The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_proc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_ddb.h"
   38 #include "opt_ktrace.h"
   39 #include "opt_kstack_pages.h"
   40 #include "opt_stack.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/bitstring.h>
   45 #include <sys/elf.h>
   46 #include <sys/eventhandler.h>
   47 #include <sys/exec.h>
   48 #include <sys/fcntl.h>
   49 #include <sys/jail.h>
   50 #include <sys/kernel.h>
   51 #include <sys/limits.h>
   52 #include <sys/lock.h>
   53 #include <sys/loginclass.h>
   54 #include <sys/malloc.h>
   55 #include <sys/mman.h>
   56 #include <sys/mount.h>
   57 #include <sys/mutex.h>
   58 #include <sys/namei.h>
   59 #include <sys/proc.h>
   60 #include <sys/ptrace.h>
   61 #include <sys/refcount.h>
   62 #include <sys/resourcevar.h>
   63 #include <sys/rwlock.h>
   64 #include <sys/sbuf.h>
   65 #include <sys/sysent.h>
   66 #include <sys/sched.h>
   67 #include <sys/smp.h>
   68 #include <sys/stack.h>
   69 #include <sys/stat.h>
   70 #include <sys/dtrace_bsd.h>
   71 #include <sys/sysctl.h>
   72 #include <sys/filedesc.h>
   73 #include <sys/tty.h>
   74 #include <sys/signalvar.h>
   75 #include <sys/sdt.h>
   76 #include <sys/sx.h>
   77 #include <sys/user.h>
   78 #include <sys/vnode.h>
   79 #include <sys/wait.h>
   80 #ifdef KTRACE
   81 #include <sys/ktrace.h>
   82 #endif
   83 
   84 #ifdef DDB
   85 #include <ddb/ddb.h>
   86 #endif
   87 
   88 #include <vm/vm.h>
   89 #include <vm/vm_param.h>
   90 #include <vm/vm_extern.h>
   91 #include <vm/pmap.h>
   92 #include <vm/vm_map.h>
   93 #include <vm/vm_object.h>
   94 #include <vm/vm_page.h>
   95 #include <vm/uma.h>
   96 
   97 #include <fs/devfs/devfs.h>
   98 
   99 #ifdef COMPAT_FREEBSD32
  100 #include <compat/freebsd32/freebsd32.h>
  101 #include <compat/freebsd32/freebsd32_util.h>
  102 #endif
  103 
  104 SDT_PROVIDER_DEFINE(proc);
  105 
  106 MALLOC_DEFINE(M_SESSION, "session", "session header");
  107 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
  108 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
  109 
  110 static void doenterpgrp(struct proc *, struct pgrp *);
  111 static void orphanpg(struct pgrp *pg);
  112 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
  113 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
  114 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
  115     int preferthread);
  116 static void pgdelete(struct pgrp *);
  117 static int pgrp_init(void *mem, int size, int flags);
  118 static int proc_ctor(void *mem, int size, void *arg, int flags);
  119 static void proc_dtor(void *mem, int size, void *arg);
  120 static int proc_init(void *mem, int size, int flags);
  121 static void proc_fini(void *mem, int size);
  122 static void pargs_free(struct pargs *pa);
  123 
  124 /*
  125  * Other process lists
  126  */
  127 struct pidhashhead *pidhashtbl = NULL;
  128 struct sx *pidhashtbl_lock;
  129 u_long pidhash;
  130 u_long pidhashlock;
  131 struct pgrphashhead *pgrphashtbl;
  132 u_long pgrphash;
  133 struct proclist allproc = LIST_HEAD_INITIALIZER(allproc);
  134 struct sx __exclusive_cache_line allproc_lock;
  135 struct sx __exclusive_cache_line proctree_lock;
  136 struct mtx __exclusive_cache_line ppeers_lock;
  137 struct mtx __exclusive_cache_line procid_lock;
  138 uma_zone_t proc_zone;
  139 uma_zone_t pgrp_zone;
  140 
  141 /*
  142  * The offset of various fields in struct proc and struct thread.
  143  * These are used by kernel debuggers to enumerate kernel threads and
  144  * processes.
  145  */
  146 const int proc_off_p_pid = offsetof(struct proc, p_pid);
  147 const int proc_off_p_comm = offsetof(struct proc, p_comm);
  148 const int proc_off_p_list = offsetof(struct proc, p_list);
  149 const int proc_off_p_hash = offsetof(struct proc, p_hash);
  150 const int proc_off_p_threads = offsetof(struct proc, p_threads);
  151 const int thread_off_td_tid = offsetof(struct thread, td_tid);
  152 const int thread_off_td_name = offsetof(struct thread, td_name);
  153 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
  154 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
  155 const int thread_off_td_plist = offsetof(struct thread, td_plist);
  156 
  157 EVENTHANDLER_LIST_DEFINE(process_ctor);
  158 EVENTHANDLER_LIST_DEFINE(process_dtor);
  159 EVENTHANDLER_LIST_DEFINE(process_init);
  160 EVENTHANDLER_LIST_DEFINE(process_fini);
  161 EVENTHANDLER_LIST_DEFINE(process_exit);
  162 EVENTHANDLER_LIST_DEFINE(process_fork);
  163 EVENTHANDLER_LIST_DEFINE(process_exec);
  164 
  165 int kstack_pages = KSTACK_PAGES;
  166 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
  167     "Kernel stack size in pages");
  168 static int vmmap_skip_res_cnt = 0;
  169 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
  170     &vmmap_skip_res_cnt, 0,
  171     "Skip calculation of the pages resident count in kern.proc.vmmap");
  172 
  173 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
  174 #ifdef COMPAT_FREEBSD32
  175 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
  176 #endif
  177 
  178 /*
  179  * Initialize global process hashing structures.
  180  */
  181 void
  182 procinit(void)
  183 {
  184         u_long i;
  185 
  186         sx_init(&allproc_lock, "allproc");
  187         sx_init(&proctree_lock, "proctree");
  188         mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
  189         mtx_init(&procid_lock, "procid", NULL, MTX_DEF);
  190         pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
  191         pidhashlock = (pidhash + 1) / 64;
  192         if (pidhashlock > 0)
  193                 pidhashlock--;
  194         pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1),
  195             M_PROC, M_WAITOK | M_ZERO);
  196         for (i = 0; i < pidhashlock + 1; i++)
  197                 sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK);
  198         pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
  199         proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
  200             proc_ctor, proc_dtor, proc_init, proc_fini,
  201             UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  202         pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL,
  203             pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  204         uihashinit();
  205 }
  206 
  207 /*
  208  * Prepare a proc for use.
  209  */
  210 static int
  211 proc_ctor(void *mem, int size, void *arg, int flags)
  212 {
  213         struct proc *p;
  214         struct thread *td;
  215 
  216         p = (struct proc *)mem;
  217 #ifdef KDTRACE_HOOKS
  218         kdtrace_proc_ctor(p);
  219 #endif
  220         EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
  221         td = FIRST_THREAD_IN_PROC(p);
  222         if (td != NULL) {
  223                 /* Make sure all thread constructors are executed */
  224                 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
  225         }
  226         return (0);
  227 }
  228 
  229 /*
  230  * Reclaim a proc after use.
  231  */
  232 static void
  233 proc_dtor(void *mem, int size, void *arg)
  234 {
  235         struct proc *p;
  236         struct thread *td;
  237 
  238         /* INVARIANTS checks go here */
  239         p = (struct proc *)mem;
  240         td = FIRST_THREAD_IN_PROC(p);
  241         if (td != NULL) {
  242 #ifdef INVARIANTS
  243                 KASSERT((p->p_numthreads == 1),
  244                     ("bad number of threads in exiting process"));
  245                 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
  246 #endif
  247                 /* Free all OSD associated to this thread. */
  248                 osd_thread_exit(td);
  249                 td_softdep_cleanup(td);
  250                 MPASS(td->td_su == NULL);
  251 
  252                 /* Make sure all thread destructors are executed */
  253                 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
  254         }
  255         EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
  256 #ifdef KDTRACE_HOOKS
  257         kdtrace_proc_dtor(p);
  258 #endif
  259         if (p->p_ksi != NULL)
  260                 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
  261 }
  262 
  263 /*
  264  * Initialize type-stable parts of a proc (when newly created).
  265  */
  266 static int
  267 proc_init(void *mem, int size, int flags)
  268 {
  269         struct proc *p;
  270 
  271         p = (struct proc *)mem;
  272         mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
  273         mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
  274         mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
  275         mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
  276         mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
  277         cv_init(&p->p_pwait, "ppwait");
  278         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
  279         EVENTHANDLER_DIRECT_INVOKE(process_init, p);
  280         p->p_stats = pstats_alloc();
  281         p->p_pgrp = NULL;
  282         return (0);
  283 }
  284 
  285 /*
  286  * UMA should ensure that this function is never called.
  287  * Freeing a proc structure would violate type stability.
  288  */
  289 static void
  290 proc_fini(void *mem, int size)
  291 {
  292 #ifdef notnow
  293         struct proc *p;
  294 
  295         p = (struct proc *)mem;
  296         EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
  297         pstats_free(p->p_stats);
  298         thread_free(FIRST_THREAD_IN_PROC(p));
  299         mtx_destroy(&p->p_mtx);
  300         if (p->p_ksi != NULL)
  301                 ksiginfo_free(p->p_ksi);
  302 #else
  303         panic("proc reclaimed");
  304 #endif
  305 }
  306 
  307 static int
  308 pgrp_init(void *mem, int size, int flags)
  309 {
  310         struct pgrp *pg;
  311 
  312         pg = mem;
  313         mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
  314         return (0);
  315 }
  316 
  317 /*
  318  * PID space management.
  319  *
  320  * These bitmaps are used by fork_findpid.
  321  */
  322 bitstr_t bit_decl(proc_id_pidmap, PID_MAX);
  323 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX);
  324 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX);
  325 bitstr_t bit_decl(proc_id_reapmap, PID_MAX);
  326 
  327 static bitstr_t *proc_id_array[] = {
  328         proc_id_pidmap,
  329         proc_id_grpidmap,
  330         proc_id_sessidmap,
  331         proc_id_reapmap,
  332 };
  333 
  334 void
  335 proc_id_set(int type, pid_t id)
  336 {
  337 
  338         KASSERT(type >= 0 && type < nitems(proc_id_array),
  339             ("invalid type %d\n", type));
  340         mtx_lock(&procid_lock);
  341         KASSERT(bit_test(proc_id_array[type], id) == 0,
  342             ("bit %d already set in %d\n", id, type));
  343         bit_set(proc_id_array[type], id);
  344         mtx_unlock(&procid_lock);
  345 }
  346 
  347 void
  348 proc_id_set_cond(int type, pid_t id)
  349 {
  350 
  351         KASSERT(type >= 0 && type < nitems(proc_id_array),
  352             ("invalid type %d\n", type));
  353         if (bit_test(proc_id_array[type], id))
  354                 return;
  355         mtx_lock(&procid_lock);
  356         bit_set(proc_id_array[type], id);
  357         mtx_unlock(&procid_lock);
  358 }
  359 
  360 void
  361 proc_id_clear(int type, pid_t id)
  362 {
  363 
  364         KASSERT(type >= 0 && type < nitems(proc_id_array),
  365             ("invalid type %d\n", type));
  366         mtx_lock(&procid_lock);
  367         KASSERT(bit_test(proc_id_array[type], id) != 0,
  368             ("bit %d not set in %d\n", id, type));
  369         bit_clear(proc_id_array[type], id);
  370         mtx_unlock(&procid_lock);
  371 }
  372 
  373 /*
  374  * Is p an inferior of the current process?
  375  */
  376 int
  377 inferior(struct proc *p)
  378 {
  379 
  380         sx_assert(&proctree_lock, SX_LOCKED);
  381         PROC_LOCK_ASSERT(p, MA_OWNED);
  382         for (; p != curproc; p = proc_realparent(p)) {
  383                 if (p->p_pid == 0)
  384                         return (0);
  385         }
  386         return (1);
  387 }
  388 
  389 /*
  390  * Shared lock all the pid hash lists.
  391  */
  392 void
  393 pidhash_slockall(void)
  394 {
  395         u_long i;
  396 
  397         for (i = 0; i < pidhashlock + 1; i++)
  398                 sx_slock(&pidhashtbl_lock[i]);
  399 }
  400 
  401 /*
  402  * Shared unlock all the pid hash lists.
  403  */
  404 void
  405 pidhash_sunlockall(void)
  406 {
  407         u_long i;
  408 
  409         for (i = 0; i < pidhashlock + 1; i++)
  410                 sx_sunlock(&pidhashtbl_lock[i]);
  411 }
  412 
  413 /*
  414  * Similar to pfind_any(), this function finds zombies.
  415  */
  416 struct proc *
  417 pfind_any_locked(pid_t pid)
  418 {
  419         struct proc *p;
  420 
  421         sx_assert(PIDHASHLOCK(pid), SX_LOCKED);
  422         LIST_FOREACH(p, PIDHASH(pid), p_hash) {
  423                 if (p->p_pid == pid) {
  424                         PROC_LOCK(p);
  425                         if (p->p_state == PRS_NEW) {
  426                                 PROC_UNLOCK(p);
  427                                 p = NULL;
  428                         }
  429                         break;
  430                 }
  431         }
  432         return (p);
  433 }
  434 
  435 /*
  436  * Locate a process by number.
  437  *
  438  * By not returning processes in the PRS_NEW state, we allow callers to avoid
  439  * testing for that condition to avoid dereferencing p_ucred, et al.
  440  */
  441 static __always_inline struct proc *
  442 _pfind(pid_t pid, bool zombie)
  443 {
  444         struct proc *p;
  445 
  446         p = curproc;
  447         if (p->p_pid == pid) {
  448                 PROC_LOCK(p);
  449                 return (p);
  450         }
  451         sx_slock(PIDHASHLOCK(pid));
  452         LIST_FOREACH(p, PIDHASH(pid), p_hash) {
  453                 if (p->p_pid == pid) {
  454                         PROC_LOCK(p);
  455                         if (p->p_state == PRS_NEW ||
  456                             (!zombie && p->p_state == PRS_ZOMBIE)) {
  457                                 PROC_UNLOCK(p);
  458                                 p = NULL;
  459                         }
  460                         break;
  461                 }
  462         }
  463         sx_sunlock(PIDHASHLOCK(pid));
  464         return (p);
  465 }
  466 
  467 struct proc *
  468 pfind(pid_t pid)
  469 {
  470 
  471         return (_pfind(pid, false));
  472 }
  473 
  474 /*
  475  * Same as pfind but allow zombies.
  476  */
  477 struct proc *
  478 pfind_any(pid_t pid)
  479 {
  480 
  481         return (_pfind(pid, true));
  482 }
  483 
  484 /*
  485  * Locate a process group by number.
  486  * The caller must hold proctree_lock.
  487  */
  488 struct pgrp *
  489 pgfind(pid_t pgid)
  490 {
  491         struct pgrp *pgrp;
  492 
  493         sx_assert(&proctree_lock, SX_LOCKED);
  494 
  495         LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
  496                 if (pgrp->pg_id == pgid) {
  497                         PGRP_LOCK(pgrp);
  498                         return (pgrp);
  499                 }
  500         }
  501         return (NULL);
  502 }
  503 
  504 /*
  505  * Locate process and do additional manipulations, depending on flags.
  506  */
  507 int
  508 pget(pid_t pid, int flags, struct proc **pp)
  509 {
  510         struct proc *p;
  511         struct thread *td1;
  512         int error;
  513 
  514         p = curproc;
  515         if (p->p_pid == pid) {
  516                 PROC_LOCK(p);
  517         } else {
  518                 p = NULL;
  519                 if (pid <= PID_MAX) {
  520                         if ((flags & PGET_NOTWEXIT) == 0)
  521                                 p = pfind_any(pid);
  522                         else
  523                                 p = pfind(pid);
  524                 } else if ((flags & PGET_NOTID) == 0) {
  525                         td1 = tdfind(pid, -1);
  526                         if (td1 != NULL)
  527                                 p = td1->td_proc;
  528                 }
  529                 if (p == NULL)
  530                         return (ESRCH);
  531                 if ((flags & PGET_CANSEE) != 0) {
  532                         error = p_cansee(curthread, p);
  533                         if (error != 0)
  534                                 goto errout;
  535                 }
  536         }
  537         if ((flags & PGET_CANDEBUG) != 0) {
  538                 error = p_candebug(curthread, p);
  539                 if (error != 0)
  540                         goto errout;
  541         }
  542         if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
  543                 error = EPERM;
  544                 goto errout;
  545         }
  546         if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
  547                 error = ESRCH;
  548                 goto errout;
  549         }
  550         if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
  551                 /*
  552                  * XXXRW: Not clear ESRCH is the right error during proc
  553                  * execve().
  554                  */
  555                 error = ESRCH;
  556                 goto errout;
  557         }
  558         if ((flags & PGET_HOLD) != 0) {
  559                 _PHOLD(p);
  560                 PROC_UNLOCK(p);
  561         }
  562         *pp = p;
  563         return (0);
  564 errout:
  565         PROC_UNLOCK(p);
  566         return (error);
  567 }
  568 
  569 /*
  570  * Create a new process group.
  571  * pgid must be equal to the pid of p.
  572  * Begin a new session if required.
  573  */
  574 int
  575 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
  576 {
  577 
  578         sx_assert(&proctree_lock, SX_XLOCKED);
  579 
  580         KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
  581         KASSERT(p->p_pid == pgid,
  582             ("enterpgrp: new pgrp and pid != pgid"));
  583         KASSERT(pgfind(pgid) == NULL,
  584             ("enterpgrp: pgrp with pgid exists"));
  585         KASSERT(!SESS_LEADER(p),
  586             ("enterpgrp: session leader attempted setpgrp"));
  587 
  588         if (sess != NULL) {
  589                 /*
  590                  * new session
  591                  */
  592                 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
  593                 PROC_LOCK(p);
  594                 p->p_flag &= ~P_CONTROLT;
  595                 PROC_UNLOCK(p);
  596                 PGRP_LOCK(pgrp);
  597                 sess->s_leader = p;
  598                 sess->s_sid = p->p_pid;
  599                 proc_id_set(PROC_ID_SESSION, p->p_pid);
  600                 refcount_init(&sess->s_count, 1);
  601                 sess->s_ttyvp = NULL;
  602                 sess->s_ttydp = NULL;
  603                 sess->s_ttyp = NULL;
  604                 bcopy(p->p_session->s_login, sess->s_login,
  605                             sizeof(sess->s_login));
  606                 pgrp->pg_session = sess;
  607                 KASSERT(p == curproc,
  608                     ("enterpgrp: mksession and p != curproc"));
  609         } else {
  610                 pgrp->pg_session = p->p_session;
  611                 sess_hold(pgrp->pg_session);
  612                 PGRP_LOCK(pgrp);
  613         }
  614         pgrp->pg_id = pgid;
  615         proc_id_set(PROC_ID_GROUP, p->p_pid);
  616         LIST_INIT(&pgrp->pg_members);
  617         pgrp->pg_flags = 0;
  618 
  619         /*
  620          * As we have an exclusive lock of proctree_lock,
  621          * this should not deadlock.
  622          */
  623         LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
  624         SLIST_INIT(&pgrp->pg_sigiolst);
  625         PGRP_UNLOCK(pgrp);
  626 
  627         doenterpgrp(p, pgrp);
  628 
  629         return (0);
  630 }
  631 
  632 /*
  633  * Move p to an existing process group
  634  */
  635 int
  636 enterthispgrp(struct proc *p, struct pgrp *pgrp)
  637 {
  638 
  639         sx_assert(&proctree_lock, SX_XLOCKED);
  640         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  641         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  642         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  643         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  644         KASSERT(pgrp->pg_session == p->p_session,
  645             ("%s: pgrp's session %p, p->p_session %p proc %p\n",
  646             __func__, pgrp->pg_session, p->p_session, p));
  647         KASSERT(pgrp != p->p_pgrp,
  648             ("%s: p %p belongs to pgrp %p", __func__, p, pgrp));
  649 
  650         doenterpgrp(p, pgrp);
  651 
  652         return (0);
  653 }
  654 
  655 /*
  656  * If true, any child of q which belongs to group pgrp, qualifies the
  657  * process group pgrp as not orphaned.
  658  */
  659 static bool
  660 isjobproc(struct proc *q, struct pgrp *pgrp)
  661 {
  662         sx_assert(&proctree_lock, SX_LOCKED);
  663 
  664         return (q->p_pgrp != pgrp &&
  665             q->p_pgrp->pg_session == pgrp->pg_session);
  666 }
  667 
  668 static struct proc *
  669 jobc_reaper(struct proc *p)
  670 {
  671         struct proc *pp;
  672 
  673         sx_assert(&proctree_lock, SA_LOCKED);
  674 
  675         for (pp = p;;) {
  676                 pp = pp->p_reaper;
  677                 if (pp->p_reaper == pp ||
  678                     (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
  679                         return (pp);
  680         }
  681 }
  682 
  683 static struct proc *
  684 jobc_parent(struct proc *p, struct proc *p_exiting)
  685 {
  686         struct proc *pp;
  687 
  688         sx_assert(&proctree_lock, SA_LOCKED);
  689 
  690         pp = proc_realparent(p);
  691         if (pp->p_pptr == NULL || pp == p_exiting ||
  692             (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
  693                 return (pp);
  694         return (jobc_reaper(pp));
  695 }
  696 
  697 static int
  698 pgrp_calc_jobc(struct pgrp *pgrp)
  699 {
  700         struct proc *q;
  701         int cnt;
  702 
  703 #ifdef INVARIANTS
  704         if (!mtx_owned(&pgrp->pg_mtx))
  705                 sx_assert(&proctree_lock, SA_LOCKED);
  706 #endif
  707 
  708         cnt = 0;
  709         LIST_FOREACH(q, &pgrp->pg_members, p_pglist) {
  710                 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 ||
  711                     q->p_pptr == NULL)
  712                         continue;
  713                 if (isjobproc(jobc_parent(q, NULL), pgrp))
  714                         cnt++;
  715         }
  716         return (cnt);
  717 }
  718 
  719 /*
  720  * Move p to a process group
  721  */
  722 static void
  723 doenterpgrp(struct proc *p, struct pgrp *pgrp)
  724 {
  725         struct pgrp *savepgrp;
  726         struct proc *pp;
  727 
  728         sx_assert(&proctree_lock, SX_XLOCKED);
  729         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  730         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  731         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  732         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  733 
  734         savepgrp = p->p_pgrp;
  735         pp = jobc_parent(p, NULL);
  736 
  737         PGRP_LOCK(pgrp);
  738         PGRP_LOCK(savepgrp);
  739         if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1)
  740                 orphanpg(savepgrp);
  741         PROC_LOCK(p);
  742         LIST_REMOVE(p, p_pglist);
  743         p->p_pgrp = pgrp;
  744         PROC_UNLOCK(p);
  745         LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
  746         if (isjobproc(pp, pgrp))
  747                 pgrp->pg_flags &= ~PGRP_ORPHANED;
  748         PGRP_UNLOCK(savepgrp);
  749         PGRP_UNLOCK(pgrp);
  750         if (LIST_EMPTY(&savepgrp->pg_members))
  751                 pgdelete(savepgrp);
  752 }
  753 
  754 /*
  755  * remove process from process group
  756  */
  757 int
  758 leavepgrp(struct proc *p)
  759 {
  760         struct pgrp *savepgrp;
  761 
  762         sx_assert(&proctree_lock, SX_XLOCKED);
  763         savepgrp = p->p_pgrp;
  764         PGRP_LOCK(savepgrp);
  765         PROC_LOCK(p);
  766         LIST_REMOVE(p, p_pglist);
  767         p->p_pgrp = NULL;
  768         PROC_UNLOCK(p);
  769         PGRP_UNLOCK(savepgrp);
  770         if (LIST_EMPTY(&savepgrp->pg_members))
  771                 pgdelete(savepgrp);
  772         return (0);
  773 }
  774 
  775 /*
  776  * delete a process group
  777  */
  778 static void
  779 pgdelete(struct pgrp *pgrp)
  780 {
  781         struct session *savesess;
  782         struct tty *tp;
  783 
  784         sx_assert(&proctree_lock, SX_XLOCKED);
  785         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  786         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  787 
  788         /*
  789          * Reset any sigio structures pointing to us as a result of
  790          * F_SETOWN with our pgid.  The proctree lock ensures that
  791          * new sigio structures will not be added after this point.
  792          */
  793         funsetownlst(&pgrp->pg_sigiolst);
  794 
  795         PGRP_LOCK(pgrp);
  796         tp = pgrp->pg_session->s_ttyp;
  797         LIST_REMOVE(pgrp, pg_hash);
  798         savesess = pgrp->pg_session;
  799         PGRP_UNLOCK(pgrp);
  800 
  801         /* Remove the reference to the pgrp before deallocating it. */
  802         if (tp != NULL) {
  803                 tty_lock(tp);
  804                 tty_rel_pgrp(tp, pgrp);
  805         }
  806 
  807         proc_id_clear(PROC_ID_GROUP, pgrp->pg_id);
  808         uma_zfree(pgrp_zone, pgrp);
  809         sess_release(savesess);
  810 }
  811 
  812 
  813 static void
  814 fixjobc_kill(struct proc *p)
  815 {
  816         struct proc *q;
  817         struct pgrp *pgrp;
  818 
  819         sx_assert(&proctree_lock, SX_LOCKED);
  820         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  821         pgrp = p->p_pgrp;
  822         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  823         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  824 
  825         /*
  826          * p no longer affects process group orphanage for children.
  827          * It is marked by the flag because p is only physically
  828          * removed from its process group on wait(2).
  829          */
  830         MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0);
  831         p->p_treeflag |= P_TREE_GRPEXITED;
  832 
  833         /*
  834          * Check if exiting p orphans its own group.
  835          */
  836         pgrp = p->p_pgrp;
  837         if (isjobproc(jobc_parent(p, NULL), pgrp)) {
  838                 PGRP_LOCK(pgrp);
  839                 if (pgrp_calc_jobc(pgrp) == 0)
  840                         orphanpg(pgrp);
  841                 PGRP_UNLOCK(pgrp);
  842         }
  843 
  844         /*
  845          * Check this process' children to see whether they qualify
  846          * their process groups after reparenting to reaper.
  847          */
  848         LIST_FOREACH(q, &p->p_children, p_sibling) {
  849                 pgrp = q->p_pgrp;
  850                 PGRP_LOCK(pgrp);
  851                 if (pgrp_calc_jobc(pgrp) == 0) {
  852                         /*
  853                          * We want to handle exactly the children that
  854                          * has p as realparent.  Then, when calculating
  855                          * jobc_parent for children, we should ignore
  856                          * P_TREE_GRPEXITED flag already set on p.
  857                          */
  858                         if (jobc_parent(q, p) == p && isjobproc(p, pgrp))
  859                                 orphanpg(pgrp);
  860                 } else
  861                         pgrp->pg_flags &= ~PGRP_ORPHANED;
  862                 PGRP_UNLOCK(pgrp);
  863         }
  864         LIST_FOREACH(q, &p->p_orphans, p_orphan) {
  865                 pgrp = q->p_pgrp;
  866                 PGRP_LOCK(pgrp);
  867                 if (pgrp_calc_jobc(pgrp) == 0) {
  868                         if (isjobproc(p, pgrp))
  869                                 orphanpg(pgrp);
  870                 } else
  871                         pgrp->pg_flags &= ~PGRP_ORPHANED;
  872                 PGRP_UNLOCK(pgrp);
  873         }
  874 }
  875 
  876 void
  877 killjobc(void)
  878 {
  879         struct session *sp;
  880         struct tty *tp;
  881         struct proc *p;
  882         struct vnode *ttyvp;
  883 
  884         p = curproc;
  885         MPASS(p->p_flag & P_WEXIT);
  886         sx_assert(&proctree_lock, SX_LOCKED);
  887 
  888         if (SESS_LEADER(p)) {
  889                 sp = p->p_session;
  890 
  891                 /*
  892                  * s_ttyp is not zero'd; we use this to indicate that
  893                  * the session once had a controlling terminal. (for
  894                  * logging and informational purposes)
  895                  */
  896                 SESS_LOCK(sp);
  897                 ttyvp = sp->s_ttyvp;
  898                 tp = sp->s_ttyp;
  899                 sp->s_ttyvp = NULL;
  900                 sp->s_ttydp = NULL;
  901                 sp->s_leader = NULL;
  902                 SESS_UNLOCK(sp);
  903 
  904                 /*
  905                  * Signal foreground pgrp and revoke access to
  906                  * controlling terminal if it has not been revoked
  907                  * already.
  908                  *
  909                  * Because the TTY may have been revoked in the mean
  910                  * time and could already have a new session associated
  911                  * with it, make sure we don't send a SIGHUP to a
  912                  * foreground process group that does not belong to this
  913                  * session.
  914                  */
  915 
  916                 if (tp != NULL) {
  917                         tty_lock(tp);
  918                         if (tp->t_session == sp)
  919                                 tty_signal_pgrp(tp, SIGHUP);
  920                         tty_unlock(tp);
  921                 }
  922 
  923                 if (ttyvp != NULL) {
  924                         sx_xunlock(&proctree_lock);
  925                         if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
  926                                 VOP_REVOKE(ttyvp, REVOKEALL);
  927                                 VOP_UNLOCK(ttyvp);
  928                         }
  929                         devfs_ctty_unref(ttyvp);
  930                         sx_xlock(&proctree_lock);
  931                 }
  932         }
  933         fixjobc_kill(p);
  934 }
  935 
  936 /*
  937  * A process group has become orphaned, mark it as such for signal
  938  * delivery code.  If there are any stopped processes in the group,
  939  * hang-up all process in that group.
  940  */
  941 static void
  942 orphanpg(struct pgrp *pg)
  943 {
  944         struct proc *p;
  945 
  946         PGRP_LOCK_ASSERT(pg, MA_OWNED);
  947 
  948         pg->pg_flags |= PGRP_ORPHANED;
  949 
  950         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  951                 PROC_LOCK(p);
  952                 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
  953                         PROC_UNLOCK(p);
  954                         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  955                                 PROC_LOCK(p);
  956                                 kern_psignal(p, SIGHUP);
  957                                 kern_psignal(p, SIGCONT);
  958                                 PROC_UNLOCK(p);
  959                         }
  960                         return;
  961                 }
  962                 PROC_UNLOCK(p);
  963         }
  964 }
  965 
  966 void
  967 sess_hold(struct session *s)
  968 {
  969 
  970         refcount_acquire(&s->s_count);
  971 }
  972 
  973 void
  974 sess_release(struct session *s)
  975 {
  976 
  977         if (refcount_release(&s->s_count)) {
  978                 if (s->s_ttyp != NULL) {
  979                         tty_lock(s->s_ttyp);
  980                         tty_rel_sess(s->s_ttyp, s);
  981                 }
  982                 proc_id_clear(PROC_ID_SESSION, s->s_sid);
  983                 mtx_destroy(&s->s_mtx);
  984                 free(s, M_SESSION);
  985         }
  986 }
  987 
  988 #ifdef DDB
  989 
  990 static void
  991 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p)
  992 {
  993         db_printf(
  994             "    pid %d at %p pr %d pgrp %p e %d jc %d\n",
  995             p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid,
  996             p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0,
  997             p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp));
  998 }
  999 
 1000 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
 1001 {
 1002         struct pgrp *pgrp;
 1003         struct proc *p;
 1004         int i;
 1005 
 1006         for (i = 0; i <= pgrphash; i++) {
 1007                 if (!LIST_EMPTY(&pgrphashtbl[i])) {
 1008                         db_printf("indx %d\n", i);
 1009                         LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
 1010                                 db_printf(
 1011                         "  pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n",
 1012                                     pgrp, (int)pgrp->pg_id, pgrp->pg_session,
 1013                                     pgrp->pg_session->s_count,
 1014                                     LIST_FIRST(&pgrp->pg_members));
 1015                                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
 1016                                         db_print_pgrp_one(pgrp, p);
 1017                         }
 1018                 }
 1019         }
 1020 }
 1021 #endif /* DDB */
 1022 
 1023 /*
 1024  * Calculate the kinfo_proc members which contain process-wide
 1025  * informations.
 1026  * Must be called with the target process locked.
 1027  */
 1028 static void
 1029 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
 1030 {
 1031         struct thread *td;
 1032 
 1033         PROC_LOCK_ASSERT(p, MA_OWNED);
 1034 
 1035         kp->ki_estcpu = 0;
 1036         kp->ki_pctcpu = 0;
 1037         FOREACH_THREAD_IN_PROC(p, td) {
 1038                 thread_lock(td);
 1039                 kp->ki_pctcpu += sched_pctcpu(td);
 1040                 kp->ki_estcpu += sched_estcpu(td);
 1041                 thread_unlock(td);
 1042         }
 1043 }
 1044 
 1045 /*
 1046  * Fill in any information that is common to all threads in the process.
 1047  * Must be called with the target process locked.
 1048  */
 1049 static void
 1050 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
 1051 {
 1052         struct thread *td0;
 1053         struct ucred *cred;
 1054         struct sigacts *ps;
 1055         struct timeval boottime;
 1056 
 1057         PROC_LOCK_ASSERT(p, MA_OWNED);
 1058 
 1059         kp->ki_structsize = sizeof(*kp);
 1060         kp->ki_paddr = p;
 1061         kp->ki_addr =/* p->p_addr; */0; /* XXX */
 1062         kp->ki_args = p->p_args;
 1063         kp->ki_textvp = p->p_textvp;
 1064 #ifdef KTRACE
 1065         kp->ki_tracep = ktr_get_tracevp(p, false);
 1066         kp->ki_traceflag = p->p_traceflag;
 1067 #endif
 1068         kp->ki_fd = p->p_fd;
 1069         kp->ki_pd = p->p_pd;
 1070         kp->ki_vmspace = p->p_vmspace;
 1071         kp->ki_flag = p->p_flag;
 1072         kp->ki_flag2 = p->p_flag2;
 1073         cred = p->p_ucred;
 1074         if (cred) {
 1075                 kp->ki_uid = cred->cr_uid;
 1076                 kp->ki_ruid = cred->cr_ruid;
 1077                 kp->ki_svuid = cred->cr_svuid;
 1078                 kp->ki_cr_flags = 0;
 1079                 if (cred->cr_flags & CRED_FLAG_CAPMODE)
 1080                         kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
 1081                 /* XXX bde doesn't like KI_NGROUPS */
 1082                 if (cred->cr_ngroups > KI_NGROUPS) {
 1083                         kp->ki_ngroups = KI_NGROUPS;
 1084                         kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
 1085                 } else
 1086                         kp->ki_ngroups = cred->cr_ngroups;
 1087                 bcopy(cred->cr_groups, kp->ki_groups,
 1088                     kp->ki_ngroups * sizeof(gid_t));
 1089                 kp->ki_rgid = cred->cr_rgid;
 1090                 kp->ki_svgid = cred->cr_svgid;
 1091                 /* If jailed(cred), emulate the old P_JAILED flag. */
 1092                 if (jailed(cred)) {
 1093                         kp->ki_flag |= P_JAILED;
 1094                         /* If inside the jail, use 0 as a jail ID. */
 1095                         if (cred->cr_prison != curthread->td_ucred->cr_prison)
 1096                                 kp->ki_jid = cred->cr_prison->pr_id;
 1097                 }
 1098                 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
 1099                     sizeof(kp->ki_loginclass));
 1100         }
 1101         ps = p->p_sigacts;
 1102         if (ps) {
 1103                 mtx_lock(&ps->ps_mtx);
 1104                 kp->ki_sigignore = ps->ps_sigignore;
 1105                 kp->ki_sigcatch = ps->ps_sigcatch;
 1106                 mtx_unlock(&ps->ps_mtx);
 1107         }
 1108         if (p->p_state != PRS_NEW &&
 1109             p->p_state != PRS_ZOMBIE &&
 1110             p->p_vmspace != NULL) {
 1111                 struct vmspace *vm = p->p_vmspace;
 1112 
 1113                 kp->ki_size = vm->vm_map.size;
 1114                 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
 1115                 FOREACH_THREAD_IN_PROC(p, td0) {
 1116                         if (!TD_IS_SWAPPED(td0))
 1117                                 kp->ki_rssize += td0->td_kstack_pages;
 1118                 }
 1119                 kp->ki_swrss = vm->vm_swrss;
 1120                 kp->ki_tsize = vm->vm_tsize;
 1121                 kp->ki_dsize = vm->vm_dsize;
 1122                 kp->ki_ssize = vm->vm_ssize;
 1123         } else if (p->p_state == PRS_ZOMBIE)
 1124                 kp->ki_stat = SZOMB;
 1125         if (kp->ki_flag & P_INMEM)
 1126                 kp->ki_sflag = PS_INMEM;
 1127         else
 1128                 kp->ki_sflag = 0;
 1129         /* Calculate legacy swtime as seconds since 'swtick'. */
 1130         kp->ki_swtime = (ticks - p->p_swtick) / hz;
 1131         kp->ki_pid = p->p_pid;
 1132         kp->ki_nice = p->p_nice;
 1133         kp->ki_fibnum = p->p_fibnum;
 1134         kp->ki_start = p->p_stats->p_start;
 1135         getboottime(&boottime);
 1136         timevaladd(&kp->ki_start, &boottime);
 1137         PROC_STATLOCK(p);
 1138         rufetch(p, &kp->ki_rusage);
 1139         kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
 1140         calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
 1141         PROC_STATUNLOCK(p);
 1142         calccru(p, &kp->ki_childutime, &kp->ki_childstime);
 1143         /* Some callers want child times in a single value. */
 1144         kp->ki_childtime = kp->ki_childstime;
 1145         timevaladd(&kp->ki_childtime, &kp->ki_childutime);
 1146 
 1147         FOREACH_THREAD_IN_PROC(p, td0)
 1148                 kp->ki_cow += td0->td_cow;
 1149 
 1150         if (p->p_comm[0] != '\0')
 1151                 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
 1152         if (p->p_sysent && p->p_sysent->sv_name != NULL &&
 1153             p->p_sysent->sv_name[0] != '\0')
 1154                 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
 1155         kp->ki_siglist = p->p_siglist;
 1156         kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
 1157         kp->ki_acflag = p->p_acflag;
 1158         kp->ki_lock = p->p_lock;
 1159         if (p->p_pptr) {
 1160                 kp->ki_ppid = p->p_oppid;
 1161                 if (p->p_flag & P_TRACED)
 1162                         kp->ki_tracer = p->p_pptr->p_pid;
 1163         }
 1164 }
 1165 
 1166 /*
 1167  * Fill job-related process information.
 1168  */
 1169 static void
 1170 fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp)
 1171 {
 1172         struct tty *tp;
 1173         struct session *sp;
 1174         struct pgrp *pgrp;
 1175 
 1176         sx_assert(&proctree_lock, SA_LOCKED);
 1177         PROC_LOCK_ASSERT(p, MA_OWNED);
 1178 
 1179         pgrp = p->p_pgrp;
 1180         if (pgrp == NULL)
 1181                 return;
 1182 
 1183         kp->ki_pgid = pgrp->pg_id;
 1184         kp->ki_jobc = pgrp_calc_jobc(pgrp);
 1185 
 1186         sp = pgrp->pg_session;
 1187         tp = NULL;
 1188 
 1189         if (sp != NULL) {
 1190                 kp->ki_sid = sp->s_sid;
 1191                 SESS_LOCK(sp);
 1192                 strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login));
 1193                 if (sp->s_ttyvp)
 1194                         kp->ki_kiflag |= KI_CTTY;
 1195                 if (SESS_LEADER(p))
 1196                         kp->ki_kiflag |= KI_SLEADER;
 1197                 tp = sp->s_ttyp;
 1198                 SESS_UNLOCK(sp);
 1199         }
 1200 
 1201         if ((p->p_flag & P_CONTROLT) && tp != NULL) {
 1202                 kp->ki_tdev = tty_udev(tp);
 1203                 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
 1204                 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
 1205                 if (tp->t_session)
 1206                         kp->ki_tsid = tp->t_session->s_sid;
 1207         } else {
 1208                 kp->ki_tdev = NODEV;
 1209                 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
 1210         }
 1211 }
 1212 
 1213 /*
 1214  * Fill in information that is thread specific.  Must be called with
 1215  * target process locked.  If 'preferthread' is set, overwrite certain
 1216  * process-related fields that are maintained for both threads and
 1217  * processes.
 1218  */
 1219 static void
 1220 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
 1221 {
 1222         struct proc *p;
 1223 
 1224         p = td->td_proc;
 1225         kp->ki_tdaddr = td;
 1226         PROC_LOCK_ASSERT(p, MA_OWNED);
 1227 
 1228         if (preferthread)
 1229                 PROC_STATLOCK(p);
 1230         thread_lock(td);
 1231         if (td->td_wmesg != NULL)
 1232                 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
 1233         else
 1234                 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
 1235         if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
 1236             sizeof(kp->ki_tdname)) {
 1237                 strlcpy(kp->ki_moretdname,
 1238                     td->td_name + sizeof(kp->ki_tdname) - 1,
 1239                     sizeof(kp->ki_moretdname));
 1240         } else {
 1241                 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
 1242         }
 1243         if (TD_ON_LOCK(td)) {
 1244                 kp->ki_kiflag |= KI_LOCKBLOCK;
 1245                 strlcpy(kp->ki_lockname, td->td_lockname,
 1246                     sizeof(kp->ki_lockname));
 1247         } else {
 1248                 kp->ki_kiflag &= ~KI_LOCKBLOCK;
 1249                 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
 1250         }
 1251 
 1252         if (p->p_state == PRS_NORMAL) { /* approximate. */
 1253                 if (TD_ON_RUNQ(td) ||
 1254                     TD_CAN_RUN(td) ||
 1255                     TD_IS_RUNNING(td)) {
 1256                         kp->ki_stat = SRUN;
 1257                 } else if (P_SHOULDSTOP(p)) {
 1258                         kp->ki_stat = SSTOP;
 1259                 } else if (TD_IS_SLEEPING(td)) {
 1260                         kp->ki_stat = SSLEEP;
 1261                 } else if (TD_ON_LOCK(td)) {
 1262                         kp->ki_stat = SLOCK;
 1263                 } else {
 1264                         kp->ki_stat = SWAIT;
 1265                 }
 1266         } else if (p->p_state == PRS_ZOMBIE) {
 1267                 kp->ki_stat = SZOMB;
 1268         } else {
 1269                 kp->ki_stat = SIDL;
 1270         }
 1271 
 1272         /* Things in the thread */
 1273         kp->ki_wchan = td->td_wchan;
 1274         kp->ki_pri.pri_level = td->td_priority;
 1275         kp->ki_pri.pri_native = td->td_base_pri;
 1276 
 1277         /*
 1278          * Note: legacy fields; clamp at the old NOCPU value and/or
 1279          * the maximum u_char CPU value.
 1280          */
 1281         if (td->td_lastcpu == NOCPU)
 1282                 kp->ki_lastcpu_old = NOCPU_OLD;
 1283         else if (td->td_lastcpu > MAXCPU_OLD)
 1284                 kp->ki_lastcpu_old = MAXCPU_OLD;
 1285         else
 1286                 kp->ki_lastcpu_old = td->td_lastcpu;
 1287 
 1288         if (td->td_oncpu == NOCPU)
 1289                 kp->ki_oncpu_old = NOCPU_OLD;
 1290         else if (td->td_oncpu > MAXCPU_OLD)
 1291                 kp->ki_oncpu_old = MAXCPU_OLD;
 1292         else
 1293                 kp->ki_oncpu_old = td->td_oncpu;
 1294 
 1295         kp->ki_lastcpu = td->td_lastcpu;
 1296         kp->ki_oncpu = td->td_oncpu;
 1297         kp->ki_tdflags = td->td_flags;
 1298         kp->ki_tid = td->td_tid;
 1299         kp->ki_numthreads = p->p_numthreads;
 1300         kp->ki_pcb = td->td_pcb;
 1301         kp->ki_kstack = (void *)td->td_kstack;
 1302         kp->ki_slptime = (ticks - td->td_slptick) / hz;
 1303         kp->ki_pri.pri_class = td->td_pri_class;
 1304         kp->ki_pri.pri_user = td->td_user_pri;
 1305 
 1306         if (preferthread) {
 1307                 rufetchtd(td, &kp->ki_rusage);
 1308                 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
 1309                 kp->ki_pctcpu = sched_pctcpu(td);
 1310                 kp->ki_estcpu = sched_estcpu(td);
 1311                 kp->ki_cow = td->td_cow;
 1312         }
 1313 
 1314         /* We can't get this anymore but ps etc never used it anyway. */
 1315         kp->ki_rqindex = 0;
 1316 
 1317         if (preferthread)
 1318                 kp->ki_siglist = td->td_siglist;
 1319         kp->ki_sigmask = td->td_sigmask;
 1320         thread_unlock(td);
 1321         if (preferthread)
 1322                 PROC_STATUNLOCK(p);
 1323 }
 1324 
 1325 /*
 1326  * Fill in a kinfo_proc structure for the specified process.
 1327  * Must be called with the target process locked.
 1328  */
 1329 void
 1330 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
 1331 {
 1332         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1333 
 1334         bzero(kp, sizeof(*kp));
 1335 
 1336         fill_kinfo_proc_pgrp(p,kp);
 1337         fill_kinfo_proc_only(p, kp);
 1338         fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
 1339         fill_kinfo_aggregate(p, kp);
 1340 }
 1341 
 1342 struct pstats *
 1343 pstats_alloc(void)
 1344 {
 1345 
 1346         return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
 1347 }
 1348 
 1349 /*
 1350  * Copy parts of p_stats; zero the rest of p_stats (statistics).
 1351  */
 1352 void
 1353 pstats_fork(struct pstats *src, struct pstats *dst)
 1354 {
 1355 
 1356         bzero(&dst->pstat_startzero,
 1357             __rangeof(struct pstats, pstat_startzero, pstat_endzero));
 1358         bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
 1359             __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
 1360 }
 1361 
 1362 void
 1363 pstats_free(struct pstats *ps)
 1364 {
 1365 
 1366         free(ps, M_SUBPROC);
 1367 }
 1368 
 1369 #ifdef COMPAT_FREEBSD32
 1370 
 1371 /*
 1372  * This function is typically used to copy out the kernel address, so
 1373  * it can be replaced by assignment of zero.
 1374  */
 1375 static inline uint32_t
 1376 ptr32_trim(const void *ptr)
 1377 {
 1378         uintptr_t uptr;
 1379 
 1380         uptr = (uintptr_t)ptr;
 1381         return ((uptr > UINT_MAX) ? 0 : uptr);
 1382 }
 1383 
 1384 #define PTRTRIM_CP(src,dst,fld) \
 1385         do { (dst).fld = ptr32_trim((src).fld); } while (0)
 1386 
 1387 static void
 1388 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
 1389 {
 1390         int i;
 1391 
 1392         bzero(ki32, sizeof(struct kinfo_proc32));
 1393         ki32->ki_structsize = sizeof(struct kinfo_proc32);
 1394         CP(*ki, *ki32, ki_layout);
 1395         PTRTRIM_CP(*ki, *ki32, ki_args);
 1396         PTRTRIM_CP(*ki, *ki32, ki_paddr);
 1397         PTRTRIM_CP(*ki, *ki32, ki_addr);
 1398         PTRTRIM_CP(*ki, *ki32, ki_tracep);
 1399         PTRTRIM_CP(*ki, *ki32, ki_textvp);
 1400         PTRTRIM_CP(*ki, *ki32, ki_fd);
 1401         PTRTRIM_CP(*ki, *ki32, ki_vmspace);
 1402         PTRTRIM_CP(*ki, *ki32, ki_wchan);
 1403         CP(*ki, *ki32, ki_pid);
 1404         CP(*ki, *ki32, ki_ppid);
 1405         CP(*ki, *ki32, ki_pgid);
 1406         CP(*ki, *ki32, ki_tpgid);
 1407         CP(*ki, *ki32, ki_sid);
 1408         CP(*ki, *ki32, ki_tsid);
 1409         CP(*ki, *ki32, ki_jobc);
 1410         CP(*ki, *ki32, ki_tdev);
 1411         CP(*ki, *ki32, ki_tdev_freebsd11);
 1412         CP(*ki, *ki32, ki_siglist);
 1413         CP(*ki, *ki32, ki_sigmask);
 1414         CP(*ki, *ki32, ki_sigignore);
 1415         CP(*ki, *ki32, ki_sigcatch);
 1416         CP(*ki, *ki32, ki_uid);
 1417         CP(*ki, *ki32, ki_ruid);
 1418         CP(*ki, *ki32, ki_svuid);
 1419         CP(*ki, *ki32, ki_rgid);
 1420         CP(*ki, *ki32, ki_svgid);
 1421         CP(*ki, *ki32, ki_ngroups);
 1422         for (i = 0; i < KI_NGROUPS; i++)
 1423                 CP(*ki, *ki32, ki_groups[i]);
 1424         CP(*ki, *ki32, ki_size);
 1425         CP(*ki, *ki32, ki_rssize);
 1426         CP(*ki, *ki32, ki_swrss);
 1427         CP(*ki, *ki32, ki_tsize);
 1428         CP(*ki, *ki32, ki_dsize);
 1429         CP(*ki, *ki32, ki_ssize);
 1430         CP(*ki, *ki32, ki_xstat);
 1431         CP(*ki, *ki32, ki_acflag);
 1432         CP(*ki, *ki32, ki_pctcpu);
 1433         CP(*ki, *ki32, ki_estcpu);
 1434         CP(*ki, *ki32, ki_slptime);
 1435         CP(*ki, *ki32, ki_swtime);
 1436         CP(*ki, *ki32, ki_cow);
 1437         CP(*ki, *ki32, ki_runtime);
 1438         TV_CP(*ki, *ki32, ki_start);
 1439         TV_CP(*ki, *ki32, ki_childtime);
 1440         CP(*ki, *ki32, ki_flag);
 1441         CP(*ki, *ki32, ki_kiflag);
 1442         CP(*ki, *ki32, ki_traceflag);
 1443         CP(*ki, *ki32, ki_stat);
 1444         CP(*ki, *ki32, ki_nice);
 1445         CP(*ki, *ki32, ki_lock);
 1446         CP(*ki, *ki32, ki_rqindex);
 1447         CP(*ki, *ki32, ki_oncpu);
 1448         CP(*ki, *ki32, ki_lastcpu);
 1449 
 1450         /* XXX TODO: wrap cpu value as appropriate */
 1451         CP(*ki, *ki32, ki_oncpu_old);
 1452         CP(*ki, *ki32, ki_lastcpu_old);
 1453 
 1454         bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
 1455         bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
 1456         bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
 1457         bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
 1458         bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
 1459         bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
 1460         bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
 1461         bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
 1462         CP(*ki, *ki32, ki_tracer);
 1463         CP(*ki, *ki32, ki_flag2);
 1464         CP(*ki, *ki32, ki_fibnum);
 1465         CP(*ki, *ki32, ki_cr_flags);
 1466         CP(*ki, *ki32, ki_jid);
 1467         CP(*ki, *ki32, ki_numthreads);
 1468         CP(*ki, *ki32, ki_tid);
 1469         CP(*ki, *ki32, ki_pri);
 1470         freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
 1471         freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
 1472         PTRTRIM_CP(*ki, *ki32, ki_pcb);
 1473         PTRTRIM_CP(*ki, *ki32, ki_kstack);
 1474         PTRTRIM_CP(*ki, *ki32, ki_udata);
 1475         PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
 1476         CP(*ki, *ki32, ki_sflag);
 1477         CP(*ki, *ki32, ki_tdflags);
 1478 }
 1479 #endif
 1480 
 1481 static ssize_t
 1482 kern_proc_out_size(struct proc *p, int flags)
 1483 {
 1484         ssize_t size = 0;
 1485 
 1486         PROC_LOCK_ASSERT(p, MA_OWNED);
 1487 
 1488         if ((flags & KERN_PROC_NOTHREADS) != 0) {
 1489 #ifdef COMPAT_FREEBSD32
 1490                 if ((flags & KERN_PROC_MASK32) != 0) {
 1491                         size += sizeof(struct kinfo_proc32);
 1492                 } else
 1493 #endif
 1494                         size += sizeof(struct kinfo_proc);
 1495         } else {
 1496 #ifdef COMPAT_FREEBSD32
 1497                 if ((flags & KERN_PROC_MASK32) != 0)
 1498                         size += sizeof(struct kinfo_proc32) * p->p_numthreads;
 1499                 else
 1500 #endif
 1501                         size += sizeof(struct kinfo_proc) * p->p_numthreads;
 1502         }
 1503         PROC_UNLOCK(p);
 1504         return (size);
 1505 }
 1506 
 1507 int
 1508 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
 1509 {
 1510         struct thread *td;
 1511         struct kinfo_proc ki;
 1512 #ifdef COMPAT_FREEBSD32
 1513         struct kinfo_proc32 ki32;
 1514 #endif
 1515         int error;
 1516 
 1517         PROC_LOCK_ASSERT(p, MA_OWNED);
 1518         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1519 
 1520         error = 0;
 1521         fill_kinfo_proc(p, &ki);
 1522         if ((flags & KERN_PROC_NOTHREADS) != 0) {
 1523 #ifdef COMPAT_FREEBSD32
 1524                 if ((flags & KERN_PROC_MASK32) != 0) {
 1525                         freebsd32_kinfo_proc_out(&ki, &ki32);
 1526                         if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
 1527                                 error = ENOMEM;
 1528                 } else
 1529 #endif
 1530                         if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
 1531                                 error = ENOMEM;
 1532         } else {
 1533                 FOREACH_THREAD_IN_PROC(p, td) {
 1534                         fill_kinfo_thread(td, &ki, 1);
 1535 #ifdef COMPAT_FREEBSD32
 1536                         if ((flags & KERN_PROC_MASK32) != 0) {
 1537                                 freebsd32_kinfo_proc_out(&ki, &ki32);
 1538                                 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
 1539                                         error = ENOMEM;
 1540                         } else
 1541 #endif
 1542                                 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
 1543                                         error = ENOMEM;
 1544                         if (error != 0)
 1545                                 break;
 1546                 }
 1547         }
 1548         PROC_UNLOCK(p);
 1549         return (error);
 1550 }
 1551 
 1552 static int
 1553 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
 1554 {
 1555         struct sbuf sb;
 1556         struct kinfo_proc ki;
 1557         int error, error2;
 1558 
 1559         if (req->oldptr == NULL)
 1560                 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags)));
 1561 
 1562         sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
 1563         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 1564         error = kern_proc_out(p, &sb, flags);
 1565         error2 = sbuf_finish(&sb);
 1566         sbuf_delete(&sb);
 1567         if (error != 0)
 1568                 return (error);
 1569         else if (error2 != 0)
 1570                 return (error2);
 1571         return (0);
 1572 }
 1573 
 1574 int
 1575 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg)
 1576 {
 1577         struct proc *p;
 1578         int error, i, j;
 1579 
 1580         for (i = 0; i < pidhashlock + 1; i++) {
 1581                 sx_slock(&proctree_lock);
 1582                 sx_slock(&pidhashtbl_lock[i]);
 1583                 for (j = i; j <= pidhash; j += pidhashlock + 1) {
 1584                         LIST_FOREACH(p, &pidhashtbl[j], p_hash) {
 1585                                 if (p->p_state == PRS_NEW)
 1586                                         continue;
 1587                                 error = cb(p, cbarg);
 1588                                 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
 1589                                 if (error != 0) {
 1590                                         sx_sunlock(&pidhashtbl_lock[i]);
 1591                                         sx_sunlock(&proctree_lock);
 1592                                         return (error);
 1593                                 }
 1594                         }
 1595                 }
 1596                 sx_sunlock(&pidhashtbl_lock[i]);
 1597                 sx_sunlock(&proctree_lock);
 1598         }
 1599         return (0);
 1600 }
 1601 
 1602 struct kern_proc_out_args {
 1603         struct sysctl_req *req;
 1604         int flags;
 1605         int oid_number;
 1606         int *name;
 1607 };
 1608 
 1609 static int
 1610 sysctl_kern_proc_iterate(struct proc *p, void *origarg)
 1611 {
 1612         struct kern_proc_out_args *arg = origarg;
 1613         int *name = arg->name;
 1614         int oid_number = arg->oid_number;
 1615         int flags = arg->flags;
 1616         struct sysctl_req *req = arg->req;
 1617         int error = 0;
 1618 
 1619         PROC_LOCK(p);
 1620 
 1621         KASSERT(p->p_ucred != NULL,
 1622             ("process credential is NULL for non-NEW proc"));
 1623         /*
 1624          * Show a user only appropriate processes.
 1625          */
 1626         if (p_cansee(curthread, p))
 1627                 goto skip;
 1628         /*
 1629          * TODO - make more efficient (see notes below).
 1630          * do by session.
 1631          */
 1632         switch (oid_number) {
 1633         case KERN_PROC_GID:
 1634                 if (p->p_ucred->cr_gid != (gid_t)name[0])
 1635                         goto skip;
 1636                 break;
 1637 
 1638         case KERN_PROC_PGRP:
 1639                 /* could do this by traversing pgrp */
 1640                 if (p->p_pgrp == NULL ||
 1641                     p->p_pgrp->pg_id != (pid_t)name[0])
 1642                         goto skip;
 1643                 break;
 1644 
 1645         case KERN_PROC_RGID:
 1646                 if (p->p_ucred->cr_rgid != (gid_t)name[0])
 1647                         goto skip;
 1648                 break;
 1649 
 1650         case KERN_PROC_SESSION:
 1651                 if (p->p_session == NULL ||
 1652                     p->p_session->s_sid != (pid_t)name[0])
 1653                         goto skip;
 1654                 break;
 1655 
 1656         case KERN_PROC_TTY:
 1657                 if ((p->p_flag & P_CONTROLT) == 0 ||
 1658                     p->p_session == NULL)
 1659                         goto skip;
 1660                 /* XXX proctree_lock */
 1661                 SESS_LOCK(p->p_session);
 1662                 if (p->p_session->s_ttyp == NULL ||
 1663                     tty_udev(p->p_session->s_ttyp) !=
 1664                     (dev_t)name[0]) {
 1665                         SESS_UNLOCK(p->p_session);
 1666                         goto skip;
 1667                 }
 1668                 SESS_UNLOCK(p->p_session);
 1669                 break;
 1670 
 1671         case KERN_PROC_UID:
 1672                 if (p->p_ucred->cr_uid != (uid_t)name[0])
 1673                         goto skip;
 1674                 break;
 1675 
 1676         case KERN_PROC_RUID:
 1677                 if (p->p_ucred->cr_ruid != (uid_t)name[0])
 1678                         goto skip;
 1679                 break;
 1680 
 1681         case KERN_PROC_PROC:
 1682                 break;
 1683 
 1684         default:
 1685                 break;
 1686         }
 1687         error = sysctl_out_proc(p, req, flags);
 1688         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
 1689         return (error);
 1690 skip:
 1691         PROC_UNLOCK(p);
 1692         return (0);
 1693 }
 1694 
 1695 static int
 1696 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
 1697 {
 1698         struct kern_proc_out_args iterarg;
 1699         int *name = (int *)arg1;
 1700         u_int namelen = arg2;
 1701         struct proc *p;
 1702         int flags, oid_number;
 1703         int error = 0;
 1704 
 1705         oid_number = oidp->oid_number;
 1706         if (oid_number != KERN_PROC_ALL &&
 1707             (oid_number & KERN_PROC_INC_THREAD) == 0)
 1708                 flags = KERN_PROC_NOTHREADS;
 1709         else {
 1710                 flags = 0;
 1711                 oid_number &= ~KERN_PROC_INC_THREAD;
 1712         }
 1713 #ifdef COMPAT_FREEBSD32
 1714         if (req->flags & SCTL_MASK32)
 1715                 flags |= KERN_PROC_MASK32;
 1716 #endif
 1717         if (oid_number == KERN_PROC_PID) {
 1718                 if (namelen != 1)
 1719                         return (EINVAL);
 1720                 error = sysctl_wire_old_buffer(req, 0);
 1721                 if (error)
 1722                         return (error);
 1723                 sx_slock(&proctree_lock);
 1724                 error = pget((pid_t)name[0], PGET_CANSEE, &p);
 1725                 if (error == 0)
 1726                         error = sysctl_out_proc(p, req, flags);
 1727                 sx_sunlock(&proctree_lock);
 1728                 return (error);
 1729         }
 1730 
 1731         switch (oid_number) {
 1732         case KERN_PROC_ALL:
 1733                 if (namelen != 0)
 1734                         return (EINVAL);
 1735                 break;
 1736         case KERN_PROC_PROC:
 1737                 if (namelen != 0 && namelen != 1)
 1738                         return (EINVAL);
 1739                 break;
 1740         default:
 1741                 if (namelen != 1)
 1742                         return (EINVAL);
 1743                 break;
 1744         }
 1745 
 1746         if (req->oldptr == NULL) {
 1747                 /* overestimate by 5 procs */
 1748                 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
 1749                 if (error)
 1750                         return (error);
 1751         } else {
 1752                 error = sysctl_wire_old_buffer(req, 0);
 1753                 if (error != 0)
 1754                         return (error);
 1755         }
 1756         iterarg.flags = flags;
 1757         iterarg.oid_number = oid_number;
 1758         iterarg.req = req;
 1759         iterarg.name = name;
 1760         error = proc_iterate(sysctl_kern_proc_iterate, &iterarg);
 1761         return (error);
 1762 }
 1763 
 1764 struct pargs *
 1765 pargs_alloc(int len)
 1766 {
 1767         struct pargs *pa;
 1768 
 1769         pa = malloc(sizeof(struct pargs) + len, M_PARGS,
 1770                 M_WAITOK);
 1771         refcount_init(&pa->ar_ref, 1);
 1772         pa->ar_length = len;
 1773         return (pa);
 1774 }
 1775 
 1776 static void
 1777 pargs_free(struct pargs *pa)
 1778 {
 1779 
 1780         free(pa, M_PARGS);
 1781 }
 1782 
 1783 void
 1784 pargs_hold(struct pargs *pa)
 1785 {
 1786 
 1787         if (pa == NULL)
 1788                 return;
 1789         refcount_acquire(&pa->ar_ref);
 1790 }
 1791 
 1792 void
 1793 pargs_drop(struct pargs *pa)
 1794 {
 1795 
 1796         if (pa == NULL)
 1797                 return;
 1798         if (refcount_release(&pa->ar_ref))
 1799                 pargs_free(pa);
 1800 }
 1801 
 1802 static int
 1803 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
 1804     size_t len)
 1805 {
 1806         ssize_t n;
 1807 
 1808         /*
 1809          * This may return a short read if the string is shorter than the chunk
 1810          * and is aligned at the end of the page, and the following page is not
 1811          * mapped.
 1812          */
 1813         n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
 1814         if (n <= 0)
 1815                 return (ENOMEM);
 1816         return (0);
 1817 }
 1818 
 1819 #define PROC_AUXV_MAX   256     /* Safety limit on auxv size. */
 1820 
 1821 enum proc_vector_type {
 1822         PROC_ARG,
 1823         PROC_ENV,
 1824         PROC_AUX,
 1825 };
 1826 
 1827 #ifdef COMPAT_FREEBSD32
 1828 static int
 1829 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
 1830     size_t *vsizep, enum proc_vector_type type)
 1831 {
 1832         struct freebsd32_ps_strings pss;
 1833         Elf32_Auxinfo aux;
 1834         vm_offset_t vptr, ptr;
 1835         uint32_t *proc_vector32;
 1836         char **proc_vector;
 1837         size_t vsize, size;
 1838         int i, error;
 1839 
 1840         error = 0;
 1841         if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
 1842             sizeof(pss))
 1843                 return (ENOMEM);
 1844         switch (type) {
 1845         case PROC_ARG:
 1846                 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
 1847                 vsize = pss.ps_nargvstr;
 1848                 if (vsize > ARG_MAX)
 1849                         return (ENOEXEC);
 1850                 size = vsize * sizeof(int32_t);
 1851                 break;
 1852         case PROC_ENV:
 1853                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
 1854                 vsize = pss.ps_nenvstr;
 1855                 if (vsize > ARG_MAX)
 1856                         return (ENOEXEC);
 1857                 size = vsize * sizeof(int32_t);
 1858                 break;
 1859         case PROC_AUX:
 1860                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
 1861                     (pss.ps_nenvstr + 1) * sizeof(int32_t);
 1862                 if (vptr % 4 != 0)
 1863                         return (ENOEXEC);
 1864                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 1865                         if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
 1866                             sizeof(aux))
 1867                                 return (ENOMEM);
 1868                         if (aux.a_type == AT_NULL)
 1869                                 break;
 1870                         ptr += sizeof(aux);
 1871                 }
 1872                 if (aux.a_type != AT_NULL)
 1873                         return (ENOEXEC);
 1874                 vsize = i + 1;
 1875                 size = vsize * sizeof(aux);
 1876                 break;
 1877         default:
 1878                 KASSERT(0, ("Wrong proc vector type: %d", type));
 1879                 return (EINVAL);
 1880         }
 1881         proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
 1882         if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
 1883                 error = ENOMEM;
 1884                 goto done;
 1885         }
 1886         if (type == PROC_AUX) {
 1887                 *proc_vectorp = (char **)proc_vector32;
 1888                 *vsizep = vsize;
 1889                 return (0);
 1890         }
 1891         proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
 1892         for (i = 0; i < (int)vsize; i++)
 1893                 proc_vector[i] = PTRIN(proc_vector32[i]);
 1894         *proc_vectorp = proc_vector;
 1895         *vsizep = vsize;
 1896 done:
 1897         free(proc_vector32, M_TEMP);
 1898         return (error);
 1899 }
 1900 #endif
 1901 
 1902 static int
 1903 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
 1904     size_t *vsizep, enum proc_vector_type type)
 1905 {
 1906         struct ps_strings pss;
 1907         Elf_Auxinfo aux;
 1908         vm_offset_t vptr, ptr;
 1909         char **proc_vector;
 1910         size_t vsize, size;
 1911         int i;
 1912 
 1913 #ifdef COMPAT_FREEBSD32
 1914         if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 1915                 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
 1916 #endif
 1917         if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
 1918             sizeof(pss))
 1919                 return (ENOMEM);
 1920         switch (type) {
 1921         case PROC_ARG:
 1922                 vptr = (vm_offset_t)pss.ps_argvstr;
 1923                 vsize = pss.ps_nargvstr;
 1924                 if (vsize > ARG_MAX)
 1925                         return (ENOEXEC);
 1926                 size = vsize * sizeof(char *);
 1927                 break;
 1928         case PROC_ENV:
 1929                 vptr = (vm_offset_t)pss.ps_envstr;
 1930                 vsize = pss.ps_nenvstr;
 1931                 if (vsize > ARG_MAX)
 1932                         return (ENOEXEC);
 1933                 size = vsize * sizeof(char *);
 1934                 break;
 1935         case PROC_AUX:
 1936                 /*
 1937                  * The aux array is just above env array on the stack. Check
 1938                  * that the address is naturally aligned.
 1939                  */
 1940                 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
 1941                     * sizeof(char *);
 1942 #if __ELF_WORD_SIZE == 64
 1943                 if (vptr % sizeof(uint64_t) != 0)
 1944 #else
 1945                 if (vptr % sizeof(uint32_t) != 0)
 1946 #endif
 1947                         return (ENOEXEC);
 1948                 /*
 1949                  * We count the array size reading the aux vectors from the
 1950                  * stack until AT_NULL vector is returned.  So (to keep the code
 1951                  * simple) we read the process stack twice: the first time here
 1952                  * to find the size and the second time when copying the vectors
 1953                  * to the allocated proc_vector.
 1954                  */
 1955                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 1956                         if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
 1957                             sizeof(aux))
 1958                                 return (ENOMEM);
 1959                         if (aux.a_type == AT_NULL)
 1960                                 break;
 1961                         ptr += sizeof(aux);
 1962                 }
 1963                 /*
 1964                  * If the PROC_AUXV_MAX entries are iterated over, and we have
 1965                  * not reached AT_NULL, it is most likely we are reading wrong
 1966                  * data: either the process doesn't have auxv array or data has
 1967                  * been modified. Return the error in this case.
 1968                  */
 1969                 if (aux.a_type != AT_NULL)
 1970                         return (ENOEXEC);
 1971                 vsize = i + 1;
 1972                 size = vsize * sizeof(aux);
 1973                 break;
 1974         default:
 1975                 KASSERT(0, ("Wrong proc vector type: %d", type));
 1976                 return (EINVAL); /* In case we are built without INVARIANTS. */
 1977         }
 1978         proc_vector = malloc(size, M_TEMP, M_WAITOK);
 1979         if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
 1980                 free(proc_vector, M_TEMP);
 1981                 return (ENOMEM);
 1982         }
 1983         *proc_vectorp = proc_vector;
 1984         *vsizep = vsize;
 1985 
 1986         return (0);
 1987 }
 1988 
 1989 #define GET_PS_STRINGS_CHUNK_SZ 256     /* Chunk size (bytes) for ps_strings operations. */
 1990 
 1991 static int
 1992 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
 1993     enum proc_vector_type type)
 1994 {
 1995         size_t done, len, nchr, vsize;
 1996         int error, i;
 1997         char **proc_vector, *sptr;
 1998         char pss_string[GET_PS_STRINGS_CHUNK_SZ];
 1999 
 2000         PROC_ASSERT_HELD(p);
 2001 
 2002         /*
 2003          * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
 2004          */
 2005         nchr = 2 * (PATH_MAX + ARG_MAX);
 2006 
 2007         error = get_proc_vector(td, p, &proc_vector, &vsize, type);
 2008         if (error != 0)
 2009                 return (error);
 2010         for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
 2011                 /*
 2012                  * The program may have scribbled into its argv array, e.g. to
 2013                  * remove some arguments.  If that has happened, break out
 2014                  * before trying to read from NULL.
 2015                  */
 2016                 if (proc_vector[i] == NULL)
 2017                         break;
 2018                 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
 2019                         error = proc_read_string(td, p, sptr, pss_string,
 2020                             sizeof(pss_string));
 2021                         if (error != 0)
 2022                                 goto done;
 2023                         len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
 2024                         if (done + len >= nchr)
 2025                                 len = nchr - done - 1;
 2026                         sbuf_bcat(sb, pss_string, len);
 2027                         if (len != GET_PS_STRINGS_CHUNK_SZ)
 2028                                 break;
 2029                         done += GET_PS_STRINGS_CHUNK_SZ;
 2030                 }
 2031                 sbuf_bcat(sb, "", 1);
 2032                 done += len + 1;
 2033         }
 2034 done:
 2035         free(proc_vector, M_TEMP);
 2036         return (error);
 2037 }
 2038 
 2039 int
 2040 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
 2041 {
 2042 
 2043         return (get_ps_strings(curthread, p, sb, PROC_ARG));
 2044 }
 2045 
 2046 int
 2047 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
 2048 {
 2049 
 2050         return (get_ps_strings(curthread, p, sb, PROC_ENV));
 2051 }
 2052 
 2053 int
 2054 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
 2055 {
 2056         size_t vsize, size;
 2057         char **auxv;
 2058         int error;
 2059 
 2060         error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
 2061         if (error == 0) {
 2062 #ifdef COMPAT_FREEBSD32
 2063                 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 2064                         size = vsize * sizeof(Elf32_Auxinfo);
 2065                 else
 2066 #endif
 2067                         size = vsize * sizeof(Elf_Auxinfo);
 2068                 if (sbuf_bcat(sb, auxv, size) != 0)
 2069                         error = ENOMEM;
 2070                 free(auxv, M_TEMP);
 2071         }
 2072         return (error);
 2073 }
 2074 
 2075 /*
 2076  * This sysctl allows a process to retrieve the argument list or process
 2077  * title for another process without groping around in the address space
 2078  * of the other process.  It also allow a process to set its own "process 
 2079  * title to a string of its own choice.
 2080  */
 2081 static int
 2082 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
 2083 {
 2084         int *name = (int *)arg1;
 2085         u_int namelen = arg2;
 2086         struct pargs *newpa, *pa;
 2087         struct proc *p;
 2088         struct sbuf sb;
 2089         int flags, error = 0, error2;
 2090         pid_t pid;
 2091 
 2092         if (namelen != 1)
 2093                 return (EINVAL);
 2094 
 2095         p = curproc;
 2096         pid = (pid_t)name[0];
 2097         if (pid == -1) {
 2098                 pid = p->p_pid;
 2099         }
 2100 
 2101         /*
 2102          * If the query is for this process and it is single-threaded, there
 2103          * is nobody to modify pargs, thus we can just read.
 2104          */
 2105         if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL &&
 2106             (pa = p->p_args) != NULL)
 2107                 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length));
 2108 
 2109         flags = PGET_CANSEE;
 2110         if (req->newptr != NULL)
 2111                 flags |= PGET_ISCURRENT;
 2112         error = pget(pid, flags, &p);
 2113         if (error)
 2114                 return (error);
 2115 
 2116         pa = p->p_args;
 2117         if (pa != NULL) {
 2118                 pargs_hold(pa);
 2119                 PROC_UNLOCK(p);
 2120                 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
 2121                 pargs_drop(pa);
 2122         } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
 2123                 _PHOLD(p);
 2124                 PROC_UNLOCK(p);
 2125                 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 2126                 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 2127                 error = proc_getargv(curthread, p, &sb);
 2128                 error2 = sbuf_finish(&sb);
 2129                 PRELE(p);
 2130                 sbuf_delete(&sb);
 2131                 if (error == 0 && error2 != 0)
 2132                         error = error2;
 2133         } else {
 2134                 PROC_UNLOCK(p);
 2135         }
 2136         if (error != 0 || req->newptr == NULL)
 2137                 return (error);
 2138 
 2139         if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
 2140                 return (ENOMEM);
 2141 
 2142         if (req->newlen == 0) {
 2143                 /*
 2144                  * Clear the argument pointer, so that we'll fetch arguments
 2145                  * with proc_getargv() until further notice.
 2146                  */
 2147                 newpa = NULL;
 2148         } else {
 2149                 newpa = pargs_alloc(req->newlen);
 2150                 error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
 2151                 if (error != 0) {
 2152                         pargs_free(newpa);
 2153                         return (error);
 2154                 }
 2155         }
 2156         PROC_LOCK(p);
 2157         pa = p->p_args;
 2158         p->p_args = newpa;
 2159         PROC_UNLOCK(p);
 2160         pargs_drop(pa);
 2161         return (0);
 2162 }
 2163 
 2164 /*
 2165  * This sysctl allows a process to retrieve environment of another process.
 2166  */
 2167 static int
 2168 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
 2169 {
 2170         int *name = (int *)arg1;
 2171         u_int namelen = arg2;
 2172         struct proc *p;
 2173         struct sbuf sb;
 2174         int error, error2;
 2175 
 2176         if (namelen != 1)
 2177                 return (EINVAL);
 2178 
 2179         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 2180         if (error != 0)
 2181                 return (error);
 2182         if ((p->p_flag & P_SYSTEM) != 0) {
 2183                 PRELE(p);
 2184                 return (0);
 2185         }
 2186 
 2187         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 2188         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 2189         error = proc_getenvv(curthread, p, &sb);
 2190         error2 = sbuf_finish(&sb);
 2191         PRELE(p);
 2192         sbuf_delete(&sb);
 2193         return (error != 0 ? error : error2);
 2194 }
 2195 
 2196 /*
 2197  * This sysctl allows a process to retrieve ELF auxiliary vector of
 2198  * another process.
 2199  */
 2200 static int
 2201 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
 2202 {
 2203         int *name = (int *)arg1;
 2204         u_int namelen = arg2;
 2205         struct proc *p;
 2206         struct sbuf sb;
 2207         int error, error2;
 2208 
 2209         if (namelen != 1)
 2210                 return (EINVAL);
 2211 
 2212         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 2213         if (error != 0)
 2214                 return (error);
 2215         if ((p->p_flag & P_SYSTEM) != 0) {
 2216                 PRELE(p);
 2217                 return (0);
 2218         }
 2219         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 2220         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 2221         error = proc_getauxv(curthread, p, &sb);
 2222         error2 = sbuf_finish(&sb);
 2223         PRELE(p);
 2224         sbuf_delete(&sb);
 2225         return (error != 0 ? error : error2);
 2226 }
 2227 
 2228 /*
 2229  * Look up the canonical executable path running in the specified process.
 2230  * It tries to return the same hardlink name as was used for execve(2).
 2231  * This allows the programs that modify their behavior based on their progname,
 2232  * to operate correctly.
 2233  *
 2234  * Result is returned in retbuf, it must not be freed, similar to vn_fullpath()
 2235  *   calling conventions.
 2236  * binname is a pointer to temporary string buffer of length MAXPATHLEN,
 2237  *   allocated and freed by caller.
 2238  * freebuf should be freed by caller, from the M_TEMP malloc type.
 2239  */
 2240 int
 2241 proc_get_binpath(struct proc *p, char *binname, char **retbuf,
 2242     char **freebuf)
 2243 {
 2244         struct nameidata nd;
 2245         struct vnode *vp, *dvp;
 2246         size_t freepath_size;
 2247         int error;
 2248         bool do_fullpath;
 2249 
 2250         PROC_LOCK_ASSERT(p, MA_OWNED);
 2251 
 2252         vp = p->p_textvp;
 2253         if (vp == NULL) {
 2254                 PROC_UNLOCK(p);
 2255                 *retbuf = "";
 2256                 *freebuf = NULL;
 2257                 return (0);
 2258         }
 2259         vref(vp);
 2260         dvp = p->p_textdvp;
 2261         if (dvp != NULL)
 2262                 vref(dvp);
 2263         if (p->p_binname != NULL)
 2264                 strlcpy(binname, p->p_binname, MAXPATHLEN);
 2265         PROC_UNLOCK(p);
 2266 
 2267         do_fullpath = true;
 2268         *freebuf = NULL;
 2269         if (dvp != NULL && binname[0] != '\0') {
 2270                 freepath_size = MAXPATHLEN;
 2271                 if (vn_fullpath_hardlink(vp, dvp, binname, strlen(binname),
 2272                     retbuf, freebuf, &freepath_size) == 0) {
 2273                         /*
 2274                          * Recheck the looked up path.  The binary
 2275                          * might have been renamed or replaced, in
 2276                          * which case we should not report old name.
 2277                          */
 2278                         NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, *retbuf,
 2279                             curthread);
 2280                         error = namei(&nd);
 2281                         if (error == 0) {
 2282                                 if (nd.ni_vp == vp)
 2283                                         do_fullpath = false;
 2284                                 vrele(nd.ni_vp);
 2285                                 NDFREE(&nd, NDF_ONLY_PNBUF);
 2286                         }
 2287                 }
 2288         }
 2289         if (do_fullpath) {
 2290                 free(*freebuf, M_TEMP);
 2291                 *freebuf = NULL;
 2292                 error = vn_fullpath(vp, retbuf, freebuf);
 2293         }
 2294         vrele(vp);
 2295         if (dvp != NULL)
 2296                 vrele(dvp);
 2297         return (error);
 2298 }
 2299 
 2300 /*
 2301  * This sysctl allows a process to retrieve the path of the executable for
 2302  * itself or another process.
 2303  */
 2304 static int
 2305 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
 2306 {
 2307         pid_t *pidp = (pid_t *)arg1;
 2308         unsigned int arglen = arg2;
 2309         struct proc *p;
 2310         char *retbuf, *freebuf, *binname;
 2311         int error;
 2312 
 2313         if (arglen != 1)
 2314                 return (EINVAL);
 2315         binname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
 2316         binname[0] = '\0';
 2317         if (*pidp == -1) {      /* -1 means this process */
 2318                 error = 0;
 2319                 p = req->td->td_proc;
 2320                 PROC_LOCK(p);
 2321         } else {
 2322                 error = pget(*pidp, PGET_CANSEE, &p);
 2323         }
 2324 
 2325         if (error == 0)
 2326                 error = proc_get_binpath(p, binname, &retbuf, &freebuf);
 2327         free(binname, M_TEMP);
 2328         if (error != 0)
 2329                 return (error);
 2330         error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
 2331         free(freebuf, M_TEMP);
 2332         return (error);
 2333 }
 2334 
 2335 static int
 2336 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
 2337 {
 2338         struct proc *p;
 2339         char *sv_name;
 2340         int *name;
 2341         int namelen;
 2342         int error;
 2343 
 2344         namelen = arg2;
 2345         if (namelen != 1)
 2346                 return (EINVAL);
 2347 
 2348         name = (int *)arg1;
 2349         error = pget((pid_t)name[0], PGET_CANSEE, &p);
 2350         if (error != 0)
 2351                 return (error);
 2352         sv_name = p->p_sysent->sv_name;
 2353         PROC_UNLOCK(p);
 2354         return (sysctl_handle_string(oidp, sv_name, 0, req));
 2355 }
 2356 
 2357 #ifdef KINFO_OVMENTRY_SIZE
 2358 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
 2359 #endif
 2360 
 2361 #ifdef COMPAT_FREEBSD7
 2362 static int
 2363 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
 2364 {
 2365         vm_map_entry_t entry, tmp_entry;
 2366         unsigned int last_timestamp, namelen;
 2367         char *fullpath, *freepath;
 2368         struct kinfo_ovmentry *kve;
 2369         struct vattr va;
 2370         struct ucred *cred;
 2371         int error, *name;
 2372         struct vnode *vp;
 2373         struct proc *p;
 2374         vm_map_t map;
 2375         struct vmspace *vm;
 2376 
 2377         namelen = arg2;
 2378         if (namelen != 1)
 2379                 return (EINVAL);
 2380 
 2381         name = (int *)arg1;
 2382         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 2383         if (error != 0)
 2384                 return (error);
 2385         vm = vmspace_acquire_ref(p);
 2386         if (vm == NULL) {
 2387                 PRELE(p);
 2388                 return (ESRCH);
 2389         }
 2390         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
 2391 
 2392         map = &vm->vm_map;
 2393         vm_map_lock_read(map);
 2394         VM_MAP_ENTRY_FOREACH(entry, map) {
 2395                 vm_object_t obj, tobj, lobj;
 2396                 vm_offset_t addr;
 2397 
 2398                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 2399                         continue;
 2400 
 2401                 bzero(kve, sizeof(*kve));
 2402                 kve->kve_structsize = sizeof(*kve);
 2403 
 2404                 kve->kve_private_resident = 0;
 2405                 obj = entry->object.vm_object;
 2406                 if (obj != NULL) {
 2407                         VM_OBJECT_RLOCK(obj);
 2408                         if (obj->shadow_count == 1)
 2409                                 kve->kve_private_resident =
 2410                                     obj->resident_page_count;
 2411                 }
 2412                 kve->kve_resident = 0;
 2413                 addr = entry->start;
 2414                 while (addr < entry->end) {
 2415                         if (pmap_extract(map->pmap, addr))
 2416                                 kve->kve_resident++;
 2417                         addr += PAGE_SIZE;
 2418                 }
 2419 
 2420                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
 2421                         if (tobj != obj) {
 2422                                 VM_OBJECT_RLOCK(tobj);
 2423                                 kve->kve_offset += tobj->backing_object_offset;
 2424                         }
 2425                         if (lobj != obj)
 2426                                 VM_OBJECT_RUNLOCK(lobj);
 2427                         lobj = tobj;
 2428                 }
 2429 
 2430                 kve->kve_start = (void*)entry->start;
 2431                 kve->kve_end = (void*)entry->end;
 2432                 kve->kve_offset += (off_t)entry->offset;
 2433 
 2434                 if (entry->protection & VM_PROT_READ)
 2435                         kve->kve_protection |= KVME_PROT_READ;
 2436                 if (entry->protection & VM_PROT_WRITE)
 2437                         kve->kve_protection |= KVME_PROT_WRITE;
 2438                 if (entry->protection & VM_PROT_EXECUTE)
 2439                         kve->kve_protection |= KVME_PROT_EXEC;
 2440 
 2441                 if (entry->eflags & MAP_ENTRY_COW)
 2442                         kve->kve_flags |= KVME_FLAG_COW;
 2443                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 2444                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 2445                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 2446                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 2447 
 2448                 last_timestamp = map->timestamp;
 2449                 vm_map_unlock_read(map);
 2450 
 2451                 kve->kve_fileid = 0;
 2452                 kve->kve_fsid = 0;
 2453                 freepath = NULL;
 2454                 fullpath = "";
 2455                 if (lobj) {
 2456                         kve->kve_type = vm_object_kvme_type(lobj, &vp);
 2457                         if (kve->kve_type == KVME_TYPE_MGTDEVICE)
 2458                                 kve->kve_type = KVME_TYPE_UNKNOWN;
 2459                         if (vp != NULL)
 2460                                 vref(vp);
 2461                         if (lobj != obj)
 2462                                 VM_OBJECT_RUNLOCK(lobj);
 2463 
 2464                         kve->kve_ref_count = obj->ref_count;
 2465                         kve->kve_shadow_count = obj->shadow_count;
 2466                         VM_OBJECT_RUNLOCK(obj);
 2467                         if (vp != NULL) {
 2468                                 vn_fullpath(vp, &fullpath, &freepath);
 2469                                 cred = curthread->td_ucred;
 2470                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2471                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 2472                                         kve->kve_fileid = va.va_fileid;
 2473                                         /* truncate */
 2474                                         kve->kve_fsid = va.va_fsid;
 2475                                 }
 2476                                 vput(vp);
 2477                         }
 2478                 } else {
 2479                         kve->kve_type = KVME_TYPE_NONE;
 2480                         kve->kve_ref_count = 0;
 2481                         kve->kve_shadow_count = 0;
 2482                 }
 2483 
 2484                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 2485                 if (freepath != NULL)
 2486                         free(freepath, M_TEMP);
 2487 
 2488                 error = SYSCTL_OUT(req, kve, sizeof(*kve));
 2489                 vm_map_lock_read(map);
 2490                 if (error)
 2491                         break;
 2492                 if (last_timestamp != map->timestamp) {
 2493                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 2494                         entry = tmp_entry;
 2495                 }
 2496         }
 2497         vm_map_unlock_read(map);
 2498         vmspace_free(vm);
 2499         PRELE(p);
 2500         free(kve, M_TEMP);
 2501         return (error);
 2502 }
 2503 #endif  /* COMPAT_FREEBSD7 */
 2504 
 2505 #ifdef KINFO_VMENTRY_SIZE
 2506 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
 2507 #endif
 2508 
 2509 void
 2510 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
 2511     int *resident_count, bool *super)
 2512 {
 2513         vm_object_t obj, tobj;
 2514         vm_page_t m, m_adv;
 2515         vm_offset_t addr;
 2516         vm_paddr_t pa;
 2517         vm_pindex_t pi, pi_adv, pindex;
 2518 
 2519         *super = false;
 2520         *resident_count = 0;
 2521         if (vmmap_skip_res_cnt)
 2522                 return;
 2523 
 2524         pa = 0;
 2525         obj = entry->object.vm_object;
 2526         addr = entry->start;
 2527         m_adv = NULL;
 2528         pi = OFF_TO_IDX(entry->offset);
 2529         for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
 2530                 if (m_adv != NULL) {
 2531                         m = m_adv;
 2532                 } else {
 2533                         pi_adv = atop(entry->end - addr);
 2534                         pindex = pi;
 2535                         for (tobj = obj;; tobj = tobj->backing_object) {
 2536                                 m = vm_page_find_least(tobj, pindex);
 2537                                 if (m != NULL) {
 2538                                         if (m->pindex == pindex)
 2539                                                 break;
 2540                                         if (pi_adv > m->pindex - pindex) {
 2541                                                 pi_adv = m->pindex - pindex;
 2542                                                 m_adv = m;
 2543                                         }
 2544                                 }
 2545                                 if (tobj->backing_object == NULL)
 2546                                         goto next;
 2547                                 pindex += OFF_TO_IDX(tobj->
 2548                                     backing_object_offset);
 2549                         }
 2550                 }
 2551                 m_adv = NULL;
 2552                 if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
 2553                     (addr & (pagesizes[1] - 1)) == 0 &&
 2554                     (pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) {
 2555                         *super = true;
 2556                         pi_adv = atop(pagesizes[1]);
 2557                 } else {
 2558                         /*
 2559                          * We do not test the found page on validity.
 2560                          * Either the page is busy and being paged in,
 2561                          * or it was invalidated.  The first case
 2562                          * should be counted as resident, the second
 2563                          * is not so clear; we do account both.
 2564                          */
 2565                         pi_adv = 1;
 2566                 }
 2567                 *resident_count += pi_adv;
 2568 next:;
 2569         }
 2570 }
 2571 
 2572 /*
 2573  * Must be called with the process locked and will return unlocked.
 2574  */
 2575 int
 2576 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
 2577 {
 2578         vm_map_entry_t entry, tmp_entry;
 2579         struct vattr va;
 2580         vm_map_t map;
 2581         vm_object_t lobj, nobj, obj, tobj;
 2582         char *fullpath, *freepath;
 2583         struct kinfo_vmentry *kve;
 2584         struct ucred *cred;
 2585         struct vnode *vp;
 2586         struct vmspace *vm;
 2587         vm_offset_t addr;
 2588         unsigned int last_timestamp;
 2589         int error;
 2590         bool guard, super;
 2591 
 2592         PROC_LOCK_ASSERT(p, MA_OWNED);
 2593 
 2594         _PHOLD(p);
 2595         PROC_UNLOCK(p);
 2596         vm = vmspace_acquire_ref(p);
 2597         if (vm == NULL) {
 2598                 PRELE(p);
 2599                 return (ESRCH);
 2600         }
 2601         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
 2602 
 2603         error = 0;
 2604         map = &vm->vm_map;
 2605         vm_map_lock_read(map);
 2606         VM_MAP_ENTRY_FOREACH(entry, map) {
 2607                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 2608                         continue;
 2609 
 2610                 addr = entry->end;
 2611                 bzero(kve, sizeof(*kve));
 2612                 obj = entry->object.vm_object;
 2613                 if (obj != NULL) {
 2614                         if ((obj->flags & OBJ_ANON) != 0)
 2615                                 kve->kve_obj = (uintptr_t)obj;
 2616 
 2617                         for (tobj = obj; tobj != NULL;
 2618                             tobj = tobj->backing_object) {
 2619                                 VM_OBJECT_RLOCK(tobj);
 2620                                 kve->kve_offset += tobj->backing_object_offset;
 2621                                 lobj = tobj;
 2622                         }
 2623                         if (obj->backing_object == NULL)
 2624                                 kve->kve_private_resident =
 2625                                     obj->resident_page_count;
 2626                         kern_proc_vmmap_resident(map, entry,
 2627                             &kve->kve_resident, &super);
 2628                         if (super)
 2629                                 kve->kve_flags |= KVME_FLAG_SUPER;
 2630                         for (tobj = obj; tobj != NULL; tobj = nobj) {
 2631                                 nobj = tobj->backing_object;
 2632                                 if (tobj != obj && tobj != lobj)
 2633                                         VM_OBJECT_RUNLOCK(tobj);
 2634                         }
 2635                 } else {
 2636                         lobj = NULL;
 2637                 }
 2638 
 2639                 kve->kve_start = entry->start;
 2640                 kve->kve_end = entry->end;
 2641                 kve->kve_offset += entry->offset;
 2642 
 2643                 if (entry->protection & VM_PROT_READ)
 2644                         kve->kve_protection |= KVME_PROT_READ;
 2645                 if (entry->protection & VM_PROT_WRITE)
 2646                         kve->kve_protection |= KVME_PROT_WRITE;
 2647                 if (entry->protection & VM_PROT_EXECUTE)
 2648                         kve->kve_protection |= KVME_PROT_EXEC;
 2649 
 2650                 if (entry->eflags & MAP_ENTRY_COW)
 2651                         kve->kve_flags |= KVME_FLAG_COW;
 2652                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 2653                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 2654                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 2655                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 2656                 if (entry->eflags & MAP_ENTRY_GROWS_UP)
 2657                         kve->kve_flags |= KVME_FLAG_GROWS_UP;
 2658                 if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
 2659                         kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
 2660                 if (entry->eflags & MAP_ENTRY_USER_WIRED)
 2661                         kve->kve_flags |= KVME_FLAG_USER_WIRED;
 2662 
 2663                 guard = (entry->eflags & MAP_ENTRY_GUARD) != 0;
 2664 
 2665                 last_timestamp = map->timestamp;
 2666                 vm_map_unlock_read(map);
 2667 
 2668                 freepath = NULL;
 2669                 fullpath = "";
 2670                 if (lobj != NULL) {
 2671                         kve->kve_type = vm_object_kvme_type(lobj, &vp);
 2672                         if (vp != NULL)
 2673                                 vref(vp);
 2674                         if (lobj != obj)
 2675                                 VM_OBJECT_RUNLOCK(lobj);
 2676 
 2677                         kve->kve_ref_count = obj->ref_count;
 2678                         kve->kve_shadow_count = obj->shadow_count;
 2679                         VM_OBJECT_RUNLOCK(obj);
 2680                         if (vp != NULL) {
 2681                                 vn_fullpath(vp, &fullpath, &freepath);
 2682                                 kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
 2683                                 cred = curthread->td_ucred;
 2684                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2685                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 2686                                         kve->kve_vn_fileid = va.va_fileid;
 2687                                         kve->kve_vn_fsid = va.va_fsid;
 2688                                         kve->kve_vn_fsid_freebsd11 =
 2689                                             kve->kve_vn_fsid; /* truncate */
 2690                                         kve->kve_vn_mode =
 2691                                             MAKEIMODE(va.va_type, va.va_mode);
 2692                                         kve->kve_vn_size = va.va_size;
 2693                                         kve->kve_vn_rdev = va.va_rdev;
 2694                                         kve->kve_vn_rdev_freebsd11 =
 2695                                             kve->kve_vn_rdev; /* truncate */
 2696                                         kve->kve_status = KF_ATTR_VALID;
 2697                                 }
 2698                                 vput(vp);
 2699                         }
 2700                 } else {
 2701                         kve->kve_type = guard ? KVME_TYPE_GUARD :
 2702                             KVME_TYPE_NONE;
 2703                         kve->kve_ref_count = 0;
 2704                         kve->kve_shadow_count = 0;
 2705                 }
 2706 
 2707                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 2708                 if (freepath != NULL)
 2709                         free(freepath, M_TEMP);
 2710 
 2711                 /* Pack record size down */
 2712                 if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
 2713                         kve->kve_structsize =
 2714                             offsetof(struct kinfo_vmentry, kve_path) +
 2715                             strlen(kve->kve_path) + 1;
 2716                 else
 2717                         kve->kve_structsize = sizeof(*kve);
 2718                 kve->kve_structsize = roundup(kve->kve_structsize,
 2719                     sizeof(uint64_t));
 2720 
 2721                 /* Halt filling and truncate rather than exceeding maxlen */
 2722                 if (maxlen != -1 && maxlen < kve->kve_structsize) {
 2723                         error = 0;
 2724                         vm_map_lock_read(map);
 2725                         break;
 2726                 } else if (maxlen != -1)
 2727                         maxlen -= kve->kve_structsize;
 2728 
 2729                 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
 2730                         error = ENOMEM;
 2731                 vm_map_lock_read(map);
 2732                 if (error != 0)
 2733                         break;
 2734                 if (last_timestamp != map->timestamp) {
 2735                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 2736                         entry = tmp_entry;
 2737                 }
 2738         }
 2739         vm_map_unlock_read(map);
 2740         vmspace_free(vm);
 2741         PRELE(p);
 2742         free(kve, M_TEMP);
 2743         return (error);
 2744 }
 2745 
 2746 static int
 2747 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
 2748 {
 2749         struct proc *p;
 2750         struct sbuf sb;
 2751         u_int namelen;
 2752         int error, error2, *name;
 2753 
 2754         namelen = arg2;
 2755         if (namelen != 1)
 2756                 return (EINVAL);
 2757 
 2758         name = (int *)arg1;
 2759         sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
 2760         sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 2761         error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
 2762         if (error != 0) {
 2763                 sbuf_delete(&sb);
 2764                 return (error);
 2765         }
 2766         error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
 2767         error2 = sbuf_finish(&sb);
 2768         sbuf_delete(&sb);
 2769         return (error != 0 ? error : error2);
 2770 }
 2771 
 2772 #if defined(STACK) || defined(DDB)
 2773 static int
 2774 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
 2775 {
 2776         struct kinfo_kstack *kkstp;
 2777         int error, i, *name, numthreads;
 2778         lwpid_t *lwpidarray;
 2779         struct thread *td;
 2780         struct stack *st;
 2781         struct sbuf sb;
 2782         struct proc *p;
 2783         u_int namelen;
 2784 
 2785         namelen = arg2;
 2786         if (namelen != 1)
 2787                 return (EINVAL);
 2788 
 2789         name = (int *)arg1;
 2790         error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
 2791         if (error != 0)
 2792                 return (error);
 2793 
 2794         kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
 2795         st = stack_create(M_WAITOK);
 2796 
 2797         lwpidarray = NULL;
 2798         PROC_LOCK(p);
 2799         do {
 2800                 if (lwpidarray != NULL) {
 2801                         free(lwpidarray, M_TEMP);
 2802                         lwpidarray = NULL;
 2803                 }
 2804                 numthreads = p->p_numthreads;
 2805                 PROC_UNLOCK(p);
 2806                 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
 2807                     M_WAITOK | M_ZERO);
 2808                 PROC_LOCK(p);
 2809         } while (numthreads < p->p_numthreads);
 2810 
 2811         /*
 2812          * XXXRW: During the below loop, execve(2) and countless other sorts
 2813          * of changes could have taken place.  Should we check to see if the
 2814          * vmspace has been replaced, or the like, in order to prevent
 2815          * giving a snapshot that spans, say, execve(2), with some threads
 2816          * before and some after?  Among other things, the credentials could
 2817          * have changed, in which case the right to extract debug info might
 2818          * no longer be assured.
 2819          */
 2820         i = 0;
 2821         FOREACH_THREAD_IN_PROC(p, td) {
 2822                 KASSERT(i < numthreads,
 2823                     ("sysctl_kern_proc_kstack: numthreads"));
 2824                 lwpidarray[i] = td->td_tid;
 2825                 i++;
 2826         }
 2827         PROC_UNLOCK(p);
 2828         numthreads = i;
 2829         for (i = 0; i < numthreads; i++) {
 2830                 td = tdfind(lwpidarray[i], p->p_pid);
 2831                 if (td == NULL) {
 2832                         continue;
 2833                 }
 2834                 bzero(kkstp, sizeof(*kkstp));
 2835                 (void)sbuf_new(&sb, kkstp->kkst_trace,
 2836                     sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
 2837                 thread_lock(td);
 2838                 kkstp->kkst_tid = td->td_tid;
 2839                 if (TD_IS_SWAPPED(td))
 2840                         kkstp->kkst_state = KKST_STATE_SWAPPED;
 2841                 else if (stack_save_td(st, td) == 0)
 2842                         kkstp->kkst_state = KKST_STATE_STACKOK;
 2843                 else
 2844                         kkstp->kkst_state = KKST_STATE_RUNNING;
 2845                 thread_unlock(td);
 2846                 PROC_UNLOCK(p);
 2847                 stack_sbuf_print(&sb, st);
 2848                 sbuf_finish(&sb);
 2849                 sbuf_delete(&sb);
 2850                 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
 2851                 if (error)
 2852                         break;
 2853         }
 2854         PRELE(p);
 2855         if (lwpidarray != NULL)
 2856                 free(lwpidarray, M_TEMP);
 2857         stack_destroy(st);
 2858         free(kkstp, M_TEMP);
 2859         return (error);
 2860 }
 2861 #endif
 2862 
 2863 /*
 2864  * This sysctl allows a process to retrieve the full list of groups from
 2865  * itself or another process.
 2866  */
 2867 static int
 2868 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
 2869 {
 2870         pid_t *pidp = (pid_t *)arg1;
 2871         unsigned int arglen = arg2;
 2872         struct proc *p;
 2873         struct ucred *cred;
 2874         int error;
 2875 
 2876         if (arglen != 1)
 2877                 return (EINVAL);
 2878         if (*pidp == -1) {      /* -1 means this process */
 2879                 p = req->td->td_proc;
 2880                 PROC_LOCK(p);
 2881         } else {
 2882                 error = pget(*pidp, PGET_CANSEE, &p);
 2883                 if (error != 0)
 2884                         return (error);
 2885         }
 2886 
 2887         cred = crhold(p->p_ucred);
 2888         PROC_UNLOCK(p);
 2889 
 2890         error = SYSCTL_OUT(req, cred->cr_groups,
 2891             cred->cr_ngroups * sizeof(gid_t));
 2892         crfree(cred);
 2893         return (error);
 2894 }
 2895 
 2896 /*
 2897  * This sysctl allows a process to retrieve or/and set the resource limit for
 2898  * another process.
 2899  */
 2900 static int
 2901 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
 2902 {
 2903         int *name = (int *)arg1;
 2904         u_int namelen = arg2;
 2905         struct rlimit rlim;
 2906         struct proc *p;
 2907         u_int which;
 2908         int flags, error;
 2909 
 2910         if (namelen != 2)
 2911                 return (EINVAL);
 2912 
 2913         which = (u_int)name[1];
 2914         if (which >= RLIM_NLIMITS)
 2915                 return (EINVAL);
 2916 
 2917         if (req->newptr != NULL && req->newlen != sizeof(rlim))
 2918                 return (EINVAL);
 2919 
 2920         flags = PGET_HOLD | PGET_NOTWEXIT;
 2921         if (req->newptr != NULL)
 2922                 flags |= PGET_CANDEBUG;
 2923         else
 2924                 flags |= PGET_CANSEE;
 2925         error = pget((pid_t)name[0], flags, &p);
 2926         if (error != 0)
 2927                 return (error);
 2928 
 2929         /*
 2930          * Retrieve limit.
 2931          */
 2932         if (req->oldptr != NULL) {
 2933                 PROC_LOCK(p);
 2934                 lim_rlimit_proc(p, which, &rlim);
 2935                 PROC_UNLOCK(p);
 2936         }
 2937         error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
 2938         if (error != 0)
 2939                 goto errout;
 2940 
 2941         /*
 2942          * Set limit.
 2943          */
 2944         if (req->newptr != NULL) {
 2945                 error = SYSCTL_IN(req, &rlim, sizeof(rlim));
 2946                 if (error == 0)
 2947                         error = kern_proc_setrlimit(curthread, p, which, &rlim);
 2948         }
 2949 
 2950 errout:
 2951         PRELE(p);
 2952         return (error);
 2953 }
 2954 
 2955 /*
 2956  * This sysctl allows a process to retrieve ps_strings structure location of
 2957  * another process.
 2958  */
 2959 static int
 2960 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
 2961 {
 2962         int *name = (int *)arg1;
 2963         u_int namelen = arg2;
 2964         struct proc *p;
 2965         vm_offset_t ps_strings;
 2966         int error;
 2967 #ifdef COMPAT_FREEBSD32
 2968         uint32_t ps_strings32;
 2969 #endif
 2970 
 2971         if (namelen != 1)
 2972                 return (EINVAL);
 2973 
 2974         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 2975         if (error != 0)
 2976                 return (error);
 2977 #ifdef COMPAT_FREEBSD32
 2978         if ((req->flags & SCTL_MASK32) != 0) {
 2979                 /*
 2980                  * We return 0 if the 32 bit emulation request is for a 64 bit
 2981                  * process.
 2982                  */
 2983                 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
 2984                     PTROUT(PROC_PS_STRINGS(p)) : 0;
 2985                 PROC_UNLOCK(p);
 2986                 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
 2987                 return (error);
 2988         }
 2989 #endif
 2990         ps_strings = PROC_PS_STRINGS(p);
 2991         PROC_UNLOCK(p);
 2992         error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
 2993         return (error);
 2994 }
 2995 
 2996 /*
 2997  * This sysctl allows a process to retrieve umask of another process.
 2998  */
 2999 static int
 3000 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
 3001 {
 3002         int *name = (int *)arg1;
 3003         u_int namelen = arg2;
 3004         struct proc *p;
 3005         int error;
 3006         u_short cmask;
 3007         pid_t pid;
 3008 
 3009         if (namelen != 1)
 3010                 return (EINVAL);
 3011 
 3012         pid = (pid_t)name[0];
 3013         p = curproc;
 3014         if (pid == p->p_pid || pid == 0) {
 3015                 cmask = p->p_pd->pd_cmask;
 3016                 goto out;
 3017         }
 3018 
 3019         error = pget(pid, PGET_WANTREAD, &p);
 3020         if (error != 0)
 3021                 return (error);
 3022 
 3023         cmask = p->p_pd->pd_cmask;
 3024         PRELE(p);
 3025 out:
 3026         error = SYSCTL_OUT(req, &cmask, sizeof(cmask));
 3027         return (error);
 3028 }
 3029 
 3030 /*
 3031  * This sysctl allows a process to set and retrieve binary osreldate of
 3032  * another process.
 3033  */
 3034 static int
 3035 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
 3036 {
 3037         int *name = (int *)arg1;
 3038         u_int namelen = arg2;
 3039         struct proc *p;
 3040         int flags, error, osrel;
 3041 
 3042         if (namelen != 1)
 3043                 return (EINVAL);
 3044 
 3045         if (req->newptr != NULL && req->newlen != sizeof(osrel))
 3046                 return (EINVAL);
 3047 
 3048         flags = PGET_HOLD | PGET_NOTWEXIT;
 3049         if (req->newptr != NULL)
 3050                 flags |= PGET_CANDEBUG;
 3051         else
 3052                 flags |= PGET_CANSEE;
 3053         error = pget((pid_t)name[0], flags, &p);
 3054         if (error != 0)
 3055                 return (error);
 3056 
 3057         error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
 3058         if (error != 0)
 3059                 goto errout;
 3060 
 3061         if (req->newptr != NULL) {
 3062                 error = SYSCTL_IN(req, &osrel, sizeof(osrel));
 3063                 if (error != 0)
 3064                         goto errout;
 3065                 if (osrel < 0) {
 3066                         error = EINVAL;
 3067                         goto errout;
 3068                 }
 3069                 p->p_osrel = osrel;
 3070         }
 3071 errout:
 3072         PRELE(p);
 3073         return (error);
 3074 }
 3075 
 3076 static int
 3077 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
 3078 {
 3079         int *name = (int *)arg1;
 3080         u_int namelen = arg2;
 3081         struct proc *p;
 3082         struct kinfo_sigtramp kst;
 3083         const struct sysentvec *sv;
 3084         int error;
 3085 #ifdef COMPAT_FREEBSD32
 3086         struct kinfo_sigtramp32 kst32;
 3087 #endif
 3088 
 3089         if (namelen != 1)
 3090                 return (EINVAL);
 3091 
 3092         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 3093         if (error != 0)
 3094                 return (error);
 3095         sv = p->p_sysent;
 3096 #ifdef COMPAT_FREEBSD32
 3097         if ((req->flags & SCTL_MASK32) != 0) {
 3098                 bzero(&kst32, sizeof(kst32));
 3099                 if (SV_PROC_FLAG(p, SV_ILP32)) {
 3100                         if (sv->sv_sigcode_base != 0) {
 3101                                 kst32.ksigtramp_start = sv->sv_sigcode_base;
 3102                                 kst32.ksigtramp_end = sv->sv_sigcode_base +
 3103                                     ((sv->sv_flags & SV_DSO_SIG) == 0 ?
 3104                                     *sv->sv_szsigcode :
 3105                                     (uintptr_t)sv->sv_szsigcode);
 3106                         } else {
 3107                                 kst32.ksigtramp_start = PROC_PS_STRINGS(p) -
 3108                                     *sv->sv_szsigcode;
 3109                                 kst32.ksigtramp_end = PROC_PS_STRINGS(p);
 3110                         }
 3111                 }
 3112                 PROC_UNLOCK(p);
 3113                 error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
 3114                 return (error);
 3115         }
 3116 #endif
 3117         bzero(&kst, sizeof(kst));
 3118         if (sv->sv_sigcode_base != 0) {
 3119                 kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
 3120                 kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
 3121                     ((sv->sv_flags & SV_DSO_SIG) == 0 ? *sv->sv_szsigcode :
 3122                     (uintptr_t)sv->sv_szsigcode);
 3123         } else {
 3124                 kst.ksigtramp_start = (char *)PROC_PS_STRINGS(p) -
 3125                     *sv->sv_szsigcode;
 3126                 kst.ksigtramp_end = (char *)PROC_PS_STRINGS(p);
 3127         }
 3128         PROC_UNLOCK(p);
 3129         error = SYSCTL_OUT(req, &kst, sizeof(kst));
 3130         return (error);
 3131 }
 3132 
 3133 static int
 3134 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)
 3135 {
 3136         int *name = (int *)arg1;
 3137         u_int namelen = arg2;
 3138         pid_t pid;
 3139         struct proc *p;
 3140         struct thread *td1;
 3141         uintptr_t addr;
 3142 #ifdef COMPAT_FREEBSD32
 3143         uint32_t addr32;
 3144 #endif
 3145         int error;
 3146 
 3147         if (namelen != 1 || req->newptr != NULL)
 3148                 return (EINVAL);
 3149 
 3150         pid = (pid_t)name[0];
 3151         error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p);
 3152         if (error != 0)
 3153                 return (error);
 3154 
 3155         PROC_LOCK(p);
 3156 #ifdef COMPAT_FREEBSD32
 3157         if (SV_CURPROC_FLAG(SV_ILP32)) {
 3158                 if (!SV_PROC_FLAG(p, SV_ILP32)) {
 3159                         error = EINVAL;
 3160                         goto errlocked;
 3161                 }
 3162         }
 3163 #endif
 3164         if (pid <= PID_MAX) {
 3165                 td1 = FIRST_THREAD_IN_PROC(p);
 3166         } else {
 3167                 FOREACH_THREAD_IN_PROC(p, td1) {
 3168                         if (td1->td_tid == pid)
 3169                                 break;
 3170                 }
 3171         }
 3172         if (td1 == NULL) {
 3173                 error = ESRCH;
 3174                 goto errlocked;
 3175         }
 3176         /*
 3177          * The access to the private thread flags.  It is fine as far
 3178          * as no out-of-thin-air values are read from td_pflags, and
 3179          * usermode read of the td_sigblock_ptr is racy inherently,
 3180          * since target process might have already changed it
 3181          * meantime.
 3182          */
 3183         if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0)
 3184                 addr = (uintptr_t)td1->td_sigblock_ptr;
 3185         else
 3186                 error = ENOTTY;
 3187 
 3188 errlocked:
 3189         _PRELE(p);
 3190         PROC_UNLOCK(p);
 3191         if (error != 0)
 3192                 return (error);
 3193 
 3194 #ifdef COMPAT_FREEBSD32
 3195         if (SV_CURPROC_FLAG(SV_ILP32)) {
 3196                 addr32 = addr;
 3197                 error = SYSCTL_OUT(req, &addr32, sizeof(addr32));
 3198         } else
 3199 #endif
 3200                 error = SYSCTL_OUT(req, &addr, sizeof(addr));
 3201         return (error);
 3202 }
 3203 
 3204 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,  0,
 3205     "Process table");
 3206 
 3207 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
 3208         CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
 3209         "Return entire process table");
 3210 
 3211 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 3212         sysctl_kern_proc, "Process table");
 3213 
 3214 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
 3215         sysctl_kern_proc, "Process table");
 3216 
 3217 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 3218         sysctl_kern_proc, "Process table");
 3219 
 3220 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
 3221         CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 3222 
 3223 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
 3224         sysctl_kern_proc, "Process table");
 3225 
 3226 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 3227         sysctl_kern_proc, "Process table");
 3228 
 3229 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 3230         sysctl_kern_proc, "Process table");
 3231 
 3232 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 3233         sysctl_kern_proc, "Process table");
 3234 
 3235 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
 3236         sysctl_kern_proc, "Return process table, no threads");
 3237 
 3238 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
 3239         CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
 3240         sysctl_kern_proc_args, "Process argument list");
 3241 
 3242 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
 3243         sysctl_kern_proc_env, "Process environment");
 3244 
 3245 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
 3246         CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
 3247 
 3248 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
 3249         CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
 3250 
 3251 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
 3252         CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
 3253         "Process syscall vector name (ABI type)");
 3254 
 3255 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
 3256         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 3257 
 3258 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
 3259         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 3260 
 3261 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
 3262         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 3263 
 3264 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
 3265         sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 3266 
 3267 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
 3268         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 3269 
 3270 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
 3271         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 3272 
 3273 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
 3274         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 3275 
 3276 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
 3277         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 3278 
 3279 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
 3280         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
 3281         "Return process table, including threads");
 3282 
 3283 #ifdef COMPAT_FREEBSD7
 3284 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
 3285         CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
 3286 #endif
 3287 
 3288 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
 3289         CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
 3290 
 3291 #if defined(STACK) || defined(DDB)
 3292 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
 3293         CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
 3294 #endif
 3295 
 3296 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
 3297         CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
 3298 
 3299 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
 3300         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
 3301         "Process resource limits");
 3302 
 3303 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
 3304         CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
 3305         "Process ps_strings location");
 3306 
 3307 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
 3308         CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
 3309 
 3310 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
 3311         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
 3312         "Process binary osreldate");
 3313 
 3314 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
 3315         CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
 3316         "Process signal trampoline location");
 3317 
 3318 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD |
 3319         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk,
 3320         "Thread sigfastblock address");
 3321 
 3322 static struct sx stop_all_proc_blocker;
 3323 SX_SYSINIT(stop_all_proc_blocker, &stop_all_proc_blocker, "sapblk");
 3324 
 3325 bool
 3326 stop_all_proc_block(void)
 3327 {
 3328         return (sx_xlock_sig(&stop_all_proc_blocker) == 0);
 3329 }
 3330 
 3331 void
 3332 stop_all_proc_unblock(void)
 3333 {
 3334         sx_xunlock(&stop_all_proc_blocker);
 3335 }
 3336 
 3337 int allproc_gen;
 3338 
 3339 /*
 3340  * stop_all_proc() purpose is to stop all process which have usermode,
 3341  * except current process for obvious reasons.  This makes it somewhat
 3342  * unreliable when invoked from multithreaded process.  The service
 3343  * must not be user-callable anyway.
 3344  */
 3345 void
 3346 stop_all_proc(void)
 3347 {
 3348         struct proc *cp, *p;
 3349         int r, gen;
 3350         bool restart, seen_stopped, seen_exiting, stopped_some;
 3351 
 3352         if (!stop_all_proc_block())
 3353                 return;
 3354 
 3355         cp = curproc;
 3356 allproc_loop:
 3357         sx_xlock(&allproc_lock);
 3358         gen = allproc_gen;
 3359         seen_exiting = seen_stopped = stopped_some = restart = false;
 3360         LIST_REMOVE(cp, p_list);
 3361         LIST_INSERT_HEAD(&allproc, cp, p_list);
 3362         for (;;) {
 3363                 p = LIST_NEXT(cp, p_list);
 3364                 if (p == NULL)
 3365                         break;
 3366                 LIST_REMOVE(cp, p_list);
 3367                 LIST_INSERT_AFTER(p, cp, p_list);
 3368                 PROC_LOCK(p);
 3369                 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) {
 3370                         PROC_UNLOCK(p);
 3371                         continue;
 3372                 }
 3373                 if ((p->p_flag2 & P2_WEXIT) != 0) {
 3374                         seen_exiting = true;
 3375                         PROC_UNLOCK(p);
 3376                         continue;
 3377                 }
 3378                 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
 3379                         /*
 3380                          * Stopped processes are tolerated when there
 3381                          * are no other processes which might continue
 3382                          * them.  P_STOPPED_SINGLE but not
 3383                          * P_TOTAL_STOP process still has at least one
 3384                          * thread running.
 3385                          */
 3386                         seen_stopped = true;
 3387                         PROC_UNLOCK(p);
 3388                         continue;
 3389                 }
 3390                 sx_xunlock(&allproc_lock);
 3391                 _PHOLD(p);
 3392                 r = thread_single(p, SINGLE_ALLPROC);
 3393                 if (r != 0)
 3394                         restart = true;
 3395                 else
 3396                         stopped_some = true;
 3397                 _PRELE(p);
 3398                 PROC_UNLOCK(p);
 3399                 sx_xlock(&allproc_lock);
 3400         }
 3401         /* Catch forked children we did not see in iteration. */
 3402         if (gen != allproc_gen)
 3403                 restart = true;
 3404         sx_xunlock(&allproc_lock);
 3405         if (restart || stopped_some || seen_exiting || seen_stopped) {
 3406                 kern_yield(PRI_USER);
 3407                 goto allproc_loop;
 3408         }
 3409 }
 3410 
 3411 void
 3412 resume_all_proc(void)
 3413 {
 3414         struct proc *cp, *p;
 3415 
 3416         cp = curproc;
 3417         sx_xlock(&allproc_lock);
 3418 again:
 3419         LIST_REMOVE(cp, p_list);
 3420         LIST_INSERT_HEAD(&allproc, cp, p_list);
 3421         for (;;) {
 3422                 p = LIST_NEXT(cp, p_list);
 3423                 if (p == NULL)
 3424                         break;
 3425                 LIST_REMOVE(cp, p_list);
 3426                 LIST_INSERT_AFTER(p, cp, p_list);
 3427                 PROC_LOCK(p);
 3428                 if ((p->p_flag & P_TOTAL_STOP) != 0) {
 3429                         sx_xunlock(&allproc_lock);
 3430                         _PHOLD(p);
 3431                         thread_single_end(p, SINGLE_ALLPROC);
 3432                         _PRELE(p);
 3433                         PROC_UNLOCK(p);
 3434                         sx_xlock(&allproc_lock);
 3435                 } else {
 3436                         PROC_UNLOCK(p);
 3437                 }
 3438         }
 3439         /*  Did the loop above missed any stopped process ? */
 3440         FOREACH_PROC_IN_SYSTEM(p) {
 3441                 /* No need for proc lock. */
 3442                 if ((p->p_flag & P_TOTAL_STOP) != 0)
 3443                         goto again;
 3444         }
 3445         sx_xunlock(&allproc_lock);
 3446 
 3447         stop_all_proc_unblock();
 3448 }
 3449 
 3450 /* #define      TOTAL_STOP_DEBUG        1 */
 3451 #ifdef TOTAL_STOP_DEBUG
 3452 volatile static int ap_resume;
 3453 #include <sys/mount.h>
 3454 
 3455 static int
 3456 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
 3457 {
 3458         int error, val;
 3459 
 3460         val = 0;
 3461         ap_resume = 0;
 3462         error = sysctl_handle_int(oidp, &val, 0, req);
 3463         if (error != 0 || req->newptr == NULL)
 3464                 return (error);
 3465         if (val != 0) {
 3466                 stop_all_proc();
 3467                 syncer_suspend();
 3468                 while (ap_resume == 0)
 3469                         ;
 3470                 syncer_resume();
 3471                 resume_all_proc();
 3472         }
 3473         return (0);
 3474 }
 3475 
 3476 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
 3477     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
 3478     sysctl_debug_stop_all_proc, "I",
 3479     "");
 3480 #endif

Cache object: 8258609d5bc1cc858ab3e135189ba477


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.