The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_proc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/11.0/sys/kern/kern_proc.c 301456 2016-06-05 17:04:03Z kib $");
   34 
   35 #include "opt_compat.h"
   36 #include "opt_ddb.h"
   37 #include "opt_ktrace.h"
   38 #include "opt_kstack_pages.h"
   39 #include "opt_stack.h"
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/elf.h>
   44 #include <sys/eventhandler.h>
   45 #include <sys/exec.h>
   46 #include <sys/jail.h>
   47 #include <sys/kernel.h>
   48 #include <sys/limits.h>
   49 #include <sys/lock.h>
   50 #include <sys/loginclass.h>
   51 #include <sys/malloc.h>
   52 #include <sys/mman.h>
   53 #include <sys/mount.h>
   54 #include <sys/mutex.h>
   55 #include <sys/proc.h>
   56 #include <sys/ptrace.h>
   57 #include <sys/refcount.h>
   58 #include <sys/resourcevar.h>
   59 #include <sys/rwlock.h>
   60 #include <sys/sbuf.h>
   61 #include <sys/sysent.h>
   62 #include <sys/sched.h>
   63 #include <sys/smp.h>
   64 #include <sys/stack.h>
   65 #include <sys/stat.h>
   66 #include <sys/sysctl.h>
   67 #include <sys/filedesc.h>
   68 #include <sys/tty.h>
   69 #include <sys/signalvar.h>
   70 #include <sys/sdt.h>
   71 #include <sys/sx.h>
   72 #include <sys/user.h>
   73 #include <sys/vnode.h>
   74 #include <sys/wait.h>
   75 
   76 #ifdef DDB
   77 #include <ddb/ddb.h>
   78 #endif
   79 
   80 #include <vm/vm.h>
   81 #include <vm/vm_param.h>
   82 #include <vm/vm_extern.h>
   83 #include <vm/pmap.h>
   84 #include <vm/vm_map.h>
   85 #include <vm/vm_object.h>
   86 #include <vm/vm_page.h>
   87 #include <vm/uma.h>
   88 
   89 #ifdef COMPAT_FREEBSD32
   90 #include <compat/freebsd32/freebsd32.h>
   91 #include <compat/freebsd32/freebsd32_util.h>
   92 #endif
   93 
   94 SDT_PROVIDER_DEFINE(proc);
   95 SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *",
   96     "int");
   97 SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *",
   98     "int");
   99 SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *",
  100     "struct thread *");
  101 SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *");
  102 SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int");
  103 SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int");
  104 
  105 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
  106 MALLOC_DEFINE(M_SESSION, "session", "session header");
  107 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
  108 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
  109 
  110 static void doenterpgrp(struct proc *, struct pgrp *);
  111 static void orphanpg(struct pgrp *pg);
  112 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
  113 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
  114 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
  115     int preferthread);
  116 static void pgadjustjobc(struct pgrp *pgrp, int entering);
  117 static void pgdelete(struct pgrp *);
  118 static int proc_ctor(void *mem, int size, void *arg, int flags);
  119 static void proc_dtor(void *mem, int size, void *arg);
  120 static int proc_init(void *mem, int size, int flags);
  121 static void proc_fini(void *mem, int size);
  122 static void pargs_free(struct pargs *pa);
  123 static struct proc *zpfind_locked(pid_t pid);
  124 
  125 /*
  126  * Other process lists
  127  */
  128 struct pidhashhead *pidhashtbl;
  129 u_long pidhash;
  130 struct pgrphashhead *pgrphashtbl;
  131 u_long pgrphash;
  132 struct proclist allproc;
  133 struct proclist zombproc;
  134 struct sx allproc_lock;
  135 struct sx proctree_lock;
  136 struct mtx ppeers_lock;
  137 uma_zone_t proc_zone;
  138 
  139 /*
  140  * The offset of various fields in struct proc and struct thread.
  141  * These are used by kernel debuggers to enumerate kernel threads and
  142  * processes.
  143  */
  144 const int proc_off_p_pid = offsetof(struct proc, p_pid);
  145 const int proc_off_p_comm = offsetof(struct proc, p_comm);
  146 const int proc_off_p_list = offsetof(struct proc, p_list);
  147 const int proc_off_p_threads = offsetof(struct proc, p_threads);
  148 const int thread_off_td_tid = offsetof(struct thread, td_tid);
  149 const int thread_off_td_name = offsetof(struct thread, td_name);
  150 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
  151 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
  152 const int thread_off_td_plist = offsetof(struct thread, td_plist);
  153 
  154 int kstack_pages = KSTACK_PAGES;
  155 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
  156     "Kernel stack size in pages");
  157 static int vmmap_skip_res_cnt = 0;
  158 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
  159     &vmmap_skip_res_cnt, 0,
  160     "Skip calculation of the pages resident count in kern.proc.vmmap");
  161 
  162 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
  163 #ifdef COMPAT_FREEBSD32
  164 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
  165 #endif
  166 
  167 /*
  168  * Initialize global process hashing structures.
  169  */
  170 void
  171 procinit(void)
  172 {
  173 
  174         sx_init(&allproc_lock, "allproc");
  175         sx_init(&proctree_lock, "proctree");
  176         mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
  177         LIST_INIT(&allproc);
  178         LIST_INIT(&zombproc);
  179         pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
  180         pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
  181         proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
  182             proc_ctor, proc_dtor, proc_init, proc_fini,
  183             UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  184         uihashinit();
  185 }
  186 
  187 /*
  188  * Prepare a proc for use.
  189  */
  190 static int
  191 proc_ctor(void *mem, int size, void *arg, int flags)
  192 {
  193         struct proc *p;
  194 
  195         p = (struct proc *)mem;
  196         SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags);
  197         EVENTHANDLER_INVOKE(process_ctor, p);
  198         SDT_PROBE4(proc, , ctor , return, p, size, arg, flags);
  199         return (0);
  200 }
  201 
  202 /*
  203  * Reclaim a proc after use.
  204  */
  205 static void
  206 proc_dtor(void *mem, int size, void *arg)
  207 {
  208         struct proc *p;
  209         struct thread *td;
  210 
  211         /* INVARIANTS checks go here */
  212         p = (struct proc *)mem;
  213         td = FIRST_THREAD_IN_PROC(p);
  214         SDT_PROBE4(proc, , dtor, entry, p, size, arg, td);
  215         if (td != NULL) {
  216 #ifdef INVARIANTS
  217                 KASSERT((p->p_numthreads == 1),
  218                     ("bad number of threads in exiting process"));
  219                 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
  220 #endif
  221                 /* Free all OSD associated to this thread. */
  222                 osd_thread_exit(td);
  223         }
  224         EVENTHANDLER_INVOKE(process_dtor, p);
  225         if (p->p_ksi != NULL)
  226                 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
  227         SDT_PROBE3(proc, , dtor, return, p, size, arg);
  228 }
  229 
  230 /*
  231  * Initialize type-stable parts of a proc (when newly created).
  232  */
  233 static int
  234 proc_init(void *mem, int size, int flags)
  235 {
  236         struct proc *p;
  237 
  238         p = (struct proc *)mem;
  239         SDT_PROBE3(proc, , init, entry, p, size, flags);
  240         mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
  241         mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
  242         mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
  243         mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
  244         mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
  245         cv_init(&p->p_pwait, "ppwait");
  246         cv_init(&p->p_dbgwait, "dbgwait");
  247         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
  248         EVENTHANDLER_INVOKE(process_init, p);
  249         p->p_stats = pstats_alloc();
  250         p->p_pgrp = NULL;
  251         SDT_PROBE3(proc, , init, return, p, size, flags);
  252         return (0);
  253 }
  254 
  255 /*
  256  * UMA should ensure that this function is never called.
  257  * Freeing a proc structure would violate type stability.
  258  */
  259 static void
  260 proc_fini(void *mem, int size)
  261 {
  262 #ifdef notnow
  263         struct proc *p;
  264 
  265         p = (struct proc *)mem;
  266         EVENTHANDLER_INVOKE(process_fini, p);
  267         pstats_free(p->p_stats);
  268         thread_free(FIRST_THREAD_IN_PROC(p));
  269         mtx_destroy(&p->p_mtx);
  270         if (p->p_ksi != NULL)
  271                 ksiginfo_free(p->p_ksi);
  272 #else
  273         panic("proc reclaimed");
  274 #endif
  275 }
  276 
  277 /*
  278  * Is p an inferior of the current process?
  279  */
  280 int
  281 inferior(struct proc *p)
  282 {
  283 
  284         sx_assert(&proctree_lock, SX_LOCKED);
  285         PROC_LOCK_ASSERT(p, MA_OWNED);
  286         for (; p != curproc; p = proc_realparent(p)) {
  287                 if (p->p_pid == 0)
  288                         return (0);
  289         }
  290         return (1);
  291 }
  292 
  293 struct proc *
  294 pfind_locked(pid_t pid)
  295 {
  296         struct proc *p;
  297 
  298         sx_assert(&allproc_lock, SX_LOCKED);
  299         LIST_FOREACH(p, PIDHASH(pid), p_hash) {
  300                 if (p->p_pid == pid) {
  301                         PROC_LOCK(p);
  302                         if (p->p_state == PRS_NEW) {
  303                                 PROC_UNLOCK(p);
  304                                 p = NULL;
  305                         }
  306                         break;
  307                 }
  308         }
  309         return (p);
  310 }
  311 
  312 /*
  313  * Locate a process by number; return only "live" processes -- i.e., neither
  314  * zombies nor newly born but incompletely initialized processes.  By not
  315  * returning processes in the PRS_NEW state, we allow callers to avoid
  316  * testing for that condition to avoid dereferencing p_ucred, et al.
  317  */
  318 struct proc *
  319 pfind(pid_t pid)
  320 {
  321         struct proc *p;
  322 
  323         sx_slock(&allproc_lock);
  324         p = pfind_locked(pid);
  325         sx_sunlock(&allproc_lock);
  326         return (p);
  327 }
  328 
  329 static struct proc *
  330 pfind_tid_locked(pid_t tid)
  331 {
  332         struct proc *p;
  333         struct thread *td;
  334 
  335         sx_assert(&allproc_lock, SX_LOCKED);
  336         FOREACH_PROC_IN_SYSTEM(p) {
  337                 PROC_LOCK(p);
  338                 if (p->p_state == PRS_NEW) {
  339                         PROC_UNLOCK(p);
  340                         continue;
  341                 }
  342                 FOREACH_THREAD_IN_PROC(p, td) {
  343                         if (td->td_tid == tid)
  344                                 goto found;
  345                 }
  346                 PROC_UNLOCK(p);
  347         }
  348 found:
  349         return (p);
  350 }
  351 
  352 /*
  353  * Locate a process group by number.
  354  * The caller must hold proctree_lock.
  355  */
  356 struct pgrp *
  357 pgfind(pgid)
  358         register pid_t pgid;
  359 {
  360         register struct pgrp *pgrp;
  361 
  362         sx_assert(&proctree_lock, SX_LOCKED);
  363 
  364         LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
  365                 if (pgrp->pg_id == pgid) {
  366                         PGRP_LOCK(pgrp);
  367                         return (pgrp);
  368                 }
  369         }
  370         return (NULL);
  371 }
  372 
  373 /*
  374  * Locate process and do additional manipulations, depending on flags.
  375  */
  376 int
  377 pget(pid_t pid, int flags, struct proc **pp)
  378 {
  379         struct proc *p;
  380         int error;
  381 
  382         sx_slock(&allproc_lock);
  383         if (pid <= PID_MAX) {
  384                 p = pfind_locked(pid);
  385                 if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
  386                         p = zpfind_locked(pid);
  387         } else if ((flags & PGET_NOTID) == 0) {
  388                 p = pfind_tid_locked(pid);
  389         } else {
  390                 p = NULL;
  391         }
  392         sx_sunlock(&allproc_lock);
  393         if (p == NULL)
  394                 return (ESRCH);
  395         if ((flags & PGET_CANSEE) != 0) {
  396                 error = p_cansee(curthread, p);
  397                 if (error != 0)
  398                         goto errout;
  399         }
  400         if ((flags & PGET_CANDEBUG) != 0) {
  401                 error = p_candebug(curthread, p);
  402                 if (error != 0)
  403                         goto errout;
  404         }
  405         if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
  406                 error = EPERM;
  407                 goto errout;
  408         }
  409         if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
  410                 error = ESRCH;
  411                 goto errout;
  412         }
  413         if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
  414                 /*
  415                  * XXXRW: Not clear ESRCH is the right error during proc
  416                  * execve().
  417                  */
  418                 error = ESRCH;
  419                 goto errout;
  420         }
  421         if ((flags & PGET_HOLD) != 0) {
  422                 _PHOLD(p);
  423                 PROC_UNLOCK(p);
  424         }
  425         *pp = p;
  426         return (0);
  427 errout:
  428         PROC_UNLOCK(p);
  429         return (error);
  430 }
  431 
  432 /*
  433  * Create a new process group.
  434  * pgid must be equal to the pid of p.
  435  * Begin a new session if required.
  436  */
  437 int
  438 enterpgrp(p, pgid, pgrp, sess)
  439         register struct proc *p;
  440         pid_t pgid;
  441         struct pgrp *pgrp;
  442         struct session *sess;
  443 {
  444 
  445         sx_assert(&proctree_lock, SX_XLOCKED);
  446 
  447         KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
  448         KASSERT(p->p_pid == pgid,
  449             ("enterpgrp: new pgrp and pid != pgid"));
  450         KASSERT(pgfind(pgid) == NULL,
  451             ("enterpgrp: pgrp with pgid exists"));
  452         KASSERT(!SESS_LEADER(p),
  453             ("enterpgrp: session leader attempted setpgrp"));
  454 
  455         mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
  456 
  457         if (sess != NULL) {
  458                 /*
  459                  * new session
  460                  */
  461                 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
  462                 PROC_LOCK(p);
  463                 p->p_flag &= ~P_CONTROLT;
  464                 PROC_UNLOCK(p);
  465                 PGRP_LOCK(pgrp);
  466                 sess->s_leader = p;
  467                 sess->s_sid = p->p_pid;
  468                 refcount_init(&sess->s_count, 1);
  469                 sess->s_ttyvp = NULL;
  470                 sess->s_ttydp = NULL;
  471                 sess->s_ttyp = NULL;
  472                 bcopy(p->p_session->s_login, sess->s_login,
  473                             sizeof(sess->s_login));
  474                 pgrp->pg_session = sess;
  475                 KASSERT(p == curproc,
  476                     ("enterpgrp: mksession and p != curproc"));
  477         } else {
  478                 pgrp->pg_session = p->p_session;
  479                 sess_hold(pgrp->pg_session);
  480                 PGRP_LOCK(pgrp);
  481         }
  482         pgrp->pg_id = pgid;
  483         LIST_INIT(&pgrp->pg_members);
  484 
  485         /*
  486          * As we have an exclusive lock of proctree_lock,
  487          * this should not deadlock.
  488          */
  489         LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
  490         pgrp->pg_jobc = 0;
  491         SLIST_INIT(&pgrp->pg_sigiolst);
  492         PGRP_UNLOCK(pgrp);
  493 
  494         doenterpgrp(p, pgrp);
  495 
  496         return (0);
  497 }
  498 
  499 /*
  500  * Move p to an existing process group
  501  */
  502 int
  503 enterthispgrp(p, pgrp)
  504         register struct proc *p;
  505         struct pgrp *pgrp;
  506 {
  507 
  508         sx_assert(&proctree_lock, SX_XLOCKED);
  509         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  510         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  511         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  512         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  513         KASSERT(pgrp->pg_session == p->p_session,
  514                 ("%s: pgrp's session %p, p->p_session %p.\n",
  515                 __func__,
  516                 pgrp->pg_session,
  517                 p->p_session));
  518         KASSERT(pgrp != p->p_pgrp,
  519                 ("%s: p belongs to pgrp.", __func__));
  520 
  521         doenterpgrp(p, pgrp);
  522 
  523         return (0);
  524 }
  525 
  526 /*
  527  * Move p to a process group
  528  */
  529 static void
  530 doenterpgrp(p, pgrp)
  531         struct proc *p;
  532         struct pgrp *pgrp;
  533 {
  534         struct pgrp *savepgrp;
  535 
  536         sx_assert(&proctree_lock, SX_XLOCKED);
  537         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  538         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  539         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  540         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  541 
  542         savepgrp = p->p_pgrp;
  543 
  544         /*
  545          * Adjust eligibility of affected pgrps to participate in job control.
  546          * Increment eligibility counts before decrementing, otherwise we
  547          * could reach 0 spuriously during the first call.
  548          */
  549         fixjobc(p, pgrp, 1);
  550         fixjobc(p, p->p_pgrp, 0);
  551 
  552         PGRP_LOCK(pgrp);
  553         PGRP_LOCK(savepgrp);
  554         PROC_LOCK(p);
  555         LIST_REMOVE(p, p_pglist);
  556         p->p_pgrp = pgrp;
  557         PROC_UNLOCK(p);
  558         LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
  559         PGRP_UNLOCK(savepgrp);
  560         PGRP_UNLOCK(pgrp);
  561         if (LIST_EMPTY(&savepgrp->pg_members))
  562                 pgdelete(savepgrp);
  563 }
  564 
  565 /*
  566  * remove process from process group
  567  */
  568 int
  569 leavepgrp(p)
  570         register struct proc *p;
  571 {
  572         struct pgrp *savepgrp;
  573 
  574         sx_assert(&proctree_lock, SX_XLOCKED);
  575         savepgrp = p->p_pgrp;
  576         PGRP_LOCK(savepgrp);
  577         PROC_LOCK(p);
  578         LIST_REMOVE(p, p_pglist);
  579         p->p_pgrp = NULL;
  580         PROC_UNLOCK(p);
  581         PGRP_UNLOCK(savepgrp);
  582         if (LIST_EMPTY(&savepgrp->pg_members))
  583                 pgdelete(savepgrp);
  584         return (0);
  585 }
  586 
  587 /*
  588  * delete a process group
  589  */
  590 static void
  591 pgdelete(pgrp)
  592         register struct pgrp *pgrp;
  593 {
  594         struct session *savesess;
  595         struct tty *tp;
  596 
  597         sx_assert(&proctree_lock, SX_XLOCKED);
  598         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  599         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  600 
  601         /*
  602          * Reset any sigio structures pointing to us as a result of
  603          * F_SETOWN with our pgid.
  604          */
  605         funsetownlst(&pgrp->pg_sigiolst);
  606 
  607         PGRP_LOCK(pgrp);
  608         tp = pgrp->pg_session->s_ttyp;
  609         LIST_REMOVE(pgrp, pg_hash);
  610         savesess = pgrp->pg_session;
  611         PGRP_UNLOCK(pgrp);
  612 
  613         /* Remove the reference to the pgrp before deallocating it. */
  614         if (tp != NULL) {
  615                 tty_lock(tp);
  616                 tty_rel_pgrp(tp, pgrp);
  617         }
  618 
  619         mtx_destroy(&pgrp->pg_mtx);
  620         free(pgrp, M_PGRP);
  621         sess_release(savesess);
  622 }
  623 
  624 static void
  625 pgadjustjobc(pgrp, entering)
  626         struct pgrp *pgrp;
  627         int entering;
  628 {
  629 
  630         PGRP_LOCK(pgrp);
  631         if (entering)
  632                 pgrp->pg_jobc++;
  633         else {
  634                 --pgrp->pg_jobc;
  635                 if (pgrp->pg_jobc == 0)
  636                         orphanpg(pgrp);
  637         }
  638         PGRP_UNLOCK(pgrp);
  639 }
  640 
  641 /*
  642  * Adjust pgrp jobc counters when specified process changes process group.
  643  * We count the number of processes in each process group that "qualify"
  644  * the group for terminal job control (those with a parent in a different
  645  * process group of the same session).  If that count reaches zero, the
  646  * process group becomes orphaned.  Check both the specified process'
  647  * process group and that of its children.
  648  * entering == 0 => p is leaving specified group.
  649  * entering == 1 => p is entering specified group.
  650  */
  651 void
  652 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
  653 {
  654         struct pgrp *hispgrp;
  655         struct session *mysession;
  656         struct proc *q;
  657 
  658         sx_assert(&proctree_lock, SX_LOCKED);
  659         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  660         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  661         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  662 
  663         /*
  664          * Check p's parent to see whether p qualifies its own process
  665          * group; if so, adjust count for p's process group.
  666          */
  667         mysession = pgrp->pg_session;
  668         if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
  669             hispgrp->pg_session == mysession)
  670                 pgadjustjobc(pgrp, entering);
  671 
  672         /*
  673          * Check this process' children to see whether they qualify
  674          * their process groups; if so, adjust counts for children's
  675          * process groups.
  676          */
  677         LIST_FOREACH(q, &p->p_children, p_sibling) {
  678                 hispgrp = q->p_pgrp;
  679                 if (hispgrp == pgrp ||
  680                     hispgrp->pg_session != mysession)
  681                         continue;
  682                 if (q->p_state == PRS_ZOMBIE)
  683                         continue;
  684                 pgadjustjobc(hispgrp, entering);
  685         }
  686 }
  687 
  688 void
  689 killjobc(void)
  690 {
  691         struct session *sp;
  692         struct tty *tp;
  693         struct proc *p;
  694         struct vnode *ttyvp;
  695 
  696         p = curproc;
  697         MPASS(p->p_flag & P_WEXIT);
  698         /*
  699          * Do a quick check to see if there is anything to do with the
  700          * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc().
  701          */
  702         PROC_LOCK(p);
  703         if (!SESS_LEADER(p) &&
  704             (p->p_pgrp == p->p_pptr->p_pgrp) &&
  705             LIST_EMPTY(&p->p_children)) {
  706                 PROC_UNLOCK(p);
  707                 return;
  708         }
  709         PROC_UNLOCK(p);
  710 
  711         sx_xlock(&proctree_lock);
  712         if (SESS_LEADER(p)) {
  713                 sp = p->p_session;
  714 
  715                 /*
  716                  * s_ttyp is not zero'd; we use this to indicate that
  717                  * the session once had a controlling terminal. (for
  718                  * logging and informational purposes)
  719                  */
  720                 SESS_LOCK(sp);
  721                 ttyvp = sp->s_ttyvp;
  722                 tp = sp->s_ttyp;
  723                 sp->s_ttyvp = NULL;
  724                 sp->s_ttydp = NULL;
  725                 sp->s_leader = NULL;
  726                 SESS_UNLOCK(sp);
  727 
  728                 /*
  729                  * Signal foreground pgrp and revoke access to
  730                  * controlling terminal if it has not been revoked
  731                  * already.
  732                  *
  733                  * Because the TTY may have been revoked in the mean
  734                  * time and could already have a new session associated
  735                  * with it, make sure we don't send a SIGHUP to a
  736                  * foreground process group that does not belong to this
  737                  * session.
  738                  */
  739 
  740                 if (tp != NULL) {
  741                         tty_lock(tp);
  742                         if (tp->t_session == sp)
  743                                 tty_signal_pgrp(tp, SIGHUP);
  744                         tty_unlock(tp);
  745                 }
  746 
  747                 if (ttyvp != NULL) {
  748                         sx_xunlock(&proctree_lock);
  749                         if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
  750                                 VOP_REVOKE(ttyvp, REVOKEALL);
  751                                 VOP_UNLOCK(ttyvp, 0);
  752                         }
  753                         vrele(ttyvp);
  754                         sx_xlock(&proctree_lock);
  755                 }
  756         }
  757         fixjobc(p, p->p_pgrp, 0);
  758         sx_xunlock(&proctree_lock);
  759 }
  760 
  761 /*
  762  * A process group has become orphaned;
  763  * if there are any stopped processes in the group,
  764  * hang-up all process in that group.
  765  */
  766 static void
  767 orphanpg(pg)
  768         struct pgrp *pg;
  769 {
  770         register struct proc *p;
  771 
  772         PGRP_LOCK_ASSERT(pg, MA_OWNED);
  773 
  774         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  775                 PROC_LOCK(p);
  776                 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
  777                         PROC_UNLOCK(p);
  778                         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  779                                 PROC_LOCK(p);
  780                                 kern_psignal(p, SIGHUP);
  781                                 kern_psignal(p, SIGCONT);
  782                                 PROC_UNLOCK(p);
  783                         }
  784                         return;
  785                 }
  786                 PROC_UNLOCK(p);
  787         }
  788 }
  789 
  790 void
  791 sess_hold(struct session *s)
  792 {
  793 
  794         refcount_acquire(&s->s_count);
  795 }
  796 
  797 void
  798 sess_release(struct session *s)
  799 {
  800 
  801         if (refcount_release(&s->s_count)) {
  802                 if (s->s_ttyp != NULL) {
  803                         tty_lock(s->s_ttyp);
  804                         tty_rel_sess(s->s_ttyp, s);
  805                 }
  806                 mtx_destroy(&s->s_mtx);
  807                 free(s, M_SESSION);
  808         }
  809 }
  810 
  811 #ifdef DDB
  812 
  813 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
  814 {
  815         register struct pgrp *pgrp;
  816         register struct proc *p;
  817         register int i;
  818 
  819         for (i = 0; i <= pgrphash; i++) {
  820                 if (!LIST_EMPTY(&pgrphashtbl[i])) {
  821                         printf("\tindx %d\n", i);
  822                         LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
  823                                 printf(
  824                         "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
  825                                     (void *)pgrp, (long)pgrp->pg_id,
  826                                     (void *)pgrp->pg_session,
  827                                     pgrp->pg_session->s_count,
  828                                     (void *)LIST_FIRST(&pgrp->pg_members));
  829                                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
  830                                         printf("\t\tpid %ld addr %p pgrp %p\n", 
  831                                             (long)p->p_pid, (void *)p,
  832                                             (void *)p->p_pgrp);
  833                                 }
  834                         }
  835                 }
  836         }
  837 }
  838 #endif /* DDB */
  839 
  840 /*
  841  * Calculate the kinfo_proc members which contain process-wide
  842  * informations.
  843  * Must be called with the target process locked.
  844  */
  845 static void
  846 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
  847 {
  848         struct thread *td;
  849 
  850         PROC_LOCK_ASSERT(p, MA_OWNED);
  851 
  852         kp->ki_estcpu = 0;
  853         kp->ki_pctcpu = 0;
  854         FOREACH_THREAD_IN_PROC(p, td) {
  855                 thread_lock(td);
  856                 kp->ki_pctcpu += sched_pctcpu(td);
  857                 kp->ki_estcpu += sched_estcpu(td);
  858                 thread_unlock(td);
  859         }
  860 }
  861 
  862 /*
  863  * Clear kinfo_proc and fill in any information that is common
  864  * to all threads in the process.
  865  * Must be called with the target process locked.
  866  */
  867 static void
  868 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
  869 {
  870         struct thread *td0;
  871         struct tty *tp;
  872         struct session *sp;
  873         struct ucred *cred;
  874         struct sigacts *ps;
  875 
  876         /* For proc_realparent. */
  877         sx_assert(&proctree_lock, SX_LOCKED);
  878         PROC_LOCK_ASSERT(p, MA_OWNED);
  879         bzero(kp, sizeof(*kp));
  880 
  881         kp->ki_structsize = sizeof(*kp);
  882         kp->ki_paddr = p;
  883         kp->ki_addr =/* p->p_addr; */0; /* XXX */
  884         kp->ki_args = p->p_args;
  885         kp->ki_textvp = p->p_textvp;
  886 #ifdef KTRACE
  887         kp->ki_tracep = p->p_tracevp;
  888         kp->ki_traceflag = p->p_traceflag;
  889 #endif
  890         kp->ki_fd = p->p_fd;
  891         kp->ki_vmspace = p->p_vmspace;
  892         kp->ki_flag = p->p_flag;
  893         kp->ki_flag2 = p->p_flag2;
  894         cred = p->p_ucred;
  895         if (cred) {
  896                 kp->ki_uid = cred->cr_uid;
  897                 kp->ki_ruid = cred->cr_ruid;
  898                 kp->ki_svuid = cred->cr_svuid;
  899                 kp->ki_cr_flags = 0;
  900                 if (cred->cr_flags & CRED_FLAG_CAPMODE)
  901                         kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
  902                 /* XXX bde doesn't like KI_NGROUPS */
  903                 if (cred->cr_ngroups > KI_NGROUPS) {
  904                         kp->ki_ngroups = KI_NGROUPS;
  905                         kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
  906                 } else
  907                         kp->ki_ngroups = cred->cr_ngroups;
  908                 bcopy(cred->cr_groups, kp->ki_groups,
  909                     kp->ki_ngroups * sizeof(gid_t));
  910                 kp->ki_rgid = cred->cr_rgid;
  911                 kp->ki_svgid = cred->cr_svgid;
  912                 /* If jailed(cred), emulate the old P_JAILED flag. */
  913                 if (jailed(cred)) {
  914                         kp->ki_flag |= P_JAILED;
  915                         /* If inside the jail, use 0 as a jail ID. */
  916                         if (cred->cr_prison != curthread->td_ucred->cr_prison)
  917                                 kp->ki_jid = cred->cr_prison->pr_id;
  918                 }
  919                 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
  920                     sizeof(kp->ki_loginclass));
  921         }
  922         ps = p->p_sigacts;
  923         if (ps) {
  924                 mtx_lock(&ps->ps_mtx);
  925                 kp->ki_sigignore = ps->ps_sigignore;
  926                 kp->ki_sigcatch = ps->ps_sigcatch;
  927                 mtx_unlock(&ps->ps_mtx);
  928         }
  929         if (p->p_state != PRS_NEW &&
  930             p->p_state != PRS_ZOMBIE &&
  931             p->p_vmspace != NULL) {
  932                 struct vmspace *vm = p->p_vmspace;
  933 
  934                 kp->ki_size = vm->vm_map.size;
  935                 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
  936                 FOREACH_THREAD_IN_PROC(p, td0) {
  937                         if (!TD_IS_SWAPPED(td0))
  938                                 kp->ki_rssize += td0->td_kstack_pages;
  939                 }
  940                 kp->ki_swrss = vm->vm_swrss;
  941                 kp->ki_tsize = vm->vm_tsize;
  942                 kp->ki_dsize = vm->vm_dsize;
  943                 kp->ki_ssize = vm->vm_ssize;
  944         } else if (p->p_state == PRS_ZOMBIE)
  945                 kp->ki_stat = SZOMB;
  946         if (kp->ki_flag & P_INMEM)
  947                 kp->ki_sflag = PS_INMEM;
  948         else
  949                 kp->ki_sflag = 0;
  950         /* Calculate legacy swtime as seconds since 'swtick'. */
  951         kp->ki_swtime = (ticks - p->p_swtick) / hz;
  952         kp->ki_pid = p->p_pid;
  953         kp->ki_nice = p->p_nice;
  954         kp->ki_fibnum = p->p_fibnum;
  955         kp->ki_start = p->p_stats->p_start;
  956         timevaladd(&kp->ki_start, &boottime);
  957         PROC_STATLOCK(p);
  958         rufetch(p, &kp->ki_rusage);
  959         kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
  960         calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
  961         PROC_STATUNLOCK(p);
  962         calccru(p, &kp->ki_childutime, &kp->ki_childstime);
  963         /* Some callers want child times in a single value. */
  964         kp->ki_childtime = kp->ki_childstime;
  965         timevaladd(&kp->ki_childtime, &kp->ki_childutime);
  966 
  967         FOREACH_THREAD_IN_PROC(p, td0)
  968                 kp->ki_cow += td0->td_cow;
  969 
  970         tp = NULL;
  971         if (p->p_pgrp) {
  972                 kp->ki_pgid = p->p_pgrp->pg_id;
  973                 kp->ki_jobc = p->p_pgrp->pg_jobc;
  974                 sp = p->p_pgrp->pg_session;
  975 
  976                 if (sp != NULL) {
  977                         kp->ki_sid = sp->s_sid;
  978                         SESS_LOCK(sp);
  979                         strlcpy(kp->ki_login, sp->s_login,
  980                             sizeof(kp->ki_login));
  981                         if (sp->s_ttyvp)
  982                                 kp->ki_kiflag |= KI_CTTY;
  983                         if (SESS_LEADER(p))
  984                                 kp->ki_kiflag |= KI_SLEADER;
  985                         /* XXX proctree_lock */
  986                         tp = sp->s_ttyp;
  987                         SESS_UNLOCK(sp);
  988                 }
  989         }
  990         if ((p->p_flag & P_CONTROLT) && tp != NULL) {
  991                 kp->ki_tdev = tty_udev(tp);
  992                 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
  993                 if (tp->t_session)
  994                         kp->ki_tsid = tp->t_session->s_sid;
  995         } else
  996                 kp->ki_tdev = NODEV;
  997         if (p->p_comm[0] != '\0')
  998                 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
  999         if (p->p_sysent && p->p_sysent->sv_name != NULL &&
 1000             p->p_sysent->sv_name[0] != '\0')
 1001                 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
 1002         kp->ki_siglist = p->p_siglist;
 1003         kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
 1004         kp->ki_acflag = p->p_acflag;
 1005         kp->ki_lock = p->p_lock;
 1006         if (p->p_pptr) {
 1007                 kp->ki_ppid = proc_realparent(p)->p_pid;
 1008                 if (p->p_flag & P_TRACED)
 1009                         kp->ki_tracer = p->p_pptr->p_pid;
 1010         }
 1011 }
 1012 
 1013 /*
 1014  * Fill in information that is thread specific.  Must be called with
 1015  * target process locked.  If 'preferthread' is set, overwrite certain
 1016  * process-related fields that are maintained for both threads and
 1017  * processes.
 1018  */
 1019 static void
 1020 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
 1021 {
 1022         struct proc *p;
 1023 
 1024         p = td->td_proc;
 1025         kp->ki_tdaddr = td;
 1026         PROC_LOCK_ASSERT(p, MA_OWNED);
 1027 
 1028         if (preferthread)
 1029                 PROC_STATLOCK(p);
 1030         thread_lock(td);
 1031         if (td->td_wmesg != NULL)
 1032                 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
 1033         else
 1034                 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
 1035         strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname));
 1036         if (TD_ON_LOCK(td)) {
 1037                 kp->ki_kiflag |= KI_LOCKBLOCK;
 1038                 strlcpy(kp->ki_lockname, td->td_lockname,
 1039                     sizeof(kp->ki_lockname));
 1040         } else {
 1041                 kp->ki_kiflag &= ~KI_LOCKBLOCK;
 1042                 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
 1043         }
 1044 
 1045         if (p->p_state == PRS_NORMAL) { /* approximate. */
 1046                 if (TD_ON_RUNQ(td) ||
 1047                     TD_CAN_RUN(td) ||
 1048                     TD_IS_RUNNING(td)) {
 1049                         kp->ki_stat = SRUN;
 1050                 } else if (P_SHOULDSTOP(p)) {
 1051                         kp->ki_stat = SSTOP;
 1052                 } else if (TD_IS_SLEEPING(td)) {
 1053                         kp->ki_stat = SSLEEP;
 1054                 } else if (TD_ON_LOCK(td)) {
 1055                         kp->ki_stat = SLOCK;
 1056                 } else {
 1057                         kp->ki_stat = SWAIT;
 1058                 }
 1059         } else if (p->p_state == PRS_ZOMBIE) {
 1060                 kp->ki_stat = SZOMB;
 1061         } else {
 1062                 kp->ki_stat = SIDL;
 1063         }
 1064 
 1065         /* Things in the thread */
 1066         kp->ki_wchan = td->td_wchan;
 1067         kp->ki_pri.pri_level = td->td_priority;
 1068         kp->ki_pri.pri_native = td->td_base_pri;
 1069 
 1070         /*
 1071          * Note: legacy fields; clamp at the old NOCPU value and/or
 1072          * the maximum u_char CPU value.
 1073          */
 1074         if (td->td_lastcpu == NOCPU)
 1075                 kp->ki_lastcpu_old = NOCPU_OLD;
 1076         else if (td->td_lastcpu > MAXCPU_OLD)
 1077                 kp->ki_lastcpu_old = MAXCPU_OLD;
 1078         else
 1079                 kp->ki_lastcpu_old = td->td_lastcpu;
 1080 
 1081         if (td->td_oncpu == NOCPU)
 1082                 kp->ki_oncpu_old = NOCPU_OLD;
 1083         else if (td->td_oncpu > MAXCPU_OLD)
 1084                 kp->ki_oncpu_old = MAXCPU_OLD;
 1085         else
 1086                 kp->ki_oncpu_old = td->td_oncpu;
 1087 
 1088         kp->ki_lastcpu = td->td_lastcpu;
 1089         kp->ki_oncpu = td->td_oncpu;
 1090         kp->ki_tdflags = td->td_flags;
 1091         kp->ki_tid = td->td_tid;
 1092         kp->ki_numthreads = p->p_numthreads;
 1093         kp->ki_pcb = td->td_pcb;
 1094         kp->ki_kstack = (void *)td->td_kstack;
 1095         kp->ki_slptime = (ticks - td->td_slptick) / hz;
 1096         kp->ki_pri.pri_class = td->td_pri_class;
 1097         kp->ki_pri.pri_user = td->td_user_pri;
 1098 
 1099         if (preferthread) {
 1100                 rufetchtd(td, &kp->ki_rusage);
 1101                 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
 1102                 kp->ki_pctcpu = sched_pctcpu(td);
 1103                 kp->ki_estcpu = sched_estcpu(td);
 1104                 kp->ki_cow = td->td_cow;
 1105         }
 1106 
 1107         /* We can't get this anymore but ps etc never used it anyway. */
 1108         kp->ki_rqindex = 0;
 1109 
 1110         if (preferthread)
 1111                 kp->ki_siglist = td->td_siglist;
 1112         kp->ki_sigmask = td->td_sigmask;
 1113         thread_unlock(td);
 1114         if (preferthread)
 1115                 PROC_STATUNLOCK(p);
 1116 }
 1117 
 1118 /*
 1119  * Fill in a kinfo_proc structure for the specified process.
 1120  * Must be called with the target process locked.
 1121  */
 1122 void
 1123 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
 1124 {
 1125 
 1126         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1127 
 1128         fill_kinfo_proc_only(p, kp);
 1129         fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
 1130         fill_kinfo_aggregate(p, kp);
 1131 }
 1132 
 1133 struct pstats *
 1134 pstats_alloc(void)
 1135 {
 1136 
 1137         return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
 1138 }
 1139 
 1140 /*
 1141  * Copy parts of p_stats; zero the rest of p_stats (statistics).
 1142  */
 1143 void
 1144 pstats_fork(struct pstats *src, struct pstats *dst)
 1145 {
 1146 
 1147         bzero(&dst->pstat_startzero,
 1148             __rangeof(struct pstats, pstat_startzero, pstat_endzero));
 1149         bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
 1150             __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
 1151 }
 1152 
 1153 void
 1154 pstats_free(struct pstats *ps)
 1155 {
 1156 
 1157         free(ps, M_SUBPROC);
 1158 }
 1159 
 1160 static struct proc *
 1161 zpfind_locked(pid_t pid)
 1162 {
 1163         struct proc *p;
 1164 
 1165         sx_assert(&allproc_lock, SX_LOCKED);
 1166         LIST_FOREACH(p, &zombproc, p_list) {
 1167                 if (p->p_pid == pid) {
 1168                         PROC_LOCK(p);
 1169                         break;
 1170                 }
 1171         }
 1172         return (p);
 1173 }
 1174 
 1175 /*
 1176  * Locate a zombie process by number
 1177  */
 1178 struct proc *
 1179 zpfind(pid_t pid)
 1180 {
 1181         struct proc *p;
 1182 
 1183         sx_slock(&allproc_lock);
 1184         p = zpfind_locked(pid);
 1185         sx_sunlock(&allproc_lock);
 1186         return (p);
 1187 }
 1188 
 1189 #ifdef COMPAT_FREEBSD32
 1190 
 1191 /*
 1192  * This function is typically used to copy out the kernel address, so
 1193  * it can be replaced by assignment of zero.
 1194  */
 1195 static inline uint32_t
 1196 ptr32_trim(void *ptr)
 1197 {
 1198         uintptr_t uptr;
 1199 
 1200         uptr = (uintptr_t)ptr;
 1201         return ((uptr > UINT_MAX) ? 0 : uptr);
 1202 }
 1203 
 1204 #define PTRTRIM_CP(src,dst,fld) \
 1205         do { (dst).fld = ptr32_trim((src).fld); } while (0)
 1206 
 1207 static void
 1208 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
 1209 {
 1210         int i;
 1211 
 1212         bzero(ki32, sizeof(struct kinfo_proc32));
 1213         ki32->ki_structsize = sizeof(struct kinfo_proc32);
 1214         CP(*ki, *ki32, ki_layout);
 1215         PTRTRIM_CP(*ki, *ki32, ki_args);
 1216         PTRTRIM_CP(*ki, *ki32, ki_paddr);
 1217         PTRTRIM_CP(*ki, *ki32, ki_addr);
 1218         PTRTRIM_CP(*ki, *ki32, ki_tracep);
 1219         PTRTRIM_CP(*ki, *ki32, ki_textvp);
 1220         PTRTRIM_CP(*ki, *ki32, ki_fd);
 1221         PTRTRIM_CP(*ki, *ki32, ki_vmspace);
 1222         PTRTRIM_CP(*ki, *ki32, ki_wchan);
 1223         CP(*ki, *ki32, ki_pid);
 1224         CP(*ki, *ki32, ki_ppid);
 1225         CP(*ki, *ki32, ki_pgid);
 1226         CP(*ki, *ki32, ki_tpgid);
 1227         CP(*ki, *ki32, ki_sid);
 1228         CP(*ki, *ki32, ki_tsid);
 1229         CP(*ki, *ki32, ki_jobc);
 1230         CP(*ki, *ki32, ki_tdev);
 1231         CP(*ki, *ki32, ki_siglist);
 1232         CP(*ki, *ki32, ki_sigmask);
 1233         CP(*ki, *ki32, ki_sigignore);
 1234         CP(*ki, *ki32, ki_sigcatch);
 1235         CP(*ki, *ki32, ki_uid);
 1236         CP(*ki, *ki32, ki_ruid);
 1237         CP(*ki, *ki32, ki_svuid);
 1238         CP(*ki, *ki32, ki_rgid);
 1239         CP(*ki, *ki32, ki_svgid);
 1240         CP(*ki, *ki32, ki_ngroups);
 1241         for (i = 0; i < KI_NGROUPS; i++)
 1242                 CP(*ki, *ki32, ki_groups[i]);
 1243         CP(*ki, *ki32, ki_size);
 1244         CP(*ki, *ki32, ki_rssize);
 1245         CP(*ki, *ki32, ki_swrss);
 1246         CP(*ki, *ki32, ki_tsize);
 1247         CP(*ki, *ki32, ki_dsize);
 1248         CP(*ki, *ki32, ki_ssize);
 1249         CP(*ki, *ki32, ki_xstat);
 1250         CP(*ki, *ki32, ki_acflag);
 1251         CP(*ki, *ki32, ki_pctcpu);
 1252         CP(*ki, *ki32, ki_estcpu);
 1253         CP(*ki, *ki32, ki_slptime);
 1254         CP(*ki, *ki32, ki_swtime);
 1255         CP(*ki, *ki32, ki_cow);
 1256         CP(*ki, *ki32, ki_runtime);
 1257         TV_CP(*ki, *ki32, ki_start);
 1258         TV_CP(*ki, *ki32, ki_childtime);
 1259         CP(*ki, *ki32, ki_flag);
 1260         CP(*ki, *ki32, ki_kiflag);
 1261         CP(*ki, *ki32, ki_traceflag);
 1262         CP(*ki, *ki32, ki_stat);
 1263         CP(*ki, *ki32, ki_nice);
 1264         CP(*ki, *ki32, ki_lock);
 1265         CP(*ki, *ki32, ki_rqindex);
 1266         CP(*ki, *ki32, ki_oncpu);
 1267         CP(*ki, *ki32, ki_lastcpu);
 1268 
 1269         /* XXX TODO: wrap cpu value as appropriate */
 1270         CP(*ki, *ki32, ki_oncpu_old);
 1271         CP(*ki, *ki32, ki_lastcpu_old);
 1272 
 1273         bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
 1274         bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
 1275         bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
 1276         bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
 1277         bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
 1278         bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
 1279         bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
 1280         CP(*ki, *ki32, ki_tracer);
 1281         CP(*ki, *ki32, ki_flag2);
 1282         CP(*ki, *ki32, ki_fibnum);
 1283         CP(*ki, *ki32, ki_cr_flags);
 1284         CP(*ki, *ki32, ki_jid);
 1285         CP(*ki, *ki32, ki_numthreads);
 1286         CP(*ki, *ki32, ki_tid);
 1287         CP(*ki, *ki32, ki_pri);
 1288         freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
 1289         freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
 1290         PTRTRIM_CP(*ki, *ki32, ki_pcb);
 1291         PTRTRIM_CP(*ki, *ki32, ki_kstack);
 1292         PTRTRIM_CP(*ki, *ki32, ki_udata);
 1293         CP(*ki, *ki32, ki_sflag);
 1294         CP(*ki, *ki32, ki_tdflags);
 1295 }
 1296 #endif
 1297 
 1298 int
 1299 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
 1300 {
 1301         struct thread *td;
 1302         struct kinfo_proc ki;
 1303 #ifdef COMPAT_FREEBSD32
 1304         struct kinfo_proc32 ki32;
 1305 #endif
 1306         int error;
 1307 
 1308         PROC_LOCK_ASSERT(p, MA_OWNED);
 1309         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1310 
 1311         error = 0;
 1312         fill_kinfo_proc(p, &ki);
 1313         if ((flags & KERN_PROC_NOTHREADS) != 0) {
 1314 #ifdef COMPAT_FREEBSD32
 1315                 if ((flags & KERN_PROC_MASK32) != 0) {
 1316                         freebsd32_kinfo_proc_out(&ki, &ki32);
 1317                         if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
 1318                                 error = ENOMEM;
 1319                 } else
 1320 #endif
 1321                         if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
 1322                                 error = ENOMEM;
 1323         } else {
 1324                 FOREACH_THREAD_IN_PROC(p, td) {
 1325                         fill_kinfo_thread(td, &ki, 1);
 1326 #ifdef COMPAT_FREEBSD32
 1327                         if ((flags & KERN_PROC_MASK32) != 0) {
 1328                                 freebsd32_kinfo_proc_out(&ki, &ki32);
 1329                                 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
 1330                                         error = ENOMEM;
 1331                         } else
 1332 #endif
 1333                                 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
 1334                                         error = ENOMEM;
 1335                         if (error != 0)
 1336                                 break;
 1337                 }
 1338         }
 1339         PROC_UNLOCK(p);
 1340         return (error);
 1341 }
 1342 
 1343 static int
 1344 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
 1345     int doingzomb)
 1346 {
 1347         struct sbuf sb;
 1348         struct kinfo_proc ki;
 1349         struct proc *np;
 1350         int error, error2;
 1351         pid_t pid;
 1352 
 1353         pid = p->p_pid;
 1354         sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
 1355         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 1356         error = kern_proc_out(p, &sb, flags);
 1357         error2 = sbuf_finish(&sb);
 1358         sbuf_delete(&sb);
 1359         if (error != 0)
 1360                 return (error);
 1361         else if (error2 != 0)
 1362                 return (error2);
 1363         if (doingzomb)
 1364                 np = zpfind(pid);
 1365         else {
 1366                 if (pid == 0)
 1367                         return (0);
 1368                 np = pfind(pid);
 1369         }
 1370         if (np == NULL)
 1371                 return (ESRCH);
 1372         if (np != p) {
 1373                 PROC_UNLOCK(np);
 1374                 return (ESRCH);
 1375         }
 1376         PROC_UNLOCK(np);
 1377         return (0);
 1378 }
 1379 
 1380 static int
 1381 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
 1382 {
 1383         int *name = (int *)arg1;
 1384         u_int namelen = arg2;
 1385         struct proc *p;
 1386         int flags, doingzomb, oid_number;
 1387         int error = 0;
 1388 
 1389         oid_number = oidp->oid_number;
 1390         if (oid_number != KERN_PROC_ALL &&
 1391             (oid_number & KERN_PROC_INC_THREAD) == 0)
 1392                 flags = KERN_PROC_NOTHREADS;
 1393         else {
 1394                 flags = 0;
 1395                 oid_number &= ~KERN_PROC_INC_THREAD;
 1396         }
 1397 #ifdef COMPAT_FREEBSD32
 1398         if (req->flags & SCTL_MASK32)
 1399                 flags |= KERN_PROC_MASK32;
 1400 #endif
 1401         if (oid_number == KERN_PROC_PID) {
 1402                 if (namelen != 1)
 1403                         return (EINVAL);
 1404                 error = sysctl_wire_old_buffer(req, 0);
 1405                 if (error)
 1406                         return (error);
 1407                 sx_slock(&proctree_lock);
 1408                 error = pget((pid_t)name[0], PGET_CANSEE, &p);
 1409                 if (error == 0)
 1410                         error = sysctl_out_proc(p, req, flags, 0);
 1411                 sx_sunlock(&proctree_lock);
 1412                 return (error);
 1413         }
 1414 
 1415         switch (oid_number) {
 1416         case KERN_PROC_ALL:
 1417                 if (namelen != 0)
 1418                         return (EINVAL);
 1419                 break;
 1420         case KERN_PROC_PROC:
 1421                 if (namelen != 0 && namelen != 1)
 1422                         return (EINVAL);
 1423                 break;
 1424         default:
 1425                 if (namelen != 1)
 1426                         return (EINVAL);
 1427                 break;
 1428         }
 1429 
 1430         if (!req->oldptr) {
 1431                 /* overestimate by 5 procs */
 1432                 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
 1433                 if (error)
 1434                         return (error);
 1435         }
 1436         error = sysctl_wire_old_buffer(req, 0);
 1437         if (error != 0)
 1438                 return (error);
 1439         sx_slock(&proctree_lock);
 1440         sx_slock(&allproc_lock);
 1441         for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
 1442                 if (!doingzomb)
 1443                         p = LIST_FIRST(&allproc);
 1444                 else
 1445                         p = LIST_FIRST(&zombproc);
 1446                 for (; p != NULL; p = LIST_NEXT(p, p_list)) {
 1447                         /*
 1448                          * Skip embryonic processes.
 1449                          */
 1450                         PROC_LOCK(p);
 1451                         if (p->p_state == PRS_NEW) {
 1452                                 PROC_UNLOCK(p);
 1453                                 continue;
 1454                         }
 1455                         KASSERT(p->p_ucred != NULL,
 1456                             ("process credential is NULL for non-NEW proc"));
 1457                         /*
 1458                          * Show a user only appropriate processes.
 1459                          */
 1460                         if (p_cansee(curthread, p)) {
 1461                                 PROC_UNLOCK(p);
 1462                                 continue;
 1463                         }
 1464                         /*
 1465                          * TODO - make more efficient (see notes below).
 1466                          * do by session.
 1467                          */
 1468                         switch (oid_number) {
 1469 
 1470                         case KERN_PROC_GID:
 1471                                 if (p->p_ucred->cr_gid != (gid_t)name[0]) {
 1472                                         PROC_UNLOCK(p);
 1473                                         continue;
 1474                                 }
 1475                                 break;
 1476 
 1477                         case KERN_PROC_PGRP:
 1478                                 /* could do this by traversing pgrp */
 1479                                 if (p->p_pgrp == NULL ||
 1480                                     p->p_pgrp->pg_id != (pid_t)name[0]) {
 1481                                         PROC_UNLOCK(p);
 1482                                         continue;
 1483                                 }
 1484                                 break;
 1485 
 1486                         case KERN_PROC_RGID:
 1487                                 if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
 1488                                         PROC_UNLOCK(p);
 1489                                         continue;
 1490                                 }
 1491                                 break;
 1492 
 1493                         case KERN_PROC_SESSION:
 1494                                 if (p->p_session == NULL ||
 1495                                     p->p_session->s_sid != (pid_t)name[0]) {
 1496                                         PROC_UNLOCK(p);
 1497                                         continue;
 1498                                 }
 1499                                 break;
 1500 
 1501                         case KERN_PROC_TTY:
 1502                                 if ((p->p_flag & P_CONTROLT) == 0 ||
 1503                                     p->p_session == NULL) {
 1504                                         PROC_UNLOCK(p);
 1505                                         continue;
 1506                                 }
 1507                                 /* XXX proctree_lock */
 1508                                 SESS_LOCK(p->p_session);
 1509                                 if (p->p_session->s_ttyp == NULL ||
 1510                                     tty_udev(p->p_session->s_ttyp) !=
 1511                                     (dev_t)name[0]) {
 1512                                         SESS_UNLOCK(p->p_session);
 1513                                         PROC_UNLOCK(p);
 1514                                         continue;
 1515                                 }
 1516                                 SESS_UNLOCK(p->p_session);
 1517                                 break;
 1518 
 1519                         case KERN_PROC_UID:
 1520                                 if (p->p_ucred->cr_uid != (uid_t)name[0]) {
 1521                                         PROC_UNLOCK(p);
 1522                                         continue;
 1523                                 }
 1524                                 break;
 1525 
 1526                         case KERN_PROC_RUID:
 1527                                 if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
 1528                                         PROC_UNLOCK(p);
 1529                                         continue;
 1530                                 }
 1531                                 break;
 1532 
 1533                         case KERN_PROC_PROC:
 1534                                 break;
 1535 
 1536                         default:
 1537                                 break;
 1538 
 1539                         }
 1540 
 1541                         error = sysctl_out_proc(p, req, flags, doingzomb);
 1542                         if (error) {
 1543                                 sx_sunlock(&allproc_lock);
 1544                                 sx_sunlock(&proctree_lock);
 1545                                 return (error);
 1546                         }
 1547                 }
 1548         }
 1549         sx_sunlock(&allproc_lock);
 1550         sx_sunlock(&proctree_lock);
 1551         return (0);
 1552 }
 1553 
 1554 struct pargs *
 1555 pargs_alloc(int len)
 1556 {
 1557         struct pargs *pa;
 1558 
 1559         pa = malloc(sizeof(struct pargs) + len, M_PARGS,
 1560                 M_WAITOK);
 1561         refcount_init(&pa->ar_ref, 1);
 1562         pa->ar_length = len;
 1563         return (pa);
 1564 }
 1565 
 1566 static void
 1567 pargs_free(struct pargs *pa)
 1568 {
 1569 
 1570         free(pa, M_PARGS);
 1571 }
 1572 
 1573 void
 1574 pargs_hold(struct pargs *pa)
 1575 {
 1576 
 1577         if (pa == NULL)
 1578                 return;
 1579         refcount_acquire(&pa->ar_ref);
 1580 }
 1581 
 1582 void
 1583 pargs_drop(struct pargs *pa)
 1584 {
 1585 
 1586         if (pa == NULL)
 1587                 return;
 1588         if (refcount_release(&pa->ar_ref))
 1589                 pargs_free(pa);
 1590 }
 1591 
 1592 static int
 1593 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
 1594     size_t len)
 1595 {
 1596         ssize_t n;
 1597 
 1598         /*
 1599          * This may return a short read if the string is shorter than the chunk
 1600          * and is aligned at the end of the page, and the following page is not
 1601          * mapped.
 1602          */
 1603         n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
 1604         if (n <= 0)
 1605                 return (ENOMEM);
 1606         return (0);
 1607 }
 1608 
 1609 #define PROC_AUXV_MAX   256     /* Safety limit on auxv size. */
 1610 
 1611 enum proc_vector_type {
 1612         PROC_ARG,
 1613         PROC_ENV,
 1614         PROC_AUX,
 1615 };
 1616 
 1617 #ifdef COMPAT_FREEBSD32
 1618 static int
 1619 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
 1620     size_t *vsizep, enum proc_vector_type type)
 1621 {
 1622         struct freebsd32_ps_strings pss;
 1623         Elf32_Auxinfo aux;
 1624         vm_offset_t vptr, ptr;
 1625         uint32_t *proc_vector32;
 1626         char **proc_vector;
 1627         size_t vsize, size;
 1628         int i, error;
 1629 
 1630         error = 0;
 1631         if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
 1632             sizeof(pss)) != sizeof(pss))
 1633                 return (ENOMEM);
 1634         switch (type) {
 1635         case PROC_ARG:
 1636                 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
 1637                 vsize = pss.ps_nargvstr;
 1638                 if (vsize > ARG_MAX)
 1639                         return (ENOEXEC);
 1640                 size = vsize * sizeof(int32_t);
 1641                 break;
 1642         case PROC_ENV:
 1643                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
 1644                 vsize = pss.ps_nenvstr;
 1645                 if (vsize > ARG_MAX)
 1646                         return (ENOEXEC);
 1647                 size = vsize * sizeof(int32_t);
 1648                 break;
 1649         case PROC_AUX:
 1650                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
 1651                     (pss.ps_nenvstr + 1) * sizeof(int32_t);
 1652                 if (vptr % 4 != 0)
 1653                         return (ENOEXEC);
 1654                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 1655                         if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
 1656                             sizeof(aux))
 1657                                 return (ENOMEM);
 1658                         if (aux.a_type == AT_NULL)
 1659                                 break;
 1660                         ptr += sizeof(aux);
 1661                 }
 1662                 if (aux.a_type != AT_NULL)
 1663                         return (ENOEXEC);
 1664                 vsize = i + 1;
 1665                 size = vsize * sizeof(aux);
 1666                 break;
 1667         default:
 1668                 KASSERT(0, ("Wrong proc vector type: %d", type));
 1669                 return (EINVAL);
 1670         }
 1671         proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
 1672         if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
 1673                 error = ENOMEM;
 1674                 goto done;
 1675         }
 1676         if (type == PROC_AUX) {
 1677                 *proc_vectorp = (char **)proc_vector32;
 1678                 *vsizep = vsize;
 1679                 return (0);
 1680         }
 1681         proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
 1682         for (i = 0; i < (int)vsize; i++)
 1683                 proc_vector[i] = PTRIN(proc_vector32[i]);
 1684         *proc_vectorp = proc_vector;
 1685         *vsizep = vsize;
 1686 done:
 1687         free(proc_vector32, M_TEMP);
 1688         return (error);
 1689 }
 1690 #endif
 1691 
 1692 static int
 1693 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
 1694     size_t *vsizep, enum proc_vector_type type)
 1695 {
 1696         struct ps_strings pss;
 1697         Elf_Auxinfo aux;
 1698         vm_offset_t vptr, ptr;
 1699         char **proc_vector;
 1700         size_t vsize, size;
 1701         int i;
 1702 
 1703 #ifdef COMPAT_FREEBSD32
 1704         if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 1705                 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
 1706 #endif
 1707         if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
 1708             sizeof(pss)) != sizeof(pss))
 1709                 return (ENOMEM);
 1710         switch (type) {
 1711         case PROC_ARG:
 1712                 vptr = (vm_offset_t)pss.ps_argvstr;
 1713                 vsize = pss.ps_nargvstr;
 1714                 if (vsize > ARG_MAX)
 1715                         return (ENOEXEC);
 1716                 size = vsize * sizeof(char *);
 1717                 break;
 1718         case PROC_ENV:
 1719                 vptr = (vm_offset_t)pss.ps_envstr;
 1720                 vsize = pss.ps_nenvstr;
 1721                 if (vsize > ARG_MAX)
 1722                         return (ENOEXEC);
 1723                 size = vsize * sizeof(char *);
 1724                 break;
 1725         case PROC_AUX:
 1726                 /*
 1727                  * The aux array is just above env array on the stack. Check
 1728                  * that the address is naturally aligned.
 1729                  */
 1730                 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
 1731                     * sizeof(char *);
 1732 #if __ELF_WORD_SIZE == 64
 1733                 if (vptr % sizeof(uint64_t) != 0)
 1734 #else
 1735                 if (vptr % sizeof(uint32_t) != 0)
 1736 #endif
 1737                         return (ENOEXEC);
 1738                 /*
 1739                  * We count the array size reading the aux vectors from the
 1740                  * stack until AT_NULL vector is returned.  So (to keep the code
 1741                  * simple) we read the process stack twice: the first time here
 1742                  * to find the size and the second time when copying the vectors
 1743                  * to the allocated proc_vector.
 1744                  */
 1745                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 1746                         if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
 1747                             sizeof(aux))
 1748                                 return (ENOMEM);
 1749                         if (aux.a_type == AT_NULL)
 1750                                 break;
 1751                         ptr += sizeof(aux);
 1752                 }
 1753                 /*
 1754                  * If the PROC_AUXV_MAX entries are iterated over, and we have
 1755                  * not reached AT_NULL, it is most likely we are reading wrong
 1756                  * data: either the process doesn't have auxv array or data has
 1757                  * been modified. Return the error in this case.
 1758                  */
 1759                 if (aux.a_type != AT_NULL)
 1760                         return (ENOEXEC);
 1761                 vsize = i + 1;
 1762                 size = vsize * sizeof(aux);
 1763                 break;
 1764         default:
 1765                 KASSERT(0, ("Wrong proc vector type: %d", type));
 1766                 return (EINVAL); /* In case we are built without INVARIANTS. */
 1767         }
 1768         proc_vector = malloc(size, M_TEMP, M_WAITOK);
 1769         if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
 1770                 free(proc_vector, M_TEMP);
 1771                 return (ENOMEM);
 1772         }
 1773         *proc_vectorp = proc_vector;
 1774         *vsizep = vsize;
 1775 
 1776         return (0);
 1777 }
 1778 
 1779 #define GET_PS_STRINGS_CHUNK_SZ 256     /* Chunk size (bytes) for ps_strings operations. */
 1780 
 1781 static int
 1782 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
 1783     enum proc_vector_type type)
 1784 {
 1785         size_t done, len, nchr, vsize;
 1786         int error, i;
 1787         char **proc_vector, *sptr;
 1788         char pss_string[GET_PS_STRINGS_CHUNK_SZ];
 1789 
 1790         PROC_ASSERT_HELD(p);
 1791 
 1792         /*
 1793          * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
 1794          */
 1795         nchr = 2 * (PATH_MAX + ARG_MAX);
 1796 
 1797         error = get_proc_vector(td, p, &proc_vector, &vsize, type);
 1798         if (error != 0)
 1799                 return (error);
 1800         for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
 1801                 /*
 1802                  * The program may have scribbled into its argv array, e.g. to
 1803                  * remove some arguments.  If that has happened, break out
 1804                  * before trying to read from NULL.
 1805                  */
 1806                 if (proc_vector[i] == NULL)
 1807                         break;
 1808                 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
 1809                         error = proc_read_string(td, p, sptr, pss_string,
 1810                             sizeof(pss_string));
 1811                         if (error != 0)
 1812                                 goto done;
 1813                         len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
 1814                         if (done + len >= nchr)
 1815                                 len = nchr - done - 1;
 1816                         sbuf_bcat(sb, pss_string, len);
 1817                         if (len != GET_PS_STRINGS_CHUNK_SZ)
 1818                                 break;
 1819                         done += GET_PS_STRINGS_CHUNK_SZ;
 1820                 }
 1821                 sbuf_bcat(sb, "", 1);
 1822                 done += len + 1;
 1823         }
 1824 done:
 1825         free(proc_vector, M_TEMP);
 1826         return (error);
 1827 }
 1828 
 1829 int
 1830 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
 1831 {
 1832 
 1833         return (get_ps_strings(curthread, p, sb, PROC_ARG));
 1834 }
 1835 
 1836 int
 1837 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
 1838 {
 1839 
 1840         return (get_ps_strings(curthread, p, sb, PROC_ENV));
 1841 }
 1842 
 1843 int
 1844 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
 1845 {
 1846         size_t vsize, size;
 1847         char **auxv;
 1848         int error;
 1849 
 1850         error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
 1851         if (error == 0) {
 1852 #ifdef COMPAT_FREEBSD32
 1853                 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 1854                         size = vsize * sizeof(Elf32_Auxinfo);
 1855                 else
 1856 #endif
 1857                         size = vsize * sizeof(Elf_Auxinfo);
 1858                 if (sbuf_bcat(sb, auxv, size) != 0)
 1859                         error = ENOMEM;
 1860                 free(auxv, M_TEMP);
 1861         }
 1862         return (error);
 1863 }
 1864 
 1865 /*
 1866  * This sysctl allows a process to retrieve the argument list or process
 1867  * title for another process without groping around in the address space
 1868  * of the other process.  It also allow a process to set its own "process 
 1869  * title to a string of its own choice.
 1870  */
 1871 static int
 1872 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
 1873 {
 1874         int *name = (int *)arg1;
 1875         u_int namelen = arg2;
 1876         struct pargs *newpa, *pa;
 1877         struct proc *p;
 1878         struct sbuf sb;
 1879         int flags, error = 0, error2;
 1880 
 1881         if (namelen != 1)
 1882                 return (EINVAL);
 1883 
 1884         flags = PGET_CANSEE;
 1885         if (req->newptr != NULL)
 1886                 flags |= PGET_ISCURRENT;
 1887         error = pget((pid_t)name[0], flags, &p);
 1888         if (error)
 1889                 return (error);
 1890 
 1891         pa = p->p_args;
 1892         if (pa != NULL) {
 1893                 pargs_hold(pa);
 1894                 PROC_UNLOCK(p);
 1895                 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
 1896                 pargs_drop(pa);
 1897         } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
 1898                 _PHOLD(p);
 1899                 PROC_UNLOCK(p);
 1900                 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1901                 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 1902                 error = proc_getargv(curthread, p, &sb);
 1903                 error2 = sbuf_finish(&sb);
 1904                 PRELE(p);
 1905                 sbuf_delete(&sb);
 1906                 if (error == 0 && error2 != 0)
 1907                         error = error2;
 1908         } else {
 1909                 PROC_UNLOCK(p);
 1910         }
 1911         if (error != 0 || req->newptr == NULL)
 1912                 return (error);
 1913 
 1914         if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
 1915                 return (ENOMEM);
 1916         newpa = pargs_alloc(req->newlen);
 1917         error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
 1918         if (error != 0) {
 1919                 pargs_free(newpa);
 1920                 return (error);
 1921         }
 1922         PROC_LOCK(p);
 1923         pa = p->p_args;
 1924         p->p_args = newpa;
 1925         PROC_UNLOCK(p);
 1926         pargs_drop(pa);
 1927         return (0);
 1928 }
 1929 
 1930 /*
 1931  * This sysctl allows a process to retrieve environment of another process.
 1932  */
 1933 static int
 1934 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
 1935 {
 1936         int *name = (int *)arg1;
 1937         u_int namelen = arg2;
 1938         struct proc *p;
 1939         struct sbuf sb;
 1940         int error, error2;
 1941 
 1942         if (namelen != 1)
 1943                 return (EINVAL);
 1944 
 1945         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1946         if (error != 0)
 1947                 return (error);
 1948         if ((p->p_flag & P_SYSTEM) != 0) {
 1949                 PRELE(p);
 1950                 return (0);
 1951         }
 1952 
 1953         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1954         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 1955         error = proc_getenvv(curthread, p, &sb);
 1956         error2 = sbuf_finish(&sb);
 1957         PRELE(p);
 1958         sbuf_delete(&sb);
 1959         return (error != 0 ? error : error2);
 1960 }
 1961 
 1962 /*
 1963  * This sysctl allows a process to retrieve ELF auxiliary vector of
 1964  * another process.
 1965  */
 1966 static int
 1967 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
 1968 {
 1969         int *name = (int *)arg1;
 1970         u_int namelen = arg2;
 1971         struct proc *p;
 1972         struct sbuf sb;
 1973         int error, error2;
 1974 
 1975         if (namelen != 1)
 1976                 return (EINVAL);
 1977 
 1978         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1979         if (error != 0)
 1980                 return (error);
 1981         if ((p->p_flag & P_SYSTEM) != 0) {
 1982                 PRELE(p);
 1983                 return (0);
 1984         }
 1985         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1986         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 1987         error = proc_getauxv(curthread, p, &sb);
 1988         error2 = sbuf_finish(&sb);
 1989         PRELE(p);
 1990         sbuf_delete(&sb);
 1991         return (error != 0 ? error : error2);
 1992 }
 1993 
 1994 /*
 1995  * This sysctl allows a process to retrieve the path of the executable for
 1996  * itself or another process.
 1997  */
 1998 static int
 1999 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
 2000 {
 2001         pid_t *pidp = (pid_t *)arg1;
 2002         unsigned int arglen = arg2;
 2003         struct proc *p;
 2004         struct vnode *vp;
 2005         char *retbuf, *freebuf;
 2006         int error;
 2007 
 2008         if (arglen != 1)
 2009                 return (EINVAL);
 2010         if (*pidp == -1) {      /* -1 means this process */
 2011                 p = req->td->td_proc;
 2012         } else {
 2013                 error = pget(*pidp, PGET_CANSEE, &p);
 2014                 if (error != 0)
 2015                         return (error);
 2016         }
 2017 
 2018         vp = p->p_textvp;
 2019         if (vp == NULL) {
 2020                 if (*pidp != -1)
 2021                         PROC_UNLOCK(p);
 2022                 return (0);
 2023         }
 2024         vref(vp);
 2025         if (*pidp != -1)
 2026                 PROC_UNLOCK(p);
 2027         error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
 2028         vrele(vp);
 2029         if (error)
 2030                 return (error);
 2031         error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
 2032         free(freebuf, M_TEMP);
 2033         return (error);
 2034 }
 2035 
 2036 static int
 2037 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
 2038 {
 2039         struct proc *p;
 2040         char *sv_name;
 2041         int *name;
 2042         int namelen;
 2043         int error;
 2044 
 2045         namelen = arg2;
 2046         if (namelen != 1)
 2047                 return (EINVAL);
 2048 
 2049         name = (int *)arg1;
 2050         error = pget((pid_t)name[0], PGET_CANSEE, &p);
 2051         if (error != 0)
 2052                 return (error);
 2053         sv_name = p->p_sysent->sv_name;
 2054         PROC_UNLOCK(p);
 2055         return (sysctl_handle_string(oidp, sv_name, 0, req));
 2056 }
 2057 
 2058 #ifdef KINFO_OVMENTRY_SIZE
 2059 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
 2060 #endif
 2061 
 2062 #ifdef COMPAT_FREEBSD7
 2063 static int
 2064 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
 2065 {
 2066         vm_map_entry_t entry, tmp_entry;
 2067         unsigned int last_timestamp;
 2068         char *fullpath, *freepath;
 2069         struct kinfo_ovmentry *kve;
 2070         struct vattr va;
 2071         struct ucred *cred;
 2072         int error, *name;
 2073         struct vnode *vp;
 2074         struct proc *p;
 2075         vm_map_t map;
 2076         struct vmspace *vm;
 2077 
 2078         name = (int *)arg1;
 2079         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 2080         if (error != 0)
 2081                 return (error);
 2082         vm = vmspace_acquire_ref(p);
 2083         if (vm == NULL) {
 2084                 PRELE(p);
 2085                 return (ESRCH);
 2086         }
 2087         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
 2088 
 2089         map = &vm->vm_map;
 2090         vm_map_lock_read(map);
 2091         for (entry = map->header.next; entry != &map->header;
 2092             entry = entry->next) {
 2093                 vm_object_t obj, tobj, lobj;
 2094                 vm_offset_t addr;
 2095 
 2096                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 2097                         continue;
 2098 
 2099                 bzero(kve, sizeof(*kve));
 2100                 kve->kve_structsize = sizeof(*kve);
 2101 
 2102                 kve->kve_private_resident = 0;
 2103                 obj = entry->object.vm_object;
 2104                 if (obj != NULL) {
 2105                         VM_OBJECT_RLOCK(obj);
 2106                         if (obj->shadow_count == 1)
 2107                                 kve->kve_private_resident =
 2108                                     obj->resident_page_count;
 2109                 }
 2110                 kve->kve_resident = 0;
 2111                 addr = entry->start;
 2112                 while (addr < entry->end) {
 2113                         if (pmap_extract(map->pmap, addr))
 2114                                 kve->kve_resident++;
 2115                         addr += PAGE_SIZE;
 2116                 }
 2117 
 2118                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
 2119                         if (tobj != obj)
 2120                                 VM_OBJECT_RLOCK(tobj);
 2121                         if (lobj != obj)
 2122                                 VM_OBJECT_RUNLOCK(lobj);
 2123                         lobj = tobj;
 2124                 }
 2125 
 2126                 kve->kve_start = (void*)entry->start;
 2127                 kve->kve_end = (void*)entry->end;
 2128                 kve->kve_offset = (off_t)entry->offset;
 2129 
 2130                 if (entry->protection & VM_PROT_READ)
 2131                         kve->kve_protection |= KVME_PROT_READ;
 2132                 if (entry->protection & VM_PROT_WRITE)
 2133                         kve->kve_protection |= KVME_PROT_WRITE;
 2134                 if (entry->protection & VM_PROT_EXECUTE)
 2135                         kve->kve_protection |= KVME_PROT_EXEC;
 2136 
 2137                 if (entry->eflags & MAP_ENTRY_COW)
 2138                         kve->kve_flags |= KVME_FLAG_COW;
 2139                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 2140                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 2141                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 2142                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 2143 
 2144                 last_timestamp = map->timestamp;
 2145                 vm_map_unlock_read(map);
 2146 
 2147                 kve->kve_fileid = 0;
 2148                 kve->kve_fsid = 0;
 2149                 freepath = NULL;
 2150                 fullpath = "";
 2151                 if (lobj) {
 2152                         vp = NULL;
 2153                         switch (lobj->type) {
 2154                         case OBJT_DEFAULT:
 2155                                 kve->kve_type = KVME_TYPE_DEFAULT;
 2156                                 break;
 2157                         case OBJT_VNODE:
 2158                                 kve->kve_type = KVME_TYPE_VNODE;
 2159                                 vp = lobj->handle;
 2160                                 vref(vp);
 2161                                 break;
 2162                         case OBJT_SWAP:
 2163                                 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
 2164                                         kve->kve_type = KVME_TYPE_VNODE;
 2165                                         if ((lobj->flags & OBJ_TMPFS) != 0) {
 2166                                                 vp = lobj->un_pager.swp.swp_tmpfs;
 2167                                                 vref(vp);
 2168                                         }
 2169                                 } else {
 2170                                         kve->kve_type = KVME_TYPE_SWAP;
 2171                                 }
 2172                                 break;
 2173                         case OBJT_DEVICE:
 2174                                 kve->kve_type = KVME_TYPE_DEVICE;
 2175                                 break;
 2176                         case OBJT_PHYS:
 2177                                 kve->kve_type = KVME_TYPE_PHYS;
 2178                                 break;
 2179                         case OBJT_DEAD:
 2180                                 kve->kve_type = KVME_TYPE_DEAD;
 2181                                 break;
 2182                         case OBJT_SG:
 2183                                 kve->kve_type = KVME_TYPE_SG;
 2184                                 break;
 2185                         default:
 2186                                 kve->kve_type = KVME_TYPE_UNKNOWN;
 2187                                 break;
 2188                         }
 2189                         if (lobj != obj)
 2190                                 VM_OBJECT_RUNLOCK(lobj);
 2191 
 2192                         kve->kve_ref_count = obj->ref_count;
 2193                         kve->kve_shadow_count = obj->shadow_count;
 2194                         VM_OBJECT_RUNLOCK(obj);
 2195                         if (vp != NULL) {
 2196                                 vn_fullpath(curthread, vp, &fullpath,
 2197                                     &freepath);
 2198                                 cred = curthread->td_ucred;
 2199                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2200                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 2201                                         kve->kve_fileid = va.va_fileid;
 2202                                         kve->kve_fsid = va.va_fsid;
 2203                                 }
 2204                                 vput(vp);
 2205                         }
 2206                 } else {
 2207                         kve->kve_type = KVME_TYPE_NONE;
 2208                         kve->kve_ref_count = 0;
 2209                         kve->kve_shadow_count = 0;
 2210                 }
 2211 
 2212                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 2213                 if (freepath != NULL)
 2214                         free(freepath, M_TEMP);
 2215 
 2216                 error = SYSCTL_OUT(req, kve, sizeof(*kve));
 2217                 vm_map_lock_read(map);
 2218                 if (error)
 2219                         break;
 2220                 if (last_timestamp != map->timestamp) {
 2221                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 2222                         entry = tmp_entry;
 2223                 }
 2224         }
 2225         vm_map_unlock_read(map);
 2226         vmspace_free(vm);
 2227         PRELE(p);
 2228         free(kve, M_TEMP);
 2229         return (error);
 2230 }
 2231 #endif  /* COMPAT_FREEBSD7 */
 2232 
 2233 #ifdef KINFO_VMENTRY_SIZE
 2234 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
 2235 #endif
 2236 
 2237 static void
 2238 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
 2239     struct kinfo_vmentry *kve)
 2240 {
 2241         vm_object_t obj, tobj;
 2242         vm_page_t m, m_adv;
 2243         vm_offset_t addr;
 2244         vm_paddr_t locked_pa;
 2245         vm_pindex_t pi, pi_adv, pindex;
 2246 
 2247         locked_pa = 0;
 2248         obj = entry->object.vm_object;
 2249         addr = entry->start;
 2250         m_adv = NULL;
 2251         pi = OFF_TO_IDX(entry->offset);
 2252         for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
 2253                 if (m_adv != NULL) {
 2254                         m = m_adv;
 2255                 } else {
 2256                         pi_adv = OFF_TO_IDX(entry->end - addr);
 2257                         pindex = pi;
 2258                         for (tobj = obj;; tobj = tobj->backing_object) {
 2259                                 m = vm_page_find_least(tobj, pindex);
 2260                                 if (m != NULL) {
 2261                                         if (m->pindex == pindex)
 2262                                                 break;
 2263                                         if (pi_adv > m->pindex - pindex) {
 2264                                                 pi_adv = m->pindex - pindex;
 2265                                                 m_adv = m;
 2266                                         }
 2267                                 }
 2268                                 if (tobj->backing_object == NULL)
 2269                                         goto next;
 2270                                 pindex += OFF_TO_IDX(tobj->
 2271                                     backing_object_offset);
 2272                         }
 2273                 }
 2274                 m_adv = NULL;
 2275                 if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
 2276                     (addr & (pagesizes[1] - 1)) == 0 &&
 2277                     (pmap_mincore(map->pmap, addr, &locked_pa) &
 2278                     MINCORE_SUPER) != 0) {
 2279                         kve->kve_flags |= KVME_FLAG_SUPER;
 2280                         pi_adv = OFF_TO_IDX(pagesizes[1]);
 2281                 } else {
 2282                         /*
 2283                          * We do not test the found page on validity.
 2284                          * Either the page is busy and being paged in,
 2285                          * or it was invalidated.  The first case
 2286                          * should be counted as resident, the second
 2287                          * is not so clear; we do account both.
 2288                          */
 2289                         pi_adv = 1;
 2290                 }
 2291                 kve->kve_resident += pi_adv;
 2292 next:;
 2293         }
 2294         PA_UNLOCK_COND(locked_pa);
 2295 }
 2296 
 2297 /*
 2298  * Must be called with the process locked and will return unlocked.
 2299  */
 2300 int
 2301 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
 2302 {
 2303         vm_map_entry_t entry, tmp_entry;
 2304         struct vattr va;
 2305         vm_map_t map;
 2306         vm_object_t obj, tobj, lobj;
 2307         char *fullpath, *freepath;
 2308         struct kinfo_vmentry *kve;
 2309         struct ucred *cred;
 2310         struct vnode *vp;
 2311         struct vmspace *vm;
 2312         vm_offset_t addr;
 2313         unsigned int last_timestamp;
 2314         int error;
 2315 
 2316         PROC_LOCK_ASSERT(p, MA_OWNED);
 2317 
 2318         _PHOLD(p);
 2319         PROC_UNLOCK(p);
 2320         vm = vmspace_acquire_ref(p);
 2321         if (vm == NULL) {
 2322                 PRELE(p);
 2323                 return (ESRCH);
 2324         }
 2325         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
 2326 
 2327         error = 0;
 2328         map = &vm->vm_map;
 2329         vm_map_lock_read(map);
 2330         for (entry = map->header.next; entry != &map->header;
 2331             entry = entry->next) {
 2332                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 2333                         continue;
 2334 
 2335                 addr = entry->end;
 2336                 bzero(kve, sizeof(*kve));
 2337                 obj = entry->object.vm_object;
 2338                 if (obj != NULL) {
 2339                         for (tobj = obj; tobj != NULL;
 2340                             tobj = tobj->backing_object) {
 2341                                 VM_OBJECT_RLOCK(tobj);
 2342                                 lobj = tobj;
 2343                         }
 2344                         if (obj->backing_object == NULL)
 2345                                 kve->kve_private_resident =
 2346                                     obj->resident_page_count;
 2347                         if (!vmmap_skip_res_cnt)
 2348                                 kern_proc_vmmap_resident(map, entry, kve);
 2349                         for (tobj = obj; tobj != NULL;
 2350                             tobj = tobj->backing_object) {
 2351                                 if (tobj != obj && tobj != lobj)
 2352                                         VM_OBJECT_RUNLOCK(tobj);
 2353                         }
 2354                 } else {
 2355                         lobj = NULL;
 2356                 }
 2357 
 2358                 kve->kve_start = entry->start;
 2359                 kve->kve_end = entry->end;
 2360                 kve->kve_offset = entry->offset;
 2361 
 2362                 if (entry->protection & VM_PROT_READ)
 2363                         kve->kve_protection |= KVME_PROT_READ;
 2364                 if (entry->protection & VM_PROT_WRITE)
 2365                         kve->kve_protection |= KVME_PROT_WRITE;
 2366                 if (entry->protection & VM_PROT_EXECUTE)
 2367                         kve->kve_protection |= KVME_PROT_EXEC;
 2368 
 2369                 if (entry->eflags & MAP_ENTRY_COW)
 2370                         kve->kve_flags |= KVME_FLAG_COW;
 2371                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 2372                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 2373                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 2374                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 2375                 if (entry->eflags & MAP_ENTRY_GROWS_UP)
 2376                         kve->kve_flags |= KVME_FLAG_GROWS_UP;
 2377                 if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
 2378                         kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
 2379 
 2380                 last_timestamp = map->timestamp;
 2381                 vm_map_unlock_read(map);
 2382 
 2383                 freepath = NULL;
 2384                 fullpath = "";
 2385                 if (lobj != NULL) {
 2386                         vp = NULL;
 2387                         switch (lobj->type) {
 2388                         case OBJT_DEFAULT:
 2389                                 kve->kve_type = KVME_TYPE_DEFAULT;
 2390                                 break;
 2391                         case OBJT_VNODE:
 2392                                 kve->kve_type = KVME_TYPE_VNODE;
 2393                                 vp = lobj->handle;
 2394                                 vref(vp);
 2395                                 break;
 2396                         case OBJT_SWAP:
 2397                                 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
 2398                                         kve->kve_type = KVME_TYPE_VNODE;
 2399                                         if ((lobj->flags & OBJ_TMPFS) != 0) {
 2400                                                 vp = lobj->un_pager.swp.swp_tmpfs;
 2401                                                 vref(vp);
 2402                                         }
 2403                                 } else {
 2404                                         kve->kve_type = KVME_TYPE_SWAP;
 2405                                 }
 2406                                 break;
 2407                         case OBJT_DEVICE:
 2408                                 kve->kve_type = KVME_TYPE_DEVICE;
 2409                                 break;
 2410                         case OBJT_PHYS:
 2411                                 kve->kve_type = KVME_TYPE_PHYS;
 2412                                 break;
 2413                         case OBJT_DEAD:
 2414                                 kve->kve_type = KVME_TYPE_DEAD;
 2415                                 break;
 2416                         case OBJT_SG:
 2417                                 kve->kve_type = KVME_TYPE_SG;
 2418                                 break;
 2419                         case OBJT_MGTDEVICE:
 2420                                 kve->kve_type = KVME_TYPE_MGTDEVICE;
 2421                                 break;
 2422                         default:
 2423                                 kve->kve_type = KVME_TYPE_UNKNOWN;
 2424                                 break;
 2425                         }
 2426                         if (lobj != obj)
 2427                                 VM_OBJECT_RUNLOCK(lobj);
 2428 
 2429                         kve->kve_ref_count = obj->ref_count;
 2430                         kve->kve_shadow_count = obj->shadow_count;
 2431                         VM_OBJECT_RUNLOCK(obj);
 2432                         if (vp != NULL) {
 2433                                 vn_fullpath(curthread, vp, &fullpath,
 2434                                     &freepath);
 2435                                 kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
 2436                                 cred = curthread->td_ucred;
 2437                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2438                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 2439                                         kve->kve_vn_fileid = va.va_fileid;
 2440                                         kve->kve_vn_fsid = va.va_fsid;
 2441                                         kve->kve_vn_mode =
 2442                                             MAKEIMODE(va.va_type, va.va_mode);
 2443                                         kve->kve_vn_size = va.va_size;
 2444                                         kve->kve_vn_rdev = va.va_rdev;
 2445                                         kve->kve_status = KF_ATTR_VALID;
 2446                                 }
 2447                                 vput(vp);
 2448                         }
 2449                 } else {
 2450                         kve->kve_type = KVME_TYPE_NONE;
 2451                         kve->kve_ref_count = 0;
 2452                         kve->kve_shadow_count = 0;
 2453                 }
 2454 
 2455                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 2456                 if (freepath != NULL)
 2457                         free(freepath, M_TEMP);
 2458 
 2459                 /* Pack record size down */
 2460                 if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
 2461                         kve->kve_structsize =
 2462                             offsetof(struct kinfo_vmentry, kve_path) +
 2463                             strlen(kve->kve_path) + 1;
 2464                 else
 2465                         kve->kve_structsize = sizeof(*kve);
 2466                 kve->kve_structsize = roundup(kve->kve_structsize,
 2467                     sizeof(uint64_t));
 2468 
 2469                 /* Halt filling and truncate rather than exceeding maxlen */
 2470                 if (maxlen != -1 && maxlen < kve->kve_structsize) {
 2471                         error = 0;
 2472                         vm_map_lock_read(map);
 2473                         break;
 2474                 } else if (maxlen != -1)
 2475                         maxlen -= kve->kve_structsize;
 2476 
 2477                 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
 2478                         error = ENOMEM;
 2479                 vm_map_lock_read(map);
 2480                 if (error != 0)
 2481                         break;
 2482                 if (last_timestamp != map->timestamp) {
 2483                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 2484                         entry = tmp_entry;
 2485                 }
 2486         }
 2487         vm_map_unlock_read(map);
 2488         vmspace_free(vm);
 2489         PRELE(p);
 2490         free(kve, M_TEMP);
 2491         return (error);
 2492 }
 2493 
 2494 static int
 2495 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
 2496 {
 2497         struct proc *p;
 2498         struct sbuf sb;
 2499         int error, error2, *name;
 2500 
 2501         name = (int *)arg1;
 2502         sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
 2503         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 2504         error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
 2505         if (error != 0) {
 2506                 sbuf_delete(&sb);
 2507                 return (error);
 2508         }
 2509         error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
 2510         error2 = sbuf_finish(&sb);
 2511         sbuf_delete(&sb);
 2512         return (error != 0 ? error : error2);
 2513 }
 2514 
 2515 #if defined(STACK) || defined(DDB)
 2516 static int
 2517 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
 2518 {
 2519         struct kinfo_kstack *kkstp;
 2520         int error, i, *name, numthreads;
 2521         lwpid_t *lwpidarray;
 2522         struct thread *td;
 2523         struct stack *st;
 2524         struct sbuf sb;
 2525         struct proc *p;
 2526 
 2527         name = (int *)arg1;
 2528         error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
 2529         if (error != 0)
 2530                 return (error);
 2531 
 2532         kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
 2533         st = stack_create();
 2534 
 2535         lwpidarray = NULL;
 2536         PROC_LOCK(p);
 2537         do {
 2538                 if (lwpidarray != NULL) {
 2539                         free(lwpidarray, M_TEMP);
 2540                         lwpidarray = NULL;
 2541                 }
 2542                 numthreads = p->p_numthreads;
 2543                 PROC_UNLOCK(p);
 2544                 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
 2545                     M_WAITOK | M_ZERO);
 2546                 PROC_LOCK(p);
 2547         } while (numthreads < p->p_numthreads);
 2548 
 2549         /*
 2550          * XXXRW: During the below loop, execve(2) and countless other sorts
 2551          * of changes could have taken place.  Should we check to see if the
 2552          * vmspace has been replaced, or the like, in order to prevent
 2553          * giving a snapshot that spans, say, execve(2), with some threads
 2554          * before and some after?  Among other things, the credentials could
 2555          * have changed, in which case the right to extract debug info might
 2556          * no longer be assured.
 2557          */
 2558         i = 0;
 2559         FOREACH_THREAD_IN_PROC(p, td) {
 2560                 KASSERT(i < numthreads,
 2561                     ("sysctl_kern_proc_kstack: numthreads"));
 2562                 lwpidarray[i] = td->td_tid;
 2563                 i++;
 2564         }
 2565         numthreads = i;
 2566         for (i = 0; i < numthreads; i++) {
 2567                 td = thread_find(p, lwpidarray[i]);
 2568                 if (td == NULL) {
 2569                         continue;
 2570                 }
 2571                 bzero(kkstp, sizeof(*kkstp));
 2572                 (void)sbuf_new(&sb, kkstp->kkst_trace,
 2573                     sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
 2574                 thread_lock(td);
 2575                 kkstp->kkst_tid = td->td_tid;
 2576                 if (TD_IS_SWAPPED(td)) {
 2577                         kkstp->kkst_state = KKST_STATE_SWAPPED;
 2578                 } else if (TD_IS_RUNNING(td)) {
 2579                         if (stack_save_td_running(st, td) == 0)
 2580                                 kkstp->kkst_state = KKST_STATE_STACKOK;
 2581                         else
 2582                                 kkstp->kkst_state = KKST_STATE_RUNNING;
 2583                 } else {
 2584                         kkstp->kkst_state = KKST_STATE_STACKOK;
 2585                         stack_save_td(st, td);
 2586                 }
 2587                 thread_unlock(td);
 2588                 PROC_UNLOCK(p);
 2589                 stack_sbuf_print(&sb, st);
 2590                 sbuf_finish(&sb);
 2591                 sbuf_delete(&sb);
 2592                 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
 2593                 PROC_LOCK(p);
 2594                 if (error)
 2595                         break;
 2596         }
 2597         _PRELE(p);
 2598         PROC_UNLOCK(p);
 2599         if (lwpidarray != NULL)
 2600                 free(lwpidarray, M_TEMP);
 2601         stack_destroy(st);
 2602         free(kkstp, M_TEMP);
 2603         return (error);
 2604 }
 2605 #endif
 2606 
 2607 /*
 2608  * This sysctl allows a process to retrieve the full list of groups from
 2609  * itself or another process.
 2610  */
 2611 static int
 2612 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
 2613 {
 2614         pid_t *pidp = (pid_t *)arg1;
 2615         unsigned int arglen = arg2;
 2616         struct proc *p;
 2617         struct ucred *cred;
 2618         int error;
 2619 
 2620         if (arglen != 1)
 2621                 return (EINVAL);
 2622         if (*pidp == -1) {      /* -1 means this process */
 2623                 p = req->td->td_proc;
 2624                 PROC_LOCK(p);
 2625         } else {
 2626                 error = pget(*pidp, PGET_CANSEE, &p);
 2627                 if (error != 0)
 2628                         return (error);
 2629         }
 2630 
 2631         cred = crhold(p->p_ucred);
 2632         PROC_UNLOCK(p);
 2633 
 2634         error = SYSCTL_OUT(req, cred->cr_groups,
 2635             cred->cr_ngroups * sizeof(gid_t));
 2636         crfree(cred);
 2637         return (error);
 2638 }
 2639 
 2640 /*
 2641  * This sysctl allows a process to retrieve or/and set the resource limit for
 2642  * another process.
 2643  */
 2644 static int
 2645 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
 2646 {
 2647         int *name = (int *)arg1;
 2648         u_int namelen = arg2;
 2649         struct rlimit rlim;
 2650         struct proc *p;
 2651         u_int which;
 2652         int flags, error;
 2653 
 2654         if (namelen != 2)
 2655                 return (EINVAL);
 2656 
 2657         which = (u_int)name[1];
 2658         if (which >= RLIM_NLIMITS)
 2659                 return (EINVAL);
 2660 
 2661         if (req->newptr != NULL && req->newlen != sizeof(rlim))
 2662                 return (EINVAL);
 2663 
 2664         flags = PGET_HOLD | PGET_NOTWEXIT;
 2665         if (req->newptr != NULL)
 2666                 flags |= PGET_CANDEBUG;
 2667         else
 2668                 flags |= PGET_CANSEE;
 2669         error = pget((pid_t)name[0], flags, &p);
 2670         if (error != 0)
 2671                 return (error);
 2672 
 2673         /*
 2674          * Retrieve limit.
 2675          */
 2676         if (req->oldptr != NULL) {
 2677                 PROC_LOCK(p);
 2678                 lim_rlimit_proc(p, which, &rlim);
 2679                 PROC_UNLOCK(p);
 2680         }
 2681         error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
 2682         if (error != 0)
 2683                 goto errout;
 2684 
 2685         /*
 2686          * Set limit.
 2687          */
 2688         if (req->newptr != NULL) {
 2689                 error = SYSCTL_IN(req, &rlim, sizeof(rlim));
 2690                 if (error == 0)
 2691                         error = kern_proc_setrlimit(curthread, p, which, &rlim);
 2692         }
 2693 
 2694 errout:
 2695         PRELE(p);
 2696         return (error);
 2697 }
 2698 
 2699 /*
 2700  * This sysctl allows a process to retrieve ps_strings structure location of
 2701  * another process.
 2702  */
 2703 static int
 2704 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
 2705 {
 2706         int *name = (int *)arg1;
 2707         u_int namelen = arg2;
 2708         struct proc *p;
 2709         vm_offset_t ps_strings;
 2710         int error;
 2711 #ifdef COMPAT_FREEBSD32
 2712         uint32_t ps_strings32;
 2713 #endif
 2714 
 2715         if (namelen != 1)
 2716                 return (EINVAL);
 2717 
 2718         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 2719         if (error != 0)
 2720                 return (error);
 2721 #ifdef COMPAT_FREEBSD32
 2722         if ((req->flags & SCTL_MASK32) != 0) {
 2723                 /*
 2724                  * We return 0 if the 32 bit emulation request is for a 64 bit
 2725                  * process.
 2726                  */
 2727                 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
 2728                     PTROUT(p->p_sysent->sv_psstrings) : 0;
 2729                 PROC_UNLOCK(p);
 2730                 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
 2731                 return (error);
 2732         }
 2733 #endif
 2734         ps_strings = p->p_sysent->sv_psstrings;
 2735         PROC_UNLOCK(p);
 2736         error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
 2737         return (error);
 2738 }
 2739 
 2740 /*
 2741  * This sysctl allows a process to retrieve umask of another process.
 2742  */
 2743 static int
 2744 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
 2745 {
 2746         int *name = (int *)arg1;
 2747         u_int namelen = arg2;
 2748         struct proc *p;
 2749         int error;
 2750         u_short fd_cmask;
 2751 
 2752         if (namelen != 1)
 2753                 return (EINVAL);
 2754 
 2755         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 2756         if (error != 0)
 2757                 return (error);
 2758 
 2759         FILEDESC_SLOCK(p->p_fd);
 2760         fd_cmask = p->p_fd->fd_cmask;
 2761         FILEDESC_SUNLOCK(p->p_fd);
 2762         PRELE(p);
 2763         error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
 2764         return (error);
 2765 }
 2766 
 2767 /*
 2768  * This sysctl allows a process to set and retrieve binary osreldate of
 2769  * another process.
 2770  */
 2771 static int
 2772 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
 2773 {
 2774         int *name = (int *)arg1;
 2775         u_int namelen = arg2;
 2776         struct proc *p;
 2777         int flags, error, osrel;
 2778 
 2779         if (namelen != 1)
 2780                 return (EINVAL);
 2781 
 2782         if (req->newptr != NULL && req->newlen != sizeof(osrel))
 2783                 return (EINVAL);
 2784 
 2785         flags = PGET_HOLD | PGET_NOTWEXIT;
 2786         if (req->newptr != NULL)
 2787                 flags |= PGET_CANDEBUG;
 2788         else
 2789                 flags |= PGET_CANSEE;
 2790         error = pget((pid_t)name[0], flags, &p);
 2791         if (error != 0)
 2792                 return (error);
 2793 
 2794         error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
 2795         if (error != 0)
 2796                 goto errout;
 2797 
 2798         if (req->newptr != NULL) {
 2799                 error = SYSCTL_IN(req, &osrel, sizeof(osrel));
 2800                 if (error != 0)
 2801                         goto errout;
 2802                 if (osrel < 0) {
 2803                         error = EINVAL;
 2804                         goto errout;
 2805                 }
 2806                 p->p_osrel = osrel;
 2807         }
 2808 errout:
 2809         PRELE(p);
 2810         return (error);
 2811 }
 2812 
 2813 static int
 2814 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
 2815 {
 2816         int *name = (int *)arg1;
 2817         u_int namelen = arg2;
 2818         struct proc *p;
 2819         struct kinfo_sigtramp kst;
 2820         const struct sysentvec *sv;
 2821         int error;
 2822 #ifdef COMPAT_FREEBSD32
 2823         struct kinfo_sigtramp32 kst32;
 2824 #endif
 2825 
 2826         if (namelen != 1)
 2827                 return (EINVAL);
 2828 
 2829         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 2830         if (error != 0)
 2831                 return (error);
 2832         sv = p->p_sysent;
 2833 #ifdef COMPAT_FREEBSD32
 2834         if ((req->flags & SCTL_MASK32) != 0) {
 2835                 bzero(&kst32, sizeof(kst32));
 2836                 if (SV_PROC_FLAG(p, SV_ILP32)) {
 2837                         if (sv->sv_sigcode_base != 0) {
 2838                                 kst32.ksigtramp_start = sv->sv_sigcode_base;
 2839                                 kst32.ksigtramp_end = sv->sv_sigcode_base +
 2840                                     *sv->sv_szsigcode;
 2841                         } else {
 2842                                 kst32.ksigtramp_start = sv->sv_psstrings -
 2843                                     *sv->sv_szsigcode;
 2844                                 kst32.ksigtramp_end = sv->sv_psstrings;
 2845                         }
 2846                 }
 2847                 PROC_UNLOCK(p);
 2848                 error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
 2849                 return (error);
 2850         }
 2851 #endif
 2852         bzero(&kst, sizeof(kst));
 2853         if (sv->sv_sigcode_base != 0) {
 2854                 kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
 2855                 kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
 2856                     *sv->sv_szsigcode;
 2857         } else {
 2858                 kst.ksigtramp_start = (char *)sv->sv_psstrings -
 2859                     *sv->sv_szsigcode;
 2860                 kst.ksigtramp_end = (char *)sv->sv_psstrings;
 2861         }
 2862         PROC_UNLOCK(p);
 2863         error = SYSCTL_OUT(req, &kst, sizeof(kst));
 2864         return (error);
 2865 }
 2866 
 2867 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
 2868 
 2869 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
 2870         CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
 2871         "Return entire process table");
 2872 
 2873 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2874         sysctl_kern_proc, "Process table");
 2875 
 2876 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2877         sysctl_kern_proc, "Process table");
 2878 
 2879 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2880         sysctl_kern_proc, "Process table");
 2881 
 2882 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
 2883         CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2884 
 2885 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2886         sysctl_kern_proc, "Process table");
 2887 
 2888 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2889         sysctl_kern_proc, "Process table");
 2890 
 2891 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2892         sysctl_kern_proc, "Process table");
 2893 
 2894 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2895         sysctl_kern_proc, "Process table");
 2896 
 2897 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2898         sysctl_kern_proc, "Return process table, no threads");
 2899 
 2900 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
 2901         CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
 2902         sysctl_kern_proc_args, "Process argument list");
 2903 
 2904 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2905         sysctl_kern_proc_env, "Process environment");
 2906 
 2907 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
 2908         CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
 2909 
 2910 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
 2911         CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
 2912 
 2913 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
 2914         CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
 2915         "Process syscall vector name (ABI type)");
 2916 
 2917 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
 2918         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2919 
 2920 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
 2921         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2922 
 2923 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
 2924         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2925 
 2926 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
 2927         sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2928 
 2929 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
 2930         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2931 
 2932 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
 2933         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2934 
 2935 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
 2936         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2937 
 2938 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
 2939         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2940 
 2941 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
 2942         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
 2943         "Return process table, no threads");
 2944 
 2945 #ifdef COMPAT_FREEBSD7
 2946 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
 2947         CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
 2948 #endif
 2949 
 2950 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
 2951         CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
 2952 
 2953 #if defined(STACK) || defined(DDB)
 2954 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
 2955         CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
 2956 #endif
 2957 
 2958 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
 2959         CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
 2960 
 2961 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
 2962         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
 2963         "Process resource limits");
 2964 
 2965 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
 2966         CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
 2967         "Process ps_strings location");
 2968 
 2969 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
 2970         CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
 2971 
 2972 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
 2973         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
 2974         "Process binary osreldate");
 2975 
 2976 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
 2977         CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
 2978         "Process signal trampoline location");
 2979 
 2980 int allproc_gen;
 2981 
 2982 /*
 2983  * stop_all_proc() purpose is to stop all process which have usermode,
 2984  * except current process for obvious reasons.  This makes it somewhat
 2985  * unreliable when invoked from multithreaded process.  The service
 2986  * must not be user-callable anyway.
 2987  */
 2988 void
 2989 stop_all_proc(void)
 2990 {
 2991         struct proc *cp, *p;
 2992         int r, gen;
 2993         bool restart, seen_stopped, seen_exiting, stopped_some;
 2994 
 2995         cp = curproc;
 2996 allproc_loop:
 2997         sx_xlock(&allproc_lock);
 2998         gen = allproc_gen;
 2999         seen_exiting = seen_stopped = stopped_some = restart = false;
 3000         LIST_REMOVE(cp, p_list);
 3001         LIST_INSERT_HEAD(&allproc, cp, p_list);
 3002         for (;;) {
 3003                 p = LIST_NEXT(cp, p_list);
 3004                 if (p == NULL)
 3005                         break;
 3006                 LIST_REMOVE(cp, p_list);
 3007                 LIST_INSERT_AFTER(p, cp, p_list);
 3008                 PROC_LOCK(p);
 3009                 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) {
 3010                         PROC_UNLOCK(p);
 3011                         continue;
 3012                 }
 3013                 if ((p->p_flag & P_WEXIT) != 0) {
 3014                         seen_exiting = true;
 3015                         PROC_UNLOCK(p);
 3016                         continue;
 3017                 }
 3018                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
 3019                         /*
 3020                          * Stopped processes are tolerated when there
 3021                          * are no other processes which might continue
 3022                          * them.  P_STOPPED_SINGLE but not
 3023                          * P_TOTAL_STOP process still has at least one
 3024                          * thread running.
 3025                          */
 3026                         seen_stopped = true;
 3027                         PROC_UNLOCK(p);
 3028                         continue;
 3029                 }
 3030                 _PHOLD(p);
 3031                 sx_xunlock(&allproc_lock);
 3032                 r = thread_single(p, SINGLE_ALLPROC);
 3033                 if (r != 0)
 3034                         restart = true;
 3035                 else
 3036                         stopped_some = true;
 3037                 _PRELE(p);
 3038                 PROC_UNLOCK(p);
 3039                 sx_xlock(&allproc_lock);
 3040         }
 3041         /* Catch forked children we did not see in iteration. */
 3042         if (gen != allproc_gen)
 3043                 restart = true;
 3044         sx_xunlock(&allproc_lock);
 3045         if (restart || stopped_some || seen_exiting || seen_stopped) {
 3046                 kern_yield(PRI_USER);
 3047                 goto allproc_loop;
 3048         }
 3049 }
 3050 
 3051 void
 3052 resume_all_proc(void)
 3053 {
 3054         struct proc *cp, *p;
 3055 
 3056         cp = curproc;
 3057         sx_xlock(&allproc_lock);
 3058         LIST_REMOVE(cp, p_list);
 3059         LIST_INSERT_HEAD(&allproc, cp, p_list);
 3060         for (;;) {
 3061                 p = LIST_NEXT(cp, p_list);
 3062                 if (p == NULL)
 3063                         break;
 3064                 LIST_REMOVE(cp, p_list);
 3065                 LIST_INSERT_AFTER(p, cp, p_list);
 3066                 PROC_LOCK(p);
 3067                 if ((p->p_flag & P_TOTAL_STOP) != 0) {
 3068                         sx_xunlock(&allproc_lock);
 3069                         _PHOLD(p);
 3070                         thread_single_end(p, SINGLE_ALLPROC);
 3071                         _PRELE(p);
 3072                         PROC_UNLOCK(p);
 3073                         sx_xlock(&allproc_lock);
 3074                 } else {
 3075                         PROC_UNLOCK(p);
 3076                 }
 3077         }
 3078         sx_xunlock(&allproc_lock);
 3079 }
 3080 
 3081 /* #define      TOTAL_STOP_DEBUG        1 */
 3082 #ifdef TOTAL_STOP_DEBUG
 3083 volatile static int ap_resume;
 3084 #include <sys/mount.h>
 3085 
 3086 static int
 3087 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
 3088 {
 3089         int error, val;
 3090 
 3091         val = 0;
 3092         ap_resume = 0;
 3093         error = sysctl_handle_int(oidp, &val, 0, req);
 3094         if (error != 0 || req->newptr == NULL)
 3095                 return (error);
 3096         if (val != 0) {
 3097                 stop_all_proc();
 3098                 syncer_suspend();
 3099                 while (ap_resume == 0)
 3100                         ;
 3101                 syncer_resume();
 3102                 resume_all_proc();
 3103         }
 3104         return (0);
 3105 }
 3106 
 3107 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
 3108     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
 3109     sysctl_debug_stop_all_proc, "I",
 3110     "");
 3111 #endif

Cache object: 79d85dd08db8e0024af23fa7fadf4e79


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.