The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_proc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/11.1/sys/kern/kern_proc.c 319778 2017-06-10 11:14:54Z kib $");
   34 
   35 #include "opt_compat.h"
   36 #include "opt_ddb.h"
   37 #include "opt_ktrace.h"
   38 #include "opt_kstack_pages.h"
   39 #include "opt_stack.h"
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/elf.h>
   44 #include <sys/eventhandler.h>
   45 #include <sys/exec.h>
   46 #include <sys/jail.h>
   47 #include <sys/kernel.h>
   48 #include <sys/limits.h>
   49 #include <sys/lock.h>
   50 #include <sys/loginclass.h>
   51 #include <sys/malloc.h>
   52 #include <sys/mman.h>
   53 #include <sys/mount.h>
   54 #include <sys/mutex.h>
   55 #include <sys/proc.h>
   56 #include <sys/ptrace.h>
   57 #include <sys/refcount.h>
   58 #include <sys/resourcevar.h>
   59 #include <sys/rwlock.h>
   60 #include <sys/sbuf.h>
   61 #include <sys/sysent.h>
   62 #include <sys/sched.h>
   63 #include <sys/smp.h>
   64 #include <sys/stack.h>
   65 #include <sys/stat.h>
   66 #include <sys/sysctl.h>
   67 #include <sys/filedesc.h>
   68 #include <sys/tty.h>
   69 #include <sys/signalvar.h>
   70 #include <sys/sdt.h>
   71 #include <sys/sx.h>
   72 #include <sys/user.h>
   73 #include <sys/vnode.h>
   74 #include <sys/wait.h>
   75 
   76 #ifdef DDB
   77 #include <ddb/ddb.h>
   78 #endif
   79 
   80 #include <vm/vm.h>
   81 #include <vm/vm_param.h>
   82 #include <vm/vm_extern.h>
   83 #include <vm/pmap.h>
   84 #include <vm/vm_map.h>
   85 #include <vm/vm_object.h>
   86 #include <vm/vm_page.h>
   87 #include <vm/uma.h>
   88 
   89 #ifdef COMPAT_FREEBSD32
   90 #include <compat/freebsd32/freebsd32.h>
   91 #include <compat/freebsd32/freebsd32_util.h>
   92 #endif
   93 
   94 SDT_PROVIDER_DEFINE(proc);
   95 SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *",
   96     "int");
   97 SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *",
   98     "int");
   99 SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *",
  100     "struct thread *");
  101 SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *");
  102 SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int");
  103 SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int");
  104 
  105 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
  106 MALLOC_DEFINE(M_SESSION, "session", "session header");
  107 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
  108 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
  109 
  110 static void doenterpgrp(struct proc *, struct pgrp *);
  111 static void orphanpg(struct pgrp *pg);
  112 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
  113 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
  114 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
  115     int preferthread);
  116 static void pgadjustjobc(struct pgrp *pgrp, int entering);
  117 static void pgdelete(struct pgrp *);
  118 static int proc_ctor(void *mem, int size, void *arg, int flags);
  119 static void proc_dtor(void *mem, int size, void *arg);
  120 static int proc_init(void *mem, int size, int flags);
  121 static void proc_fini(void *mem, int size);
  122 static void pargs_free(struct pargs *pa);
  123 static struct proc *zpfind_locked(pid_t pid);
  124 
  125 /*
  126  * Other process lists
  127  */
  128 struct pidhashhead *pidhashtbl;
  129 u_long pidhash;
  130 struct pgrphashhead *pgrphashtbl;
  131 u_long pgrphash;
  132 struct proclist allproc;
  133 struct proclist zombproc;
  134 struct sx allproc_lock;
  135 struct sx proctree_lock;
  136 struct mtx ppeers_lock;
  137 uma_zone_t proc_zone;
  138 
  139 /*
  140  * The offset of various fields in struct proc and struct thread.
  141  * These are used by kernel debuggers to enumerate kernel threads and
  142  * processes.
  143  */
  144 const int proc_off_p_pid = offsetof(struct proc, p_pid);
  145 const int proc_off_p_comm = offsetof(struct proc, p_comm);
  146 const int proc_off_p_list = offsetof(struct proc, p_list);
  147 const int proc_off_p_threads = offsetof(struct proc, p_threads);
  148 const int thread_off_td_tid = offsetof(struct thread, td_tid);
  149 const int thread_off_td_name = offsetof(struct thread, td_name);
  150 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
  151 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
  152 const int thread_off_td_plist = offsetof(struct thread, td_plist);
  153 
  154 int kstack_pages = KSTACK_PAGES;
  155 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
  156     "Kernel stack size in pages");
  157 static int vmmap_skip_res_cnt = 0;
  158 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
  159     &vmmap_skip_res_cnt, 0,
  160     "Skip calculation of the pages resident count in kern.proc.vmmap");
  161 
  162 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
  163 #ifdef COMPAT_FREEBSD32
  164 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
  165 #endif
  166 
  167 /*
  168  * Initialize global process hashing structures.
  169  */
  170 void
  171 procinit(void)
  172 {
  173 
  174         sx_init(&allproc_lock, "allproc");
  175         sx_init(&proctree_lock, "proctree");
  176         mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
  177         LIST_INIT(&allproc);
  178         LIST_INIT(&zombproc);
  179         pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
  180         pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
  181         proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
  182             proc_ctor, proc_dtor, proc_init, proc_fini,
  183             UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  184         uihashinit();
  185 }
  186 
  187 /*
  188  * Prepare a proc for use.
  189  */
  190 static int
  191 proc_ctor(void *mem, int size, void *arg, int flags)
  192 {
  193         struct proc *p;
  194         struct thread *td;
  195 
  196         p = (struct proc *)mem;
  197         SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags);
  198         EVENTHANDLER_INVOKE(process_ctor, p);
  199         SDT_PROBE4(proc, , ctor , return, p, size, arg, flags);
  200         td = FIRST_THREAD_IN_PROC(p);
  201         if (td != NULL) {
  202                 /* Make sure all thread constructors are executed */
  203                 EVENTHANDLER_INVOKE(thread_ctor, td);
  204         }
  205         return (0);
  206 }
  207 
  208 /*
  209  * Reclaim a proc after use.
  210  */
  211 static void
  212 proc_dtor(void *mem, int size, void *arg)
  213 {
  214         struct proc *p;
  215         struct thread *td;
  216 
  217         /* INVARIANTS checks go here */
  218         p = (struct proc *)mem;
  219         td = FIRST_THREAD_IN_PROC(p);
  220         SDT_PROBE4(proc, , dtor, entry, p, size, arg, td);
  221         if (td != NULL) {
  222 #ifdef INVARIANTS
  223                 KASSERT((p->p_numthreads == 1),
  224                     ("bad number of threads in exiting process"));
  225                 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
  226 #endif
  227                 /* Free all OSD associated to this thread. */
  228                 osd_thread_exit(td);
  229                 td_softdep_cleanup(td);
  230                 MPASS(td->td_su == NULL);
  231 
  232                 /* Make sure all thread destructors are executed */
  233                 EVENTHANDLER_INVOKE(thread_dtor, td);
  234         }
  235         EVENTHANDLER_INVOKE(process_dtor, p);
  236         if (p->p_ksi != NULL)
  237                 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
  238         SDT_PROBE3(proc, , dtor, return, p, size, arg);
  239 }
  240 
  241 /*
  242  * Initialize type-stable parts of a proc (when newly created).
  243  */
  244 static int
  245 proc_init(void *mem, int size, int flags)
  246 {
  247         struct proc *p;
  248 
  249         p = (struct proc *)mem;
  250         SDT_PROBE3(proc, , init, entry, p, size, flags);
  251         mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
  252         mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
  253         mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
  254         mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
  255         mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
  256         cv_init(&p->p_pwait, "ppwait");
  257         cv_init(&p->p_dbgwait, "dbgwait");
  258         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
  259         EVENTHANDLER_INVOKE(process_init, p);
  260         p->p_stats = pstats_alloc();
  261         p->p_pgrp = NULL;
  262         SDT_PROBE3(proc, , init, return, p, size, flags);
  263         return (0);
  264 }
  265 
  266 /*
  267  * UMA should ensure that this function is never called.
  268  * Freeing a proc structure would violate type stability.
  269  */
  270 static void
  271 proc_fini(void *mem, int size)
  272 {
  273 #ifdef notnow
  274         struct proc *p;
  275 
  276         p = (struct proc *)mem;
  277         EVENTHANDLER_INVOKE(process_fini, p);
  278         pstats_free(p->p_stats);
  279         thread_free(FIRST_THREAD_IN_PROC(p));
  280         mtx_destroy(&p->p_mtx);
  281         if (p->p_ksi != NULL)
  282                 ksiginfo_free(p->p_ksi);
  283 #else
  284         panic("proc reclaimed");
  285 #endif
  286 }
  287 
  288 /*
  289  * Is p an inferior of the current process?
  290  */
  291 int
  292 inferior(struct proc *p)
  293 {
  294 
  295         sx_assert(&proctree_lock, SX_LOCKED);
  296         PROC_LOCK_ASSERT(p, MA_OWNED);
  297         for (; p != curproc; p = proc_realparent(p)) {
  298                 if (p->p_pid == 0)
  299                         return (0);
  300         }
  301         return (1);
  302 }
  303 
  304 struct proc *
  305 pfind_locked(pid_t pid)
  306 {
  307         struct proc *p;
  308 
  309         sx_assert(&allproc_lock, SX_LOCKED);
  310         LIST_FOREACH(p, PIDHASH(pid), p_hash) {
  311                 if (p->p_pid == pid) {
  312                         PROC_LOCK(p);
  313                         if (p->p_state == PRS_NEW) {
  314                                 PROC_UNLOCK(p);
  315                                 p = NULL;
  316                         }
  317                         break;
  318                 }
  319         }
  320         return (p);
  321 }
  322 
  323 /*
  324  * Locate a process by number; return only "live" processes -- i.e., neither
  325  * zombies nor newly born but incompletely initialized processes.  By not
  326  * returning processes in the PRS_NEW state, we allow callers to avoid
  327  * testing for that condition to avoid dereferencing p_ucred, et al.
  328  */
  329 struct proc *
  330 pfind(pid_t pid)
  331 {
  332         struct proc *p;
  333 
  334         sx_slock(&allproc_lock);
  335         p = pfind_locked(pid);
  336         sx_sunlock(&allproc_lock);
  337         return (p);
  338 }
  339 
  340 static struct proc *
  341 pfind_tid_locked(pid_t tid)
  342 {
  343         struct proc *p;
  344         struct thread *td;
  345 
  346         sx_assert(&allproc_lock, SX_LOCKED);
  347         FOREACH_PROC_IN_SYSTEM(p) {
  348                 PROC_LOCK(p);
  349                 if (p->p_state == PRS_NEW) {
  350                         PROC_UNLOCK(p);
  351                         continue;
  352                 }
  353                 FOREACH_THREAD_IN_PROC(p, td) {
  354                         if (td->td_tid == tid)
  355                                 goto found;
  356                 }
  357                 PROC_UNLOCK(p);
  358         }
  359 found:
  360         return (p);
  361 }
  362 
  363 /*
  364  * Locate a process group by number.
  365  * The caller must hold proctree_lock.
  366  */
  367 struct pgrp *
  368 pgfind(pgid)
  369         register pid_t pgid;
  370 {
  371         register struct pgrp *pgrp;
  372 
  373         sx_assert(&proctree_lock, SX_LOCKED);
  374 
  375         LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
  376                 if (pgrp->pg_id == pgid) {
  377                         PGRP_LOCK(pgrp);
  378                         return (pgrp);
  379                 }
  380         }
  381         return (NULL);
  382 }
  383 
  384 /*
  385  * Locate process and do additional manipulations, depending on flags.
  386  */
  387 int
  388 pget(pid_t pid, int flags, struct proc **pp)
  389 {
  390         struct proc *p;
  391         int error;
  392 
  393         sx_slock(&allproc_lock);
  394         if (pid <= PID_MAX) {
  395                 p = pfind_locked(pid);
  396                 if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
  397                         p = zpfind_locked(pid);
  398         } else if ((flags & PGET_NOTID) == 0) {
  399                 p = pfind_tid_locked(pid);
  400         } else {
  401                 p = NULL;
  402         }
  403         sx_sunlock(&allproc_lock);
  404         if (p == NULL)
  405                 return (ESRCH);
  406         if ((flags & PGET_CANSEE) != 0) {
  407                 error = p_cansee(curthread, p);
  408                 if (error != 0)
  409                         goto errout;
  410         }
  411         if ((flags & PGET_CANDEBUG) != 0) {
  412                 error = p_candebug(curthread, p);
  413                 if (error != 0)
  414                         goto errout;
  415         }
  416         if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
  417                 error = EPERM;
  418                 goto errout;
  419         }
  420         if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
  421                 error = ESRCH;
  422                 goto errout;
  423         }
  424         if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
  425                 /*
  426                  * XXXRW: Not clear ESRCH is the right error during proc
  427                  * execve().
  428                  */
  429                 error = ESRCH;
  430                 goto errout;
  431         }
  432         if ((flags & PGET_HOLD) != 0) {
  433                 _PHOLD(p);
  434                 PROC_UNLOCK(p);
  435         }
  436         *pp = p;
  437         return (0);
  438 errout:
  439         PROC_UNLOCK(p);
  440         return (error);
  441 }
  442 
  443 /*
  444  * Create a new process group.
  445  * pgid must be equal to the pid of p.
  446  * Begin a new session if required.
  447  */
  448 int
  449 enterpgrp(p, pgid, pgrp, sess)
  450         register struct proc *p;
  451         pid_t pgid;
  452         struct pgrp *pgrp;
  453         struct session *sess;
  454 {
  455 
  456         sx_assert(&proctree_lock, SX_XLOCKED);
  457 
  458         KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
  459         KASSERT(p->p_pid == pgid,
  460             ("enterpgrp: new pgrp and pid != pgid"));
  461         KASSERT(pgfind(pgid) == NULL,
  462             ("enterpgrp: pgrp with pgid exists"));
  463         KASSERT(!SESS_LEADER(p),
  464             ("enterpgrp: session leader attempted setpgrp"));
  465 
  466         mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
  467 
  468         if (sess != NULL) {
  469                 /*
  470                  * new session
  471                  */
  472                 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
  473                 PROC_LOCK(p);
  474                 p->p_flag &= ~P_CONTROLT;
  475                 PROC_UNLOCK(p);
  476                 PGRP_LOCK(pgrp);
  477                 sess->s_leader = p;
  478                 sess->s_sid = p->p_pid;
  479                 refcount_init(&sess->s_count, 1);
  480                 sess->s_ttyvp = NULL;
  481                 sess->s_ttydp = NULL;
  482                 sess->s_ttyp = NULL;
  483                 bcopy(p->p_session->s_login, sess->s_login,
  484                             sizeof(sess->s_login));
  485                 pgrp->pg_session = sess;
  486                 KASSERT(p == curproc,
  487                     ("enterpgrp: mksession and p != curproc"));
  488         } else {
  489                 pgrp->pg_session = p->p_session;
  490                 sess_hold(pgrp->pg_session);
  491                 PGRP_LOCK(pgrp);
  492         }
  493         pgrp->pg_id = pgid;
  494         LIST_INIT(&pgrp->pg_members);
  495 
  496         /*
  497          * As we have an exclusive lock of proctree_lock,
  498          * this should not deadlock.
  499          */
  500         LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
  501         pgrp->pg_jobc = 0;
  502         SLIST_INIT(&pgrp->pg_sigiolst);
  503         PGRP_UNLOCK(pgrp);
  504 
  505         doenterpgrp(p, pgrp);
  506 
  507         return (0);
  508 }
  509 
  510 /*
  511  * Move p to an existing process group
  512  */
  513 int
  514 enterthispgrp(p, pgrp)
  515         register struct proc *p;
  516         struct pgrp *pgrp;
  517 {
  518 
  519         sx_assert(&proctree_lock, SX_XLOCKED);
  520         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  521         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  522         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  523         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  524         KASSERT(pgrp->pg_session == p->p_session,
  525                 ("%s: pgrp's session %p, p->p_session %p.\n",
  526                 __func__,
  527                 pgrp->pg_session,
  528                 p->p_session));
  529         KASSERT(pgrp != p->p_pgrp,
  530                 ("%s: p belongs to pgrp.", __func__));
  531 
  532         doenterpgrp(p, pgrp);
  533 
  534         return (0);
  535 }
  536 
  537 /*
  538  * Move p to a process group
  539  */
  540 static void
  541 doenterpgrp(p, pgrp)
  542         struct proc *p;
  543         struct pgrp *pgrp;
  544 {
  545         struct pgrp *savepgrp;
  546 
  547         sx_assert(&proctree_lock, SX_XLOCKED);
  548         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  549         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  550         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  551         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  552 
  553         savepgrp = p->p_pgrp;
  554 
  555         /*
  556          * Adjust eligibility of affected pgrps to participate in job control.
  557          * Increment eligibility counts before decrementing, otherwise we
  558          * could reach 0 spuriously during the first call.
  559          */
  560         fixjobc(p, pgrp, 1);
  561         fixjobc(p, p->p_pgrp, 0);
  562 
  563         PGRP_LOCK(pgrp);
  564         PGRP_LOCK(savepgrp);
  565         PROC_LOCK(p);
  566         LIST_REMOVE(p, p_pglist);
  567         p->p_pgrp = pgrp;
  568         PROC_UNLOCK(p);
  569         LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
  570         PGRP_UNLOCK(savepgrp);
  571         PGRP_UNLOCK(pgrp);
  572         if (LIST_EMPTY(&savepgrp->pg_members))
  573                 pgdelete(savepgrp);
  574 }
  575 
  576 /*
  577  * remove process from process group
  578  */
  579 int
  580 leavepgrp(p)
  581         register struct proc *p;
  582 {
  583         struct pgrp *savepgrp;
  584 
  585         sx_assert(&proctree_lock, SX_XLOCKED);
  586         savepgrp = p->p_pgrp;
  587         PGRP_LOCK(savepgrp);
  588         PROC_LOCK(p);
  589         LIST_REMOVE(p, p_pglist);
  590         p->p_pgrp = NULL;
  591         PROC_UNLOCK(p);
  592         PGRP_UNLOCK(savepgrp);
  593         if (LIST_EMPTY(&savepgrp->pg_members))
  594                 pgdelete(savepgrp);
  595         return (0);
  596 }
  597 
  598 /*
  599  * delete a process group
  600  */
  601 static void
  602 pgdelete(pgrp)
  603         register struct pgrp *pgrp;
  604 {
  605         struct session *savesess;
  606         struct tty *tp;
  607 
  608         sx_assert(&proctree_lock, SX_XLOCKED);
  609         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  610         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  611 
  612         /*
  613          * Reset any sigio structures pointing to us as a result of
  614          * F_SETOWN with our pgid.
  615          */
  616         funsetownlst(&pgrp->pg_sigiolst);
  617 
  618         PGRP_LOCK(pgrp);
  619         tp = pgrp->pg_session->s_ttyp;
  620         LIST_REMOVE(pgrp, pg_hash);
  621         savesess = pgrp->pg_session;
  622         PGRP_UNLOCK(pgrp);
  623 
  624         /* Remove the reference to the pgrp before deallocating it. */
  625         if (tp != NULL) {
  626                 tty_lock(tp);
  627                 tty_rel_pgrp(tp, pgrp);
  628         }
  629 
  630         mtx_destroy(&pgrp->pg_mtx);
  631         free(pgrp, M_PGRP);
  632         sess_release(savesess);
  633 }
  634 
  635 static void
  636 pgadjustjobc(pgrp, entering)
  637         struct pgrp *pgrp;
  638         int entering;
  639 {
  640 
  641         PGRP_LOCK(pgrp);
  642         if (entering)
  643                 pgrp->pg_jobc++;
  644         else {
  645                 --pgrp->pg_jobc;
  646                 if (pgrp->pg_jobc == 0)
  647                         orphanpg(pgrp);
  648         }
  649         PGRP_UNLOCK(pgrp);
  650 }
  651 
  652 /*
  653  * Adjust pgrp jobc counters when specified process changes process group.
  654  * We count the number of processes in each process group that "qualify"
  655  * the group for terminal job control (those with a parent in a different
  656  * process group of the same session).  If that count reaches zero, the
  657  * process group becomes orphaned.  Check both the specified process'
  658  * process group and that of its children.
  659  * entering == 0 => p is leaving specified group.
  660  * entering == 1 => p is entering specified group.
  661  */
  662 void
  663 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
  664 {
  665         struct pgrp *hispgrp;
  666         struct session *mysession;
  667         struct proc *q;
  668 
  669         sx_assert(&proctree_lock, SX_LOCKED);
  670         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  671         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  672         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  673 
  674         /*
  675          * Check p's parent to see whether p qualifies its own process
  676          * group; if so, adjust count for p's process group.
  677          */
  678         mysession = pgrp->pg_session;
  679         if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
  680             hispgrp->pg_session == mysession)
  681                 pgadjustjobc(pgrp, entering);
  682 
  683         /*
  684          * Check this process' children to see whether they qualify
  685          * their process groups; if so, adjust counts for children's
  686          * process groups.
  687          */
  688         LIST_FOREACH(q, &p->p_children, p_sibling) {
  689                 hispgrp = q->p_pgrp;
  690                 if (hispgrp == pgrp ||
  691                     hispgrp->pg_session != mysession)
  692                         continue;
  693                 if (q->p_state == PRS_ZOMBIE)
  694                         continue;
  695                 pgadjustjobc(hispgrp, entering);
  696         }
  697 }
  698 
  699 void
  700 killjobc(void)
  701 {
  702         struct session *sp;
  703         struct tty *tp;
  704         struct proc *p;
  705         struct vnode *ttyvp;
  706 
  707         p = curproc;
  708         MPASS(p->p_flag & P_WEXIT);
  709         /*
  710          * Do a quick check to see if there is anything to do with the
  711          * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc().
  712          */
  713         PROC_LOCK(p);
  714         if (!SESS_LEADER(p) &&
  715             (p->p_pgrp == p->p_pptr->p_pgrp) &&
  716             LIST_EMPTY(&p->p_children)) {
  717                 PROC_UNLOCK(p);
  718                 return;
  719         }
  720         PROC_UNLOCK(p);
  721 
  722         sx_xlock(&proctree_lock);
  723         if (SESS_LEADER(p)) {
  724                 sp = p->p_session;
  725 
  726                 /*
  727                  * s_ttyp is not zero'd; we use this to indicate that
  728                  * the session once had a controlling terminal. (for
  729                  * logging and informational purposes)
  730                  */
  731                 SESS_LOCK(sp);
  732                 ttyvp = sp->s_ttyvp;
  733                 tp = sp->s_ttyp;
  734                 sp->s_ttyvp = NULL;
  735                 sp->s_ttydp = NULL;
  736                 sp->s_leader = NULL;
  737                 SESS_UNLOCK(sp);
  738 
  739                 /*
  740                  * Signal foreground pgrp and revoke access to
  741                  * controlling terminal if it has not been revoked
  742                  * already.
  743                  *
  744                  * Because the TTY may have been revoked in the mean
  745                  * time and could already have a new session associated
  746                  * with it, make sure we don't send a SIGHUP to a
  747                  * foreground process group that does not belong to this
  748                  * session.
  749                  */
  750 
  751                 if (tp != NULL) {
  752                         tty_lock(tp);
  753                         if (tp->t_session == sp)
  754                                 tty_signal_pgrp(tp, SIGHUP);
  755                         tty_unlock(tp);
  756                 }
  757 
  758                 if (ttyvp != NULL) {
  759                         sx_xunlock(&proctree_lock);
  760                         if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
  761                                 VOP_REVOKE(ttyvp, REVOKEALL);
  762                                 VOP_UNLOCK(ttyvp, 0);
  763                         }
  764                         vrele(ttyvp);
  765                         sx_xlock(&proctree_lock);
  766                 }
  767         }
  768         fixjobc(p, p->p_pgrp, 0);
  769         sx_xunlock(&proctree_lock);
  770 }
  771 
  772 /*
  773  * A process group has become orphaned;
  774  * if there are any stopped processes in the group,
  775  * hang-up all process in that group.
  776  */
  777 static void
  778 orphanpg(pg)
  779         struct pgrp *pg;
  780 {
  781         register struct proc *p;
  782 
  783         PGRP_LOCK_ASSERT(pg, MA_OWNED);
  784 
  785         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  786                 PROC_LOCK(p);
  787                 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
  788                         PROC_UNLOCK(p);
  789                         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  790                                 PROC_LOCK(p);
  791                                 kern_psignal(p, SIGHUP);
  792                                 kern_psignal(p, SIGCONT);
  793                                 PROC_UNLOCK(p);
  794                         }
  795                         return;
  796                 }
  797                 PROC_UNLOCK(p);
  798         }
  799 }
  800 
  801 void
  802 sess_hold(struct session *s)
  803 {
  804 
  805         refcount_acquire(&s->s_count);
  806 }
  807 
  808 void
  809 sess_release(struct session *s)
  810 {
  811 
  812         if (refcount_release(&s->s_count)) {
  813                 if (s->s_ttyp != NULL) {
  814                         tty_lock(s->s_ttyp);
  815                         tty_rel_sess(s->s_ttyp, s);
  816                 }
  817                 mtx_destroy(&s->s_mtx);
  818                 free(s, M_SESSION);
  819         }
  820 }
  821 
  822 #ifdef DDB
  823 
  824 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
  825 {
  826         register struct pgrp *pgrp;
  827         register struct proc *p;
  828         register int i;
  829 
  830         for (i = 0; i <= pgrphash; i++) {
  831                 if (!LIST_EMPTY(&pgrphashtbl[i])) {
  832                         printf("\tindx %d\n", i);
  833                         LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
  834                                 printf(
  835                         "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
  836                                     (void *)pgrp, (long)pgrp->pg_id,
  837                                     (void *)pgrp->pg_session,
  838                                     pgrp->pg_session->s_count,
  839                                     (void *)LIST_FIRST(&pgrp->pg_members));
  840                                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
  841                                         printf("\t\tpid %ld addr %p pgrp %p\n", 
  842                                             (long)p->p_pid, (void *)p,
  843                                             (void *)p->p_pgrp);
  844                                 }
  845                         }
  846                 }
  847         }
  848 }
  849 #endif /* DDB */
  850 
  851 /*
  852  * Calculate the kinfo_proc members which contain process-wide
  853  * informations.
  854  * Must be called with the target process locked.
  855  */
  856 static void
  857 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
  858 {
  859         struct thread *td;
  860 
  861         PROC_LOCK_ASSERT(p, MA_OWNED);
  862 
  863         kp->ki_estcpu = 0;
  864         kp->ki_pctcpu = 0;
  865         FOREACH_THREAD_IN_PROC(p, td) {
  866                 thread_lock(td);
  867                 kp->ki_pctcpu += sched_pctcpu(td);
  868                 kp->ki_estcpu += sched_estcpu(td);
  869                 thread_unlock(td);
  870         }
  871 }
  872 
  873 /*
  874  * Clear kinfo_proc and fill in any information that is common
  875  * to all threads in the process.
  876  * Must be called with the target process locked.
  877  */
  878 static void
  879 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
  880 {
  881         struct thread *td0;
  882         struct tty *tp;
  883         struct session *sp;
  884         struct ucred *cred;
  885         struct sigacts *ps;
  886         struct timeval boottime;
  887 
  888         /* For proc_realparent. */
  889         sx_assert(&proctree_lock, SX_LOCKED);
  890         PROC_LOCK_ASSERT(p, MA_OWNED);
  891         bzero(kp, sizeof(*kp));
  892 
  893         kp->ki_structsize = sizeof(*kp);
  894         kp->ki_paddr = p;
  895         kp->ki_addr =/* p->p_addr; */0; /* XXX */
  896         kp->ki_args = p->p_args;
  897         kp->ki_textvp = p->p_textvp;
  898 #ifdef KTRACE
  899         kp->ki_tracep = p->p_tracevp;
  900         kp->ki_traceflag = p->p_traceflag;
  901 #endif
  902         kp->ki_fd = p->p_fd;
  903         kp->ki_vmspace = p->p_vmspace;
  904         kp->ki_flag = p->p_flag;
  905         kp->ki_flag2 = p->p_flag2;
  906         cred = p->p_ucred;
  907         if (cred) {
  908                 kp->ki_uid = cred->cr_uid;
  909                 kp->ki_ruid = cred->cr_ruid;
  910                 kp->ki_svuid = cred->cr_svuid;
  911                 kp->ki_cr_flags = 0;
  912                 if (cred->cr_flags & CRED_FLAG_CAPMODE)
  913                         kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
  914                 /* XXX bde doesn't like KI_NGROUPS */
  915                 if (cred->cr_ngroups > KI_NGROUPS) {
  916                         kp->ki_ngroups = KI_NGROUPS;
  917                         kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
  918                 } else
  919                         kp->ki_ngroups = cred->cr_ngroups;
  920                 bcopy(cred->cr_groups, kp->ki_groups,
  921                     kp->ki_ngroups * sizeof(gid_t));
  922                 kp->ki_rgid = cred->cr_rgid;
  923                 kp->ki_svgid = cred->cr_svgid;
  924                 /* If jailed(cred), emulate the old P_JAILED flag. */
  925                 if (jailed(cred)) {
  926                         kp->ki_flag |= P_JAILED;
  927                         /* If inside the jail, use 0 as a jail ID. */
  928                         if (cred->cr_prison != curthread->td_ucred->cr_prison)
  929                                 kp->ki_jid = cred->cr_prison->pr_id;
  930                 }
  931                 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
  932                     sizeof(kp->ki_loginclass));
  933         }
  934         ps = p->p_sigacts;
  935         if (ps) {
  936                 mtx_lock(&ps->ps_mtx);
  937                 kp->ki_sigignore = ps->ps_sigignore;
  938                 kp->ki_sigcatch = ps->ps_sigcatch;
  939                 mtx_unlock(&ps->ps_mtx);
  940         }
  941         if (p->p_state != PRS_NEW &&
  942             p->p_state != PRS_ZOMBIE &&
  943             p->p_vmspace != NULL) {
  944                 struct vmspace *vm = p->p_vmspace;
  945 
  946                 kp->ki_size = vm->vm_map.size;
  947                 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
  948                 FOREACH_THREAD_IN_PROC(p, td0) {
  949                         if (!TD_IS_SWAPPED(td0))
  950                                 kp->ki_rssize += td0->td_kstack_pages;
  951                 }
  952                 kp->ki_swrss = vm->vm_swrss;
  953                 kp->ki_tsize = vm->vm_tsize;
  954                 kp->ki_dsize = vm->vm_dsize;
  955                 kp->ki_ssize = vm->vm_ssize;
  956         } else if (p->p_state == PRS_ZOMBIE)
  957                 kp->ki_stat = SZOMB;
  958         if (kp->ki_flag & P_INMEM)
  959                 kp->ki_sflag = PS_INMEM;
  960         else
  961                 kp->ki_sflag = 0;
  962         /* Calculate legacy swtime as seconds since 'swtick'. */
  963         kp->ki_swtime = (ticks - p->p_swtick) / hz;
  964         kp->ki_pid = p->p_pid;
  965         kp->ki_nice = p->p_nice;
  966         kp->ki_fibnum = p->p_fibnum;
  967         kp->ki_start = p->p_stats->p_start;
  968         getboottime(&boottime);
  969         timevaladd(&kp->ki_start, &boottime);
  970         PROC_STATLOCK(p);
  971         rufetch(p, &kp->ki_rusage);
  972         kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
  973         calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
  974         PROC_STATUNLOCK(p);
  975         calccru(p, &kp->ki_childutime, &kp->ki_childstime);
  976         /* Some callers want child times in a single value. */
  977         kp->ki_childtime = kp->ki_childstime;
  978         timevaladd(&kp->ki_childtime, &kp->ki_childutime);
  979 
  980         FOREACH_THREAD_IN_PROC(p, td0)
  981                 kp->ki_cow += td0->td_cow;
  982 
  983         tp = NULL;
  984         if (p->p_pgrp) {
  985                 kp->ki_pgid = p->p_pgrp->pg_id;
  986                 kp->ki_jobc = p->p_pgrp->pg_jobc;
  987                 sp = p->p_pgrp->pg_session;
  988 
  989                 if (sp != NULL) {
  990                         kp->ki_sid = sp->s_sid;
  991                         SESS_LOCK(sp);
  992                         strlcpy(kp->ki_login, sp->s_login,
  993                             sizeof(kp->ki_login));
  994                         if (sp->s_ttyvp)
  995                                 kp->ki_kiflag |= KI_CTTY;
  996                         if (SESS_LEADER(p))
  997                                 kp->ki_kiflag |= KI_SLEADER;
  998                         /* XXX proctree_lock */
  999                         tp = sp->s_ttyp;
 1000                         SESS_UNLOCK(sp);
 1001                 }
 1002         }
 1003         if ((p->p_flag & P_CONTROLT) && tp != NULL) {
 1004                 kp->ki_tdev = tty_udev(tp);
 1005                 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
 1006                 if (tp->t_session)
 1007                         kp->ki_tsid = tp->t_session->s_sid;
 1008         } else
 1009                 kp->ki_tdev = NODEV;
 1010         if (p->p_comm[0] != '\0')
 1011                 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
 1012         if (p->p_sysent && p->p_sysent->sv_name != NULL &&
 1013             p->p_sysent->sv_name[0] != '\0')
 1014                 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
 1015         kp->ki_siglist = p->p_siglist;
 1016         kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
 1017         kp->ki_acflag = p->p_acflag;
 1018         kp->ki_lock = p->p_lock;
 1019         if (p->p_pptr) {
 1020                 kp->ki_ppid = proc_realparent(p)->p_pid;
 1021                 if (p->p_flag & P_TRACED)
 1022                         kp->ki_tracer = p->p_pptr->p_pid;
 1023         }
 1024 }
 1025 
 1026 /*
 1027  * Fill in information that is thread specific.  Must be called with
 1028  * target process locked.  If 'preferthread' is set, overwrite certain
 1029  * process-related fields that are maintained for both threads and
 1030  * processes.
 1031  */
 1032 static void
 1033 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
 1034 {
 1035         struct proc *p;
 1036 
 1037         p = td->td_proc;
 1038         kp->ki_tdaddr = td;
 1039         PROC_LOCK_ASSERT(p, MA_OWNED);
 1040 
 1041         if (preferthread)
 1042                 PROC_STATLOCK(p);
 1043         thread_lock(td);
 1044         if (td->td_wmesg != NULL)
 1045                 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
 1046         else
 1047                 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
 1048         if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
 1049             sizeof(kp->ki_tdname)) {
 1050                 strlcpy(kp->ki_moretdname,
 1051                     td->td_name + sizeof(kp->ki_tdname) - 1,
 1052                     sizeof(kp->ki_moretdname));
 1053         } else {
 1054                 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
 1055         }
 1056         if (TD_ON_LOCK(td)) {
 1057                 kp->ki_kiflag |= KI_LOCKBLOCK;
 1058                 strlcpy(kp->ki_lockname, td->td_lockname,
 1059                     sizeof(kp->ki_lockname));
 1060         } else {
 1061                 kp->ki_kiflag &= ~KI_LOCKBLOCK;
 1062                 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
 1063         }
 1064 
 1065         if (p->p_state == PRS_NORMAL) { /* approximate. */
 1066                 if (TD_ON_RUNQ(td) ||
 1067                     TD_CAN_RUN(td) ||
 1068                     TD_IS_RUNNING(td)) {
 1069                         kp->ki_stat = SRUN;
 1070                 } else if (P_SHOULDSTOP(p)) {
 1071                         kp->ki_stat = SSTOP;
 1072                 } else if (TD_IS_SLEEPING(td)) {
 1073                         kp->ki_stat = SSLEEP;
 1074                 } else if (TD_ON_LOCK(td)) {
 1075                         kp->ki_stat = SLOCK;
 1076                 } else {
 1077                         kp->ki_stat = SWAIT;
 1078                 }
 1079         } else if (p->p_state == PRS_ZOMBIE) {
 1080                 kp->ki_stat = SZOMB;
 1081         } else {
 1082                 kp->ki_stat = SIDL;
 1083         }
 1084 
 1085         /* Things in the thread */
 1086         kp->ki_wchan = td->td_wchan;
 1087         kp->ki_pri.pri_level = td->td_priority;
 1088         kp->ki_pri.pri_native = td->td_base_pri;
 1089 
 1090         /*
 1091          * Note: legacy fields; clamp at the old NOCPU value and/or
 1092          * the maximum u_char CPU value.
 1093          */
 1094         if (td->td_lastcpu == NOCPU)
 1095                 kp->ki_lastcpu_old = NOCPU_OLD;
 1096         else if (td->td_lastcpu > MAXCPU_OLD)
 1097                 kp->ki_lastcpu_old = MAXCPU_OLD;
 1098         else
 1099                 kp->ki_lastcpu_old = td->td_lastcpu;
 1100 
 1101         if (td->td_oncpu == NOCPU)
 1102                 kp->ki_oncpu_old = NOCPU_OLD;
 1103         else if (td->td_oncpu > MAXCPU_OLD)
 1104                 kp->ki_oncpu_old = MAXCPU_OLD;
 1105         else
 1106                 kp->ki_oncpu_old = td->td_oncpu;
 1107 
 1108         kp->ki_lastcpu = td->td_lastcpu;
 1109         kp->ki_oncpu = td->td_oncpu;
 1110         kp->ki_tdflags = td->td_flags;
 1111         kp->ki_tid = td->td_tid;
 1112         kp->ki_numthreads = p->p_numthreads;
 1113         kp->ki_pcb = td->td_pcb;
 1114         kp->ki_kstack = (void *)td->td_kstack;
 1115         kp->ki_slptime = (ticks - td->td_slptick) / hz;
 1116         kp->ki_pri.pri_class = td->td_pri_class;
 1117         kp->ki_pri.pri_user = td->td_user_pri;
 1118 
 1119         if (preferthread) {
 1120                 rufetchtd(td, &kp->ki_rusage);
 1121                 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
 1122                 kp->ki_pctcpu = sched_pctcpu(td);
 1123                 kp->ki_estcpu = sched_estcpu(td);
 1124                 kp->ki_cow = td->td_cow;
 1125         }
 1126 
 1127         /* We can't get this anymore but ps etc never used it anyway. */
 1128         kp->ki_rqindex = 0;
 1129 
 1130         if (preferthread)
 1131                 kp->ki_siglist = td->td_siglist;
 1132         kp->ki_sigmask = td->td_sigmask;
 1133         thread_unlock(td);
 1134         if (preferthread)
 1135                 PROC_STATUNLOCK(p);
 1136 }
 1137 
 1138 /*
 1139  * Fill in a kinfo_proc structure for the specified process.
 1140  * Must be called with the target process locked.
 1141  */
 1142 void
 1143 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
 1144 {
 1145 
 1146         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1147 
 1148         fill_kinfo_proc_only(p, kp);
 1149         fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
 1150         fill_kinfo_aggregate(p, kp);
 1151 }
 1152 
 1153 struct pstats *
 1154 pstats_alloc(void)
 1155 {
 1156 
 1157         return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
 1158 }
 1159 
 1160 /*
 1161  * Copy parts of p_stats; zero the rest of p_stats (statistics).
 1162  */
 1163 void
 1164 pstats_fork(struct pstats *src, struct pstats *dst)
 1165 {
 1166 
 1167         bzero(&dst->pstat_startzero,
 1168             __rangeof(struct pstats, pstat_startzero, pstat_endzero));
 1169         bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
 1170             __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
 1171 }
 1172 
 1173 void
 1174 pstats_free(struct pstats *ps)
 1175 {
 1176 
 1177         free(ps, M_SUBPROC);
 1178 }
 1179 
 1180 static struct proc *
 1181 zpfind_locked(pid_t pid)
 1182 {
 1183         struct proc *p;
 1184 
 1185         sx_assert(&allproc_lock, SX_LOCKED);
 1186         LIST_FOREACH(p, &zombproc, p_list) {
 1187                 if (p->p_pid == pid) {
 1188                         PROC_LOCK(p);
 1189                         break;
 1190                 }
 1191         }
 1192         return (p);
 1193 }
 1194 
 1195 /*
 1196  * Locate a zombie process by number
 1197  */
 1198 struct proc *
 1199 zpfind(pid_t pid)
 1200 {
 1201         struct proc *p;
 1202 
 1203         sx_slock(&allproc_lock);
 1204         p = zpfind_locked(pid);
 1205         sx_sunlock(&allproc_lock);
 1206         return (p);
 1207 }
 1208 
 1209 #ifdef COMPAT_FREEBSD32
 1210 
 1211 /*
 1212  * This function is typically used to copy out the kernel address, so
 1213  * it can be replaced by assignment of zero.
 1214  */
 1215 static inline uint32_t
 1216 ptr32_trim(void *ptr)
 1217 {
 1218         uintptr_t uptr;
 1219 
 1220         uptr = (uintptr_t)ptr;
 1221         return ((uptr > UINT_MAX) ? 0 : uptr);
 1222 }
 1223 
 1224 #define PTRTRIM_CP(src,dst,fld) \
 1225         do { (dst).fld = ptr32_trim((src).fld); } while (0)
 1226 
 1227 static void
 1228 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
 1229 {
 1230         int i;
 1231 
 1232         bzero(ki32, sizeof(struct kinfo_proc32));
 1233         ki32->ki_structsize = sizeof(struct kinfo_proc32);
 1234         CP(*ki, *ki32, ki_layout);
 1235         PTRTRIM_CP(*ki, *ki32, ki_args);
 1236         PTRTRIM_CP(*ki, *ki32, ki_paddr);
 1237         PTRTRIM_CP(*ki, *ki32, ki_addr);
 1238         PTRTRIM_CP(*ki, *ki32, ki_tracep);
 1239         PTRTRIM_CP(*ki, *ki32, ki_textvp);
 1240         PTRTRIM_CP(*ki, *ki32, ki_fd);
 1241         PTRTRIM_CP(*ki, *ki32, ki_vmspace);
 1242         PTRTRIM_CP(*ki, *ki32, ki_wchan);
 1243         CP(*ki, *ki32, ki_pid);
 1244         CP(*ki, *ki32, ki_ppid);
 1245         CP(*ki, *ki32, ki_pgid);
 1246         CP(*ki, *ki32, ki_tpgid);
 1247         CP(*ki, *ki32, ki_sid);
 1248         CP(*ki, *ki32, ki_tsid);
 1249         CP(*ki, *ki32, ki_jobc);
 1250         CP(*ki, *ki32, ki_tdev);
 1251         CP(*ki, *ki32, ki_siglist);
 1252         CP(*ki, *ki32, ki_sigmask);
 1253         CP(*ki, *ki32, ki_sigignore);
 1254         CP(*ki, *ki32, ki_sigcatch);
 1255         CP(*ki, *ki32, ki_uid);
 1256         CP(*ki, *ki32, ki_ruid);
 1257         CP(*ki, *ki32, ki_svuid);
 1258         CP(*ki, *ki32, ki_rgid);
 1259         CP(*ki, *ki32, ki_svgid);
 1260         CP(*ki, *ki32, ki_ngroups);
 1261         for (i = 0; i < KI_NGROUPS; i++)
 1262                 CP(*ki, *ki32, ki_groups[i]);
 1263         CP(*ki, *ki32, ki_size);
 1264         CP(*ki, *ki32, ki_rssize);
 1265         CP(*ki, *ki32, ki_swrss);
 1266         CP(*ki, *ki32, ki_tsize);
 1267         CP(*ki, *ki32, ki_dsize);
 1268         CP(*ki, *ki32, ki_ssize);
 1269         CP(*ki, *ki32, ki_xstat);
 1270         CP(*ki, *ki32, ki_acflag);
 1271         CP(*ki, *ki32, ki_pctcpu);
 1272         CP(*ki, *ki32, ki_estcpu);
 1273         CP(*ki, *ki32, ki_slptime);
 1274         CP(*ki, *ki32, ki_swtime);
 1275         CP(*ki, *ki32, ki_cow);
 1276         CP(*ki, *ki32, ki_runtime);
 1277         TV_CP(*ki, *ki32, ki_start);
 1278         TV_CP(*ki, *ki32, ki_childtime);
 1279         CP(*ki, *ki32, ki_flag);
 1280         CP(*ki, *ki32, ki_kiflag);
 1281         CP(*ki, *ki32, ki_traceflag);
 1282         CP(*ki, *ki32, ki_stat);
 1283         CP(*ki, *ki32, ki_nice);
 1284         CP(*ki, *ki32, ki_lock);
 1285         CP(*ki, *ki32, ki_rqindex);
 1286         CP(*ki, *ki32, ki_oncpu);
 1287         CP(*ki, *ki32, ki_lastcpu);
 1288 
 1289         /* XXX TODO: wrap cpu value as appropriate */
 1290         CP(*ki, *ki32, ki_oncpu_old);
 1291         CP(*ki, *ki32, ki_lastcpu_old);
 1292 
 1293         bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
 1294         bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
 1295         bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
 1296         bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
 1297         bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
 1298         bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
 1299         bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
 1300         bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
 1301         CP(*ki, *ki32, ki_tracer);
 1302         CP(*ki, *ki32, ki_flag2);
 1303         CP(*ki, *ki32, ki_fibnum);
 1304         CP(*ki, *ki32, ki_cr_flags);
 1305         CP(*ki, *ki32, ki_jid);
 1306         CP(*ki, *ki32, ki_numthreads);
 1307         CP(*ki, *ki32, ki_tid);
 1308         CP(*ki, *ki32, ki_pri);
 1309         freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
 1310         freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
 1311         PTRTRIM_CP(*ki, *ki32, ki_pcb);
 1312         PTRTRIM_CP(*ki, *ki32, ki_kstack);
 1313         PTRTRIM_CP(*ki, *ki32, ki_udata);
 1314         CP(*ki, *ki32, ki_sflag);
 1315         CP(*ki, *ki32, ki_tdflags);
 1316 }
 1317 #endif
 1318 
 1319 int
 1320 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
 1321 {
 1322         struct thread *td;
 1323         struct kinfo_proc ki;
 1324 #ifdef COMPAT_FREEBSD32
 1325         struct kinfo_proc32 ki32;
 1326 #endif
 1327         int error;
 1328 
 1329         PROC_LOCK_ASSERT(p, MA_OWNED);
 1330         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1331 
 1332         error = 0;
 1333         fill_kinfo_proc(p, &ki);
 1334         if ((flags & KERN_PROC_NOTHREADS) != 0) {
 1335 #ifdef COMPAT_FREEBSD32
 1336                 if ((flags & KERN_PROC_MASK32) != 0) {
 1337                         freebsd32_kinfo_proc_out(&ki, &ki32);
 1338                         if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
 1339                                 error = ENOMEM;
 1340                 } else
 1341 #endif
 1342                         if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
 1343                                 error = ENOMEM;
 1344         } else {
 1345                 FOREACH_THREAD_IN_PROC(p, td) {
 1346                         fill_kinfo_thread(td, &ki, 1);
 1347 #ifdef COMPAT_FREEBSD32
 1348                         if ((flags & KERN_PROC_MASK32) != 0) {
 1349                                 freebsd32_kinfo_proc_out(&ki, &ki32);
 1350                                 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
 1351                                         error = ENOMEM;
 1352                         } else
 1353 #endif
 1354                                 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
 1355                                         error = ENOMEM;
 1356                         if (error != 0)
 1357                                 break;
 1358                 }
 1359         }
 1360         PROC_UNLOCK(p);
 1361         return (error);
 1362 }
 1363 
 1364 static int
 1365 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
 1366     int doingzomb)
 1367 {
 1368         struct sbuf sb;
 1369         struct kinfo_proc ki;
 1370         struct proc *np;
 1371         int error, error2;
 1372         pid_t pid;
 1373 
 1374         pid = p->p_pid;
 1375         sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
 1376         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 1377         error = kern_proc_out(p, &sb, flags);
 1378         error2 = sbuf_finish(&sb);
 1379         sbuf_delete(&sb);
 1380         if (error != 0)
 1381                 return (error);
 1382         else if (error2 != 0)
 1383                 return (error2);
 1384         if (doingzomb)
 1385                 np = zpfind(pid);
 1386         else {
 1387                 if (pid == 0)
 1388                         return (0);
 1389                 np = pfind(pid);
 1390         }
 1391         if (np == NULL)
 1392                 return (ESRCH);
 1393         if (np != p) {
 1394                 PROC_UNLOCK(np);
 1395                 return (ESRCH);
 1396         }
 1397         PROC_UNLOCK(np);
 1398         return (0);
 1399 }
 1400 
 1401 static int
 1402 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
 1403 {
 1404         int *name = (int *)arg1;
 1405         u_int namelen = arg2;
 1406         struct proc *p;
 1407         int flags, doingzomb, oid_number;
 1408         int error = 0;
 1409 
 1410         oid_number = oidp->oid_number;
 1411         if (oid_number != KERN_PROC_ALL &&
 1412             (oid_number & KERN_PROC_INC_THREAD) == 0)
 1413                 flags = KERN_PROC_NOTHREADS;
 1414         else {
 1415                 flags = 0;
 1416                 oid_number &= ~KERN_PROC_INC_THREAD;
 1417         }
 1418 #ifdef COMPAT_FREEBSD32
 1419         if (req->flags & SCTL_MASK32)
 1420                 flags |= KERN_PROC_MASK32;
 1421 #endif
 1422         if (oid_number == KERN_PROC_PID) {
 1423                 if (namelen != 1)
 1424                         return (EINVAL);
 1425                 error = sysctl_wire_old_buffer(req, 0);
 1426                 if (error)
 1427                         return (error);
 1428                 sx_slock(&proctree_lock);
 1429                 error = pget((pid_t)name[0], PGET_CANSEE, &p);
 1430                 if (error == 0)
 1431                         error = sysctl_out_proc(p, req, flags, 0);
 1432                 sx_sunlock(&proctree_lock);
 1433                 return (error);
 1434         }
 1435 
 1436         switch (oid_number) {
 1437         case KERN_PROC_ALL:
 1438                 if (namelen != 0)
 1439                         return (EINVAL);
 1440                 break;
 1441         case KERN_PROC_PROC:
 1442                 if (namelen != 0 && namelen != 1)
 1443                         return (EINVAL);
 1444                 break;
 1445         default:
 1446                 if (namelen != 1)
 1447                         return (EINVAL);
 1448                 break;
 1449         }
 1450 
 1451         if (!req->oldptr) {
 1452                 /* overestimate by 5 procs */
 1453                 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
 1454                 if (error)
 1455                         return (error);
 1456         }
 1457         error = sysctl_wire_old_buffer(req, 0);
 1458         if (error != 0)
 1459                 return (error);
 1460         sx_slock(&proctree_lock);
 1461         sx_slock(&allproc_lock);
 1462         for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
 1463                 if (!doingzomb)
 1464                         p = LIST_FIRST(&allproc);
 1465                 else
 1466                         p = LIST_FIRST(&zombproc);
 1467                 for (; p != NULL; p = LIST_NEXT(p, p_list)) {
 1468                         /*
 1469                          * Skip embryonic processes.
 1470                          */
 1471                         PROC_LOCK(p);
 1472                         if (p->p_state == PRS_NEW) {
 1473                                 PROC_UNLOCK(p);
 1474                                 continue;
 1475                         }
 1476                         KASSERT(p->p_ucred != NULL,
 1477                             ("process credential is NULL for non-NEW proc"));
 1478                         /*
 1479                          * Show a user only appropriate processes.
 1480                          */
 1481                         if (p_cansee(curthread, p)) {
 1482                                 PROC_UNLOCK(p);
 1483                                 continue;
 1484                         }
 1485                         /*
 1486                          * TODO - make more efficient (see notes below).
 1487                          * do by session.
 1488                          */
 1489                         switch (oid_number) {
 1490 
 1491                         case KERN_PROC_GID:
 1492                                 if (p->p_ucred->cr_gid != (gid_t)name[0]) {
 1493                                         PROC_UNLOCK(p);
 1494                                         continue;
 1495                                 }
 1496                                 break;
 1497 
 1498                         case KERN_PROC_PGRP:
 1499                                 /* could do this by traversing pgrp */
 1500                                 if (p->p_pgrp == NULL ||
 1501                                     p->p_pgrp->pg_id != (pid_t)name[0]) {
 1502                                         PROC_UNLOCK(p);
 1503                                         continue;
 1504                                 }
 1505                                 break;
 1506 
 1507                         case KERN_PROC_RGID:
 1508                                 if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
 1509                                         PROC_UNLOCK(p);
 1510                                         continue;
 1511                                 }
 1512                                 break;
 1513 
 1514                         case KERN_PROC_SESSION:
 1515                                 if (p->p_session == NULL ||
 1516                                     p->p_session->s_sid != (pid_t)name[0]) {
 1517                                         PROC_UNLOCK(p);
 1518                                         continue;
 1519                                 }
 1520                                 break;
 1521 
 1522                         case KERN_PROC_TTY:
 1523                                 if ((p->p_flag & P_CONTROLT) == 0 ||
 1524                                     p->p_session == NULL) {
 1525                                         PROC_UNLOCK(p);
 1526                                         continue;
 1527                                 }
 1528                                 /* XXX proctree_lock */
 1529                                 SESS_LOCK(p->p_session);
 1530                                 if (p->p_session->s_ttyp == NULL ||
 1531                                     tty_udev(p->p_session->s_ttyp) !=
 1532                                     (dev_t)name[0]) {
 1533                                         SESS_UNLOCK(p->p_session);
 1534                                         PROC_UNLOCK(p);
 1535                                         continue;
 1536                                 }
 1537                                 SESS_UNLOCK(p->p_session);
 1538                                 break;
 1539 
 1540                         case KERN_PROC_UID:
 1541                                 if (p->p_ucred->cr_uid != (uid_t)name[0]) {
 1542                                         PROC_UNLOCK(p);
 1543                                         continue;
 1544                                 }
 1545                                 break;
 1546 
 1547                         case KERN_PROC_RUID:
 1548                                 if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
 1549                                         PROC_UNLOCK(p);
 1550                                         continue;
 1551                                 }
 1552                                 break;
 1553 
 1554                         case KERN_PROC_PROC:
 1555                                 break;
 1556 
 1557                         default:
 1558                                 break;
 1559 
 1560                         }
 1561 
 1562                         error = sysctl_out_proc(p, req, flags, doingzomb);
 1563                         if (error) {
 1564                                 sx_sunlock(&allproc_lock);
 1565                                 sx_sunlock(&proctree_lock);
 1566                                 return (error);
 1567                         }
 1568                 }
 1569         }
 1570         sx_sunlock(&allproc_lock);
 1571         sx_sunlock(&proctree_lock);
 1572         return (0);
 1573 }
 1574 
 1575 struct pargs *
 1576 pargs_alloc(int len)
 1577 {
 1578         struct pargs *pa;
 1579 
 1580         pa = malloc(sizeof(struct pargs) + len, M_PARGS,
 1581                 M_WAITOK);
 1582         refcount_init(&pa->ar_ref, 1);
 1583         pa->ar_length = len;
 1584         return (pa);
 1585 }
 1586 
 1587 static void
 1588 pargs_free(struct pargs *pa)
 1589 {
 1590 
 1591         free(pa, M_PARGS);
 1592 }
 1593 
 1594 void
 1595 pargs_hold(struct pargs *pa)
 1596 {
 1597 
 1598         if (pa == NULL)
 1599                 return;
 1600         refcount_acquire(&pa->ar_ref);
 1601 }
 1602 
 1603 void
 1604 pargs_drop(struct pargs *pa)
 1605 {
 1606 
 1607         if (pa == NULL)
 1608                 return;
 1609         if (refcount_release(&pa->ar_ref))
 1610                 pargs_free(pa);
 1611 }
 1612 
 1613 static int
 1614 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
 1615     size_t len)
 1616 {
 1617         ssize_t n;
 1618 
 1619         /*
 1620          * This may return a short read if the string is shorter than the chunk
 1621          * and is aligned at the end of the page, and the following page is not
 1622          * mapped.
 1623          */
 1624         n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
 1625         if (n <= 0)
 1626                 return (ENOMEM);
 1627         return (0);
 1628 }
 1629 
 1630 #define PROC_AUXV_MAX   256     /* Safety limit on auxv size. */
 1631 
 1632 enum proc_vector_type {
 1633         PROC_ARG,
 1634         PROC_ENV,
 1635         PROC_AUX,
 1636 };
 1637 
 1638 #ifdef COMPAT_FREEBSD32
 1639 static int
 1640 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
 1641     size_t *vsizep, enum proc_vector_type type)
 1642 {
 1643         struct freebsd32_ps_strings pss;
 1644         Elf32_Auxinfo aux;
 1645         vm_offset_t vptr, ptr;
 1646         uint32_t *proc_vector32;
 1647         char **proc_vector;
 1648         size_t vsize, size;
 1649         int i, error;
 1650 
 1651         error = 0;
 1652         if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
 1653             sizeof(pss)) != sizeof(pss))
 1654                 return (ENOMEM);
 1655         switch (type) {
 1656         case PROC_ARG:
 1657                 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
 1658                 vsize = pss.ps_nargvstr;
 1659                 if (vsize > ARG_MAX)
 1660                         return (ENOEXEC);
 1661                 size = vsize * sizeof(int32_t);
 1662                 break;
 1663         case PROC_ENV:
 1664                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
 1665                 vsize = pss.ps_nenvstr;
 1666                 if (vsize > ARG_MAX)
 1667                         return (ENOEXEC);
 1668                 size = vsize * sizeof(int32_t);
 1669                 break;
 1670         case PROC_AUX:
 1671                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
 1672                     (pss.ps_nenvstr + 1) * sizeof(int32_t);
 1673                 if (vptr % 4 != 0)
 1674                         return (ENOEXEC);
 1675                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 1676                         if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
 1677                             sizeof(aux))
 1678                                 return (ENOMEM);
 1679                         if (aux.a_type == AT_NULL)
 1680                                 break;
 1681                         ptr += sizeof(aux);
 1682                 }
 1683                 if (aux.a_type != AT_NULL)
 1684                         return (ENOEXEC);
 1685                 vsize = i + 1;
 1686                 size = vsize * sizeof(aux);
 1687                 break;
 1688         default:
 1689                 KASSERT(0, ("Wrong proc vector type: %d", type));
 1690                 return (EINVAL);
 1691         }
 1692         proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
 1693         if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
 1694                 error = ENOMEM;
 1695                 goto done;
 1696         }
 1697         if (type == PROC_AUX) {
 1698                 *proc_vectorp = (char **)proc_vector32;
 1699                 *vsizep = vsize;
 1700                 return (0);
 1701         }
 1702         proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
 1703         for (i = 0; i < (int)vsize; i++)
 1704                 proc_vector[i] = PTRIN(proc_vector32[i]);
 1705         *proc_vectorp = proc_vector;
 1706         *vsizep = vsize;
 1707 done:
 1708         free(proc_vector32, M_TEMP);
 1709         return (error);
 1710 }
 1711 #endif
 1712 
 1713 static int
 1714 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
 1715     size_t *vsizep, enum proc_vector_type type)
 1716 {
 1717         struct ps_strings pss;
 1718         Elf_Auxinfo aux;
 1719         vm_offset_t vptr, ptr;
 1720         char **proc_vector;
 1721         size_t vsize, size;
 1722         int i;
 1723 
 1724 #ifdef COMPAT_FREEBSD32
 1725         if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 1726                 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
 1727 #endif
 1728         if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
 1729             sizeof(pss)) != sizeof(pss))
 1730                 return (ENOMEM);
 1731         switch (type) {
 1732         case PROC_ARG:
 1733                 vptr = (vm_offset_t)pss.ps_argvstr;
 1734                 vsize = pss.ps_nargvstr;
 1735                 if (vsize > ARG_MAX)
 1736                         return (ENOEXEC);
 1737                 size = vsize * sizeof(char *);
 1738                 break;
 1739         case PROC_ENV:
 1740                 vptr = (vm_offset_t)pss.ps_envstr;
 1741                 vsize = pss.ps_nenvstr;
 1742                 if (vsize > ARG_MAX)
 1743                         return (ENOEXEC);
 1744                 size = vsize * sizeof(char *);
 1745                 break;
 1746         case PROC_AUX:
 1747                 /*
 1748                  * The aux array is just above env array on the stack. Check
 1749                  * that the address is naturally aligned.
 1750                  */
 1751                 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
 1752                     * sizeof(char *);
 1753 #if __ELF_WORD_SIZE == 64
 1754                 if (vptr % sizeof(uint64_t) != 0)
 1755 #else
 1756                 if (vptr % sizeof(uint32_t) != 0)
 1757 #endif
 1758                         return (ENOEXEC);
 1759                 /*
 1760                  * We count the array size reading the aux vectors from the
 1761                  * stack until AT_NULL vector is returned.  So (to keep the code
 1762                  * simple) we read the process stack twice: the first time here
 1763                  * to find the size and the second time when copying the vectors
 1764                  * to the allocated proc_vector.
 1765                  */
 1766                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 1767                         if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
 1768                             sizeof(aux))
 1769                                 return (ENOMEM);
 1770                         if (aux.a_type == AT_NULL)
 1771                                 break;
 1772                         ptr += sizeof(aux);
 1773                 }
 1774                 /*
 1775                  * If the PROC_AUXV_MAX entries are iterated over, and we have
 1776                  * not reached AT_NULL, it is most likely we are reading wrong
 1777                  * data: either the process doesn't have auxv array or data has
 1778                  * been modified. Return the error in this case.
 1779                  */
 1780                 if (aux.a_type != AT_NULL)
 1781                         return (ENOEXEC);
 1782                 vsize = i + 1;
 1783                 size = vsize * sizeof(aux);
 1784                 break;
 1785         default:
 1786                 KASSERT(0, ("Wrong proc vector type: %d", type));
 1787                 return (EINVAL); /* In case we are built without INVARIANTS. */
 1788         }
 1789         proc_vector = malloc(size, M_TEMP, M_WAITOK);
 1790         if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
 1791                 free(proc_vector, M_TEMP);
 1792                 return (ENOMEM);
 1793         }
 1794         *proc_vectorp = proc_vector;
 1795         *vsizep = vsize;
 1796 
 1797         return (0);
 1798 }
 1799 
 1800 #define GET_PS_STRINGS_CHUNK_SZ 256     /* Chunk size (bytes) for ps_strings operations. */
 1801 
 1802 static int
 1803 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
 1804     enum proc_vector_type type)
 1805 {
 1806         size_t done, len, nchr, vsize;
 1807         int error, i;
 1808         char **proc_vector, *sptr;
 1809         char pss_string[GET_PS_STRINGS_CHUNK_SZ];
 1810 
 1811         PROC_ASSERT_HELD(p);
 1812 
 1813         /*
 1814          * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
 1815          */
 1816         nchr = 2 * (PATH_MAX + ARG_MAX);
 1817 
 1818         error = get_proc_vector(td, p, &proc_vector, &vsize, type);
 1819         if (error != 0)
 1820                 return (error);
 1821         for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
 1822                 /*
 1823                  * The program may have scribbled into its argv array, e.g. to
 1824                  * remove some arguments.  If that has happened, break out
 1825                  * before trying to read from NULL.
 1826                  */
 1827                 if (proc_vector[i] == NULL)
 1828                         break;
 1829                 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
 1830                         error = proc_read_string(td, p, sptr, pss_string,
 1831                             sizeof(pss_string));
 1832                         if (error != 0)
 1833                                 goto done;
 1834                         len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
 1835                         if (done + len >= nchr)
 1836                                 len = nchr - done - 1;
 1837                         sbuf_bcat(sb, pss_string, len);
 1838                         if (len != GET_PS_STRINGS_CHUNK_SZ)
 1839                                 break;
 1840                         done += GET_PS_STRINGS_CHUNK_SZ;
 1841                 }
 1842                 sbuf_bcat(sb, "", 1);
 1843                 done += len + 1;
 1844         }
 1845 done:
 1846         free(proc_vector, M_TEMP);
 1847         return (error);
 1848 }
 1849 
 1850 int
 1851 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
 1852 {
 1853 
 1854         return (get_ps_strings(curthread, p, sb, PROC_ARG));
 1855 }
 1856 
 1857 int
 1858 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
 1859 {
 1860 
 1861         return (get_ps_strings(curthread, p, sb, PROC_ENV));
 1862 }
 1863 
 1864 int
 1865 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
 1866 {
 1867         size_t vsize, size;
 1868         char **auxv;
 1869         int error;
 1870 
 1871         error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
 1872         if (error == 0) {
 1873 #ifdef COMPAT_FREEBSD32
 1874                 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 1875                         size = vsize * sizeof(Elf32_Auxinfo);
 1876                 else
 1877 #endif
 1878                         size = vsize * sizeof(Elf_Auxinfo);
 1879                 if (sbuf_bcat(sb, auxv, size) != 0)
 1880                         error = ENOMEM;
 1881                 free(auxv, M_TEMP);
 1882         }
 1883         return (error);
 1884 }
 1885 
 1886 /*
 1887  * This sysctl allows a process to retrieve the argument list or process
 1888  * title for another process without groping around in the address space
 1889  * of the other process.  It also allow a process to set its own "process 
 1890  * title to a string of its own choice.
 1891  */
 1892 static int
 1893 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
 1894 {
 1895         int *name = (int *)arg1;
 1896         u_int namelen = arg2;
 1897         struct pargs *newpa, *pa;
 1898         struct proc *p;
 1899         struct sbuf sb;
 1900         int flags, error = 0, error2;
 1901 
 1902         if (namelen != 1)
 1903                 return (EINVAL);
 1904 
 1905         flags = PGET_CANSEE;
 1906         if (req->newptr != NULL)
 1907                 flags |= PGET_ISCURRENT;
 1908         error = pget((pid_t)name[0], flags, &p);
 1909         if (error)
 1910                 return (error);
 1911 
 1912         pa = p->p_args;
 1913         if (pa != NULL) {
 1914                 pargs_hold(pa);
 1915                 PROC_UNLOCK(p);
 1916                 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
 1917                 pargs_drop(pa);
 1918         } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
 1919                 _PHOLD(p);
 1920                 PROC_UNLOCK(p);
 1921                 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1922                 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 1923                 error = proc_getargv(curthread, p, &sb);
 1924                 error2 = sbuf_finish(&sb);
 1925                 PRELE(p);
 1926                 sbuf_delete(&sb);
 1927                 if (error == 0 && error2 != 0)
 1928                         error = error2;
 1929         } else {
 1930                 PROC_UNLOCK(p);
 1931         }
 1932         if (error != 0 || req->newptr == NULL)
 1933                 return (error);
 1934 
 1935         if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
 1936                 return (ENOMEM);
 1937         newpa = pargs_alloc(req->newlen);
 1938         error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
 1939         if (error != 0) {
 1940                 pargs_free(newpa);
 1941                 return (error);
 1942         }
 1943         PROC_LOCK(p);
 1944         pa = p->p_args;
 1945         p->p_args = newpa;
 1946         PROC_UNLOCK(p);
 1947         pargs_drop(pa);
 1948         return (0);
 1949 }
 1950 
 1951 /*
 1952  * This sysctl allows a process to retrieve environment of another process.
 1953  */
 1954 static int
 1955 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
 1956 {
 1957         int *name = (int *)arg1;
 1958         u_int namelen = arg2;
 1959         struct proc *p;
 1960         struct sbuf sb;
 1961         int error, error2;
 1962 
 1963         if (namelen != 1)
 1964                 return (EINVAL);
 1965 
 1966         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1967         if (error != 0)
 1968                 return (error);
 1969         if ((p->p_flag & P_SYSTEM) != 0) {
 1970                 PRELE(p);
 1971                 return (0);
 1972         }
 1973 
 1974         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1975         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 1976         error = proc_getenvv(curthread, p, &sb);
 1977         error2 = sbuf_finish(&sb);
 1978         PRELE(p);
 1979         sbuf_delete(&sb);
 1980         return (error != 0 ? error : error2);
 1981 }
 1982 
 1983 /*
 1984  * This sysctl allows a process to retrieve ELF auxiliary vector of
 1985  * another process.
 1986  */
 1987 static int
 1988 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
 1989 {
 1990         int *name = (int *)arg1;
 1991         u_int namelen = arg2;
 1992         struct proc *p;
 1993         struct sbuf sb;
 1994         int error, error2;
 1995 
 1996         if (namelen != 1)
 1997                 return (EINVAL);
 1998 
 1999         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 2000         if (error != 0)
 2001                 return (error);
 2002         if ((p->p_flag & P_SYSTEM) != 0) {
 2003                 PRELE(p);
 2004                 return (0);
 2005         }
 2006         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 2007         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 2008         error = proc_getauxv(curthread, p, &sb);
 2009         error2 = sbuf_finish(&sb);
 2010         PRELE(p);
 2011         sbuf_delete(&sb);
 2012         return (error != 0 ? error : error2);
 2013 }
 2014 
 2015 /*
 2016  * This sysctl allows a process to retrieve the path of the executable for
 2017  * itself or another process.
 2018  */
 2019 static int
 2020 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
 2021 {
 2022         pid_t *pidp = (pid_t *)arg1;
 2023         unsigned int arglen = arg2;
 2024         struct proc *p;
 2025         struct vnode *vp;
 2026         char *retbuf, *freebuf;
 2027         int error;
 2028 
 2029         if (arglen != 1)
 2030                 return (EINVAL);
 2031         if (*pidp == -1) {      /* -1 means this process */
 2032                 p = req->td->td_proc;
 2033         } else {
 2034                 error = pget(*pidp, PGET_CANSEE, &p);
 2035                 if (error != 0)
 2036                         return (error);
 2037         }
 2038 
 2039         vp = p->p_textvp;
 2040         if (vp == NULL) {
 2041                 if (*pidp != -1)
 2042                         PROC_UNLOCK(p);
 2043                 return (0);
 2044         }
 2045         vref(vp);
 2046         if (*pidp != -1)
 2047                 PROC_UNLOCK(p);
 2048         error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
 2049         vrele(vp);
 2050         if (error)
 2051                 return (error);
 2052         error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
 2053         free(freebuf, M_TEMP);
 2054         return (error);
 2055 }
 2056 
 2057 static int
 2058 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
 2059 {
 2060         struct proc *p;
 2061         char *sv_name;
 2062         int *name;
 2063         int namelen;
 2064         int error;
 2065 
 2066         namelen = arg2;
 2067         if (namelen != 1)
 2068                 return (EINVAL);
 2069 
 2070         name = (int *)arg1;
 2071         error = pget((pid_t)name[0], PGET_CANSEE, &p);
 2072         if (error != 0)
 2073                 return (error);
 2074         sv_name = p->p_sysent->sv_name;
 2075         PROC_UNLOCK(p);
 2076         return (sysctl_handle_string(oidp, sv_name, 0, req));
 2077 }
 2078 
 2079 #ifdef KINFO_OVMENTRY_SIZE
 2080 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
 2081 #endif
 2082 
 2083 #ifdef COMPAT_FREEBSD7
 2084 static int
 2085 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
 2086 {
 2087         vm_map_entry_t entry, tmp_entry;
 2088         unsigned int last_timestamp;
 2089         char *fullpath, *freepath;
 2090         struct kinfo_ovmentry *kve;
 2091         struct vattr va;
 2092         struct ucred *cred;
 2093         int error, *name;
 2094         struct vnode *vp;
 2095         struct proc *p;
 2096         vm_map_t map;
 2097         struct vmspace *vm;
 2098 
 2099         name = (int *)arg1;
 2100         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 2101         if (error != 0)
 2102                 return (error);
 2103         vm = vmspace_acquire_ref(p);
 2104         if (vm == NULL) {
 2105                 PRELE(p);
 2106                 return (ESRCH);
 2107         }
 2108         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
 2109 
 2110         map = &vm->vm_map;
 2111         vm_map_lock_read(map);
 2112         for (entry = map->header.next; entry != &map->header;
 2113             entry = entry->next) {
 2114                 vm_object_t obj, tobj, lobj;
 2115                 vm_offset_t addr;
 2116 
 2117                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 2118                         continue;
 2119 
 2120                 bzero(kve, sizeof(*kve));
 2121                 kve->kve_structsize = sizeof(*kve);
 2122 
 2123                 kve->kve_private_resident = 0;
 2124                 obj = entry->object.vm_object;
 2125                 if (obj != NULL) {
 2126                         VM_OBJECT_RLOCK(obj);
 2127                         if (obj->shadow_count == 1)
 2128                                 kve->kve_private_resident =
 2129                                     obj->resident_page_count;
 2130                 }
 2131                 kve->kve_resident = 0;
 2132                 addr = entry->start;
 2133                 while (addr < entry->end) {
 2134                         if (pmap_extract(map->pmap, addr))
 2135                                 kve->kve_resident++;
 2136                         addr += PAGE_SIZE;
 2137                 }
 2138 
 2139                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
 2140                         if (tobj != obj)
 2141                                 VM_OBJECT_RLOCK(tobj);
 2142                         if (lobj != obj)
 2143                                 VM_OBJECT_RUNLOCK(lobj);
 2144                         lobj = tobj;
 2145                 }
 2146 
 2147                 kve->kve_start = (void*)entry->start;
 2148                 kve->kve_end = (void*)entry->end;
 2149                 kve->kve_offset = (off_t)entry->offset;
 2150 
 2151                 if (entry->protection & VM_PROT_READ)
 2152                         kve->kve_protection |= KVME_PROT_READ;
 2153                 if (entry->protection & VM_PROT_WRITE)
 2154                         kve->kve_protection |= KVME_PROT_WRITE;
 2155                 if (entry->protection & VM_PROT_EXECUTE)
 2156                         kve->kve_protection |= KVME_PROT_EXEC;
 2157 
 2158                 if (entry->eflags & MAP_ENTRY_COW)
 2159                         kve->kve_flags |= KVME_FLAG_COW;
 2160                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 2161                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 2162                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 2163                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 2164 
 2165                 last_timestamp = map->timestamp;
 2166                 vm_map_unlock_read(map);
 2167 
 2168                 kve->kve_fileid = 0;
 2169                 kve->kve_fsid = 0;
 2170                 freepath = NULL;
 2171                 fullpath = "";
 2172                 if (lobj) {
 2173                         vp = NULL;
 2174                         switch (lobj->type) {
 2175                         case OBJT_DEFAULT:
 2176                                 kve->kve_type = KVME_TYPE_DEFAULT;
 2177                                 break;
 2178                         case OBJT_VNODE:
 2179                                 kve->kve_type = KVME_TYPE_VNODE;
 2180                                 vp = lobj->handle;
 2181                                 vref(vp);
 2182                                 break;
 2183                         case OBJT_SWAP:
 2184                                 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
 2185                                         kve->kve_type = KVME_TYPE_VNODE;
 2186                                         if ((lobj->flags & OBJ_TMPFS) != 0) {
 2187                                                 vp = lobj->un_pager.swp.swp_tmpfs;
 2188                                                 vref(vp);
 2189                                         }
 2190                                 } else {
 2191                                         kve->kve_type = KVME_TYPE_SWAP;
 2192                                 }
 2193                                 break;
 2194                         case OBJT_DEVICE:
 2195                                 kve->kve_type = KVME_TYPE_DEVICE;
 2196                                 break;
 2197                         case OBJT_PHYS:
 2198                                 kve->kve_type = KVME_TYPE_PHYS;
 2199                                 break;
 2200                         case OBJT_DEAD:
 2201                                 kve->kve_type = KVME_TYPE_DEAD;
 2202                                 break;
 2203                         case OBJT_SG:
 2204                                 kve->kve_type = KVME_TYPE_SG;
 2205                                 break;
 2206                         default:
 2207                                 kve->kve_type = KVME_TYPE_UNKNOWN;
 2208                                 break;
 2209                         }
 2210                         if (lobj != obj)
 2211                                 VM_OBJECT_RUNLOCK(lobj);
 2212 
 2213                         kve->kve_ref_count = obj->ref_count;
 2214                         kve->kve_shadow_count = obj->shadow_count;
 2215                         VM_OBJECT_RUNLOCK(obj);
 2216                         if (vp != NULL) {
 2217                                 vn_fullpath(curthread, vp, &fullpath,
 2218                                     &freepath);
 2219                                 cred = curthread->td_ucred;
 2220                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2221                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 2222                                         kve->kve_fileid = va.va_fileid;
 2223                                         kve->kve_fsid = va.va_fsid;
 2224                                 }
 2225                                 vput(vp);
 2226                         }
 2227                 } else {
 2228                         kve->kve_type = KVME_TYPE_NONE;
 2229                         kve->kve_ref_count = 0;
 2230                         kve->kve_shadow_count = 0;
 2231                 }
 2232 
 2233                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 2234                 if (freepath != NULL)
 2235                         free(freepath, M_TEMP);
 2236 
 2237                 error = SYSCTL_OUT(req, kve, sizeof(*kve));
 2238                 vm_map_lock_read(map);
 2239                 if (error)
 2240                         break;
 2241                 if (last_timestamp != map->timestamp) {
 2242                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 2243                         entry = tmp_entry;
 2244                 }
 2245         }
 2246         vm_map_unlock_read(map);
 2247         vmspace_free(vm);
 2248         PRELE(p);
 2249         free(kve, M_TEMP);
 2250         return (error);
 2251 }
 2252 #endif  /* COMPAT_FREEBSD7 */
 2253 
 2254 #ifdef KINFO_VMENTRY_SIZE
 2255 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
 2256 #endif
 2257 
 2258 static void
 2259 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
 2260     struct kinfo_vmentry *kve)
 2261 {
 2262         vm_object_t obj, tobj;
 2263         vm_page_t m, m_adv;
 2264         vm_offset_t addr;
 2265         vm_paddr_t locked_pa;
 2266         vm_pindex_t pi, pi_adv, pindex;
 2267 
 2268         locked_pa = 0;
 2269         obj = entry->object.vm_object;
 2270         addr = entry->start;
 2271         m_adv = NULL;
 2272         pi = OFF_TO_IDX(entry->offset);
 2273         for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
 2274                 if (m_adv != NULL) {
 2275                         m = m_adv;
 2276                 } else {
 2277                         pi_adv = atop(entry->end - addr);
 2278                         pindex = pi;
 2279                         for (tobj = obj;; tobj = tobj->backing_object) {
 2280                                 m = vm_page_find_least(tobj, pindex);
 2281                                 if (m != NULL) {
 2282                                         if (m->pindex == pindex)
 2283                                                 break;
 2284                                         if (pi_adv > m->pindex - pindex) {
 2285                                                 pi_adv = m->pindex - pindex;
 2286                                                 m_adv = m;
 2287                                         }
 2288                                 }
 2289                                 if (tobj->backing_object == NULL)
 2290                                         goto next;
 2291                                 pindex += OFF_TO_IDX(tobj->
 2292                                     backing_object_offset);
 2293                         }
 2294                 }
 2295                 m_adv = NULL;
 2296                 if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
 2297                     (addr & (pagesizes[1] - 1)) == 0 &&
 2298                     (pmap_mincore(map->pmap, addr, &locked_pa) &
 2299                     MINCORE_SUPER) != 0) {
 2300                         kve->kve_flags |= KVME_FLAG_SUPER;
 2301                         pi_adv = atop(pagesizes[1]);
 2302                 } else {
 2303                         /*
 2304                          * We do not test the found page on validity.
 2305                          * Either the page is busy and being paged in,
 2306                          * or it was invalidated.  The first case
 2307                          * should be counted as resident, the second
 2308                          * is not so clear; we do account both.
 2309                          */
 2310                         pi_adv = 1;
 2311                 }
 2312                 kve->kve_resident += pi_adv;
 2313 next:;
 2314         }
 2315         PA_UNLOCK_COND(locked_pa);
 2316 }
 2317 
 2318 /*
 2319  * Must be called with the process locked and will return unlocked.
 2320  */
 2321 int
 2322 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
 2323 {
 2324         vm_map_entry_t entry, tmp_entry;
 2325         struct vattr va;
 2326         vm_map_t map;
 2327         vm_object_t obj, tobj, lobj;
 2328         char *fullpath, *freepath;
 2329         struct kinfo_vmentry *kve;
 2330         struct ucred *cred;
 2331         struct vnode *vp;
 2332         struct vmspace *vm;
 2333         vm_offset_t addr;
 2334         unsigned int last_timestamp;
 2335         int error;
 2336 
 2337         PROC_LOCK_ASSERT(p, MA_OWNED);
 2338 
 2339         _PHOLD(p);
 2340         PROC_UNLOCK(p);
 2341         vm = vmspace_acquire_ref(p);
 2342         if (vm == NULL) {
 2343                 PRELE(p);
 2344                 return (ESRCH);
 2345         }
 2346         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
 2347 
 2348         error = 0;
 2349         map = &vm->vm_map;
 2350         vm_map_lock_read(map);
 2351         for (entry = map->header.next; entry != &map->header;
 2352             entry = entry->next) {
 2353                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 2354                         continue;
 2355 
 2356                 addr = entry->end;
 2357                 bzero(kve, sizeof(*kve));
 2358                 obj = entry->object.vm_object;
 2359                 if (obj != NULL) {
 2360                         for (tobj = obj; tobj != NULL;
 2361                             tobj = tobj->backing_object) {
 2362                                 VM_OBJECT_RLOCK(tobj);
 2363                                 lobj = tobj;
 2364                         }
 2365                         if (obj->backing_object == NULL)
 2366                                 kve->kve_private_resident =
 2367                                     obj->resident_page_count;
 2368                         if (!vmmap_skip_res_cnt)
 2369                                 kern_proc_vmmap_resident(map, entry, kve);
 2370                         for (tobj = obj; tobj != NULL;
 2371                             tobj = tobj->backing_object) {
 2372                                 if (tobj != obj && tobj != lobj)
 2373                                         VM_OBJECT_RUNLOCK(tobj);
 2374                         }
 2375                 } else {
 2376                         lobj = NULL;
 2377                 }
 2378 
 2379                 kve->kve_start = entry->start;
 2380                 kve->kve_end = entry->end;
 2381                 kve->kve_offset = entry->offset;
 2382 
 2383                 if (entry->protection & VM_PROT_READ)
 2384                         kve->kve_protection |= KVME_PROT_READ;
 2385                 if (entry->protection & VM_PROT_WRITE)
 2386                         kve->kve_protection |= KVME_PROT_WRITE;
 2387                 if (entry->protection & VM_PROT_EXECUTE)
 2388                         kve->kve_protection |= KVME_PROT_EXEC;
 2389 
 2390                 if (entry->eflags & MAP_ENTRY_COW)
 2391                         kve->kve_flags |= KVME_FLAG_COW;
 2392                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 2393                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 2394                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 2395                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 2396                 if (entry->eflags & MAP_ENTRY_GROWS_UP)
 2397                         kve->kve_flags |= KVME_FLAG_GROWS_UP;
 2398                 if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
 2399                         kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
 2400 
 2401                 last_timestamp = map->timestamp;
 2402                 vm_map_unlock_read(map);
 2403 
 2404                 freepath = NULL;
 2405                 fullpath = "";
 2406                 if (lobj != NULL) {
 2407                         vp = NULL;
 2408                         switch (lobj->type) {
 2409                         case OBJT_DEFAULT:
 2410                                 kve->kve_type = KVME_TYPE_DEFAULT;
 2411                                 break;
 2412                         case OBJT_VNODE:
 2413                                 kve->kve_type = KVME_TYPE_VNODE;
 2414                                 vp = lobj->handle;
 2415                                 vref(vp);
 2416                                 break;
 2417                         case OBJT_SWAP:
 2418                                 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
 2419                                         kve->kve_type = KVME_TYPE_VNODE;
 2420                                         if ((lobj->flags & OBJ_TMPFS) != 0) {
 2421                                                 vp = lobj->un_pager.swp.swp_tmpfs;
 2422                                                 vref(vp);
 2423                                         }
 2424                                 } else {
 2425                                         kve->kve_type = KVME_TYPE_SWAP;
 2426                                 }
 2427                                 break;
 2428                         case OBJT_DEVICE:
 2429                                 kve->kve_type = KVME_TYPE_DEVICE;
 2430                                 break;
 2431                         case OBJT_PHYS:
 2432                                 kve->kve_type = KVME_TYPE_PHYS;
 2433                                 break;
 2434                         case OBJT_DEAD:
 2435                                 kve->kve_type = KVME_TYPE_DEAD;
 2436                                 break;
 2437                         case OBJT_SG:
 2438                                 kve->kve_type = KVME_TYPE_SG;
 2439                                 break;
 2440                         case OBJT_MGTDEVICE:
 2441                                 kve->kve_type = KVME_TYPE_MGTDEVICE;
 2442                                 break;
 2443                         default:
 2444                                 kve->kve_type = KVME_TYPE_UNKNOWN;
 2445                                 break;
 2446                         }
 2447                         if (lobj != obj)
 2448                                 VM_OBJECT_RUNLOCK(lobj);
 2449 
 2450                         kve->kve_ref_count = obj->ref_count;
 2451                         kve->kve_shadow_count = obj->shadow_count;
 2452                         VM_OBJECT_RUNLOCK(obj);
 2453                         if (vp != NULL) {
 2454                                 vn_fullpath(curthread, vp, &fullpath,
 2455                                     &freepath);
 2456                                 kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
 2457                                 cred = curthread->td_ucred;
 2458                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2459                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 2460                                         kve->kve_vn_fileid = va.va_fileid;
 2461                                         kve->kve_vn_fsid = va.va_fsid;
 2462                                         kve->kve_vn_mode =
 2463                                             MAKEIMODE(va.va_type, va.va_mode);
 2464                                         kve->kve_vn_size = va.va_size;
 2465                                         kve->kve_vn_rdev = va.va_rdev;
 2466                                         kve->kve_status = KF_ATTR_VALID;
 2467                                 }
 2468                                 vput(vp);
 2469                         }
 2470                 } else {
 2471                         kve->kve_type = KVME_TYPE_NONE;
 2472                         kve->kve_ref_count = 0;
 2473                         kve->kve_shadow_count = 0;
 2474                 }
 2475 
 2476                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 2477                 if (freepath != NULL)
 2478                         free(freepath, M_TEMP);
 2479 
 2480                 /* Pack record size down */
 2481                 if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
 2482                         kve->kve_structsize =
 2483                             offsetof(struct kinfo_vmentry, kve_path) +
 2484                             strlen(kve->kve_path) + 1;
 2485                 else
 2486                         kve->kve_structsize = sizeof(*kve);
 2487                 kve->kve_structsize = roundup(kve->kve_structsize,
 2488                     sizeof(uint64_t));
 2489 
 2490                 /* Halt filling and truncate rather than exceeding maxlen */
 2491                 if (maxlen != -1 && maxlen < kve->kve_structsize) {
 2492                         error = 0;
 2493                         vm_map_lock_read(map);
 2494                         break;
 2495                 } else if (maxlen != -1)
 2496                         maxlen -= kve->kve_structsize;
 2497 
 2498                 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
 2499                         error = ENOMEM;
 2500                 vm_map_lock_read(map);
 2501                 if (error != 0)
 2502                         break;
 2503                 if (last_timestamp != map->timestamp) {
 2504                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 2505                         entry = tmp_entry;
 2506                 }
 2507         }
 2508         vm_map_unlock_read(map);
 2509         vmspace_free(vm);
 2510         PRELE(p);
 2511         free(kve, M_TEMP);
 2512         return (error);
 2513 }
 2514 
 2515 static int
 2516 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
 2517 {
 2518         struct proc *p;
 2519         struct sbuf sb;
 2520         int error, error2, *name;
 2521 
 2522         name = (int *)arg1;
 2523         sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
 2524         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 2525         error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
 2526         if (error != 0) {
 2527                 sbuf_delete(&sb);
 2528                 return (error);
 2529         }
 2530         error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
 2531         error2 = sbuf_finish(&sb);
 2532         sbuf_delete(&sb);
 2533         return (error != 0 ? error : error2);
 2534 }
 2535 
 2536 #if defined(STACK) || defined(DDB)
 2537 static int
 2538 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
 2539 {
 2540         struct kinfo_kstack *kkstp;
 2541         int error, i, *name, numthreads;
 2542         lwpid_t *lwpidarray;
 2543         struct thread *td;
 2544         struct stack *st;
 2545         struct sbuf sb;
 2546         struct proc *p;
 2547 
 2548         name = (int *)arg1;
 2549         error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
 2550         if (error != 0)
 2551                 return (error);
 2552 
 2553         kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
 2554         st = stack_create();
 2555 
 2556         lwpidarray = NULL;
 2557         PROC_LOCK(p);
 2558         do {
 2559                 if (lwpidarray != NULL) {
 2560                         free(lwpidarray, M_TEMP);
 2561                         lwpidarray = NULL;
 2562                 }
 2563                 numthreads = p->p_numthreads;
 2564                 PROC_UNLOCK(p);
 2565                 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
 2566                     M_WAITOK | M_ZERO);
 2567                 PROC_LOCK(p);
 2568         } while (numthreads < p->p_numthreads);
 2569 
 2570         /*
 2571          * XXXRW: During the below loop, execve(2) and countless other sorts
 2572          * of changes could have taken place.  Should we check to see if the
 2573          * vmspace has been replaced, or the like, in order to prevent
 2574          * giving a snapshot that spans, say, execve(2), with some threads
 2575          * before and some after?  Among other things, the credentials could
 2576          * have changed, in which case the right to extract debug info might
 2577          * no longer be assured.
 2578          */
 2579         i = 0;
 2580         FOREACH_THREAD_IN_PROC(p, td) {
 2581                 KASSERT(i < numthreads,
 2582                     ("sysctl_kern_proc_kstack: numthreads"));
 2583                 lwpidarray[i] = td->td_tid;
 2584                 i++;
 2585         }
 2586         numthreads = i;
 2587         for (i = 0; i < numthreads; i++) {
 2588                 td = thread_find(p, lwpidarray[i]);
 2589                 if (td == NULL) {
 2590                         continue;
 2591                 }
 2592                 bzero(kkstp, sizeof(*kkstp));
 2593                 (void)sbuf_new(&sb, kkstp->kkst_trace,
 2594                     sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
 2595                 thread_lock(td);
 2596                 kkstp->kkst_tid = td->td_tid;
 2597                 if (TD_IS_SWAPPED(td)) {
 2598                         kkstp->kkst_state = KKST_STATE_SWAPPED;
 2599                 } else if (TD_IS_RUNNING(td)) {
 2600                         if (stack_save_td_running(st, td) == 0)
 2601                                 kkstp->kkst_state = KKST_STATE_STACKOK;
 2602                         else
 2603                                 kkstp->kkst_state = KKST_STATE_RUNNING;
 2604                 } else {
 2605                         kkstp->kkst_state = KKST_STATE_STACKOK;
 2606                         stack_save_td(st, td);
 2607                 }
 2608                 thread_unlock(td);
 2609                 PROC_UNLOCK(p);
 2610                 stack_sbuf_print(&sb, st);
 2611                 sbuf_finish(&sb);
 2612                 sbuf_delete(&sb);
 2613                 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
 2614                 PROC_LOCK(p);
 2615                 if (error)
 2616                         break;
 2617         }
 2618         _PRELE(p);
 2619         PROC_UNLOCK(p);
 2620         if (lwpidarray != NULL)
 2621                 free(lwpidarray, M_TEMP);
 2622         stack_destroy(st);
 2623         free(kkstp, M_TEMP);
 2624         return (error);
 2625 }
 2626 #endif
 2627 
 2628 /*
 2629  * This sysctl allows a process to retrieve the full list of groups from
 2630  * itself or another process.
 2631  */
 2632 static int
 2633 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
 2634 {
 2635         pid_t *pidp = (pid_t *)arg1;
 2636         unsigned int arglen = arg2;
 2637         struct proc *p;
 2638         struct ucred *cred;
 2639         int error;
 2640 
 2641         if (arglen != 1)
 2642                 return (EINVAL);
 2643         if (*pidp == -1) {      /* -1 means this process */
 2644                 p = req->td->td_proc;
 2645                 PROC_LOCK(p);
 2646         } else {
 2647                 error = pget(*pidp, PGET_CANSEE, &p);
 2648                 if (error != 0)
 2649                         return (error);
 2650         }
 2651 
 2652         cred = crhold(p->p_ucred);
 2653         PROC_UNLOCK(p);
 2654 
 2655         error = SYSCTL_OUT(req, cred->cr_groups,
 2656             cred->cr_ngroups * sizeof(gid_t));
 2657         crfree(cred);
 2658         return (error);
 2659 }
 2660 
 2661 /*
 2662  * This sysctl allows a process to retrieve or/and set the resource limit for
 2663  * another process.
 2664  */
 2665 static int
 2666 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
 2667 {
 2668         int *name = (int *)arg1;
 2669         u_int namelen = arg2;
 2670         struct rlimit rlim;
 2671         struct proc *p;
 2672         u_int which;
 2673         int flags, error;
 2674 
 2675         if (namelen != 2)
 2676                 return (EINVAL);
 2677 
 2678         which = (u_int)name[1];
 2679         if (which >= RLIM_NLIMITS)
 2680                 return (EINVAL);
 2681 
 2682         if (req->newptr != NULL && req->newlen != sizeof(rlim))
 2683                 return (EINVAL);
 2684 
 2685         flags = PGET_HOLD | PGET_NOTWEXIT;
 2686         if (req->newptr != NULL)
 2687                 flags |= PGET_CANDEBUG;
 2688         else
 2689                 flags |= PGET_CANSEE;
 2690         error = pget((pid_t)name[0], flags, &p);
 2691         if (error != 0)
 2692                 return (error);
 2693 
 2694         /*
 2695          * Retrieve limit.
 2696          */
 2697         if (req->oldptr != NULL) {
 2698                 PROC_LOCK(p);
 2699                 lim_rlimit_proc(p, which, &rlim);
 2700                 PROC_UNLOCK(p);
 2701         }
 2702         error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
 2703         if (error != 0)
 2704                 goto errout;
 2705 
 2706         /*
 2707          * Set limit.
 2708          */
 2709         if (req->newptr != NULL) {
 2710                 error = SYSCTL_IN(req, &rlim, sizeof(rlim));
 2711                 if (error == 0)
 2712                         error = kern_proc_setrlimit(curthread, p, which, &rlim);
 2713         }
 2714 
 2715 errout:
 2716         PRELE(p);
 2717         return (error);
 2718 }
 2719 
 2720 /*
 2721  * This sysctl allows a process to retrieve ps_strings structure location of
 2722  * another process.
 2723  */
 2724 static int
 2725 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
 2726 {
 2727         int *name = (int *)arg1;
 2728         u_int namelen = arg2;
 2729         struct proc *p;
 2730         vm_offset_t ps_strings;
 2731         int error;
 2732 #ifdef COMPAT_FREEBSD32
 2733         uint32_t ps_strings32;
 2734 #endif
 2735 
 2736         if (namelen != 1)
 2737                 return (EINVAL);
 2738 
 2739         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 2740         if (error != 0)
 2741                 return (error);
 2742 #ifdef COMPAT_FREEBSD32
 2743         if ((req->flags & SCTL_MASK32) != 0) {
 2744                 /*
 2745                  * We return 0 if the 32 bit emulation request is for a 64 bit
 2746                  * process.
 2747                  */
 2748                 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
 2749                     PTROUT(p->p_sysent->sv_psstrings) : 0;
 2750                 PROC_UNLOCK(p);
 2751                 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
 2752                 return (error);
 2753         }
 2754 #endif
 2755         ps_strings = p->p_sysent->sv_psstrings;
 2756         PROC_UNLOCK(p);
 2757         error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
 2758         return (error);
 2759 }
 2760 
 2761 /*
 2762  * This sysctl allows a process to retrieve umask of another process.
 2763  */
 2764 static int
 2765 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
 2766 {
 2767         int *name = (int *)arg1;
 2768         u_int namelen = arg2;
 2769         struct proc *p;
 2770         int error;
 2771         u_short fd_cmask;
 2772 
 2773         if (namelen != 1)
 2774                 return (EINVAL);
 2775 
 2776         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 2777         if (error != 0)
 2778                 return (error);
 2779 
 2780         FILEDESC_SLOCK(p->p_fd);
 2781         fd_cmask = p->p_fd->fd_cmask;
 2782         FILEDESC_SUNLOCK(p->p_fd);
 2783         PRELE(p);
 2784         error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
 2785         return (error);
 2786 }
 2787 
 2788 /*
 2789  * This sysctl allows a process to set and retrieve binary osreldate of
 2790  * another process.
 2791  */
 2792 static int
 2793 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
 2794 {
 2795         int *name = (int *)arg1;
 2796         u_int namelen = arg2;
 2797         struct proc *p;
 2798         int flags, error, osrel;
 2799 
 2800         if (namelen != 1)
 2801                 return (EINVAL);
 2802 
 2803         if (req->newptr != NULL && req->newlen != sizeof(osrel))
 2804                 return (EINVAL);
 2805 
 2806         flags = PGET_HOLD | PGET_NOTWEXIT;
 2807         if (req->newptr != NULL)
 2808                 flags |= PGET_CANDEBUG;
 2809         else
 2810                 flags |= PGET_CANSEE;
 2811         error = pget((pid_t)name[0], flags, &p);
 2812         if (error != 0)
 2813                 return (error);
 2814 
 2815         error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
 2816         if (error != 0)
 2817                 goto errout;
 2818 
 2819         if (req->newptr != NULL) {
 2820                 error = SYSCTL_IN(req, &osrel, sizeof(osrel));
 2821                 if (error != 0)
 2822                         goto errout;
 2823                 if (osrel < 0) {
 2824                         error = EINVAL;
 2825                         goto errout;
 2826                 }
 2827                 p->p_osrel = osrel;
 2828         }
 2829 errout:
 2830         PRELE(p);
 2831         return (error);
 2832 }
 2833 
 2834 static int
 2835 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
 2836 {
 2837         int *name = (int *)arg1;
 2838         u_int namelen = arg2;
 2839         struct proc *p;
 2840         struct kinfo_sigtramp kst;
 2841         const struct sysentvec *sv;
 2842         int error;
 2843 #ifdef COMPAT_FREEBSD32
 2844         struct kinfo_sigtramp32 kst32;
 2845 #endif
 2846 
 2847         if (namelen != 1)
 2848                 return (EINVAL);
 2849 
 2850         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 2851         if (error != 0)
 2852                 return (error);
 2853         sv = p->p_sysent;
 2854 #ifdef COMPAT_FREEBSD32
 2855         if ((req->flags & SCTL_MASK32) != 0) {
 2856                 bzero(&kst32, sizeof(kst32));
 2857                 if (SV_PROC_FLAG(p, SV_ILP32)) {
 2858                         if (sv->sv_sigcode_base != 0) {
 2859                                 kst32.ksigtramp_start = sv->sv_sigcode_base;
 2860                                 kst32.ksigtramp_end = sv->sv_sigcode_base +
 2861                                     *sv->sv_szsigcode;
 2862                         } else {
 2863                                 kst32.ksigtramp_start = sv->sv_psstrings -
 2864                                     *sv->sv_szsigcode;
 2865                                 kst32.ksigtramp_end = sv->sv_psstrings;
 2866                         }
 2867                 }
 2868                 PROC_UNLOCK(p);
 2869                 error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
 2870                 return (error);
 2871         }
 2872 #endif
 2873         bzero(&kst, sizeof(kst));
 2874         if (sv->sv_sigcode_base != 0) {
 2875                 kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
 2876                 kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
 2877                     *sv->sv_szsigcode;
 2878         } else {
 2879                 kst.ksigtramp_start = (char *)sv->sv_psstrings -
 2880                     *sv->sv_szsigcode;
 2881                 kst.ksigtramp_end = (char *)sv->sv_psstrings;
 2882         }
 2883         PROC_UNLOCK(p);
 2884         error = SYSCTL_OUT(req, &kst, sizeof(kst));
 2885         return (error);
 2886 }
 2887 
 2888 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
 2889 
 2890 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
 2891         CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
 2892         "Return entire process table");
 2893 
 2894 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2895         sysctl_kern_proc, "Process table");
 2896 
 2897 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2898         sysctl_kern_proc, "Process table");
 2899 
 2900 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2901         sysctl_kern_proc, "Process table");
 2902 
 2903 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
 2904         CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2905 
 2906 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2907         sysctl_kern_proc, "Process table");
 2908 
 2909 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2910         sysctl_kern_proc, "Process table");
 2911 
 2912 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2913         sysctl_kern_proc, "Process table");
 2914 
 2915 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2916         sysctl_kern_proc, "Process table");
 2917 
 2918 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2919         sysctl_kern_proc, "Return process table, no threads");
 2920 
 2921 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
 2922         CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
 2923         sysctl_kern_proc_args, "Process argument list");
 2924 
 2925 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2926         sysctl_kern_proc_env, "Process environment");
 2927 
 2928 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
 2929         CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
 2930 
 2931 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
 2932         CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
 2933 
 2934 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
 2935         CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
 2936         "Process syscall vector name (ABI type)");
 2937 
 2938 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
 2939         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2940 
 2941 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
 2942         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2943 
 2944 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
 2945         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2946 
 2947 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
 2948         sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2949 
 2950 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
 2951         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2952 
 2953 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
 2954         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2955 
 2956 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
 2957         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2958 
 2959 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
 2960         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2961 
 2962 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
 2963         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
 2964         "Return process table, no threads");
 2965 
 2966 #ifdef COMPAT_FREEBSD7
 2967 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
 2968         CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
 2969 #endif
 2970 
 2971 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
 2972         CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
 2973 
 2974 #if defined(STACK) || defined(DDB)
 2975 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
 2976         CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
 2977 #endif
 2978 
 2979 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
 2980         CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
 2981 
 2982 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
 2983         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
 2984         "Process resource limits");
 2985 
 2986 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
 2987         CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
 2988         "Process ps_strings location");
 2989 
 2990 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
 2991         CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
 2992 
 2993 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
 2994         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
 2995         "Process binary osreldate");
 2996 
 2997 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
 2998         CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
 2999         "Process signal trampoline location");
 3000 
 3001 int allproc_gen;
 3002 
 3003 /*
 3004  * stop_all_proc() purpose is to stop all process which have usermode,
 3005  * except current process for obvious reasons.  This makes it somewhat
 3006  * unreliable when invoked from multithreaded process.  The service
 3007  * must not be user-callable anyway.
 3008  */
 3009 void
 3010 stop_all_proc(void)
 3011 {
 3012         struct proc *cp, *p;
 3013         int r, gen;
 3014         bool restart, seen_stopped, seen_exiting, stopped_some;
 3015 
 3016         cp = curproc;
 3017 allproc_loop:
 3018         sx_xlock(&allproc_lock);
 3019         gen = allproc_gen;
 3020         seen_exiting = seen_stopped = stopped_some = restart = false;
 3021         LIST_REMOVE(cp, p_list);
 3022         LIST_INSERT_HEAD(&allproc, cp, p_list);
 3023         for (;;) {
 3024                 p = LIST_NEXT(cp, p_list);
 3025                 if (p == NULL)
 3026                         break;
 3027                 LIST_REMOVE(cp, p_list);
 3028                 LIST_INSERT_AFTER(p, cp, p_list);
 3029                 PROC_LOCK(p);
 3030                 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) {
 3031                         PROC_UNLOCK(p);
 3032                         continue;
 3033                 }
 3034                 if ((p->p_flag & P_WEXIT) != 0) {
 3035                         seen_exiting = true;
 3036                         PROC_UNLOCK(p);
 3037                         continue;
 3038                 }
 3039                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
 3040                         /*
 3041                          * Stopped processes are tolerated when there
 3042                          * are no other processes which might continue
 3043                          * them.  P_STOPPED_SINGLE but not
 3044                          * P_TOTAL_STOP process still has at least one
 3045                          * thread running.
 3046                          */
 3047                         seen_stopped = true;
 3048                         PROC_UNLOCK(p);
 3049                         continue;
 3050                 }
 3051                 _PHOLD(p);
 3052                 sx_xunlock(&allproc_lock);
 3053                 r = thread_single(p, SINGLE_ALLPROC);
 3054                 if (r != 0)
 3055                         restart = true;
 3056                 else
 3057                         stopped_some = true;
 3058                 _PRELE(p);
 3059                 PROC_UNLOCK(p);
 3060                 sx_xlock(&allproc_lock);
 3061         }
 3062         /* Catch forked children we did not see in iteration. */
 3063         if (gen != allproc_gen)
 3064                 restart = true;
 3065         sx_xunlock(&allproc_lock);
 3066         if (restart || stopped_some || seen_exiting || seen_stopped) {
 3067                 kern_yield(PRI_USER);
 3068                 goto allproc_loop;
 3069         }
 3070 }
 3071 
 3072 void
 3073 resume_all_proc(void)
 3074 {
 3075         struct proc *cp, *p;
 3076 
 3077         cp = curproc;
 3078         sx_xlock(&allproc_lock);
 3079         LIST_REMOVE(cp, p_list);
 3080         LIST_INSERT_HEAD(&allproc, cp, p_list);
 3081         for (;;) {
 3082                 p = LIST_NEXT(cp, p_list);
 3083                 if (p == NULL)
 3084                         break;
 3085                 LIST_REMOVE(cp, p_list);
 3086                 LIST_INSERT_AFTER(p, cp, p_list);
 3087                 PROC_LOCK(p);
 3088                 if ((p->p_flag & P_TOTAL_STOP) != 0) {
 3089                         sx_xunlock(&allproc_lock);
 3090                         _PHOLD(p);
 3091                         thread_single_end(p, SINGLE_ALLPROC);
 3092                         _PRELE(p);
 3093                         PROC_UNLOCK(p);
 3094                         sx_xlock(&allproc_lock);
 3095                 } else {
 3096                         PROC_UNLOCK(p);
 3097                 }
 3098         }
 3099         sx_xunlock(&allproc_lock);
 3100 }
 3101 
 3102 /* #define      TOTAL_STOP_DEBUG        1 */
 3103 #ifdef TOTAL_STOP_DEBUG
 3104 volatile static int ap_resume;
 3105 #include <sys/mount.h>
 3106 
 3107 static int
 3108 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
 3109 {
 3110         int error, val;
 3111 
 3112         val = 0;
 3113         ap_resume = 0;
 3114         error = sysctl_handle_int(oidp, &val, 0, req);
 3115         if (error != 0 || req->newptr == NULL)
 3116                 return (error);
 3117         if (val != 0) {
 3118                 stop_all_proc();
 3119                 syncer_suspend();
 3120                 while (ap_resume == 0)
 3121                         ;
 3122                 syncer_resume();
 3123                 resume_all_proc();
 3124         }
 3125         return (0);
 3126 }
 3127 
 3128 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
 3129     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
 3130     sysctl_debug_stop_all_proc, "I",
 3131     "");
 3132 #endif

Cache object: c4f0609e4406950c8bab4bada742299f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.