The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_proc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD$");
   34 
   35 #include "opt_compat.h"
   36 #include "opt_ddb.h"
   37 #include "opt_kdtrace.h"
   38 #include "opt_ktrace.h"
   39 #include "opt_kstack_pages.h"
   40 #include "opt_stack.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/kernel.h>
   45 #include <sys/limits.h>
   46 #include <sys/lock.h>
   47 #include <sys/malloc.h>
   48 #include <sys/mman.h>
   49 #include <sys/mount.h>
   50 #include <sys/mutex.h>
   51 #include <sys/proc.h>
   52 #include <sys/refcount.h>
   53 #include <sys/sbuf.h>
   54 #include <sys/sysent.h>
   55 #include <sys/sched.h>
   56 #include <sys/smp.h>
   57 #include <sys/stack.h>
   58 #include <sys/sysctl.h>
   59 #include <sys/filedesc.h>
   60 #include <sys/tty.h>
   61 #include <sys/signalvar.h>
   62 #include <sys/sdt.h>
   63 #include <sys/sx.h>
   64 #include <sys/user.h>
   65 #include <sys/jail.h>
   66 #include <sys/vnode.h>
   67 #include <sys/eventhandler.h>
   68 
   69 #ifdef DDB
   70 #include <ddb/ddb.h>
   71 #endif
   72 
   73 #include <vm/vm.h>
   74 #include <vm/vm_extern.h>
   75 #include <vm/pmap.h>
   76 #include <vm/vm_map.h>
   77 #include <vm/vm_object.h>
   78 #include <vm/vm_page.h>
   79 #include <vm/uma.h>
   80 
   81 #ifdef COMPAT_FREEBSD32
   82 #include <compat/freebsd32/freebsd32.h>
   83 #include <compat/freebsd32/freebsd32_util.h>
   84 #endif
   85 
   86 SDT_PROVIDER_DEFINE(proc);
   87 SDT_PROBE_DEFINE(proc, kernel, ctor, entry, entry);
   88 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *");
   89 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int");
   90 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *");
   91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int");
   92 SDT_PROBE_DEFINE(proc, kernel, ctor, return, return);
   93 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *");
   94 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int");
   95 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *");
   96 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int");
   97 SDT_PROBE_DEFINE(proc, kernel, dtor, entry, entry);
   98 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *");
   99 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int");
  100 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *");
  101 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *");
  102 SDT_PROBE_DEFINE(proc, kernel, dtor, return, return);
  103 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *");
  104 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int");
  105 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *");
  106 SDT_PROBE_DEFINE(proc, kernel, init, entry, entry);
  107 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *");
  108 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int");
  109 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int");
  110 SDT_PROBE_DEFINE(proc, kernel, init, return, return);
  111 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *");
  112 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int");
  113 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int");
  114 
  115 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
  116 MALLOC_DEFINE(M_SESSION, "session", "session header");
  117 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
  118 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
  119 
  120 static void doenterpgrp(struct proc *, struct pgrp *);
  121 static void orphanpg(struct pgrp *pg);
  122 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
  123 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
  124 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
  125     int preferthread);
  126 static void pgadjustjobc(struct pgrp *pgrp, int entering);
  127 static void pgdelete(struct pgrp *);
  128 static int proc_ctor(void *mem, int size, void *arg, int flags);
  129 static void proc_dtor(void *mem, int size, void *arg);
  130 static int proc_init(void *mem, int size, int flags);
  131 static void proc_fini(void *mem, int size);
  132 static void pargs_free(struct pargs *pa);
  133 
  134 /*
  135  * Other process lists
  136  */
  137 struct pidhashhead *pidhashtbl;
  138 u_long pidhash;
  139 struct pgrphashhead *pgrphashtbl;
  140 u_long pgrphash;
  141 struct proclist allproc;
  142 struct proclist zombproc;
  143 struct sx allproc_lock;
  144 struct sx proctree_lock;
  145 struct mtx ppeers_lock;
  146 uma_zone_t proc_zone;
  147 
  148 int kstack_pages = KSTACK_PAGES;
  149 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
  150     "Kernel stack size in pages");
  151 
  152 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
  153 #ifdef COMPAT_FREEBSD32
  154 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
  155 #endif
  156 
  157 /*
  158  * Initialize global process hashing structures.
  159  */
  160 void
  161 procinit()
  162 {
  163 
  164         sx_init(&allproc_lock, "allproc");
  165         sx_init(&proctree_lock, "proctree");
  166         mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
  167         LIST_INIT(&allproc);
  168         LIST_INIT(&zombproc);
  169         pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
  170         pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
  171         proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
  172             proc_ctor, proc_dtor, proc_init, proc_fini,
  173             UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  174         uihashinit();
  175 }
  176 
  177 /*
  178  * Prepare a proc for use.
  179  */
  180 static int
  181 proc_ctor(void *mem, int size, void *arg, int flags)
  182 {
  183         struct proc *p;
  184         struct thread *td;
  185 
  186         p = (struct proc *)mem;
  187         SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
  188         EVENTHANDLER_INVOKE(process_ctor, p);
  189         SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
  190         td = FIRST_THREAD_IN_PROC(p);
  191         if (td != NULL) {
  192                 /* Make sure all thread constructors are executed */
  193                 EVENTHANDLER_INVOKE(thread_ctor, td);
  194         }
  195         return (0);
  196 }
  197 
  198 /*
  199  * Reclaim a proc after use.
  200  */
  201 static void
  202 proc_dtor(void *mem, int size, void *arg)
  203 {
  204         struct proc *p;
  205         struct thread *td;
  206 
  207         /* INVARIANTS checks go here */
  208         p = (struct proc *)mem;
  209         td = FIRST_THREAD_IN_PROC(p);
  210         SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
  211         if (td != NULL) {
  212 #ifdef INVARIANTS
  213                 KASSERT((p->p_numthreads == 1),
  214                     ("bad number of threads in exiting process"));
  215                 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
  216 #endif
  217                 /* Free all OSD associated to this thread. */
  218                 osd_thread_exit(td);
  219 
  220                 /* Make sure all thread destructors are executed */
  221                 EVENTHANDLER_INVOKE(thread_dtor, td);
  222         }
  223         EVENTHANDLER_INVOKE(process_dtor, p);
  224         if (p->p_ksi != NULL)
  225                 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
  226         SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
  227 }
  228 
  229 /*
  230  * Initialize type-stable parts of a proc (when newly created).
  231  */
  232 static int
  233 proc_init(void *mem, int size, int flags)
  234 {
  235         struct proc *p;
  236 
  237         p = (struct proc *)mem;
  238         SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
  239         p->p_sched = (struct p_sched *)&p[1];
  240         bzero(&p->p_mtx, sizeof(struct mtx));
  241         mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
  242         mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
  243         cv_init(&p->p_pwait, "ppwait");
  244         cv_init(&p->p_dbgwait, "dbgwait");
  245         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
  246         EVENTHANDLER_INVOKE(process_init, p);
  247         p->p_stats = pstats_alloc();
  248         SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
  249         return (0);
  250 }
  251 
  252 /*
  253  * UMA should ensure that this function is never called.
  254  * Freeing a proc structure would violate type stability.
  255  */
  256 static void
  257 proc_fini(void *mem, int size)
  258 {
  259 #ifdef notnow
  260         struct proc *p;
  261 
  262         p = (struct proc *)mem;
  263         EVENTHANDLER_INVOKE(process_fini, p);
  264         pstats_free(p->p_stats);
  265         thread_free(FIRST_THREAD_IN_PROC(p));
  266         mtx_destroy(&p->p_mtx);
  267         if (p->p_ksi != NULL)
  268                 ksiginfo_free(p->p_ksi);
  269 #else
  270         panic("proc reclaimed");
  271 #endif
  272 }
  273 
  274 /*
  275  * Is p an inferior of the current process?
  276  */
  277 int
  278 inferior(p)
  279         register struct proc *p;
  280 {
  281 
  282         sx_assert(&proctree_lock, SX_LOCKED);
  283         for (; p != curproc; p = p->p_pptr)
  284                 if (p->p_pid == 0)
  285                         return (0);
  286         return (1);
  287 }
  288 
  289 /*
  290  * Locate a process by number; return only "live" processes -- i.e., neither
  291  * zombies nor newly born but incompletely initialized processes.  By not
  292  * returning processes in the PRS_NEW state, we allow callers to avoid
  293  * testing for that condition to avoid dereferencing p_ucred, et al.
  294  */
  295 struct proc *
  296 pfind(pid)
  297         register pid_t pid;
  298 {
  299         register struct proc *p;
  300 
  301         sx_slock(&allproc_lock);
  302         LIST_FOREACH(p, PIDHASH(pid), p_hash)
  303                 if (p->p_pid == pid) {
  304                         PROC_LOCK(p);
  305                         if (p->p_state == PRS_NEW) {
  306                                 PROC_UNLOCK(p);
  307                                 p = NULL;
  308                         }
  309                         break;
  310                 }
  311         sx_sunlock(&allproc_lock);
  312         return (p);
  313 }
  314 
  315 static struct proc *
  316 pfind_tid(pid_t tid)
  317 {
  318         struct proc *p;
  319         struct thread *td;
  320 
  321         sx_slock(&allproc_lock);
  322         FOREACH_PROC_IN_SYSTEM(p) {
  323                 PROC_LOCK(p);
  324                 if (p->p_state == PRS_NEW) {
  325                         PROC_UNLOCK(p);
  326                         continue;
  327                 }
  328                 FOREACH_THREAD_IN_PROC(p, td) {
  329                         if (td->td_tid == tid)
  330                                 goto found;
  331                 }
  332                 PROC_UNLOCK(p);
  333         }
  334 found:
  335         sx_sunlock(&allproc_lock);
  336         return (p);
  337 }
  338 
  339 /*
  340  * Locate a process group by number.
  341  * The caller must hold proctree_lock.
  342  */
  343 struct pgrp *
  344 pgfind(pgid)
  345         register pid_t pgid;
  346 {
  347         register struct pgrp *pgrp;
  348 
  349         sx_assert(&proctree_lock, SX_LOCKED);
  350 
  351         LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
  352                 if (pgrp->pg_id == pgid) {
  353                         PGRP_LOCK(pgrp);
  354                         return (pgrp);
  355                 }
  356         }
  357         return (NULL);
  358 }
  359 
  360 /*
  361  * Locate process and do additional manipulations, depending on flags.
  362  */
  363 int
  364 pget(pid_t pid, int flags, struct proc **pp)
  365 {
  366         struct proc *p;
  367         int error;
  368 
  369         if (pid <= PID_MAX)
  370                 p = pfind(pid);
  371         else if ((flags & PGET_NOTID) == 0)
  372                 p = pfind_tid(pid);
  373         else
  374                 p = NULL;
  375         if (p == NULL)
  376                 return (ESRCH);
  377         if ((flags & PGET_CANSEE) != 0) {
  378                 error = p_cansee(curthread, p);
  379                 if (error != 0)
  380                         goto errout;
  381         }
  382         if ((flags & PGET_CANDEBUG) != 0) {
  383                 error = p_candebug(curthread, p);
  384                 if (error != 0)
  385                         goto errout;
  386         }
  387         if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
  388                 error = EPERM;
  389                 goto errout;
  390         }
  391         if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
  392                 error = ESRCH;
  393                 goto errout;
  394         }
  395         if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
  396                 /*
  397                  * XXXRW: Not clear ESRCH is the right error during proc
  398                  * execve().
  399                  */
  400                 error = ESRCH;
  401                 goto errout;
  402         }
  403         if ((flags & PGET_HOLD) != 0) {
  404                 _PHOLD(p);
  405                 PROC_UNLOCK(p);
  406         }
  407         *pp = p;
  408         return (0);
  409 errout:
  410         PROC_UNLOCK(p);
  411         return (error);
  412 }
  413 
  414 /*
  415  * Create a new process group.
  416  * pgid must be equal to the pid of p.
  417  * Begin a new session if required.
  418  */
  419 int
  420 enterpgrp(p, pgid, pgrp, sess)
  421         register struct proc *p;
  422         pid_t pgid;
  423         struct pgrp *pgrp;
  424         struct session *sess;
  425 {
  426 
  427         sx_assert(&proctree_lock, SX_XLOCKED);
  428 
  429         KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
  430         KASSERT(p->p_pid == pgid,
  431             ("enterpgrp: new pgrp and pid != pgid"));
  432         KASSERT(pgfind(pgid) == NULL,
  433             ("enterpgrp: pgrp with pgid exists"));
  434         KASSERT(!SESS_LEADER(p),
  435             ("enterpgrp: session leader attempted setpgrp"));
  436 
  437         mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
  438 
  439         if (sess != NULL) {
  440                 /*
  441                  * new session
  442                  */
  443                 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
  444                 PROC_LOCK(p);
  445                 p->p_flag &= ~P_CONTROLT;
  446                 PROC_UNLOCK(p);
  447                 PGRP_LOCK(pgrp);
  448                 sess->s_leader = p;
  449                 sess->s_sid = p->p_pid;
  450                 refcount_init(&sess->s_count, 1);
  451                 sess->s_ttyvp = NULL;
  452                 sess->s_ttyp = NULL;
  453                 bcopy(p->p_session->s_login, sess->s_login,
  454                             sizeof(sess->s_login));
  455                 pgrp->pg_session = sess;
  456                 KASSERT(p == curproc,
  457                     ("enterpgrp: mksession and p != curproc"));
  458         } else {
  459                 pgrp->pg_session = p->p_session;
  460                 sess_hold(pgrp->pg_session);
  461                 PGRP_LOCK(pgrp);
  462         }
  463         pgrp->pg_id = pgid;
  464         LIST_INIT(&pgrp->pg_members);
  465 
  466         /*
  467          * As we have an exclusive lock of proctree_lock,
  468          * this should not deadlock.
  469          */
  470         LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
  471         pgrp->pg_jobc = 0;
  472         SLIST_INIT(&pgrp->pg_sigiolst);
  473         PGRP_UNLOCK(pgrp);
  474 
  475         doenterpgrp(p, pgrp);
  476 
  477         return (0);
  478 }
  479 
  480 /*
  481  * Move p to an existing process group
  482  */
  483 int
  484 enterthispgrp(p, pgrp)
  485         register struct proc *p;
  486         struct pgrp *pgrp;
  487 {
  488 
  489         sx_assert(&proctree_lock, SX_XLOCKED);
  490         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  491         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  492         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  493         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  494         KASSERT(pgrp->pg_session == p->p_session,
  495                 ("%s: pgrp's session %p, p->p_session %p.\n",
  496                 __func__,
  497                 pgrp->pg_session,
  498                 p->p_session));
  499         KASSERT(pgrp != p->p_pgrp,
  500                 ("%s: p belongs to pgrp.", __func__));
  501 
  502         doenterpgrp(p, pgrp);
  503 
  504         return (0);
  505 }
  506 
  507 /*
  508  * Move p to a process group
  509  */
  510 static void
  511 doenterpgrp(p, pgrp)
  512         struct proc *p;
  513         struct pgrp *pgrp;
  514 {
  515         struct pgrp *savepgrp;
  516 
  517         sx_assert(&proctree_lock, SX_XLOCKED);
  518         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  519         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  520         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  521         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  522 
  523         savepgrp = p->p_pgrp;
  524 
  525         /*
  526          * Adjust eligibility of affected pgrps to participate in job control.
  527          * Increment eligibility counts before decrementing, otherwise we
  528          * could reach 0 spuriously during the first call.
  529          */
  530         fixjobc(p, pgrp, 1);
  531         fixjobc(p, p->p_pgrp, 0);
  532 
  533         PGRP_LOCK(pgrp);
  534         PGRP_LOCK(savepgrp);
  535         PROC_LOCK(p);
  536         LIST_REMOVE(p, p_pglist);
  537         p->p_pgrp = pgrp;
  538         PROC_UNLOCK(p);
  539         LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
  540         PGRP_UNLOCK(savepgrp);
  541         PGRP_UNLOCK(pgrp);
  542         if (LIST_EMPTY(&savepgrp->pg_members))
  543                 pgdelete(savepgrp);
  544 }
  545 
  546 /*
  547  * remove process from process group
  548  */
  549 int
  550 leavepgrp(p)
  551         register struct proc *p;
  552 {
  553         struct pgrp *savepgrp;
  554 
  555         sx_assert(&proctree_lock, SX_XLOCKED);
  556         savepgrp = p->p_pgrp;
  557         PGRP_LOCK(savepgrp);
  558         PROC_LOCK(p);
  559         LIST_REMOVE(p, p_pglist);
  560         p->p_pgrp = NULL;
  561         PROC_UNLOCK(p);
  562         PGRP_UNLOCK(savepgrp);
  563         if (LIST_EMPTY(&savepgrp->pg_members))
  564                 pgdelete(savepgrp);
  565         return (0);
  566 }
  567 
  568 /*
  569  * delete a process group
  570  */
  571 static void
  572 pgdelete(pgrp)
  573         register struct pgrp *pgrp;
  574 {
  575         struct session *savesess;
  576         struct tty *tp;
  577 
  578         sx_assert(&proctree_lock, SX_XLOCKED);
  579         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  580         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  581 
  582         /*
  583          * Reset any sigio structures pointing to us as a result of
  584          * F_SETOWN with our pgid.
  585          */
  586         funsetownlst(&pgrp->pg_sigiolst);
  587 
  588         PGRP_LOCK(pgrp);
  589         tp = pgrp->pg_session->s_ttyp;
  590         LIST_REMOVE(pgrp, pg_hash);
  591         savesess = pgrp->pg_session;
  592         PGRP_UNLOCK(pgrp);
  593 
  594         /* Remove the reference to the pgrp before deallocating it. */
  595         if (tp != NULL) {
  596                 tty_lock(tp);
  597                 tty_rel_pgrp(tp, pgrp);
  598         }
  599 
  600         mtx_destroy(&pgrp->pg_mtx);
  601         free(pgrp, M_PGRP);
  602         sess_release(savesess);
  603 }
  604 
  605 static void
  606 pgadjustjobc(pgrp, entering)
  607         struct pgrp *pgrp;
  608         int entering;
  609 {
  610 
  611         PGRP_LOCK(pgrp);
  612         if (entering)
  613                 pgrp->pg_jobc++;
  614         else {
  615                 --pgrp->pg_jobc;
  616                 if (pgrp->pg_jobc == 0)
  617                         orphanpg(pgrp);
  618         }
  619         PGRP_UNLOCK(pgrp);
  620 }
  621 
  622 /*
  623  * Adjust pgrp jobc counters when specified process changes process group.
  624  * We count the number of processes in each process group that "qualify"
  625  * the group for terminal job control (those with a parent in a different
  626  * process group of the same session).  If that count reaches zero, the
  627  * process group becomes orphaned.  Check both the specified process'
  628  * process group and that of its children.
  629  * entering == 0 => p is leaving specified group.
  630  * entering == 1 => p is entering specified group.
  631  */
  632 void
  633 fixjobc(p, pgrp, entering)
  634         register struct proc *p;
  635         register struct pgrp *pgrp;
  636         int entering;
  637 {
  638         register struct pgrp *hispgrp;
  639         register struct session *mysession;
  640 
  641         sx_assert(&proctree_lock, SX_LOCKED);
  642         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  643         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  644         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  645 
  646         /*
  647          * Check p's parent to see whether p qualifies its own process
  648          * group; if so, adjust count for p's process group.
  649          */
  650         mysession = pgrp->pg_session;
  651         if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
  652             hispgrp->pg_session == mysession)
  653                 pgadjustjobc(pgrp, entering);
  654 
  655         /*
  656          * Check this process' children to see whether they qualify
  657          * their process groups; if so, adjust counts for children's
  658          * process groups.
  659          */
  660         LIST_FOREACH(p, &p->p_children, p_sibling) {
  661                 hispgrp = p->p_pgrp;
  662                 if (hispgrp == pgrp ||
  663                     hispgrp->pg_session != mysession)
  664                         continue;
  665                 PROC_LOCK(p);
  666                 if (p->p_state == PRS_ZOMBIE) {
  667                         PROC_UNLOCK(p);
  668                         continue;
  669                 }
  670                 PROC_UNLOCK(p);
  671                 pgadjustjobc(hispgrp, entering);
  672         }
  673 }
  674 
  675 /*
  676  * A process group has become orphaned;
  677  * if there are any stopped processes in the group,
  678  * hang-up all process in that group.
  679  */
  680 static void
  681 orphanpg(pg)
  682         struct pgrp *pg;
  683 {
  684         register struct proc *p;
  685 
  686         PGRP_LOCK_ASSERT(pg, MA_OWNED);
  687 
  688         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  689                 PROC_LOCK(p);
  690                 if (P_SHOULDSTOP(p)) {
  691                         PROC_UNLOCK(p);
  692                         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  693                                 PROC_LOCK(p);
  694                                 psignal(p, SIGHUP);
  695                                 psignal(p, SIGCONT);
  696                                 PROC_UNLOCK(p);
  697                         }
  698                         return;
  699                 }
  700                 PROC_UNLOCK(p);
  701         }
  702 }
  703 
  704 void
  705 sess_hold(struct session *s)
  706 {
  707 
  708         refcount_acquire(&s->s_count);
  709 }
  710 
  711 void
  712 sess_release(struct session *s)
  713 {
  714 
  715         if (refcount_release(&s->s_count)) {
  716                 if (s->s_ttyp != NULL) {
  717                         tty_lock(s->s_ttyp);
  718                         tty_rel_sess(s->s_ttyp, s);
  719                 }
  720                 mtx_destroy(&s->s_mtx);
  721                 free(s, M_SESSION);
  722         }
  723 }
  724 
  725 #include "opt_ddb.h"
  726 #ifdef DDB
  727 #include <ddb/ddb.h>
  728 
  729 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
  730 {
  731         register struct pgrp *pgrp;
  732         register struct proc *p;
  733         register int i;
  734 
  735         for (i = 0; i <= pgrphash; i++) {
  736                 if (!LIST_EMPTY(&pgrphashtbl[i])) {
  737                         printf("\tindx %d\n", i);
  738                         LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
  739                                 printf(
  740                         "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
  741                                     (void *)pgrp, (long)pgrp->pg_id,
  742                                     (void *)pgrp->pg_session,
  743                                     pgrp->pg_session->s_count,
  744                                     (void *)LIST_FIRST(&pgrp->pg_members));
  745                                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
  746                                         printf("\t\tpid %ld addr %p pgrp %p\n", 
  747                                             (long)p->p_pid, (void *)p,
  748                                             (void *)p->p_pgrp);
  749                                 }
  750                         }
  751                 }
  752         }
  753 }
  754 #endif /* DDB */
  755 
  756 /*
  757  * Calculate the kinfo_proc members which contain process-wide
  758  * informations.
  759  * Must be called with the target process locked.
  760  */
  761 static void
  762 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
  763 {
  764         struct thread *td;
  765 
  766         PROC_LOCK_ASSERT(p, MA_OWNED);
  767 
  768         kp->ki_estcpu = 0;
  769         kp->ki_pctcpu = 0;
  770         FOREACH_THREAD_IN_PROC(p, td) {
  771                 thread_lock(td);
  772                 kp->ki_pctcpu += sched_pctcpu(td);
  773                 kp->ki_estcpu += td->td_estcpu;
  774                 thread_unlock(td);
  775         }
  776 }
  777 
  778 /*
  779  * Clear kinfo_proc and fill in any information that is common
  780  * to all threads in the process.
  781  * Must be called with the target process locked.
  782  */
  783 static void
  784 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
  785 {
  786         struct thread *td0;
  787         struct tty *tp;
  788         struct session *sp;
  789         struct ucred *cred;
  790         struct sigacts *ps;
  791 
  792         PROC_LOCK_ASSERT(p, MA_OWNED);
  793         bzero(kp, sizeof(*kp));
  794 
  795         kp->ki_structsize = sizeof(*kp);
  796         kp->ki_paddr = p;
  797         kp->ki_addr =/* p->p_addr; */0; /* XXX */
  798         kp->ki_args = p->p_args;
  799         kp->ki_textvp = p->p_textvp;
  800 #ifdef KTRACE
  801         kp->ki_tracep = p->p_tracevp;
  802         kp->ki_traceflag = p->p_traceflag;
  803 #endif
  804         kp->ki_fd = p->p_fd;
  805         kp->ki_vmspace = p->p_vmspace;
  806         kp->ki_flag = p->p_flag;
  807         cred = p->p_ucred;
  808         if (cred) {
  809                 kp->ki_uid = cred->cr_uid;
  810                 kp->ki_ruid = cred->cr_ruid;
  811                 kp->ki_svuid = cred->cr_svuid;
  812                 kp->ki_cr_flags = cred->cr_flags;
  813                 /* XXX bde doesn't like KI_NGROUPS */
  814                 if (cred->cr_ngroups > KI_NGROUPS) {
  815                         kp->ki_ngroups = KI_NGROUPS;
  816                         kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
  817                 } else
  818                         kp->ki_ngroups = cred->cr_ngroups;
  819                 bcopy(cred->cr_groups, kp->ki_groups,
  820                     kp->ki_ngroups * sizeof(gid_t));
  821                 kp->ki_rgid = cred->cr_rgid;
  822                 kp->ki_svgid = cred->cr_svgid;
  823                 /* If jailed(cred), emulate the old P_JAILED flag. */
  824                 if (jailed(cred)) {
  825                         kp->ki_flag |= P_JAILED;
  826                         /* If inside the jail, use 0 as a jail ID. */
  827                         if (cred->cr_prison != curthread->td_ucred->cr_prison)
  828                                 kp->ki_jid = cred->cr_prison->pr_id;
  829                 }
  830         }
  831         ps = p->p_sigacts;
  832         if (ps) {
  833                 mtx_lock(&ps->ps_mtx);
  834                 kp->ki_sigignore = ps->ps_sigignore;
  835                 kp->ki_sigcatch = ps->ps_sigcatch;
  836                 mtx_unlock(&ps->ps_mtx);
  837         }
  838         if (p->p_state != PRS_NEW &&
  839             p->p_state != PRS_ZOMBIE &&
  840             p->p_vmspace != NULL) {
  841                 struct vmspace *vm = p->p_vmspace;
  842 
  843                 kp->ki_size = vm->vm_map.size;
  844                 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
  845                 FOREACH_THREAD_IN_PROC(p, td0) {
  846                         if (!TD_IS_SWAPPED(td0))
  847                                 kp->ki_rssize += td0->td_kstack_pages;
  848                 }
  849                 kp->ki_swrss = vm->vm_swrss;
  850                 kp->ki_tsize = vm->vm_tsize;
  851                 kp->ki_dsize = vm->vm_dsize;
  852                 kp->ki_ssize = vm->vm_ssize;
  853         } else if (p->p_state == PRS_ZOMBIE)
  854                 kp->ki_stat = SZOMB;
  855         if (kp->ki_flag & P_INMEM)
  856                 kp->ki_sflag = PS_INMEM;
  857         else
  858                 kp->ki_sflag = 0;
  859         /* Calculate legacy swtime as seconds since 'swtick'. */
  860         kp->ki_swtime = (ticks - p->p_swtick) / hz;
  861         kp->ki_pid = p->p_pid;
  862         kp->ki_nice = p->p_nice;
  863         PROC_SLOCK(p);
  864         rufetch(p, &kp->ki_rusage);
  865         kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
  866         PROC_SUNLOCK(p);
  867         if ((p->p_flag & P_INMEM) && p->p_stats != NULL) {
  868                 kp->ki_start = p->p_stats->p_start;
  869                 timevaladd(&kp->ki_start, &boottime);
  870                 PROC_SLOCK(p);
  871                 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
  872                 PROC_SUNLOCK(p);
  873                 calccru(p, &kp->ki_childutime, &kp->ki_childstime);
  874 
  875                 /* Some callers want child-times in a single value */
  876                 kp->ki_childtime = kp->ki_childstime;
  877                 timevaladd(&kp->ki_childtime, &kp->ki_childutime);
  878         }
  879 
  880         FOREACH_THREAD_IN_PROC(p, td0)
  881                 kp->ki_cow += td0->td_cow;
  882 
  883         tp = NULL;
  884         if (p->p_pgrp) {
  885                 kp->ki_pgid = p->p_pgrp->pg_id;
  886                 kp->ki_jobc = p->p_pgrp->pg_jobc;
  887                 sp = p->p_pgrp->pg_session;
  888 
  889                 if (sp != NULL) {
  890                         kp->ki_sid = sp->s_sid;
  891                         SESS_LOCK(sp);
  892                         strlcpy(kp->ki_login, sp->s_login,
  893                             sizeof(kp->ki_login));
  894                         if (sp->s_ttyvp)
  895                                 kp->ki_kiflag |= KI_CTTY;
  896                         if (SESS_LEADER(p))
  897                                 kp->ki_kiflag |= KI_SLEADER;
  898                         /* XXX proctree_lock */
  899                         tp = sp->s_ttyp;
  900                         SESS_UNLOCK(sp);
  901                 }
  902         }
  903         if ((p->p_flag & P_CONTROLT) && tp != NULL) {
  904                 kp->ki_tdev = tty_udev(tp);
  905                 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
  906                 if (tp->t_session)
  907                         kp->ki_tsid = tp->t_session->s_sid;
  908         } else
  909                 kp->ki_tdev = NODEV;
  910         if (p->p_comm[0] != '\0')
  911                 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
  912         if (p->p_sysent && p->p_sysent->sv_name != NULL &&
  913             p->p_sysent->sv_name[0] != '\0')
  914                 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
  915         kp->ki_siglist = p->p_siglist;
  916         kp->ki_xstat = p->p_xstat;
  917         kp->ki_acflag = p->p_acflag;
  918         kp->ki_lock = p->p_lock;
  919         if (p->p_pptr)
  920                 kp->ki_ppid = p->p_pptr->p_pid;
  921 }
  922 
  923 /*
  924  * Fill in information that is thread specific.  Must be called with
  925  * target process locked.  If 'preferthread' is set, overwrite certain
  926  * process-related fields that are maintained for both threads and
  927  * processes.
  928  */
  929 static void
  930 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
  931 {
  932         struct proc *p;
  933 
  934         p = td->td_proc;
  935         kp->ki_tdaddr = td;
  936         PROC_LOCK_ASSERT(p, MA_OWNED);
  937 
  938         thread_lock(td);
  939         if (td->td_wmesg != NULL)
  940                 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
  941         else
  942                 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
  943         strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm));
  944         if (TD_ON_LOCK(td)) {
  945                 kp->ki_kiflag |= KI_LOCKBLOCK;
  946                 strlcpy(kp->ki_lockname, td->td_lockname,
  947                     sizeof(kp->ki_lockname));
  948         } else {
  949                 kp->ki_kiflag &= ~KI_LOCKBLOCK;
  950                 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
  951         }
  952 
  953         if (p->p_state == PRS_NORMAL) { /* approximate. */
  954                 if (TD_ON_RUNQ(td) ||
  955                     TD_CAN_RUN(td) ||
  956                     TD_IS_RUNNING(td)) {
  957                         kp->ki_stat = SRUN;
  958                 } else if (P_SHOULDSTOP(p)) {
  959                         kp->ki_stat = SSTOP;
  960                 } else if (TD_IS_SLEEPING(td)) {
  961                         kp->ki_stat = SSLEEP;
  962                 } else if (TD_ON_LOCK(td)) {
  963                         kp->ki_stat = SLOCK;
  964                 } else {
  965                         kp->ki_stat = SWAIT;
  966                 }
  967         } else if (p->p_state == PRS_ZOMBIE) {
  968                 kp->ki_stat = SZOMB;
  969         } else {
  970                 kp->ki_stat = SIDL;
  971         }
  972 
  973         /* Things in the thread */
  974         kp->ki_wchan = td->td_wchan;
  975         kp->ki_pri.pri_level = td->td_priority;
  976         kp->ki_pri.pri_native = td->td_base_pri;
  977         kp->ki_lastcpu = td->td_lastcpu;
  978         kp->ki_oncpu = td->td_oncpu;
  979         kp->ki_tdflags = td->td_flags;
  980         kp->ki_tid = td->td_tid;
  981         kp->ki_numthreads = p->p_numthreads;
  982         kp->ki_pcb = td->td_pcb;
  983         kp->ki_kstack = (void *)td->td_kstack;
  984         kp->ki_slptime = (ticks - td->td_slptick) / hz;
  985         kp->ki_pri.pri_class = td->td_pri_class;
  986         kp->ki_pri.pri_user = td->td_user_pri;
  987 
  988         if (preferthread) {
  989                 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
  990                 kp->ki_pctcpu = sched_pctcpu(td);
  991                 kp->ki_estcpu = td->td_estcpu;
  992                 kp->ki_cow = td->td_cow;
  993         }
  994 
  995         /* We can't get this anymore but ps etc never used it anyway. */
  996         kp->ki_rqindex = 0;
  997 
  998         if (preferthread)
  999                 kp->ki_siglist = td->td_siglist;
 1000         kp->ki_sigmask = td->td_sigmask;
 1001         thread_unlock(td);
 1002 }
 1003 
 1004 /*
 1005  * Fill in a kinfo_proc structure for the specified process.
 1006  * Must be called with the target process locked.
 1007  */
 1008 void
 1009 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
 1010 {
 1011 
 1012         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1013 
 1014         fill_kinfo_proc_only(p, kp);
 1015         fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
 1016         fill_kinfo_aggregate(p, kp);
 1017 }
 1018 
 1019 struct pstats *
 1020 pstats_alloc(void)
 1021 {
 1022 
 1023         return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
 1024 }
 1025 
 1026 /*
 1027  * Copy parts of p_stats; zero the rest of p_stats (statistics).
 1028  */
 1029 void
 1030 pstats_fork(struct pstats *src, struct pstats *dst)
 1031 {
 1032 
 1033         bzero(&dst->pstat_startzero,
 1034             __rangeof(struct pstats, pstat_startzero, pstat_endzero));
 1035         bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
 1036             __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
 1037 }
 1038 
 1039 void
 1040 pstats_free(struct pstats *ps)
 1041 {
 1042 
 1043         free(ps, M_SUBPROC);
 1044 }
 1045 
 1046 /*
 1047  * Locate a zombie process by number
 1048  */
 1049 struct proc *
 1050 zpfind(pid_t pid)
 1051 {
 1052         struct proc *p;
 1053 
 1054         sx_slock(&allproc_lock);
 1055         LIST_FOREACH(p, &zombproc, p_list)
 1056                 if (p->p_pid == pid) {
 1057                         PROC_LOCK(p);
 1058                         break;
 1059                 }
 1060         sx_sunlock(&allproc_lock);
 1061         return (p);
 1062 }
 1063 
 1064 #define KERN_PROC_ZOMBMASK      0x3
 1065 #define KERN_PROC_NOTHREADS     0x4
 1066 
 1067 #ifdef COMPAT_FREEBSD32
 1068 
 1069 /*
 1070  * This function is typically used to copy out the kernel address, so
 1071  * it can be replaced by assignment of zero.
 1072  */
 1073 static inline uint32_t
 1074 ptr32_trim(void *ptr)
 1075 {
 1076         uintptr_t uptr;
 1077 
 1078         uptr = (uintptr_t)ptr;
 1079         return ((uptr > UINT_MAX) ? 0 : uptr);
 1080 }
 1081 
 1082 #define PTRTRIM_CP(src,dst,fld) \
 1083         do { (dst).fld = ptr32_trim((src).fld); } while (0)
 1084 
 1085 static void
 1086 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
 1087 {
 1088         int i;
 1089 
 1090         bzero(ki32, sizeof(struct kinfo_proc32));
 1091         ki32->ki_structsize = sizeof(struct kinfo_proc32);
 1092         CP(*ki, *ki32, ki_layout);
 1093         PTRTRIM_CP(*ki, *ki32, ki_args);
 1094         PTRTRIM_CP(*ki, *ki32, ki_paddr);
 1095         PTRTRIM_CP(*ki, *ki32, ki_addr);
 1096         PTRTRIM_CP(*ki, *ki32, ki_tracep);
 1097         PTRTRIM_CP(*ki, *ki32, ki_textvp);
 1098         PTRTRIM_CP(*ki, *ki32, ki_fd);
 1099         PTRTRIM_CP(*ki, *ki32, ki_vmspace);
 1100         PTRTRIM_CP(*ki, *ki32, ki_wchan);
 1101         CP(*ki, *ki32, ki_pid);
 1102         CP(*ki, *ki32, ki_ppid);
 1103         CP(*ki, *ki32, ki_pgid);
 1104         CP(*ki, *ki32, ki_tpgid);
 1105         CP(*ki, *ki32, ki_sid);
 1106         CP(*ki, *ki32, ki_tsid);
 1107         CP(*ki, *ki32, ki_jobc);
 1108         CP(*ki, *ki32, ki_tdev);
 1109         CP(*ki, *ki32, ki_siglist);
 1110         CP(*ki, *ki32, ki_sigmask);
 1111         CP(*ki, *ki32, ki_sigignore);
 1112         CP(*ki, *ki32, ki_sigcatch);
 1113         CP(*ki, *ki32, ki_uid);
 1114         CP(*ki, *ki32, ki_ruid);
 1115         CP(*ki, *ki32, ki_svuid);
 1116         CP(*ki, *ki32, ki_rgid);
 1117         CP(*ki, *ki32, ki_svgid);
 1118         CP(*ki, *ki32, ki_ngroups);
 1119         for (i = 0; i < KI_NGROUPS; i++)
 1120                 CP(*ki, *ki32, ki_groups[i]);
 1121         CP(*ki, *ki32, ki_size);
 1122         CP(*ki, *ki32, ki_rssize);
 1123         CP(*ki, *ki32, ki_swrss);
 1124         CP(*ki, *ki32, ki_tsize);
 1125         CP(*ki, *ki32, ki_dsize);
 1126         CP(*ki, *ki32, ki_ssize);
 1127         CP(*ki, *ki32, ki_xstat);
 1128         CP(*ki, *ki32, ki_acflag);
 1129         CP(*ki, *ki32, ki_pctcpu);
 1130         CP(*ki, *ki32, ki_estcpu);
 1131         CP(*ki, *ki32, ki_slptime);
 1132         CP(*ki, *ki32, ki_swtime);
 1133         CP(*ki, *ki32, ki_cow);
 1134         CP(*ki, *ki32, ki_runtime);
 1135         TV_CP(*ki, *ki32, ki_start);
 1136         TV_CP(*ki, *ki32, ki_childtime);
 1137         CP(*ki, *ki32, ki_flag);
 1138         CP(*ki, *ki32, ki_kiflag);
 1139         CP(*ki, *ki32, ki_traceflag);
 1140         CP(*ki, *ki32, ki_stat);
 1141         CP(*ki, *ki32, ki_nice);
 1142         CP(*ki, *ki32, ki_lock);
 1143         CP(*ki, *ki32, ki_rqindex);
 1144         CP(*ki, *ki32, ki_oncpu);
 1145         CP(*ki, *ki32, ki_lastcpu);
 1146         bcopy(ki->ki_ocomm, ki32->ki_ocomm, OCOMMLEN + 1);
 1147         bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
 1148         bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
 1149         bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
 1150         bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
 1151         bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
 1152         CP(*ki, *ki32, ki_cr_flags);
 1153         CP(*ki, *ki32, ki_jid);
 1154         CP(*ki, *ki32, ki_numthreads);
 1155         CP(*ki, *ki32, ki_tid);
 1156         CP(*ki, *ki32, ki_pri);
 1157         freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
 1158         freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
 1159         PTRTRIM_CP(*ki, *ki32, ki_pcb);
 1160         PTRTRIM_CP(*ki, *ki32, ki_kstack);
 1161         PTRTRIM_CP(*ki, *ki32, ki_udata);
 1162         CP(*ki, *ki32, ki_sflag);
 1163         CP(*ki, *ki32, ki_tdflags);
 1164 }
 1165 
 1166 static int
 1167 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req)
 1168 {
 1169         struct kinfo_proc32 ki32;
 1170         int error;
 1171 
 1172         if (req->flags & SCTL_MASK32) {
 1173                 freebsd32_kinfo_proc_out(ki, &ki32);
 1174                 error = SYSCTL_OUT(req, &ki32, sizeof(struct kinfo_proc32));
 1175         } else
 1176                 error = SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc));
 1177         return (error);
 1178 }
 1179 #else
 1180 static int
 1181 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req)
 1182 {
 1183 
 1184         return (SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc)));
 1185 }
 1186 #endif
 1187 
 1188 /*
 1189  * Must be called with the process locked and will return with it unlocked.
 1190  */
 1191 static int
 1192 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
 1193 {
 1194         struct thread *td;
 1195         struct kinfo_proc kinfo_proc;
 1196         int error = 0;
 1197         struct proc *np;
 1198         pid_t pid = p->p_pid;
 1199 
 1200         PROC_LOCK_ASSERT(p, MA_OWNED);
 1201         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1202 
 1203         fill_kinfo_proc(p, &kinfo_proc);
 1204         if (flags & KERN_PROC_NOTHREADS)
 1205                 error = sysctl_out_proc_copyout(&kinfo_proc, req);
 1206         else {
 1207                 FOREACH_THREAD_IN_PROC(p, td) {
 1208                         fill_kinfo_thread(td, &kinfo_proc, 1);
 1209                         error = sysctl_out_proc_copyout(&kinfo_proc, req);
 1210                         if (error)
 1211                                 break;
 1212                 }
 1213         }
 1214         PROC_UNLOCK(p);
 1215         if (error)
 1216                 return (error);
 1217         if (flags & KERN_PROC_ZOMBMASK)
 1218                 np = zpfind(pid);
 1219         else {
 1220                 if (pid == 0)
 1221                         return (0);
 1222                 np = pfind(pid);
 1223         }
 1224         if (np == NULL)
 1225                 return (ESRCH);
 1226         if (np != p) {
 1227                 PROC_UNLOCK(np);
 1228                 return (ESRCH);
 1229         }
 1230         PROC_UNLOCK(np);
 1231         return (0);
 1232 }
 1233 
 1234 static int
 1235 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
 1236 {
 1237         int *name = (int*) arg1;
 1238         u_int namelen = arg2;
 1239         struct proc *p;
 1240         int flags, doingzomb, oid_number;
 1241         int error = 0;
 1242 
 1243         oid_number = oidp->oid_number;
 1244         if (oid_number != KERN_PROC_ALL &&
 1245             (oid_number & KERN_PROC_INC_THREAD) == 0)
 1246                 flags = KERN_PROC_NOTHREADS;
 1247         else {
 1248                 flags = 0;
 1249                 oid_number &= ~KERN_PROC_INC_THREAD;
 1250         }
 1251         if (oid_number == KERN_PROC_PID) {
 1252                 if (namelen != 1) 
 1253                         return (EINVAL);
 1254                 error = sysctl_wire_old_buffer(req, 0);
 1255                 if (error)
 1256                         return (error);         
 1257                 error = pget((pid_t)name[0], PGET_CANSEE, &p);
 1258                 if (error != 0)
 1259                         return (error);
 1260                 error = sysctl_out_proc(p, req, flags);
 1261                 return (error);
 1262         }
 1263 
 1264         switch (oid_number) {
 1265         case KERN_PROC_ALL:
 1266                 if (namelen != 0)
 1267                         return (EINVAL);
 1268                 break;
 1269         case KERN_PROC_PROC:
 1270                 if (namelen != 0 && namelen != 1)
 1271                         return (EINVAL);
 1272                 break;
 1273         default:
 1274                 if (namelen != 1)
 1275                         return (EINVAL);
 1276                 break;
 1277         }
 1278         
 1279         if (!req->oldptr) {
 1280                 /* overestimate by 5 procs */
 1281                 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
 1282                 if (error)
 1283                         return (error);
 1284         }
 1285         error = sysctl_wire_old_buffer(req, 0);
 1286         if (error != 0)
 1287                 return (error);
 1288         sx_slock(&allproc_lock);
 1289         for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
 1290                 if (!doingzomb)
 1291                         p = LIST_FIRST(&allproc);
 1292                 else
 1293                         p = LIST_FIRST(&zombproc);
 1294                 for (; p != 0; p = LIST_NEXT(p, p_list)) {
 1295                         /*
 1296                          * Skip embryonic processes.
 1297                          */
 1298                         PROC_LOCK(p);
 1299                         if (p->p_state == PRS_NEW) {
 1300                                 PROC_UNLOCK(p);
 1301                                 continue;
 1302                         }
 1303                         KASSERT(p->p_ucred != NULL,
 1304                             ("process credential is NULL for non-NEW proc"));
 1305                         /*
 1306                          * Show a user only appropriate processes.
 1307                          */
 1308                         if (p_cansee(curthread, p)) {
 1309                                 PROC_UNLOCK(p);
 1310                                 continue;
 1311                         }
 1312                         /*
 1313                          * TODO - make more efficient (see notes below).
 1314                          * do by session.
 1315                          */
 1316                         switch (oid_number) {
 1317 
 1318                         case KERN_PROC_GID:
 1319                                 if (p->p_ucred->cr_gid != (gid_t)name[0]) {
 1320                                         PROC_UNLOCK(p);
 1321                                         continue;
 1322                                 }
 1323                                 break;
 1324 
 1325                         case KERN_PROC_PGRP:
 1326                                 /* could do this by traversing pgrp */
 1327                                 if (p->p_pgrp == NULL ||
 1328                                     p->p_pgrp->pg_id != (pid_t)name[0]) {
 1329                                         PROC_UNLOCK(p);
 1330                                         continue;
 1331                                 }
 1332                                 break;
 1333 
 1334                         case KERN_PROC_RGID:
 1335                                 if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
 1336                                         PROC_UNLOCK(p);
 1337                                         continue;
 1338                                 }
 1339                                 break;
 1340 
 1341                         case KERN_PROC_SESSION:
 1342                                 if (p->p_session == NULL ||
 1343                                     p->p_session->s_sid != (pid_t)name[0]) {
 1344                                         PROC_UNLOCK(p);
 1345                                         continue;
 1346                                 }
 1347                                 break;
 1348 
 1349                         case KERN_PROC_TTY:
 1350                                 if ((p->p_flag & P_CONTROLT) == 0 ||
 1351                                     p->p_session == NULL) {
 1352                                         PROC_UNLOCK(p);
 1353                                         continue;
 1354                                 }
 1355                                 /* XXX proctree_lock */
 1356                                 SESS_LOCK(p->p_session);
 1357                                 if (p->p_session->s_ttyp == NULL ||
 1358                                     tty_udev(p->p_session->s_ttyp) != 
 1359                                     (dev_t)name[0]) {
 1360                                         SESS_UNLOCK(p->p_session);
 1361                                         PROC_UNLOCK(p);
 1362                                         continue;
 1363                                 }
 1364                                 SESS_UNLOCK(p->p_session);
 1365                                 break;
 1366 
 1367                         case KERN_PROC_UID:
 1368                                 if (p->p_ucred->cr_uid != (uid_t)name[0]) {
 1369                                         PROC_UNLOCK(p);
 1370                                         continue;
 1371                                 }
 1372                                 break;
 1373 
 1374                         case KERN_PROC_RUID:
 1375                                 if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
 1376                                         PROC_UNLOCK(p);
 1377                                         continue;
 1378                                 }
 1379                                 break;
 1380 
 1381                         case KERN_PROC_PROC:
 1382                                 break;
 1383 
 1384                         default:
 1385                                 break;
 1386 
 1387                         }
 1388 
 1389                         error = sysctl_out_proc(p, req, flags | doingzomb);
 1390                         if (error) {
 1391                                 sx_sunlock(&allproc_lock);
 1392                                 return (error);
 1393                         }
 1394                 }
 1395         }
 1396         sx_sunlock(&allproc_lock);
 1397         return (0);
 1398 }
 1399 
 1400 struct pargs *
 1401 pargs_alloc(int len)
 1402 {
 1403         struct pargs *pa;
 1404 
 1405         pa = malloc(sizeof(struct pargs) + len, M_PARGS,
 1406                 M_WAITOK);
 1407         refcount_init(&pa->ar_ref, 1);
 1408         pa->ar_length = len;
 1409         return (pa);
 1410 }
 1411 
 1412 static void
 1413 pargs_free(struct pargs *pa)
 1414 {
 1415 
 1416         free(pa, M_PARGS);
 1417 }
 1418 
 1419 void
 1420 pargs_hold(struct pargs *pa)
 1421 {
 1422 
 1423         if (pa == NULL)
 1424                 return;
 1425         refcount_acquire(&pa->ar_ref);
 1426 }
 1427 
 1428 void
 1429 pargs_drop(struct pargs *pa)
 1430 {
 1431 
 1432         if (pa == NULL)
 1433                 return;
 1434         if (refcount_release(&pa->ar_ref))
 1435                 pargs_free(pa);
 1436 }
 1437 
 1438 /*
 1439  * This sysctl allows a process to retrieve the argument list or process
 1440  * title for another process without groping around in the address space
 1441  * of the other process.  It also allow a process to set its own "process 
 1442  * title to a string of its own choice.
 1443  */
 1444 static int
 1445 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
 1446 {
 1447         int *name = (int*) arg1;
 1448         u_int namelen = arg2;
 1449         struct pargs *newpa, *pa;
 1450         struct proc *p;
 1451         int flags, error = 0;
 1452 
 1453         if (namelen != 1) 
 1454                 return (EINVAL);
 1455 
 1456         flags = PGET_CANSEE;
 1457         if (req->newptr != NULL)
 1458                 flags |= PGET_ISCURRENT;
 1459         error = pget((pid_t)name[0], flags, &p);
 1460         if (error)
 1461                 return (error);
 1462 
 1463         pa = p->p_args;
 1464         pargs_hold(pa);
 1465         PROC_UNLOCK(p);
 1466         if (pa != NULL)
 1467                 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
 1468         pargs_drop(pa);
 1469         if (error != 0 || req->newptr == NULL)
 1470                 return (error);
 1471 
 1472         if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
 1473                 return (ENOMEM);
 1474         newpa = pargs_alloc(req->newlen);
 1475         error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
 1476         if (error != 0) {
 1477                 pargs_free(newpa);
 1478                 return (error);
 1479         }
 1480         PROC_LOCK(p);
 1481         pa = p->p_args;
 1482         p->p_args = newpa;
 1483         PROC_UNLOCK(p);
 1484         pargs_drop(pa);
 1485         return (0);
 1486 }
 1487 
 1488 /*
 1489  * This sysctl allows a process to retrieve the path of the executable for
 1490  * itself or another process.
 1491  */
 1492 static int
 1493 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
 1494 {
 1495         pid_t *pidp = (pid_t *)arg1;
 1496         unsigned int arglen = arg2;
 1497         struct proc *p;
 1498         struct vnode *vp;
 1499         char *retbuf, *freebuf;
 1500         int error, vfslocked;
 1501 
 1502         if (arglen != 1)
 1503                 return (EINVAL);
 1504         if (*pidp == -1) {      /* -1 means this process */
 1505                 p = req->td->td_proc;
 1506         } else {
 1507                 error = pget(*pidp, PGET_CANSEE, &p);
 1508                 if (error != 0)
 1509                         return (error);
 1510         }
 1511 
 1512         vp = p->p_textvp;
 1513         if (vp == NULL) {
 1514                 if (*pidp != -1)
 1515                         PROC_UNLOCK(p);
 1516                 return (0);
 1517         }
 1518         vref(vp);
 1519         if (*pidp != -1)
 1520                 PROC_UNLOCK(p);
 1521         error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
 1522         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 1523         vrele(vp);
 1524         VFS_UNLOCK_GIANT(vfslocked);
 1525         if (error)
 1526                 return (error);
 1527         error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
 1528         free(freebuf, M_TEMP);
 1529         return (error);
 1530 }
 1531 
 1532 static int
 1533 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
 1534 {
 1535         struct proc *p;
 1536         char *sv_name;
 1537         int *name;
 1538         int namelen;
 1539         int error;
 1540 
 1541         namelen = arg2;
 1542         if (namelen != 1) 
 1543                 return (EINVAL);
 1544 
 1545         name = (int *)arg1;
 1546         error = pget((pid_t)name[0], PGET_CANSEE, &p);
 1547         if (error != 0)
 1548                 return (error);
 1549         sv_name = p->p_sysent->sv_name;
 1550         PROC_UNLOCK(p);
 1551         return (sysctl_handle_string(oidp, sv_name, 0, req));
 1552 }
 1553 
 1554 #ifdef KINFO_OVMENTRY_SIZE
 1555 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
 1556 #endif
 1557 
 1558 #ifdef COMPAT_FREEBSD7
 1559 static int
 1560 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
 1561 {
 1562         vm_map_entry_t entry, tmp_entry;
 1563         unsigned int last_timestamp;
 1564         char *fullpath, *freepath;
 1565         struct kinfo_ovmentry *kve;
 1566         struct vattr va;
 1567         struct ucred *cred;
 1568         int error, *name;
 1569         struct vnode *vp;
 1570         struct proc *p;
 1571         vm_map_t map;
 1572         struct vmspace *vm;
 1573 
 1574         name = (int *)arg1;
 1575         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1576         if (error != 0)
 1577                 return (error);
 1578         vm = vmspace_acquire_ref(p);
 1579         if (vm == NULL) {
 1580                 PRELE(p);
 1581                 return (ESRCH);
 1582         }
 1583         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
 1584 
 1585         map = &p->p_vmspace->vm_map;    /* XXXRW: More locking required? */
 1586         vm_map_lock_read(map);
 1587         for (entry = map->header.next; entry != &map->header;
 1588             entry = entry->next) {
 1589                 vm_object_t obj, tobj, lobj;
 1590                 vm_offset_t addr;
 1591                 int vfslocked;
 1592 
 1593                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 1594                         continue;
 1595 
 1596                 bzero(kve, sizeof(*kve));
 1597                 kve->kve_structsize = sizeof(*kve);
 1598 
 1599                 kve->kve_private_resident = 0;
 1600                 obj = entry->object.vm_object;
 1601                 if (obj != NULL) {
 1602                         VM_OBJECT_LOCK(obj);
 1603                         if (obj->shadow_count == 1)
 1604                                 kve->kve_private_resident =
 1605                                     obj->resident_page_count;
 1606                 }
 1607                 kve->kve_resident = 0;
 1608                 addr = entry->start;
 1609                 while (addr < entry->end) {
 1610                         if (pmap_extract(map->pmap, addr))
 1611                                 kve->kve_resident++;
 1612                         addr += PAGE_SIZE;
 1613                 }
 1614 
 1615                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
 1616                         if (tobj != obj)
 1617                                 VM_OBJECT_LOCK(tobj);
 1618                         if (lobj != obj)
 1619                                 VM_OBJECT_UNLOCK(lobj);
 1620                         lobj = tobj;
 1621                 }
 1622 
 1623                 kve->kve_start = (void*)entry->start;
 1624                 kve->kve_end = (void*)entry->end;
 1625                 kve->kve_offset = (off_t)entry->offset;
 1626 
 1627                 if (entry->protection & VM_PROT_READ)
 1628                         kve->kve_protection |= KVME_PROT_READ;
 1629                 if (entry->protection & VM_PROT_WRITE)
 1630                         kve->kve_protection |= KVME_PROT_WRITE;
 1631                 if (entry->protection & VM_PROT_EXECUTE)
 1632                         kve->kve_protection |= KVME_PROT_EXEC;
 1633 
 1634                 if (entry->eflags & MAP_ENTRY_COW)
 1635                         kve->kve_flags |= KVME_FLAG_COW;
 1636                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 1637                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 1638                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 1639                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 1640 
 1641                 last_timestamp = map->timestamp;
 1642                 vm_map_unlock_read(map);
 1643 
 1644                 kve->kve_fileid = 0;
 1645                 kve->kve_fsid = 0;
 1646                 freepath = NULL;
 1647                 fullpath = "";
 1648                 if (lobj) {
 1649                         vp = NULL;
 1650                         switch (lobj->type) {
 1651                         case OBJT_DEFAULT:
 1652                                 kve->kve_type = KVME_TYPE_DEFAULT;
 1653                                 break;
 1654                         case OBJT_VNODE:
 1655                                 kve->kve_type = KVME_TYPE_VNODE;
 1656                                 vp = lobj->handle;
 1657                                 vref(vp);
 1658                                 break;
 1659                         case OBJT_SWAP:
 1660                                 kve->kve_type = KVME_TYPE_SWAP;
 1661                                 break;
 1662                         case OBJT_DEVICE:
 1663                                 kve->kve_type = KVME_TYPE_DEVICE;
 1664                                 break;
 1665                         case OBJT_PHYS:
 1666                                 kve->kve_type = KVME_TYPE_PHYS;
 1667                                 break;
 1668                         case OBJT_DEAD:
 1669                                 kve->kve_type = KVME_TYPE_DEAD;
 1670                                 break;
 1671                         case OBJT_SG:
 1672                                 kve->kve_type = KVME_TYPE_SG;
 1673                                 break;
 1674                         default:
 1675                                 kve->kve_type = KVME_TYPE_UNKNOWN;
 1676                                 break;
 1677                         }
 1678                         if (lobj != obj)
 1679                                 VM_OBJECT_UNLOCK(lobj);
 1680 
 1681                         kve->kve_ref_count = obj->ref_count;
 1682                         kve->kve_shadow_count = obj->shadow_count;
 1683                         VM_OBJECT_UNLOCK(obj);
 1684                         if (vp != NULL) {
 1685                                 vn_fullpath(curthread, vp, &fullpath,
 1686                                     &freepath);
 1687                                 cred = curthread->td_ucred;
 1688                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 1689                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 1690                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 1691                                         kve->kve_fileid = va.va_fileid;
 1692                                         kve->kve_fsid = va.va_fsid;
 1693                                 }
 1694                                 vput(vp);
 1695                                 VFS_UNLOCK_GIANT(vfslocked);
 1696                         }
 1697                 } else {
 1698                         kve->kve_type = KVME_TYPE_NONE;
 1699                         kve->kve_ref_count = 0;
 1700                         kve->kve_shadow_count = 0;
 1701                 }
 1702 
 1703                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 1704                 if (freepath != NULL)
 1705                         free(freepath, M_TEMP);
 1706 
 1707                 error = SYSCTL_OUT(req, kve, sizeof(*kve));
 1708                 vm_map_lock_read(map);
 1709                 if (error)
 1710                         break;
 1711                 if (last_timestamp != map->timestamp) {
 1712                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 1713                         entry = tmp_entry;
 1714                 }
 1715         }
 1716         vm_map_unlock_read(map);
 1717         vmspace_free(vm);
 1718         PRELE(p);
 1719         free(kve, M_TEMP);
 1720         return (error);
 1721 }
 1722 #endif  /* COMPAT_FREEBSD7 */
 1723 
 1724 #ifdef KINFO_VMENTRY_SIZE
 1725 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
 1726 #endif
 1727 
 1728 static int
 1729 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
 1730 {
 1731         vm_map_entry_t entry, tmp_entry;
 1732         unsigned int last_timestamp;
 1733         char *fullpath, *freepath;
 1734         struct kinfo_vmentry *kve;
 1735         struct vattr va;
 1736         struct ucred *cred;
 1737         int error, *name;
 1738         struct vnode *vp;
 1739         struct proc *p;
 1740         struct vmspace *vm;
 1741         vm_map_t map;
 1742 
 1743         name = (int *)arg1;
 1744         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1745         if (error != 0)
 1746                 return (error);
 1747         vm = vmspace_acquire_ref(p);
 1748         if (vm == NULL) {
 1749                 PRELE(p);
 1750                 return (ESRCH);
 1751         }
 1752         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
 1753 
 1754         map = &vm->vm_map;      /* XXXRW: More locking required? */
 1755         vm_map_lock_read(map);
 1756         for (entry = map->header.next; entry != &map->header;
 1757             entry = entry->next) {
 1758                 vm_object_t obj, tobj, lobj;
 1759                 vm_offset_t addr;
 1760                 int vfslocked, mincoreinfo;
 1761 
 1762                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 1763                         continue;
 1764 
 1765                 bzero(kve, sizeof(*kve));
 1766 
 1767                 kve->kve_private_resident = 0;
 1768                 obj = entry->object.vm_object;
 1769                 if (obj != NULL) {
 1770                         VM_OBJECT_LOCK(obj);
 1771                         if (obj->shadow_count == 1)
 1772                                 kve->kve_private_resident =
 1773                                     obj->resident_page_count;
 1774                 }
 1775                 kve->kve_resident = 0;
 1776                 addr = entry->start;
 1777                 while (addr < entry->end) {
 1778                         mincoreinfo = pmap_mincore(map->pmap, addr);
 1779                         if (mincoreinfo & MINCORE_INCORE)
 1780                                 kve->kve_resident++;
 1781                         if (mincoreinfo & MINCORE_SUPER)
 1782                                 kve->kve_flags |= KVME_FLAG_SUPER;
 1783                         addr += PAGE_SIZE;
 1784                 }
 1785 
 1786                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
 1787                         if (tobj != obj)
 1788                                 VM_OBJECT_LOCK(tobj);
 1789                         if (lobj != obj)
 1790                                 VM_OBJECT_UNLOCK(lobj);
 1791                         lobj = tobj;
 1792                 }
 1793 
 1794                 kve->kve_start = entry->start;
 1795                 kve->kve_end = entry->end;
 1796                 kve->kve_offset = entry->offset;
 1797 
 1798                 if (entry->protection & VM_PROT_READ)
 1799                         kve->kve_protection |= KVME_PROT_READ;
 1800                 if (entry->protection & VM_PROT_WRITE)
 1801                         kve->kve_protection |= KVME_PROT_WRITE;
 1802                 if (entry->protection & VM_PROT_EXECUTE)
 1803                         kve->kve_protection |= KVME_PROT_EXEC;
 1804 
 1805                 if (entry->eflags & MAP_ENTRY_COW)
 1806                         kve->kve_flags |= KVME_FLAG_COW;
 1807                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 1808                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 1809                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 1810                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 1811 
 1812                 last_timestamp = map->timestamp;
 1813                 vm_map_unlock_read(map);
 1814 
 1815                 kve->kve_fileid = 0;
 1816                 kve->kve_fsid = 0;
 1817                 freepath = NULL;
 1818                 fullpath = "";
 1819                 if (lobj) {
 1820                         vp = NULL;
 1821                         switch (lobj->type) {
 1822                         case OBJT_DEFAULT:
 1823                                 kve->kve_type = KVME_TYPE_DEFAULT;
 1824                                 break;
 1825                         case OBJT_VNODE:
 1826                                 kve->kve_type = KVME_TYPE_VNODE;
 1827                                 vp = lobj->handle;
 1828                                 vref(vp);
 1829                                 break;
 1830                         case OBJT_SWAP:
 1831                                 kve->kve_type = KVME_TYPE_SWAP;
 1832                                 break;
 1833                         case OBJT_DEVICE:
 1834                                 kve->kve_type = KVME_TYPE_DEVICE;
 1835                                 break;
 1836                         case OBJT_PHYS:
 1837                                 kve->kve_type = KVME_TYPE_PHYS;
 1838                                 break;
 1839                         case OBJT_DEAD:
 1840                                 kve->kve_type = KVME_TYPE_DEAD;
 1841                                 break;
 1842                         case OBJT_SG:
 1843                                 kve->kve_type = KVME_TYPE_SG;
 1844                                 break;
 1845                         default:
 1846                                 kve->kve_type = KVME_TYPE_UNKNOWN;
 1847                                 break;
 1848                         }
 1849                         if (lobj != obj)
 1850                                 VM_OBJECT_UNLOCK(lobj);
 1851 
 1852                         kve->kve_ref_count = obj->ref_count;
 1853                         kve->kve_shadow_count = obj->shadow_count;
 1854                         VM_OBJECT_UNLOCK(obj);
 1855                         if (vp != NULL) {
 1856                                 vn_fullpath(curthread, vp, &fullpath,
 1857                                     &freepath);
 1858                                 cred = curthread->td_ucred;
 1859                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 1860                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 1861                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 1862                                         kve->kve_fileid = va.va_fileid;
 1863                                         kve->kve_fsid = va.va_fsid;
 1864                                 }
 1865                                 vput(vp);
 1866                                 VFS_UNLOCK_GIANT(vfslocked);
 1867                         }
 1868                 } else {
 1869                         kve->kve_type = KVME_TYPE_NONE;
 1870                         kve->kve_ref_count = 0;
 1871                         kve->kve_shadow_count = 0;
 1872                 }
 1873 
 1874                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 1875                 if (freepath != NULL)
 1876                         free(freepath, M_TEMP);
 1877 
 1878                 /* Pack record size down */
 1879                 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
 1880                     strlen(kve->kve_path) + 1;
 1881                 kve->kve_structsize = roundup(kve->kve_structsize,
 1882                     sizeof(uint64_t));
 1883                 error = SYSCTL_OUT(req, kve, kve->kve_structsize);
 1884                 vm_map_lock_read(map);
 1885                 if (error)
 1886                         break;
 1887                 if (last_timestamp != map->timestamp) {
 1888                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 1889                         entry = tmp_entry;
 1890                 }
 1891         }
 1892         vm_map_unlock_read(map);
 1893         vmspace_free(vm);
 1894         PRELE(p);
 1895         free(kve, M_TEMP);
 1896         return (error);
 1897 }
 1898 
 1899 #if defined(STACK) || defined(DDB)
 1900 static int
 1901 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
 1902 {
 1903         struct kinfo_kstack *kkstp;
 1904         int error, i, *name, numthreads;
 1905         lwpid_t *lwpidarray;
 1906         struct thread *td;
 1907         struct stack *st;
 1908         struct sbuf sb;
 1909         struct proc *p;
 1910 
 1911         name = (int *)arg1;
 1912         error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
 1913         if (error != 0)
 1914                 return (error);
 1915 
 1916         kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
 1917         st = stack_create();
 1918 
 1919         lwpidarray = NULL;
 1920         numthreads = 0;
 1921         PROC_LOCK(p);
 1922 repeat:
 1923         if (numthreads < p->p_numthreads) {
 1924                 if (lwpidarray != NULL) {
 1925                         free(lwpidarray, M_TEMP);
 1926                         lwpidarray = NULL;
 1927                 }
 1928                 numthreads = p->p_numthreads;
 1929                 PROC_UNLOCK(p);
 1930                 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
 1931                     M_WAITOK | M_ZERO);
 1932                 PROC_LOCK(p);
 1933                 goto repeat;
 1934         }
 1935         i = 0;
 1936 
 1937         /*
 1938          * XXXRW: During the below loop, execve(2) and countless other sorts
 1939          * of changes could have taken place.  Should we check to see if the
 1940          * vmspace has been replaced, or the like, in order to prevent
 1941          * giving a snapshot that spans, say, execve(2), with some threads
 1942          * before and some after?  Among other things, the credentials could
 1943          * have changed, in which case the right to extract debug info might
 1944          * no longer be assured.
 1945          */
 1946         FOREACH_THREAD_IN_PROC(p, td) {
 1947                 KASSERT(i < numthreads,
 1948                     ("sysctl_kern_proc_kstack: numthreads"));
 1949                 lwpidarray[i] = td->td_tid;
 1950                 i++;
 1951         }
 1952         numthreads = i;
 1953         for (i = 0; i < numthreads; i++) {
 1954                 td = thread_find(p, lwpidarray[i]);
 1955                 if (td == NULL) {
 1956                         continue;
 1957                 }
 1958                 bzero(kkstp, sizeof(*kkstp));
 1959                 (void)sbuf_new(&sb, kkstp->kkst_trace,
 1960                     sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
 1961                 thread_lock(td);
 1962                 kkstp->kkst_tid = td->td_tid;
 1963                 if (TD_IS_SWAPPED(td))
 1964                         kkstp->kkst_state = KKST_STATE_SWAPPED;
 1965                 else if (TD_IS_RUNNING(td))
 1966                         kkstp->kkst_state = KKST_STATE_RUNNING;
 1967                 else {
 1968                         kkstp->kkst_state = KKST_STATE_STACKOK;
 1969                         stack_save_td(st, td);
 1970                 }
 1971                 thread_unlock(td);
 1972                 PROC_UNLOCK(p);
 1973                 stack_sbuf_print(&sb, st);
 1974                 sbuf_finish(&sb);
 1975                 sbuf_delete(&sb);
 1976                 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
 1977                 PROC_LOCK(p);
 1978                 if (error)
 1979                         break;
 1980         }
 1981         _PRELE(p);
 1982         PROC_UNLOCK(p);
 1983         if (lwpidarray != NULL)
 1984                 free(lwpidarray, M_TEMP);
 1985         stack_destroy(st);
 1986         free(kkstp, M_TEMP);
 1987         return (error);
 1988 }
 1989 #endif
 1990 
 1991 /*
 1992  * This sysctl allows a process to retrieve the full list of groups from
 1993  * itself or another process.
 1994  */
 1995 static int
 1996 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
 1997 {
 1998         pid_t *pidp = (pid_t *)arg1;
 1999         unsigned int arglen = arg2;
 2000         struct proc *p;
 2001         struct ucred *cred;
 2002         int error;
 2003 
 2004         if (arglen != 1)
 2005                 return (EINVAL);
 2006         if (*pidp == -1) {      /* -1 means this process */
 2007                 p = req->td->td_proc;
 2008         } else {
 2009                 error = pget(*pidp, PGET_CANSEE, &p);
 2010                 if (error != 0)
 2011                         return (error);
 2012         }
 2013 
 2014         cred = crhold(p->p_ucred);
 2015         if (*pidp != -1)
 2016                 PROC_UNLOCK(p);
 2017 
 2018         error = SYSCTL_OUT(req, cred->cr_groups,
 2019             cred->cr_ngroups * sizeof(gid_t));
 2020         crfree(cred);
 2021         return (error);
 2022 }
 2023 
 2024 /*
 2025  * This sysctl allows a process to set and retrieve binary osreldate of
 2026  * another process.
 2027  */
 2028 static int
 2029 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
 2030 {
 2031         int *name = (int *)arg1;
 2032         u_int namelen = arg2;
 2033         struct proc *p;
 2034         int flags, error, osrel;
 2035 
 2036         if (namelen != 1)
 2037                 return (EINVAL);
 2038 
 2039         if (req->newptr != NULL && req->newlen != sizeof(osrel))
 2040                 return (EINVAL);
 2041 
 2042         flags = PGET_HOLD | PGET_NOTWEXIT;
 2043         if (req->newptr != NULL)
 2044                 flags |= PGET_CANDEBUG;
 2045         else
 2046                 flags |= PGET_CANSEE;
 2047         error = pget((pid_t)name[0], flags, &p);
 2048         if (error != 0)
 2049                 return (error);
 2050 
 2051         error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
 2052         if (error != 0)
 2053                 goto errout;
 2054 
 2055         if (req->newptr != NULL) {
 2056                 error = SYSCTL_IN(req, &osrel, sizeof(osrel));
 2057                 if (error != 0)
 2058                         goto errout;
 2059                 if (osrel < 0) {
 2060                         error = EINVAL;
 2061                         goto errout;
 2062                 }
 2063                 p->p_osrel = osrel;
 2064         }
 2065 errout:
 2066         PRELE(p);
 2067         return (error);
 2068 }
 2069 
 2070 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
 2071 
 2072 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
 2073         CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
 2074         "Return entire process table");
 2075 
 2076 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2077         sysctl_kern_proc, "Process table");
 2078 
 2079 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2080         sysctl_kern_proc, "Process table");
 2081 
 2082 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2083         sysctl_kern_proc, "Process table");
 2084 
 2085 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
 2086         CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2087 
 2088 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 
 2089         sysctl_kern_proc, "Process table");
 2090 
 2091 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 
 2092         sysctl_kern_proc, "Process table");
 2093 
 2094 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2095         sysctl_kern_proc, "Process table");
 2096 
 2097 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2098         sysctl_kern_proc, "Process table");
 2099 
 2100 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2101         sysctl_kern_proc, "Return process table, no threads");
 2102 
 2103 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
 2104         CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
 2105         sysctl_kern_proc_args, "Process argument list");
 2106 
 2107 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
 2108         CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
 2109 
 2110 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
 2111         CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
 2112         "Process syscall vector name (ABI type)");
 2113 
 2114 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
 2115         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2116 
 2117 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
 2118         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2119 
 2120 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
 2121         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2122 
 2123 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
 2124         sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2125 
 2126 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
 2127         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2128 
 2129 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
 2130         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2131 
 2132 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
 2133         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2134 
 2135 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
 2136         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2137 
 2138 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
 2139         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
 2140         "Return process table, no threads");
 2141 
 2142 #ifdef COMPAT_FREEBSD7
 2143 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
 2144         CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
 2145 #endif
 2146 
 2147 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
 2148         CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
 2149 
 2150 #if defined(STACK) || defined(DDB)
 2151 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
 2152         CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
 2153 #endif
 2154 
 2155 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
 2156         CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
 2157 
 2158 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
 2159         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
 2160         "Process binary osreldate");

Cache object: b9abe18ad2887eaea5bb66e892624aad


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.