901                         continue;
 2902                 }
 2903                 if ((p->p_flag & P_WEXIT) != 0) {
 2904                         seen_exiting = true;
 2905                         PROC_UNLOCK(p);
 2906                         continue;
 2907                 }
 2908                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
 2909                         /*
 2910                          * Stopped processes are tolerated when there
 2911                          * are no other processes which might continue
 2912                          * them.  P_STOPPED_SINGLE but not
 2913                          * P_TOTAL_STOP process still has at least one
 2914                          * thread running.
 2915                          */
 2916                         seen_stopped = true;
 2917                         PROC_UNLOCK(p);
 2918                         continue;
 2919                 }
 2920                 _PHOLD(p);
 2921                 sx_xunlock(&allproc_lock);
 2922                 r = thread_single(p, SINGLE_ALLPROC);
 2923                 if (r != 0)
 2924                         restart = true;
 2925                 else
 2926                         stopped_some = true;
 2927                 _PRELE(p);
 2928                 PROC_UNLOCK(p);
 2929                 sx_xlock(&allproc_lock);
 2930         }
 2931         /* Catch forked children we did not see in iteration. */
 2932         if (gen != allproc_gen)
 2933                 restart = true;
 2934         sx_xunlock(&allproc_lock);
 2935         if (restart || stopped_some || seen_exiting || seen_stopped) {
 2936                 kern_yield(PRI_USER);
 2937                 goto allproc_loop;
 2938         }
 2939 }
 2940 
 2941 void
 2942 resume_all_proc(void)
 2943 {
 2944         struct proc *cp, *p;
 2945 
 2946         cp = curproc;
 2947         sx_xlock(&allproc_lock);
 2948         LIST_REMOVE(cp, p_list);
 2949         LIST_INSERT_HEAD(&allproc, cp, p_list);
 2950         for (;;) {
 2951                 p = LIST_NEXT(cp, p_list);
 2952                 if (p == NULL)
 2953                         break;
 2954                 LIST_REMOVE(cp, p_list);
 2955                 LIST_INSERT_AFTER(p, cp, p_list);
 2956                 PROC_LOCK(p);
 2957                 if ((p->p_flag & P_TOTAL_STOP) != 0) {
 2958                         sx_xunlock(&allproc_lock);
 2959                         _PHOLD(p);
 2960                         thread_single_end(p, SINGLE_ALLPROC);
 2961                         _PRELE(p);
 2962                         PROC_UNLOCK(p);
 2963                         sx_xlock(&allproc_lock);
 2964                 } else {
 2965                         PROC_UNLOCK(p);
 2966                 }
 2967         }
 2968         sx_xunlock(&allproc_lock);
 2969 }
 2970 
 2971 #define TOTAL_STOP_DEBUG        1
 2972 #ifdef TOTAL_STOP_DEBUG
 2973 volatile static int ap_resume;
 2974 #include <sys/mount.h>
 2975 
 2976 static int
 2977 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
 2978 {
 2979         int error, val;
 2980 
 2981         val = 0;
 2982         ap_resume = 0;
 2983         error = sysctl_handle_int(oidp, &val, 0, req);
 2984         if (error != 0 || req->newptr == NULL)
 2985                 return (error);
 2986         if (val != 0) {
 2987                 stop_all_proc();
 2988                 syncer_suspend();
 2989                 while (ap_resume == 0)
 2990                         ;
 2991                 syncer_resume();
 2992                 resume_all_proc();
 2993         }
 2994         return (0);
 2995 }
 2996 
 2997 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
 2998     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
 2999     sysctl_debug_stop_all_proc, "I",
 3000     "");
 3001 #endif

Cache object: 8a522cbb374bb0f9ec308312500ec679


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.