The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_proc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
   30  * $FreeBSD: releng/5.3/sys/kern/kern_proc.c 136588 2004-10-16 08:43:07Z cvs2svn $
   31  */
   32 
   33 #include <sys/cdefs.h>
   34 __FBSDID("$FreeBSD: releng/5.3/sys/kern/kern_proc.c 136588 2004-10-16 08:43:07Z cvs2svn $");
   35 
   36 #include "opt_ktrace.h"
   37 #include "opt_kstack_pages.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/systm.h>
   41 #include <sys/kernel.h>
   42 #include <sys/lock.h>
   43 #include <sys/malloc.h>
   44 #include <sys/mutex.h>
   45 #include <sys/proc.h>
   46 #include <sys/sysent.h>
   47 #include <sys/sched.h>
   48 #include <sys/smp.h>
   49 #include <sys/sysctl.h>
   50 #include <sys/filedesc.h>
   51 #include <sys/tty.h>
   52 #include <sys/signalvar.h>
   53 #include <sys/sx.h>
   54 #include <sys/user.h>
   55 #include <sys/jail.h>
   56 #ifdef KTRACE
   57 #include <sys/uio.h>
   58 #include <sys/ktrace.h>
   59 #endif
   60 
   61 #include <vm/vm.h>
   62 #include <vm/vm_extern.h>
   63 #include <vm/pmap.h>
   64 #include <vm/vm_map.h>
   65 #include <vm/uma.h>
   66 #include <machine/critical.h>
   67 
   68 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
   69 MALLOC_DEFINE(M_SESSION, "session", "session header");
   70 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
   71 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
   72 
   73 static void doenterpgrp(struct proc *, struct pgrp *);
   74 static void orphanpg(struct pgrp *pg);
   75 static void pgadjustjobc(struct pgrp *pgrp, int entering);
   76 static void pgdelete(struct pgrp *);
   77 static int proc_ctor(void *mem, int size, void *arg, int flags);
   78 static void proc_dtor(void *mem, int size, void *arg);
   79 static int proc_init(void *mem, int size, int flags);
   80 static void proc_fini(void *mem, int size);
   81 
   82 /*
   83  * Other process lists
   84  */
   85 struct pidhashhead *pidhashtbl;
   86 u_long pidhash;
   87 struct pgrphashhead *pgrphashtbl;
   88 u_long pgrphash;
   89 struct proclist allproc;
   90 struct proclist zombproc;
   91 struct sx allproc_lock;
   92 struct sx proctree_lock;
   93 struct mtx pargs_ref_lock;
   94 struct mtx ppeers_lock;
   95 uma_zone_t proc_zone;
   96 uma_zone_t ithread_zone;
   97 
   98 int kstack_pages = KSTACK_PAGES;
   99 int uarea_pages = UAREA_PAGES;
  100 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "");
  101 SYSCTL_INT(_kern, OID_AUTO, uarea_pages, CTLFLAG_RD, &uarea_pages, 0, "");
  102 
  103 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
  104 
  105 /*
  106  * Initialize global process hashing structures.
  107  */
  108 void
  109 procinit()
  110 {
  111 
  112         sx_init(&allproc_lock, "allproc");
  113         sx_init(&proctree_lock, "proctree");
  114         mtx_init(&pargs_ref_lock, "struct pargs.ref", NULL, MTX_DEF);
  115         mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
  116         LIST_INIT(&allproc);
  117         LIST_INIT(&zombproc);
  118         pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
  119         pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
  120         proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
  121             proc_ctor, proc_dtor, proc_init, proc_fini,
  122             UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  123         uihashinit();
  124 }
  125 
  126 /*
  127  * Prepare a proc for use.
  128  */
  129 static int
  130 proc_ctor(void *mem, int size, void *arg, int flags)
  131 {
  132         struct proc *p;
  133 
  134         p = (struct proc *)mem;
  135         return (0);
  136 }
  137 
  138 /*
  139  * Reclaim a proc after use.
  140  */
  141 static void
  142 proc_dtor(void *mem, int size, void *arg)
  143 {
  144         struct proc *p;
  145         struct thread *td;
  146 #ifdef INVARIANTS
  147         struct ksegrp *kg;
  148 #endif
  149 
  150         /* INVARIANTS checks go here */
  151         p = (struct proc *)mem;
  152         td = FIRST_THREAD_IN_PROC(p);
  153 #ifdef INVARIANTS
  154         KASSERT((p->p_numthreads == 1),
  155             ("bad number of threads in exiting process"));
  156         KASSERT((td != NULL), ("proc_dtor: bad thread pointer"));
  157         kg = FIRST_KSEGRP_IN_PROC(p);
  158         KASSERT((kg != NULL), ("proc_dtor: bad kg pointer"));
  159 #endif
  160 
  161         /* Dispose of an alternate kstack, if it exists.
  162          * XXX What if there are more than one thread in the proc?
  163          *     The first thread in the proc is special and not
  164          *     freed, so you gotta do this here.
  165          */
  166         if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0))
  167                 vm_thread_dispose_altkstack(td);
  168 }
  169 
  170 /*
  171  * Initialize type-stable parts of a proc (when newly created).
  172  */
  173 static int
  174 proc_init(void *mem, int size, int flags)
  175 {
  176         struct proc *p;
  177         struct thread *td;
  178         struct ksegrp *kg;
  179 
  180         p = (struct proc *)mem;
  181         p->p_sched = (struct p_sched *)&p[1];
  182         vm_proc_new(p);
  183         td = thread_alloc();
  184         kg = ksegrp_alloc();
  185         bzero(&p->p_mtx, sizeof(struct mtx));
  186         mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
  187         proc_linkup(p, kg, td);
  188         sched_newproc(p, kg, td);
  189         return (0);
  190 }
  191 
  192 /*
  193  * Tear down type-stable parts of a proc (just before being discarded)
  194  */
  195 static void
  196 proc_fini(void *mem, int size)
  197 {
  198         struct proc *p;
  199         struct thread *td;
  200         struct ksegrp *kg;
  201 
  202         p = (struct proc *)mem;
  203         KASSERT((p->p_numthreads == 1),
  204             ("bad number of threads in freeing process"));
  205         td = FIRST_THREAD_IN_PROC(p);
  206         KASSERT((td != NULL), ("proc_fini: bad thread pointer"));
  207         kg = FIRST_KSEGRP_IN_PROC(p);
  208         KASSERT((kg != NULL), ("proc_fini: bad kg pointer"));
  209         vm_proc_dispose(p);
  210         sched_destroyproc(p);
  211         thread_free(td);
  212         ksegrp_free(kg);
  213         mtx_destroy(&p->p_mtx);
  214 }
  215 
  216 /*
  217  * Is p an inferior of the current process?
  218  */
  219 int
  220 inferior(p)
  221         register struct proc *p;
  222 {
  223 
  224         sx_assert(&proctree_lock, SX_LOCKED);
  225         for (; p != curproc; p = p->p_pptr)
  226                 if (p->p_pid == 0)
  227                         return (0);
  228         return (1);
  229 }
  230 
  231 /*
  232  * Locate a process by number; return only "live" processes -- i.e., neither
  233  * zombies nor newly born but incompletely initialized processes.  By not
  234  * returning processes in the PRS_NEW state, we allow callers to avoid
  235  * testing for that condition to avoid dereferencing p_ucred, et al.
  236  */
  237 struct proc *
  238 pfind(pid)
  239         register pid_t pid;
  240 {
  241         register struct proc *p;
  242 
  243         sx_slock(&allproc_lock);
  244         LIST_FOREACH(p, PIDHASH(pid), p_hash)
  245                 if (p->p_pid == pid) {
  246                         if (p->p_state == PRS_NEW) {
  247                                 p = NULL;
  248                                 break;
  249                         }
  250                         PROC_LOCK(p);
  251                         break;
  252                 }
  253         sx_sunlock(&allproc_lock);
  254         return (p);
  255 }
  256 
  257 /*
  258  * Locate a process group by number.
  259  * The caller must hold proctree_lock.
  260  */
  261 struct pgrp *
  262 pgfind(pgid)
  263         register pid_t pgid;
  264 {
  265         register struct pgrp *pgrp;
  266 
  267         sx_assert(&proctree_lock, SX_LOCKED);
  268 
  269         LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
  270                 if (pgrp->pg_id == pgid) {
  271                         PGRP_LOCK(pgrp);
  272                         return (pgrp);
  273                 }
  274         }
  275         return (NULL);
  276 }
  277 
  278 /*
  279  * Create a new process group.
  280  * pgid must be equal to the pid of p.
  281  * Begin a new session if required.
  282  */
  283 int
  284 enterpgrp(p, pgid, pgrp, sess)
  285         register struct proc *p;
  286         pid_t pgid;
  287         struct pgrp *pgrp;
  288         struct session *sess;
  289 {
  290         struct pgrp *pgrp2;
  291 
  292         sx_assert(&proctree_lock, SX_XLOCKED);
  293 
  294         KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
  295         KASSERT(p->p_pid == pgid,
  296             ("enterpgrp: new pgrp and pid != pgid"));
  297 
  298         pgrp2 = pgfind(pgid);
  299 
  300         KASSERT(pgrp2 == NULL,
  301             ("enterpgrp: pgrp with pgid exists"));
  302         KASSERT(!SESS_LEADER(p),
  303             ("enterpgrp: session leader attempted setpgrp"));
  304 
  305         mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
  306 
  307         if (sess != NULL) {
  308                 /*
  309                  * new session
  310                  */
  311                 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
  312                 PROC_LOCK(p);
  313                 p->p_flag &= ~P_CONTROLT;
  314                 PROC_UNLOCK(p);
  315                 PGRP_LOCK(pgrp);
  316                 sess->s_leader = p;
  317                 sess->s_sid = p->p_pid;
  318                 sess->s_count = 1;
  319                 sess->s_ttyvp = NULL;
  320                 sess->s_ttyp = NULL;
  321                 bcopy(p->p_session->s_login, sess->s_login,
  322                             sizeof(sess->s_login));
  323                 pgrp->pg_session = sess;
  324                 KASSERT(p == curproc,
  325                     ("enterpgrp: mksession and p != curproc"));
  326         } else {
  327                 pgrp->pg_session = p->p_session;
  328                 SESS_LOCK(pgrp->pg_session);
  329                 pgrp->pg_session->s_count++;
  330                 SESS_UNLOCK(pgrp->pg_session);
  331                 PGRP_LOCK(pgrp);
  332         }
  333         pgrp->pg_id = pgid;
  334         LIST_INIT(&pgrp->pg_members);
  335 
  336         /*
  337          * As we have an exclusive lock of proctree_lock,
  338          * this should not deadlock.
  339          */
  340         LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
  341         pgrp->pg_jobc = 0;
  342         SLIST_INIT(&pgrp->pg_sigiolst);
  343         PGRP_UNLOCK(pgrp);
  344 
  345         doenterpgrp(p, pgrp);
  346 
  347         return (0);
  348 }
  349 
  350 /*
  351  * Move p to an existing process group
  352  */
  353 int
  354 enterthispgrp(p, pgrp)
  355         register struct proc *p;
  356         struct pgrp *pgrp;
  357 {
  358 
  359         sx_assert(&proctree_lock, SX_XLOCKED);
  360         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  361         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  362         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  363         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  364         KASSERT(pgrp->pg_session == p->p_session,
  365                 ("%s: pgrp's session %p, p->p_session %p.\n",
  366                 __func__,
  367                 pgrp->pg_session,
  368                 p->p_session));
  369         KASSERT(pgrp != p->p_pgrp,
  370                 ("%s: p belongs to pgrp.", __func__));
  371 
  372         doenterpgrp(p, pgrp);
  373 
  374         return (0);
  375 }
  376 
  377 /*
  378  * Move p to a process group
  379  */
  380 static void
  381 doenterpgrp(p, pgrp)
  382         struct proc *p;
  383         struct pgrp *pgrp;
  384 {
  385         struct pgrp *savepgrp;
  386 
  387         sx_assert(&proctree_lock, SX_XLOCKED);
  388         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  389         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  390         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  391         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  392 
  393         savepgrp = p->p_pgrp;
  394 
  395         /*
  396          * Adjust eligibility of affected pgrps to participate in job control.
  397          * Increment eligibility counts before decrementing, otherwise we
  398          * could reach 0 spuriously during the first call.
  399          */
  400         fixjobc(p, pgrp, 1);
  401         fixjobc(p, p->p_pgrp, 0);
  402 
  403         PGRP_LOCK(pgrp);
  404         PGRP_LOCK(savepgrp);
  405         PROC_LOCK(p);
  406         LIST_REMOVE(p, p_pglist);
  407         p->p_pgrp = pgrp;
  408         PROC_UNLOCK(p);
  409         LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
  410         PGRP_UNLOCK(savepgrp);
  411         PGRP_UNLOCK(pgrp);
  412         if (LIST_EMPTY(&savepgrp->pg_members))
  413                 pgdelete(savepgrp);
  414 }
  415 
  416 /*
  417  * remove process from process group
  418  */
  419 int
  420 leavepgrp(p)
  421         register struct proc *p;
  422 {
  423         struct pgrp *savepgrp;
  424 
  425         sx_assert(&proctree_lock, SX_XLOCKED);
  426         savepgrp = p->p_pgrp;
  427         PGRP_LOCK(savepgrp);
  428         PROC_LOCK(p);
  429         LIST_REMOVE(p, p_pglist);
  430         p->p_pgrp = NULL;
  431         PROC_UNLOCK(p);
  432         PGRP_UNLOCK(savepgrp);
  433         if (LIST_EMPTY(&savepgrp->pg_members))
  434                 pgdelete(savepgrp);
  435         return (0);
  436 }
  437 
  438 /*
  439  * delete a process group
  440  */
  441 static void
  442 pgdelete(pgrp)
  443         register struct pgrp *pgrp;
  444 {
  445         struct session *savesess;
  446         int i;
  447 
  448         sx_assert(&proctree_lock, SX_XLOCKED);
  449         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  450         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  451 
  452         /*
  453          * Reset any sigio structures pointing to us as a result of
  454          * F_SETOWN with our pgid.
  455          */
  456         funsetownlst(&pgrp->pg_sigiolst);
  457 
  458         PGRP_LOCK(pgrp);
  459         if (pgrp->pg_session->s_ttyp != NULL &&
  460             pgrp->pg_session->s_ttyp->t_pgrp == pgrp)
  461                 pgrp->pg_session->s_ttyp->t_pgrp = NULL;
  462         LIST_REMOVE(pgrp, pg_hash);
  463         savesess = pgrp->pg_session;
  464         SESS_LOCK(savesess);
  465         i = --savesess->s_count;
  466         SESS_UNLOCK(savesess);
  467         PGRP_UNLOCK(pgrp);
  468         if (i == 0) {
  469                 if (savesess->s_ttyp != NULL)
  470                         ttyrel(savesess->s_ttyp);
  471                 mtx_destroy(&savesess->s_mtx);
  472                 FREE(savesess, M_SESSION);
  473         }
  474         mtx_destroy(&pgrp->pg_mtx);
  475         FREE(pgrp, M_PGRP);
  476 }
  477 
  478 static void
  479 pgadjustjobc(pgrp, entering)
  480         struct pgrp *pgrp;
  481         int entering;
  482 {
  483 
  484         PGRP_LOCK(pgrp);
  485         if (entering)
  486                 pgrp->pg_jobc++;
  487         else {
  488                 --pgrp->pg_jobc;
  489                 if (pgrp->pg_jobc == 0)
  490                         orphanpg(pgrp);
  491         }
  492         PGRP_UNLOCK(pgrp);
  493 }
  494 
  495 /*
  496  * Adjust pgrp jobc counters when specified process changes process group.
  497  * We count the number of processes in each process group that "qualify"
  498  * the group for terminal job control (those with a parent in a different
  499  * process group of the same session).  If that count reaches zero, the
  500  * process group becomes orphaned.  Check both the specified process'
  501  * process group and that of its children.
  502  * entering == 0 => p is leaving specified group.
  503  * entering == 1 => p is entering specified group.
  504  */
  505 void
  506 fixjobc(p, pgrp, entering)
  507         register struct proc *p;
  508         register struct pgrp *pgrp;
  509         int entering;
  510 {
  511         register struct pgrp *hispgrp;
  512         register struct session *mysession;
  513 
  514         sx_assert(&proctree_lock, SX_LOCKED);
  515         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  516         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  517         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  518 
  519         /*
  520          * Check p's parent to see whether p qualifies its own process
  521          * group; if so, adjust count for p's process group.
  522          */
  523         mysession = pgrp->pg_session;
  524         if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
  525             hispgrp->pg_session == mysession)
  526                 pgadjustjobc(pgrp, entering);
  527 
  528         /*
  529          * Check this process' children to see whether they qualify
  530          * their process groups; if so, adjust counts for children's
  531          * process groups.
  532          */
  533         LIST_FOREACH(p, &p->p_children, p_sibling) {
  534                 hispgrp = p->p_pgrp;
  535                 if (hispgrp == pgrp ||
  536                     hispgrp->pg_session != mysession)
  537                         continue;
  538                 PROC_LOCK(p);
  539                 if (p->p_state == PRS_ZOMBIE) {
  540                         PROC_UNLOCK(p);
  541                         continue;
  542                 }
  543                 PROC_UNLOCK(p);
  544                 pgadjustjobc(hispgrp, entering);
  545         }
  546 }
  547 
  548 /*
  549  * A process group has become orphaned;
  550  * if there are any stopped processes in the group,
  551  * hang-up all process in that group.
  552  */
  553 static void
  554 orphanpg(pg)
  555         struct pgrp *pg;
  556 {
  557         register struct proc *p;
  558 
  559         PGRP_LOCK_ASSERT(pg, MA_OWNED);
  560 
  561         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  562                 PROC_LOCK(p);
  563                 if (P_SHOULDSTOP(p)) {
  564                         PROC_UNLOCK(p);
  565                         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  566                                 PROC_LOCK(p);
  567                                 psignal(p, SIGHUP);
  568                                 psignal(p, SIGCONT);
  569                                 PROC_UNLOCK(p);
  570                         }
  571                         return;
  572                 }
  573                 PROC_UNLOCK(p);
  574         }
  575 }
  576 
  577 #include "opt_ddb.h"
  578 #ifdef DDB
  579 #include <ddb/ddb.h>
  580 
  581 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
  582 {
  583         register struct pgrp *pgrp;
  584         register struct proc *p;
  585         register int i;
  586 
  587         for (i = 0; i <= pgrphash; i++) {
  588                 if (!LIST_EMPTY(&pgrphashtbl[i])) {
  589                         printf("\tindx %d\n", i);
  590                         LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
  591                                 printf(
  592                         "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
  593                                     (void *)pgrp, (long)pgrp->pg_id,
  594                                     (void *)pgrp->pg_session,
  595                                     pgrp->pg_session->s_count,
  596                                     (void *)LIST_FIRST(&pgrp->pg_members));
  597                                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
  598                                         printf("\t\tpid %ld addr %p pgrp %p\n", 
  599                                             (long)p->p_pid, (void *)p,
  600                                             (void *)p->p_pgrp);
  601                                 }
  602                         }
  603                 }
  604         }
  605 }
  606 #endif /* DDB */
  607 void
  608 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp);
  609 
  610 /*
  611  * Fill in a kinfo_proc structure for the specified process.
  612  * Must be called with the target process locked.
  613  */
  614 void
  615 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
  616 {
  617         fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp);
  618 }
  619 
  620 void
  621 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp)
  622 {
  623         struct proc *p;
  624         struct thread *td0;
  625         struct ksegrp *kg;
  626         struct tty *tp;
  627         struct session *sp;
  628         struct timeval tv;
  629         struct sigacts *ps;
  630 
  631         p = td->td_proc;
  632 
  633         bzero(kp, sizeof(*kp));
  634 
  635         kp->ki_structsize = sizeof(*kp);
  636         kp->ki_paddr = p;
  637         PROC_LOCK_ASSERT(p, MA_OWNED);
  638         kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */
  639         kp->ki_args = p->p_args;
  640         kp->ki_textvp = p->p_textvp;
  641 #ifdef KTRACE
  642         kp->ki_tracep = p->p_tracevp;
  643         mtx_lock(&ktrace_mtx);
  644         kp->ki_traceflag = p->p_traceflag;
  645         mtx_unlock(&ktrace_mtx);
  646 #endif
  647         kp->ki_fd = p->p_fd;
  648         kp->ki_vmspace = p->p_vmspace;
  649         if (p->p_ucred) {
  650                 kp->ki_uid = p->p_ucred->cr_uid;
  651                 kp->ki_ruid = p->p_ucred->cr_ruid;
  652                 kp->ki_svuid = p->p_ucred->cr_svuid;
  653                 /* XXX bde doesn't like KI_NGROUPS */
  654                 kp->ki_ngroups = min(p->p_ucred->cr_ngroups, KI_NGROUPS);
  655                 bcopy(p->p_ucred->cr_groups, kp->ki_groups,
  656                     kp->ki_ngroups * sizeof(gid_t));
  657                 kp->ki_rgid = p->p_ucred->cr_rgid;
  658                 kp->ki_svgid = p->p_ucred->cr_svgid;
  659         }
  660         if (p->p_sigacts) {
  661                 ps = p->p_sigacts;
  662                 mtx_lock(&ps->ps_mtx);
  663                 kp->ki_sigignore = ps->ps_sigignore;
  664                 kp->ki_sigcatch = ps->ps_sigcatch;
  665                 mtx_unlock(&ps->ps_mtx);
  666         }
  667         mtx_lock_spin(&sched_lock);
  668         if (p->p_state != PRS_NEW &&
  669             p->p_state != PRS_ZOMBIE &&
  670             p->p_vmspace != NULL) {
  671                 struct vmspace *vm = p->p_vmspace;
  672 
  673                 kp->ki_size = vm->vm_map.size;
  674                 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
  675                 if (p->p_sflag & PS_INMEM)
  676                         kp->ki_rssize += UAREA_PAGES;
  677                 FOREACH_THREAD_IN_PROC(p, td0) {
  678                         if (!TD_IS_SWAPPED(td0))
  679                                 kp->ki_rssize += td0->td_kstack_pages;
  680                         if (td0->td_altkstack_obj != NULL)
  681                                 kp->ki_rssize += td0->td_altkstack_pages;
  682                 }
  683                 kp->ki_swrss = vm->vm_swrss;
  684                 kp->ki_tsize = vm->vm_tsize;
  685                 kp->ki_dsize = vm->vm_dsize;
  686                 kp->ki_ssize = vm->vm_ssize;
  687         }
  688         if ((p->p_sflag & PS_INMEM) && p->p_stats) {
  689                 kp->ki_start = p->p_stats->p_start;
  690                 timevaladd(&kp->ki_start, &boottime);
  691                 kp->ki_rusage = p->p_stats->p_ru;
  692                 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime,
  693                     NULL);
  694                 kp->ki_childstime = p->p_stats->p_cru.ru_stime;
  695                 kp->ki_childutime = p->p_stats->p_cru.ru_utime;
  696                 /* Some callers want child-times in a single value */
  697                 kp->ki_childtime = kp->ki_childstime;
  698                 timevaladd(&kp->ki_childtime, &kp->ki_childutime);
  699         }
  700         kp->ki_sflag = p->p_sflag;
  701         kp->ki_swtime = p->p_swtime;
  702         kp->ki_pid = p->p_pid;
  703         kp->ki_nice = p->p_nice;
  704         bintime2timeval(&p->p_runtime, &tv);
  705         kp->ki_runtime = tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec;
  706         if (p->p_state != PRS_ZOMBIE) {
  707 #if 0
  708                 if (td == NULL) {
  709                         /* XXXKSE: This should never happen. */
  710                         printf("fill_kinfo_proc(): pid %d has no threads!\n",
  711                             p->p_pid);
  712                         mtx_unlock_spin(&sched_lock);
  713                         return;
  714                 }
  715 #endif
  716                 if (td->td_wmesg != NULL) {
  717                         strlcpy(kp->ki_wmesg, td->td_wmesg,
  718                             sizeof(kp->ki_wmesg));
  719                 }
  720                 if (TD_ON_LOCK(td)) {
  721                         kp->ki_kiflag |= KI_LOCKBLOCK;
  722                         strlcpy(kp->ki_lockname, td->td_lockname,
  723                             sizeof(kp->ki_lockname));
  724                 }
  725 
  726                 if (p->p_state == PRS_NORMAL) { /*  XXXKSE very approximate */
  727                         if (TD_ON_RUNQ(td) ||
  728                             TD_CAN_RUN(td) ||
  729                             TD_IS_RUNNING(td)) {
  730                                 kp->ki_stat = SRUN;
  731                         } else if (P_SHOULDSTOP(p)) {
  732                                 kp->ki_stat = SSTOP;
  733                         } else if (TD_IS_SLEEPING(td)) {
  734                                 kp->ki_stat = SSLEEP;
  735                         } else if (TD_ON_LOCK(td)) {
  736                                 kp->ki_stat = SLOCK;
  737                         } else {
  738                                 kp->ki_stat = SWAIT;
  739                         }
  740                 } else {
  741                         kp->ki_stat = SIDL;
  742                 }
  743 
  744                 kg = td->td_ksegrp;
  745 
  746                 /* things in the KSE GROUP */
  747                 kp->ki_estcpu = kg->kg_estcpu;
  748                 kp->ki_slptime = kg->kg_slptime;
  749                 kp->ki_pri.pri_user = kg->kg_user_pri;
  750                 kp->ki_pri.pri_class = kg->kg_pri_class;
  751 
  752                 /* Things in the thread */
  753                 kp->ki_wchan = td->td_wchan;
  754                 kp->ki_pri.pri_level = td->td_priority;
  755                 kp->ki_pri.pri_native = td->td_base_pri;
  756                 kp->ki_lastcpu = td->td_lastcpu;
  757                 kp->ki_oncpu = td->td_oncpu;
  758                 kp->ki_tdflags = td->td_flags;
  759                 kp->ki_tid = td->td_tid;
  760                 kp->ki_numthreads = p->p_numthreads;
  761                 kp->ki_pcb = td->td_pcb;
  762                 kp->ki_kstack = (void *)td->td_kstack;
  763                 kp->ki_pctcpu = sched_pctcpu(td);
  764 
  765                 /* We can't get this anymore but ps etc never used it anyway. */
  766                 kp->ki_rqindex = 0;
  767 
  768         } else {
  769                 kp->ki_stat = SZOMB;
  770         }
  771         mtx_unlock_spin(&sched_lock);
  772         sp = NULL;
  773         tp = NULL;
  774         if (p->p_pgrp) {
  775                 kp->ki_pgid = p->p_pgrp->pg_id;
  776                 kp->ki_jobc = p->p_pgrp->pg_jobc;
  777                 sp = p->p_pgrp->pg_session;
  778 
  779                 if (sp != NULL) {
  780                         kp->ki_sid = sp->s_sid;
  781                         SESS_LOCK(sp);
  782                         strlcpy(kp->ki_login, sp->s_login,
  783                             sizeof(kp->ki_login));
  784                         if (sp->s_ttyvp)
  785                                 kp->ki_kiflag |= KI_CTTY;
  786                         if (SESS_LEADER(p))
  787                                 kp->ki_kiflag |= KI_SLEADER;
  788                         tp = sp->s_ttyp;
  789                         SESS_UNLOCK(sp);
  790                 }
  791         }
  792         if ((p->p_flag & P_CONTROLT) && tp != NULL) {
  793                 kp->ki_tdev = dev2udev(tp->t_dev);
  794                 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
  795                 if (tp->t_session)
  796                         kp->ki_tsid = tp->t_session->s_sid;
  797         } else
  798                 kp->ki_tdev = NODEV;
  799         if (p->p_comm[0] != '\0') {
  800                 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
  801                 strlcpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm));
  802         }
  803         if (p->p_sysent && p->p_sysent->sv_name != NULL &&
  804             p->p_sysent->sv_name[0] != '\0')
  805                 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
  806         kp->ki_siglist = p->p_siglist;
  807         SIGSETOR(kp->ki_siglist, td->td_siglist);
  808         kp->ki_sigmask = td->td_sigmask;
  809         kp->ki_xstat = p->p_xstat;
  810         kp->ki_acflag = p->p_acflag;
  811         kp->ki_flag = p->p_flag;
  812         /* If jailed(p->p_ucred), emulate the old P_JAILED flag. */
  813         if (jailed(p->p_ucred))
  814                 kp->ki_flag |= P_JAILED;
  815         kp->ki_lock = p->p_lock;
  816         if (p->p_pptr)
  817                 kp->ki_ppid = p->p_pptr->p_pid;
  818 }
  819 
  820 /*
  821  * Locate a zombie process by number
  822  */
  823 struct proc *
  824 zpfind(pid_t pid)
  825 {
  826         struct proc *p;
  827 
  828         sx_slock(&allproc_lock);
  829         LIST_FOREACH(p, &zombproc, p_list)
  830                 if (p->p_pid == pid) {
  831                         PROC_LOCK(p);
  832                         break;
  833                 }
  834         sx_sunlock(&allproc_lock);
  835         return (p);
  836 }
  837 
  838 #define KERN_PROC_ZOMBMASK      0x3
  839 #define KERN_PROC_NOTHREADS     0x4
  840 
  841 /*
  842  * Must be called with the process locked and will return with it unlocked.
  843  */
  844 static int
  845 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
  846 {
  847         struct thread *td;
  848         struct kinfo_proc kinfo_proc;
  849         int error = 0;
  850         struct proc *np;
  851         pid_t pid = p->p_pid;
  852 
  853         PROC_LOCK_ASSERT(p, MA_OWNED);
  854 
  855         if (flags & KERN_PROC_NOTHREADS) {
  856                 fill_kinfo_proc(p, &kinfo_proc);
  857                 PROC_UNLOCK(p);
  858                 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
  859                                    sizeof(kinfo_proc));
  860                 PROC_LOCK(p);
  861         } else {
  862                 _PHOLD(p);
  863                 FOREACH_THREAD_IN_PROC(p, td) {
  864                         fill_kinfo_thread(td, &kinfo_proc);
  865                         PROC_UNLOCK(p);
  866                         error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
  867                                            sizeof(kinfo_proc));
  868                         PROC_LOCK(p);
  869                         if (error)
  870                                 break;
  871                 }
  872                 _PRELE(p);
  873         }
  874         PROC_UNLOCK(p);
  875         if (error)
  876                 return (error);
  877         if (flags & KERN_PROC_ZOMBMASK)
  878                 np = zpfind(pid);
  879         else {
  880                 if (pid == 0)
  881                         return (0);
  882                 np = pfind(pid);
  883         }
  884         if (np == NULL)
  885                 return EAGAIN;
  886         if (np != p) {
  887                 PROC_UNLOCK(np);
  888                 return EAGAIN;
  889         }
  890         PROC_UNLOCK(np);
  891         return (0);
  892 }
  893 
  894 static int
  895 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
  896 {
  897         int *name = (int*) arg1;
  898         u_int namelen = arg2;
  899         struct proc *p;
  900         int flags, doingzomb, oid_number;
  901         int error = 0;
  902 
  903         oid_number = oidp->oid_number;
  904         if (oid_number != KERN_PROC_ALL &&
  905             (oid_number & KERN_PROC_INC_THREAD) == 0)
  906                 flags = KERN_PROC_NOTHREADS;
  907         else {
  908                 flags = 0;
  909                 oid_number &= ~KERN_PROC_INC_THREAD;
  910         }
  911         if (oid_number == KERN_PROC_PID) {
  912                 if (namelen != 1) 
  913                         return (EINVAL);
  914                 p = pfind((pid_t)name[0]);
  915                 if (!p)
  916                         return (ESRCH);
  917                 if ((error = p_cansee(curthread, p))) {
  918                         PROC_UNLOCK(p);
  919                         return (error);
  920                 }
  921                 error = sysctl_out_proc(p, req, flags);
  922                 return (error);
  923         }
  924 
  925         switch (oid_number) {
  926         case KERN_PROC_ALL:
  927                 if (namelen != 0)
  928                         return (EINVAL);
  929                 break;
  930         case KERN_PROC_PROC:
  931                 if (namelen != 0 && namelen != 1)
  932                         return (EINVAL);
  933                 break;
  934         default:
  935                 if (namelen != 1)
  936                         return (EINVAL);
  937                 break;
  938         }
  939         
  940         if (!req->oldptr) {
  941                 /* overestimate by 5 procs */
  942                 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
  943                 if (error)
  944                         return (error);
  945         }
  946         error = sysctl_wire_old_buffer(req, 0);
  947         if (error != 0)
  948                 return (error);
  949         sx_slock(&allproc_lock);
  950         for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
  951                 if (!doingzomb)
  952                         p = LIST_FIRST(&allproc);
  953                 else
  954                         p = LIST_FIRST(&zombproc);
  955                 for (; p != 0; p = LIST_NEXT(p, p_list)) {
  956                         /*
  957                          * Skip embryonic processes.
  958                          */
  959                         mtx_lock_spin(&sched_lock);
  960                         if (p->p_state == PRS_NEW) {
  961                                 mtx_unlock_spin(&sched_lock);
  962                                 continue;
  963                         }
  964                         mtx_unlock_spin(&sched_lock);
  965                         PROC_LOCK(p);
  966                         /*
  967                          * Show a user only appropriate processes.
  968                          */
  969                         if (p_cansee(curthread, p)) {
  970                                 PROC_UNLOCK(p);
  971                                 continue;
  972                         }
  973                         /*
  974                          * TODO - make more efficient (see notes below).
  975                          * do by session.
  976                          */
  977                         switch (oid_number) {
  978 
  979                         case KERN_PROC_GID:
  980                                 if (p->p_ucred == NULL ||
  981                                     p->p_ucred->cr_gid != (gid_t)name[0]) {
  982                                         PROC_UNLOCK(p);
  983                                         continue;
  984                                 }
  985                                 break;
  986 
  987                         case KERN_PROC_PGRP:
  988                                 /* could do this by traversing pgrp */
  989                                 if (p->p_pgrp == NULL || 
  990                                     p->p_pgrp->pg_id != (pid_t)name[0]) {
  991                                         PROC_UNLOCK(p);
  992                                         continue;
  993                                 }
  994                                 break;
  995 
  996                         case KERN_PROC_RGID:
  997                                 if (p->p_ucred == NULL ||
  998                                     p->p_ucred->cr_rgid != (gid_t)name[0]) {
  999                                         PROC_UNLOCK(p);
 1000                                         continue;
 1001                                 }
 1002                                 break;
 1003 
 1004                         case KERN_PROC_SESSION:
 1005                                 if (p->p_session == NULL ||
 1006                                     p->p_session->s_sid != (pid_t)name[0]) {
 1007                                         PROC_UNLOCK(p);
 1008                                         continue;
 1009                                 }
 1010                                 break;
 1011 
 1012                         case KERN_PROC_TTY:
 1013                                 if ((p->p_flag & P_CONTROLT) == 0 ||
 1014                                     p->p_session == NULL) {
 1015                                         PROC_UNLOCK(p);
 1016                                         continue;
 1017                                 }
 1018                                 SESS_LOCK(p->p_session);
 1019                                 if (p->p_session->s_ttyp == NULL ||
 1020                                     dev2udev(p->p_session->s_ttyp->t_dev) != 
 1021                                     (dev_t)name[0]) {
 1022                                         SESS_UNLOCK(p->p_session);
 1023                                         PROC_UNLOCK(p);
 1024                                         continue;
 1025                                 }
 1026                                 SESS_UNLOCK(p->p_session);
 1027                                 break;
 1028 
 1029                         case KERN_PROC_UID:
 1030                                 if (p->p_ucred == NULL || 
 1031                                     p->p_ucred->cr_uid != (uid_t)name[0]) {
 1032                                         PROC_UNLOCK(p);
 1033                                         continue;
 1034                                 }
 1035                                 break;
 1036 
 1037                         case KERN_PROC_RUID:
 1038                                 if (p->p_ucred == NULL || 
 1039                                     p->p_ucred->cr_ruid != (uid_t)name[0]) {
 1040                                         PROC_UNLOCK(p);
 1041                                         continue;
 1042                                 }
 1043                                 break;
 1044 
 1045                         case KERN_PROC_PROC:
 1046                                 break;
 1047 
 1048                         default:
 1049                                 break;
 1050 
 1051                         }
 1052 
 1053                         error = sysctl_out_proc(p, req, flags | doingzomb);
 1054                         if (error) {
 1055                                 sx_sunlock(&allproc_lock);
 1056                                 return (error);
 1057                         }
 1058                 }
 1059         }
 1060         sx_sunlock(&allproc_lock);
 1061         return (0);
 1062 }
 1063 
 1064 struct pargs *
 1065 pargs_alloc(int len)
 1066 {
 1067         struct pargs *pa;
 1068 
 1069         MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS,
 1070                 M_WAITOK);
 1071         pa->ar_ref = 1;
 1072         pa->ar_length = len;
 1073         return (pa);
 1074 }
 1075 
 1076 void
 1077 pargs_free(struct pargs *pa)
 1078 {
 1079 
 1080         FREE(pa, M_PARGS);
 1081 }
 1082 
 1083 void
 1084 pargs_hold(struct pargs *pa)
 1085 {
 1086 
 1087         if (pa == NULL)
 1088                 return;
 1089         PARGS_LOCK(pa);
 1090         pa->ar_ref++;
 1091         PARGS_UNLOCK(pa);
 1092 }
 1093 
 1094 void
 1095 pargs_drop(struct pargs *pa)
 1096 {
 1097 
 1098         if (pa == NULL)
 1099                 return;
 1100         PARGS_LOCK(pa);
 1101         if (--pa->ar_ref == 0) {
 1102                 PARGS_UNLOCK(pa);
 1103                 pargs_free(pa);
 1104         } else
 1105                 PARGS_UNLOCK(pa);
 1106 }
 1107 
 1108 /*
 1109  * This sysctl allows a process to retrieve the argument list or process
 1110  * title for another process without groping around in the address space
 1111  * of the other process.  It also allow a process to set its own "process 
 1112  * title to a string of its own choice.
 1113  */
 1114 static int
 1115 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
 1116 {
 1117         int *name = (int*) arg1;
 1118         u_int namelen = arg2;
 1119         struct pargs *newpa, *pa;
 1120         struct proc *p;
 1121         int error = 0;
 1122 
 1123         if (namelen != 1) 
 1124                 return (EINVAL);
 1125 
 1126         p = pfind((pid_t)name[0]);
 1127         if (!p)
 1128                 return (ESRCH);
 1129 
 1130         if ((error = p_cansee(curthread, p)) != 0) {
 1131                 PROC_UNLOCK(p);
 1132                 return (error);
 1133         }
 1134 
 1135         if (req->newptr && curproc != p) {
 1136                 PROC_UNLOCK(p);
 1137                 return (EPERM);
 1138         }
 1139 
 1140         pa = p->p_args;
 1141         pargs_hold(pa);
 1142         PROC_UNLOCK(p);
 1143         if (req->oldptr != NULL && pa != NULL)
 1144                 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
 1145         pargs_drop(pa);
 1146         if (error != 0 || req->newptr == NULL)
 1147                 return (error);
 1148 
 1149         if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
 1150                 return (ENOMEM);
 1151         newpa = pargs_alloc(req->newlen);
 1152         error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
 1153         if (error != 0) {
 1154                 pargs_free(newpa);
 1155                 return (error);
 1156         }
 1157         PROC_LOCK(p);
 1158         pa = p->p_args;
 1159         p->p_args = newpa;
 1160         PROC_UNLOCK(p);
 1161         pargs_drop(pa);
 1162         return (0);
 1163 }
 1164 
 1165 static int
 1166 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
 1167 {
 1168         struct proc *p;
 1169         char *sv_name;
 1170         int *name;
 1171         int namelen;
 1172         int error;
 1173 
 1174         namelen = arg2;
 1175         if (namelen != 1) 
 1176                 return (EINVAL);
 1177 
 1178         name = (int *)arg1;
 1179         if ((p = pfind((pid_t)name[0])) == NULL)
 1180                 return (ESRCH);
 1181         if ((error = p_cansee(curthread, p))) {
 1182                 PROC_UNLOCK(p);
 1183                 return (error);
 1184         }
 1185         sv_name = p->p_sysent->sv_name;
 1186         PROC_UNLOCK(p);
 1187         return (sysctl_handle_string(oidp, sv_name, 0, req));
 1188 }
 1189 
 1190 
 1191 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
 1192 
 1193 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT,
 1194         0, 0, sysctl_kern_proc, "S,proc", "Return entire process table");
 1195 
 1196 SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD,
 1197         sysctl_kern_proc, "Process table");
 1198 
 1199 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 
 1200         sysctl_kern_proc, "Process table");
 1201 
 1202 SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD,
 1203         sysctl_kern_proc, "Process table");
 1204 
 1205 SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD,
 1206         sysctl_kern_proc, "Process table");
 1207 
 1208 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 
 1209         sysctl_kern_proc, "Process table");
 1210 
 1211 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 
 1212         sysctl_kern_proc, "Process table");
 1213 
 1214 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 
 1215         sysctl_kern_proc, "Process table");
 1216 
 1217 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 
 1218         sysctl_kern_proc, "Process table");
 1219 
 1220 SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD,
 1221         sysctl_kern_proc, "Return process table, no threads");
 1222 
 1223 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY,
 1224         sysctl_kern_proc_args, "Process argument list");
 1225 
 1226 SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD,
 1227         sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)");
 1228 
 1229 SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
 1230         CTLFLAG_RD, sysctl_kern_proc, "Process table");
 1231 
 1232 SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
 1233         CTLFLAG_RD, sysctl_kern_proc, "Process table");
 1234 
 1235 SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
 1236         CTLFLAG_RD, sysctl_kern_proc, "Process table");
 1237 
 1238 SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), sid_td,
 1239         CTLFLAG_RD, sysctl_kern_proc, "Process table");
 1240 
 1241 SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
 1242         CTLFLAG_RD, sysctl_kern_proc, "Process table");
 1243 
 1244 SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
 1245         CTLFLAG_RD, sysctl_kern_proc, "Process table");
 1246 
 1247 SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
 1248         CTLFLAG_RD, sysctl_kern_proc, "Process table");
 1249 
 1250 SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
 1251         CTLFLAG_RD, sysctl_kern_proc, "Process table");
 1252 
 1253 SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
 1254         CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads");

Cache object: 4252a713898d973585840b7f09e840f8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.