The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_proc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/9.1/sys/kern/kern_proc.c 238647 2012-07-20 06:50:57Z pgj $");
   34 
   35 #include "opt_compat.h"
   36 #include "opt_ddb.h"
   37 #include "opt_kdtrace.h"
   38 #include "opt_ktrace.h"
   39 #include "opt_kstack_pages.h"
   40 #include "opt_stack.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/elf.h>
   45 #include <sys/exec.h>
   46 #include <sys/kernel.h>
   47 #include <sys/limits.h>
   48 #include <sys/lock.h>
   49 #include <sys/loginclass.h>
   50 #include <sys/malloc.h>
   51 #include <sys/mman.h>
   52 #include <sys/mount.h>
   53 #include <sys/mutex.h>
   54 #include <sys/proc.h>
   55 #include <sys/ptrace.h>
   56 #include <sys/refcount.h>
   57 #include <sys/resourcevar.h>
   58 #include <sys/sbuf.h>
   59 #include <sys/sysent.h>
   60 #include <sys/sched.h>
   61 #include <sys/smp.h>
   62 #include <sys/stack.h>
   63 #include <sys/stat.h>
   64 #include <sys/sysctl.h>
   65 #include <sys/filedesc.h>
   66 #include <sys/tty.h>
   67 #include <sys/signalvar.h>
   68 #include <sys/sdt.h>
   69 #include <sys/sx.h>
   70 #include <sys/user.h>
   71 #include <sys/jail.h>
   72 #include <sys/vnode.h>
   73 #include <sys/eventhandler.h>
   74 
   75 #ifdef DDB
   76 #include <ddb/ddb.h>
   77 #endif
   78 
   79 #include <vm/vm.h>
   80 #include <vm/vm_extern.h>
   81 #include <vm/pmap.h>
   82 #include <vm/vm_map.h>
   83 #include <vm/vm_object.h>
   84 #include <vm/vm_page.h>
   85 #include <vm/uma.h>
   86 
   87 #ifdef COMPAT_FREEBSD32
   88 #include <compat/freebsd32/freebsd32.h>
   89 #include <compat/freebsd32/freebsd32_util.h>
   90 #endif
   91 
   92 SDT_PROVIDER_DEFINE(proc);
   93 SDT_PROBE_DEFINE(proc, kernel, ctor, entry, entry);
   94 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *");
   95 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int");
   96 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *");
   97 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int");
   98 SDT_PROBE_DEFINE(proc, kernel, ctor, return, return);
   99 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *");
  100 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int");
  101 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *");
  102 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int");
  103 SDT_PROBE_DEFINE(proc, kernel, dtor, entry, entry);
  104 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *");
  105 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int");
  106 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *");
  107 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *");
  108 SDT_PROBE_DEFINE(proc, kernel, dtor, return, return);
  109 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *");
  110 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int");
  111 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *");
  112 SDT_PROBE_DEFINE(proc, kernel, init, entry, entry);
  113 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *");
  114 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int");
  115 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int");
  116 SDT_PROBE_DEFINE(proc, kernel, init, return, return);
  117 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *");
  118 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int");
  119 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int");
  120 
  121 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
  122 MALLOC_DEFINE(M_SESSION, "session", "session header");
  123 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
  124 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
  125 
  126 static void doenterpgrp(struct proc *, struct pgrp *);
  127 static void orphanpg(struct pgrp *pg);
  128 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
  129 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
  130 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
  131     int preferthread);
  132 static void pgadjustjobc(struct pgrp *pgrp, int entering);
  133 static void pgdelete(struct pgrp *);
  134 static int proc_ctor(void *mem, int size, void *arg, int flags);
  135 static void proc_dtor(void *mem, int size, void *arg);
  136 static int proc_init(void *mem, int size, int flags);
  137 static void proc_fini(void *mem, int size);
  138 static void pargs_free(struct pargs *pa);
  139 
  140 /*
  141  * Other process lists
  142  */
  143 struct pidhashhead *pidhashtbl;
  144 u_long pidhash;
  145 struct pgrphashhead *pgrphashtbl;
  146 u_long pgrphash;
  147 struct proclist allproc;
  148 struct proclist zombproc;
  149 struct sx allproc_lock;
  150 struct sx proctree_lock;
  151 struct mtx ppeers_lock;
  152 uma_zone_t proc_zone;
  153 
  154 int kstack_pages = KSTACK_PAGES;
  155 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
  156     "Kernel stack size in pages");
  157 
  158 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
  159 #ifdef COMPAT_FREEBSD32
  160 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
  161 #endif
  162 
  163 /*
  164  * Initialize global process hashing structures.
  165  */
  166 void
  167 procinit()
  168 {
  169 
  170         sx_init(&allproc_lock, "allproc");
  171         sx_init(&proctree_lock, "proctree");
  172         mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
  173         LIST_INIT(&allproc);
  174         LIST_INIT(&zombproc);
  175         pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
  176         pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
  177         proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
  178             proc_ctor, proc_dtor, proc_init, proc_fini,
  179             UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  180         uihashinit();
  181 }
  182 
  183 /*
  184  * Prepare a proc for use.
  185  */
  186 static int
  187 proc_ctor(void *mem, int size, void *arg, int flags)
  188 {
  189         struct proc *p;
  190 
  191         p = (struct proc *)mem;
  192         SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
  193         EVENTHANDLER_INVOKE(process_ctor, p);
  194         SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
  195         return (0);
  196 }
  197 
  198 /*
  199  * Reclaim a proc after use.
  200  */
  201 static void
  202 proc_dtor(void *mem, int size, void *arg)
  203 {
  204         struct proc *p;
  205         struct thread *td;
  206 
  207         /* INVARIANTS checks go here */
  208         p = (struct proc *)mem;
  209         td = FIRST_THREAD_IN_PROC(p);
  210         SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
  211         if (td != NULL) {
  212 #ifdef INVARIANTS
  213                 KASSERT((p->p_numthreads == 1),
  214                     ("bad number of threads in exiting process"));
  215                 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
  216 #endif
  217                 /* Free all OSD associated to this thread. */
  218                 osd_thread_exit(td);
  219         }
  220         EVENTHANDLER_INVOKE(process_dtor, p);
  221         if (p->p_ksi != NULL)
  222                 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
  223         SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
  224 }
  225 
  226 /*
  227  * Initialize type-stable parts of a proc (when newly created).
  228  */
  229 static int
  230 proc_init(void *mem, int size, int flags)
  231 {
  232         struct proc *p;
  233 
  234         p = (struct proc *)mem;
  235         SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
  236         p->p_sched = (struct p_sched *)&p[1];
  237         bzero(&p->p_mtx, sizeof(struct mtx));
  238         mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
  239         mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
  240         cv_init(&p->p_pwait, "ppwait");
  241         cv_init(&p->p_dbgwait, "dbgwait");
  242         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
  243         EVENTHANDLER_INVOKE(process_init, p);
  244         p->p_stats = pstats_alloc();
  245         SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
  246         return (0);
  247 }
  248 
  249 /*
  250  * UMA should ensure that this function is never called.
  251  * Freeing a proc structure would violate type stability.
  252  */
  253 static void
  254 proc_fini(void *mem, int size)
  255 {
  256 #ifdef notnow
  257         struct proc *p;
  258 
  259         p = (struct proc *)mem;
  260         EVENTHANDLER_INVOKE(process_fini, p);
  261         pstats_free(p->p_stats);
  262         thread_free(FIRST_THREAD_IN_PROC(p));
  263         mtx_destroy(&p->p_mtx);
  264         if (p->p_ksi != NULL)
  265                 ksiginfo_free(p->p_ksi);
  266 #else
  267         panic("proc reclaimed");
  268 #endif
  269 }
  270 
  271 /*
  272  * Is p an inferior of the current process?
  273  */
  274 int
  275 inferior(p)
  276         register struct proc *p;
  277 {
  278 
  279         sx_assert(&proctree_lock, SX_LOCKED);
  280         for (; p != curproc; p = p->p_pptr)
  281                 if (p->p_pid == 0)
  282                         return (0);
  283         return (1);
  284 }
  285 
  286 /*
  287  * Locate a process by number; return only "live" processes -- i.e., neither
  288  * zombies nor newly born but incompletely initialized processes.  By not
  289  * returning processes in the PRS_NEW state, we allow callers to avoid
  290  * testing for that condition to avoid dereferencing p_ucred, et al.
  291  */
  292 struct proc *
  293 pfind(pid)
  294         register pid_t pid;
  295 {
  296         register struct proc *p;
  297 
  298         sx_slock(&allproc_lock);
  299         LIST_FOREACH(p, PIDHASH(pid), p_hash)
  300                 if (p->p_pid == pid) {
  301                         PROC_LOCK(p);
  302                         if (p->p_state == PRS_NEW) {
  303                                 PROC_UNLOCK(p);
  304                                 p = NULL;
  305                         }
  306                         break;
  307                 }
  308         sx_sunlock(&allproc_lock);
  309         return (p);
  310 }
  311 
  312 static struct proc *
  313 pfind_tid(pid_t tid)
  314 {
  315         struct proc *p;
  316         struct thread *td;
  317 
  318         sx_slock(&allproc_lock);
  319         FOREACH_PROC_IN_SYSTEM(p) {
  320                 PROC_LOCK(p);
  321                 if (p->p_state == PRS_NEW) {
  322                         PROC_UNLOCK(p);
  323                         continue;
  324                 }
  325                 FOREACH_THREAD_IN_PROC(p, td) {
  326                         if (td->td_tid == tid)
  327                                 goto found;
  328                 }
  329                 PROC_UNLOCK(p);
  330         }
  331 found:
  332         sx_sunlock(&allproc_lock);
  333         return (p);
  334 }
  335 
  336 /*
  337  * Locate a process group by number.
  338  * The caller must hold proctree_lock.
  339  */
  340 struct pgrp *
  341 pgfind(pgid)
  342         register pid_t pgid;
  343 {
  344         register struct pgrp *pgrp;
  345 
  346         sx_assert(&proctree_lock, SX_LOCKED);
  347 
  348         LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
  349                 if (pgrp->pg_id == pgid) {
  350                         PGRP_LOCK(pgrp);
  351                         return (pgrp);
  352                 }
  353         }
  354         return (NULL);
  355 }
  356 
  357 /*
  358  * Locate process and do additional manipulations, depending on flags.
  359  */
  360 int
  361 pget(pid_t pid, int flags, struct proc **pp)
  362 {
  363         struct proc *p;
  364         int error;
  365 
  366         if (pid <= PID_MAX)
  367                 p = pfind(pid);
  368         else if ((flags & PGET_NOTID) == 0)
  369                 p = pfind_tid(pid);
  370         else
  371                 p = NULL;
  372         if (p == NULL)
  373                 return (ESRCH);
  374         if ((flags & PGET_CANSEE) != 0) {
  375                 error = p_cansee(curthread, p);
  376                 if (error != 0)
  377                         goto errout;
  378         }
  379         if ((flags & PGET_CANDEBUG) != 0) {
  380                 error = p_candebug(curthread, p);
  381                 if (error != 0)
  382                         goto errout;
  383         }
  384         if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
  385                 error = EPERM;
  386                 goto errout;
  387         }
  388         if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
  389                 error = ESRCH;
  390                 goto errout;
  391         }
  392         if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
  393                 /*
  394                  * XXXRW: Not clear ESRCH is the right error during proc
  395                  * execve().
  396                  */
  397                 error = ESRCH;
  398                 goto errout;
  399         }
  400         if ((flags & PGET_HOLD) != 0) {
  401                 _PHOLD(p);
  402                 PROC_UNLOCK(p);
  403         }
  404         *pp = p;
  405         return (0);
  406 errout:
  407         PROC_UNLOCK(p);
  408         return (error);
  409 }
  410 
  411 /*
  412  * Create a new process group.
  413  * pgid must be equal to the pid of p.
  414  * Begin a new session if required.
  415  */
  416 int
  417 enterpgrp(p, pgid, pgrp, sess)
  418         register struct proc *p;
  419         pid_t pgid;
  420         struct pgrp *pgrp;
  421         struct session *sess;
  422 {
  423         struct pgrp *pgrp2;
  424 
  425         sx_assert(&proctree_lock, SX_XLOCKED);
  426 
  427         KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
  428         KASSERT(p->p_pid == pgid,
  429             ("enterpgrp: new pgrp and pid != pgid"));
  430 
  431         pgrp2 = pgfind(pgid);
  432 
  433         KASSERT(pgrp2 == NULL,
  434             ("enterpgrp: pgrp with pgid exists"));
  435         KASSERT(!SESS_LEADER(p),
  436             ("enterpgrp: session leader attempted setpgrp"));
  437 
  438         mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
  439 
  440         if (sess != NULL) {
  441                 /*
  442                  * new session
  443                  */
  444                 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
  445                 PROC_LOCK(p);
  446                 p->p_flag &= ~P_CONTROLT;
  447                 PROC_UNLOCK(p);
  448                 PGRP_LOCK(pgrp);
  449                 sess->s_leader = p;
  450                 sess->s_sid = p->p_pid;
  451                 refcount_init(&sess->s_count, 1);
  452                 sess->s_ttyvp = NULL;
  453                 sess->s_ttydp = NULL;
  454                 sess->s_ttyp = NULL;
  455                 bcopy(p->p_session->s_login, sess->s_login,
  456                             sizeof(sess->s_login));
  457                 pgrp->pg_session = sess;
  458                 KASSERT(p == curproc,
  459                     ("enterpgrp: mksession and p != curproc"));
  460         } else {
  461                 pgrp->pg_session = p->p_session;
  462                 sess_hold(pgrp->pg_session);
  463                 PGRP_LOCK(pgrp);
  464         }
  465         pgrp->pg_id = pgid;
  466         LIST_INIT(&pgrp->pg_members);
  467 
  468         /*
  469          * As we have an exclusive lock of proctree_lock,
  470          * this should not deadlock.
  471          */
  472         LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
  473         pgrp->pg_jobc = 0;
  474         SLIST_INIT(&pgrp->pg_sigiolst);
  475         PGRP_UNLOCK(pgrp);
  476 
  477         doenterpgrp(p, pgrp);
  478 
  479         return (0);
  480 }
  481 
  482 /*
  483  * Move p to an existing process group
  484  */
  485 int
  486 enterthispgrp(p, pgrp)
  487         register struct proc *p;
  488         struct pgrp *pgrp;
  489 {
  490 
  491         sx_assert(&proctree_lock, SX_XLOCKED);
  492         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  493         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  494         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  495         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  496         KASSERT(pgrp->pg_session == p->p_session,
  497                 ("%s: pgrp's session %p, p->p_session %p.\n",
  498                 __func__,
  499                 pgrp->pg_session,
  500                 p->p_session));
  501         KASSERT(pgrp != p->p_pgrp,
  502                 ("%s: p belongs to pgrp.", __func__));
  503 
  504         doenterpgrp(p, pgrp);
  505 
  506         return (0);
  507 }
  508 
  509 /*
  510  * Move p to a process group
  511  */
  512 static void
  513 doenterpgrp(p, pgrp)
  514         struct proc *p;
  515         struct pgrp *pgrp;
  516 {
  517         struct pgrp *savepgrp;
  518 
  519         sx_assert(&proctree_lock, SX_XLOCKED);
  520         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  521         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  522         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  523         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  524 
  525         savepgrp = p->p_pgrp;
  526 
  527         /*
  528          * Adjust eligibility of affected pgrps to participate in job control.
  529          * Increment eligibility counts before decrementing, otherwise we
  530          * could reach 0 spuriously during the first call.
  531          */
  532         fixjobc(p, pgrp, 1);
  533         fixjobc(p, p->p_pgrp, 0);
  534 
  535         PGRP_LOCK(pgrp);
  536         PGRP_LOCK(savepgrp);
  537         PROC_LOCK(p);
  538         LIST_REMOVE(p, p_pglist);
  539         p->p_pgrp = pgrp;
  540         PROC_UNLOCK(p);
  541         LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
  542         PGRP_UNLOCK(savepgrp);
  543         PGRP_UNLOCK(pgrp);
  544         if (LIST_EMPTY(&savepgrp->pg_members))
  545                 pgdelete(savepgrp);
  546 }
  547 
  548 /*
  549  * remove process from process group
  550  */
  551 int
  552 leavepgrp(p)
  553         register struct proc *p;
  554 {
  555         struct pgrp *savepgrp;
  556 
  557         sx_assert(&proctree_lock, SX_XLOCKED);
  558         savepgrp = p->p_pgrp;
  559         PGRP_LOCK(savepgrp);
  560         PROC_LOCK(p);
  561         LIST_REMOVE(p, p_pglist);
  562         p->p_pgrp = NULL;
  563         PROC_UNLOCK(p);
  564         PGRP_UNLOCK(savepgrp);
  565         if (LIST_EMPTY(&savepgrp->pg_members))
  566                 pgdelete(savepgrp);
  567         return (0);
  568 }
  569 
  570 /*
  571  * delete a process group
  572  */
  573 static void
  574 pgdelete(pgrp)
  575         register struct pgrp *pgrp;
  576 {
  577         struct session *savesess;
  578         struct tty *tp;
  579 
  580         sx_assert(&proctree_lock, SX_XLOCKED);
  581         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  582         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  583 
  584         /*
  585          * Reset any sigio structures pointing to us as a result of
  586          * F_SETOWN with our pgid.
  587          */
  588         funsetownlst(&pgrp->pg_sigiolst);
  589 
  590         PGRP_LOCK(pgrp);
  591         tp = pgrp->pg_session->s_ttyp;
  592         LIST_REMOVE(pgrp, pg_hash);
  593         savesess = pgrp->pg_session;
  594         PGRP_UNLOCK(pgrp);
  595 
  596         /* Remove the reference to the pgrp before deallocating it. */
  597         if (tp != NULL) {
  598                 tty_lock(tp);
  599                 tty_rel_pgrp(tp, pgrp);
  600         }
  601 
  602         mtx_destroy(&pgrp->pg_mtx);
  603         free(pgrp, M_PGRP);
  604         sess_release(savesess);
  605 }
  606 
  607 static void
  608 pgadjustjobc(pgrp, entering)
  609         struct pgrp *pgrp;
  610         int entering;
  611 {
  612 
  613         PGRP_LOCK(pgrp);
  614         if (entering)
  615                 pgrp->pg_jobc++;
  616         else {
  617                 --pgrp->pg_jobc;
  618                 if (pgrp->pg_jobc == 0)
  619                         orphanpg(pgrp);
  620         }
  621         PGRP_UNLOCK(pgrp);
  622 }
  623 
  624 /*
  625  * Adjust pgrp jobc counters when specified process changes process group.
  626  * We count the number of processes in each process group that "qualify"
  627  * the group for terminal job control (those with a parent in a different
  628  * process group of the same session).  If that count reaches zero, the
  629  * process group becomes orphaned.  Check both the specified process'
  630  * process group and that of its children.
  631  * entering == 0 => p is leaving specified group.
  632  * entering == 1 => p is entering specified group.
  633  */
  634 void
  635 fixjobc(p, pgrp, entering)
  636         register struct proc *p;
  637         register struct pgrp *pgrp;
  638         int entering;
  639 {
  640         register struct pgrp *hispgrp;
  641         register struct session *mysession;
  642 
  643         sx_assert(&proctree_lock, SX_LOCKED);
  644         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  645         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  646         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  647 
  648         /*
  649          * Check p's parent to see whether p qualifies its own process
  650          * group; if so, adjust count for p's process group.
  651          */
  652         mysession = pgrp->pg_session;
  653         if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
  654             hispgrp->pg_session == mysession)
  655                 pgadjustjobc(pgrp, entering);
  656 
  657         /*
  658          * Check this process' children to see whether they qualify
  659          * their process groups; if so, adjust counts for children's
  660          * process groups.
  661          */
  662         LIST_FOREACH(p, &p->p_children, p_sibling) {
  663                 hispgrp = p->p_pgrp;
  664                 if (hispgrp == pgrp ||
  665                     hispgrp->pg_session != mysession)
  666                         continue;
  667                 PROC_LOCK(p);
  668                 if (p->p_state == PRS_ZOMBIE) {
  669                         PROC_UNLOCK(p);
  670                         continue;
  671                 }
  672                 PROC_UNLOCK(p);
  673                 pgadjustjobc(hispgrp, entering);
  674         }
  675 }
  676 
  677 /*
  678  * A process group has become orphaned;
  679  * if there are any stopped processes in the group,
  680  * hang-up all process in that group.
  681  */
  682 static void
  683 orphanpg(pg)
  684         struct pgrp *pg;
  685 {
  686         register struct proc *p;
  687 
  688         PGRP_LOCK_ASSERT(pg, MA_OWNED);
  689 
  690         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  691                 PROC_LOCK(p);
  692                 if (P_SHOULDSTOP(p)) {
  693                         PROC_UNLOCK(p);
  694                         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  695                                 PROC_LOCK(p);
  696                                 kern_psignal(p, SIGHUP);
  697                                 kern_psignal(p, SIGCONT);
  698                                 PROC_UNLOCK(p);
  699                         }
  700                         return;
  701                 }
  702                 PROC_UNLOCK(p);
  703         }
  704 }
  705 
  706 void
  707 sess_hold(struct session *s)
  708 {
  709 
  710         refcount_acquire(&s->s_count);
  711 }
  712 
  713 void
  714 sess_release(struct session *s)
  715 {
  716 
  717         if (refcount_release(&s->s_count)) {
  718                 if (s->s_ttyp != NULL) {
  719                         tty_lock(s->s_ttyp);
  720                         tty_rel_sess(s->s_ttyp, s);
  721                 }
  722                 mtx_destroy(&s->s_mtx);
  723                 free(s, M_SESSION);
  724         }
  725 }
  726 
  727 #include "opt_ddb.h"
  728 #ifdef DDB
  729 #include <ddb/ddb.h>
  730 
  731 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
  732 {
  733         register struct pgrp *pgrp;
  734         register struct proc *p;
  735         register int i;
  736 
  737         for (i = 0; i <= pgrphash; i++) {
  738                 if (!LIST_EMPTY(&pgrphashtbl[i])) {
  739                         printf("\tindx %d\n", i);
  740                         LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
  741                                 printf(
  742                         "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
  743                                     (void *)pgrp, (long)pgrp->pg_id,
  744                                     (void *)pgrp->pg_session,
  745                                     pgrp->pg_session->s_count,
  746                                     (void *)LIST_FIRST(&pgrp->pg_members));
  747                                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
  748                                         printf("\t\tpid %ld addr %p pgrp %p\n", 
  749                                             (long)p->p_pid, (void *)p,
  750                                             (void *)p->p_pgrp);
  751                                 }
  752                         }
  753                 }
  754         }
  755 }
  756 #endif /* DDB */
  757 
  758 /*
  759  * Calculate the kinfo_proc members which contain process-wide
  760  * informations.
  761  * Must be called with the target process locked.
  762  */
  763 static void
  764 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
  765 {
  766         struct thread *td;
  767 
  768         PROC_LOCK_ASSERT(p, MA_OWNED);
  769 
  770         kp->ki_estcpu = 0;
  771         kp->ki_pctcpu = 0;
  772         FOREACH_THREAD_IN_PROC(p, td) {
  773                 thread_lock(td);
  774                 kp->ki_pctcpu += sched_pctcpu(td);
  775                 kp->ki_estcpu += td->td_estcpu;
  776                 thread_unlock(td);
  777         }
  778 }
  779 
  780 /*
  781  * Clear kinfo_proc and fill in any information that is common
  782  * to all threads in the process.
  783  * Must be called with the target process locked.
  784  */
  785 static void
  786 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
  787 {
  788         struct thread *td0;
  789         struct tty *tp;
  790         struct session *sp;
  791         struct ucred *cred;
  792         struct sigacts *ps;
  793 
  794         PROC_LOCK_ASSERT(p, MA_OWNED);
  795         bzero(kp, sizeof(*kp));
  796 
  797         kp->ki_structsize = sizeof(*kp);
  798         kp->ki_paddr = p;
  799         kp->ki_addr =/* p->p_addr; */0; /* XXX */
  800         kp->ki_args = p->p_args;
  801         kp->ki_textvp = p->p_textvp;
  802 #ifdef KTRACE
  803         kp->ki_tracep = p->p_tracevp;
  804         kp->ki_traceflag = p->p_traceflag;
  805 #endif
  806         kp->ki_fd = p->p_fd;
  807         kp->ki_vmspace = p->p_vmspace;
  808         kp->ki_flag = p->p_flag;
  809         cred = p->p_ucred;
  810         if (cred) {
  811                 kp->ki_uid = cred->cr_uid;
  812                 kp->ki_ruid = cred->cr_ruid;
  813                 kp->ki_svuid = cred->cr_svuid;
  814                 kp->ki_cr_flags = 0;
  815                 if (cred->cr_flags & CRED_FLAG_CAPMODE)
  816                         kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
  817                 /* XXX bde doesn't like KI_NGROUPS */
  818                 if (cred->cr_ngroups > KI_NGROUPS) {
  819                         kp->ki_ngroups = KI_NGROUPS;
  820                         kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
  821                 } else
  822                         kp->ki_ngroups = cred->cr_ngroups;
  823                 bcopy(cred->cr_groups, kp->ki_groups,
  824                     kp->ki_ngroups * sizeof(gid_t));
  825                 kp->ki_rgid = cred->cr_rgid;
  826                 kp->ki_svgid = cred->cr_svgid;
  827                 /* If jailed(cred), emulate the old P_JAILED flag. */
  828                 if (jailed(cred)) {
  829                         kp->ki_flag |= P_JAILED;
  830                         /* If inside the jail, use 0 as a jail ID. */
  831                         if (cred->cr_prison != curthread->td_ucred->cr_prison)
  832                                 kp->ki_jid = cred->cr_prison->pr_id;
  833                 }
  834                 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
  835                     sizeof(kp->ki_loginclass));
  836         }
  837         ps = p->p_sigacts;
  838         if (ps) {
  839                 mtx_lock(&ps->ps_mtx);
  840                 kp->ki_sigignore = ps->ps_sigignore;
  841                 kp->ki_sigcatch = ps->ps_sigcatch;
  842                 mtx_unlock(&ps->ps_mtx);
  843         }
  844         if (p->p_state != PRS_NEW &&
  845             p->p_state != PRS_ZOMBIE &&
  846             p->p_vmspace != NULL) {
  847                 struct vmspace *vm = p->p_vmspace;
  848 
  849                 kp->ki_size = vm->vm_map.size;
  850                 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
  851                 FOREACH_THREAD_IN_PROC(p, td0) {
  852                         if (!TD_IS_SWAPPED(td0))
  853                                 kp->ki_rssize += td0->td_kstack_pages;
  854                 }
  855                 kp->ki_swrss = vm->vm_swrss;
  856                 kp->ki_tsize = vm->vm_tsize;
  857                 kp->ki_dsize = vm->vm_dsize;
  858                 kp->ki_ssize = vm->vm_ssize;
  859         } else if (p->p_state == PRS_ZOMBIE)
  860                 kp->ki_stat = SZOMB;
  861         if (kp->ki_flag & P_INMEM)
  862                 kp->ki_sflag = PS_INMEM;
  863         else
  864                 kp->ki_sflag = 0;
  865         /* Calculate legacy swtime as seconds since 'swtick'. */
  866         kp->ki_swtime = (ticks - p->p_swtick) / hz;
  867         kp->ki_pid = p->p_pid;
  868         kp->ki_nice = p->p_nice;
  869         kp->ki_start = p->p_stats->p_start;
  870         timevaladd(&kp->ki_start, &boottime);
  871         PROC_SLOCK(p);
  872         rufetch(p, &kp->ki_rusage);
  873         kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
  874         calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
  875         PROC_SUNLOCK(p);
  876         calccru(p, &kp->ki_childutime, &kp->ki_childstime);
  877         /* Some callers want child times in a single value. */
  878         kp->ki_childtime = kp->ki_childstime;
  879         timevaladd(&kp->ki_childtime, &kp->ki_childutime);
  880 
  881         FOREACH_THREAD_IN_PROC(p, td0)
  882                 kp->ki_cow += td0->td_cow;
  883 
  884         tp = NULL;
  885         if (p->p_pgrp) {
  886                 kp->ki_pgid = p->p_pgrp->pg_id;
  887                 kp->ki_jobc = p->p_pgrp->pg_jobc;
  888                 sp = p->p_pgrp->pg_session;
  889 
  890                 if (sp != NULL) {
  891                         kp->ki_sid = sp->s_sid;
  892                         SESS_LOCK(sp);
  893                         strlcpy(kp->ki_login, sp->s_login,
  894                             sizeof(kp->ki_login));
  895                         if (sp->s_ttyvp)
  896                                 kp->ki_kiflag |= KI_CTTY;
  897                         if (SESS_LEADER(p))
  898                                 kp->ki_kiflag |= KI_SLEADER;
  899                         /* XXX proctree_lock */
  900                         tp = sp->s_ttyp;
  901                         SESS_UNLOCK(sp);
  902                 }
  903         }
  904         if ((p->p_flag & P_CONTROLT) && tp != NULL) {
  905                 kp->ki_tdev = tty_udev(tp);
  906                 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
  907                 if (tp->t_session)
  908                         kp->ki_tsid = tp->t_session->s_sid;
  909         } else
  910                 kp->ki_tdev = NODEV;
  911         if (p->p_comm[0] != '\0')
  912                 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
  913         if (p->p_sysent && p->p_sysent->sv_name != NULL &&
  914             p->p_sysent->sv_name[0] != '\0')
  915                 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
  916         kp->ki_siglist = p->p_siglist;
  917         kp->ki_xstat = p->p_xstat;
  918         kp->ki_acflag = p->p_acflag;
  919         kp->ki_lock = p->p_lock;
  920         if (p->p_pptr)
  921                 kp->ki_ppid = p->p_pptr->p_pid;
  922 }
  923 
  924 /*
  925  * Fill in information that is thread specific.  Must be called with
  926  * target process locked.  If 'preferthread' is set, overwrite certain
  927  * process-related fields that are maintained for both threads and
  928  * processes.
  929  */
  930 static void
  931 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
  932 {
  933         struct proc *p;
  934 
  935         p = td->td_proc;
  936         kp->ki_tdaddr = td;
  937         PROC_LOCK_ASSERT(p, MA_OWNED);
  938 
  939         if (preferthread)
  940                 PROC_SLOCK(p);
  941         thread_lock(td);
  942         if (td->td_wmesg != NULL)
  943                 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
  944         else
  945                 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
  946         strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname));
  947         if (TD_ON_LOCK(td)) {
  948                 kp->ki_kiflag |= KI_LOCKBLOCK;
  949                 strlcpy(kp->ki_lockname, td->td_lockname,
  950                     sizeof(kp->ki_lockname));
  951         } else {
  952                 kp->ki_kiflag &= ~KI_LOCKBLOCK;
  953                 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
  954         }
  955 
  956         if (p->p_state == PRS_NORMAL) { /* approximate. */
  957                 if (TD_ON_RUNQ(td) ||
  958                     TD_CAN_RUN(td) ||
  959                     TD_IS_RUNNING(td)) {
  960                         kp->ki_stat = SRUN;
  961                 } else if (P_SHOULDSTOP(p)) {
  962                         kp->ki_stat = SSTOP;
  963                 } else if (TD_IS_SLEEPING(td)) {
  964                         kp->ki_stat = SSLEEP;
  965                 } else if (TD_ON_LOCK(td)) {
  966                         kp->ki_stat = SLOCK;
  967                 } else {
  968                         kp->ki_stat = SWAIT;
  969                 }
  970         } else if (p->p_state == PRS_ZOMBIE) {
  971                 kp->ki_stat = SZOMB;
  972         } else {
  973                 kp->ki_stat = SIDL;
  974         }
  975 
  976         /* Things in the thread */
  977         kp->ki_wchan = td->td_wchan;
  978         kp->ki_pri.pri_level = td->td_priority;
  979         kp->ki_pri.pri_native = td->td_base_pri;
  980         kp->ki_lastcpu = td->td_lastcpu;
  981         kp->ki_oncpu = td->td_oncpu;
  982         kp->ki_tdflags = td->td_flags;
  983         kp->ki_tid = td->td_tid;
  984         kp->ki_numthreads = p->p_numthreads;
  985         kp->ki_pcb = td->td_pcb;
  986         kp->ki_kstack = (void *)td->td_kstack;
  987         kp->ki_slptime = (ticks - td->td_slptick) / hz;
  988         kp->ki_pri.pri_class = td->td_pri_class;
  989         kp->ki_pri.pri_user = td->td_user_pri;
  990 
  991         if (preferthread) {
  992                 rufetchtd(td, &kp->ki_rusage);
  993                 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
  994                 kp->ki_pctcpu = sched_pctcpu(td);
  995                 kp->ki_estcpu = td->td_estcpu;
  996                 kp->ki_cow = td->td_cow;
  997         }
  998 
  999         /* We can't get this anymore but ps etc never used it anyway. */
 1000         kp->ki_rqindex = 0;
 1001 
 1002         if (preferthread)
 1003                 kp->ki_siglist = td->td_siglist;
 1004         kp->ki_sigmask = td->td_sigmask;
 1005         thread_unlock(td);
 1006         if (preferthread)
 1007                 PROC_SUNLOCK(p);
 1008 }
 1009 
 1010 /*
 1011  * Fill in a kinfo_proc structure for the specified process.
 1012  * Must be called with the target process locked.
 1013  */
 1014 void
 1015 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
 1016 {
 1017 
 1018         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1019 
 1020         fill_kinfo_proc_only(p, kp);
 1021         fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
 1022         fill_kinfo_aggregate(p, kp);
 1023 }
 1024 
 1025 struct pstats *
 1026 pstats_alloc(void)
 1027 {
 1028 
 1029         return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
 1030 }
 1031 
 1032 /*
 1033  * Copy parts of p_stats; zero the rest of p_stats (statistics).
 1034  */
 1035 void
 1036 pstats_fork(struct pstats *src, struct pstats *dst)
 1037 {
 1038 
 1039         bzero(&dst->pstat_startzero,
 1040             __rangeof(struct pstats, pstat_startzero, pstat_endzero));
 1041         bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
 1042             __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
 1043 }
 1044 
 1045 void
 1046 pstats_free(struct pstats *ps)
 1047 {
 1048 
 1049         free(ps, M_SUBPROC);
 1050 }
 1051 
 1052 /*
 1053  * Locate a zombie process by number
 1054  */
 1055 struct proc *
 1056 zpfind(pid_t pid)
 1057 {
 1058         struct proc *p;
 1059 
 1060         sx_slock(&allproc_lock);
 1061         LIST_FOREACH(p, &zombproc, p_list)
 1062                 if (p->p_pid == pid) {
 1063                         PROC_LOCK(p);
 1064                         break;
 1065                 }
 1066         sx_sunlock(&allproc_lock);
 1067         return (p);
 1068 }
 1069 
 1070 #define KERN_PROC_ZOMBMASK      0x3
 1071 #define KERN_PROC_NOTHREADS     0x4
 1072 
 1073 #ifdef COMPAT_FREEBSD32
 1074 
 1075 /*
 1076  * This function is typically used to copy out the kernel address, so
 1077  * it can be replaced by assignment of zero.
 1078  */
 1079 static inline uint32_t
 1080 ptr32_trim(void *ptr)
 1081 {
 1082         uintptr_t uptr;
 1083 
 1084         uptr = (uintptr_t)ptr;
 1085         return ((uptr > UINT_MAX) ? 0 : uptr);
 1086 }
 1087 
 1088 #define PTRTRIM_CP(src,dst,fld) \
 1089         do { (dst).fld = ptr32_trim((src).fld); } while (0)
 1090 
 1091 static void
 1092 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
 1093 {
 1094         int i;
 1095 
 1096         bzero(ki32, sizeof(struct kinfo_proc32));
 1097         ki32->ki_structsize = sizeof(struct kinfo_proc32);
 1098         CP(*ki, *ki32, ki_layout);
 1099         PTRTRIM_CP(*ki, *ki32, ki_args);
 1100         PTRTRIM_CP(*ki, *ki32, ki_paddr);
 1101         PTRTRIM_CP(*ki, *ki32, ki_addr);
 1102         PTRTRIM_CP(*ki, *ki32, ki_tracep);
 1103         PTRTRIM_CP(*ki, *ki32, ki_textvp);
 1104         PTRTRIM_CP(*ki, *ki32, ki_fd);
 1105         PTRTRIM_CP(*ki, *ki32, ki_vmspace);
 1106         PTRTRIM_CP(*ki, *ki32, ki_wchan);
 1107         CP(*ki, *ki32, ki_pid);
 1108         CP(*ki, *ki32, ki_ppid);
 1109         CP(*ki, *ki32, ki_pgid);
 1110         CP(*ki, *ki32, ki_tpgid);
 1111         CP(*ki, *ki32, ki_sid);
 1112         CP(*ki, *ki32, ki_tsid);
 1113         CP(*ki, *ki32, ki_jobc);
 1114         CP(*ki, *ki32, ki_tdev);
 1115         CP(*ki, *ki32, ki_siglist);
 1116         CP(*ki, *ki32, ki_sigmask);
 1117         CP(*ki, *ki32, ki_sigignore);
 1118         CP(*ki, *ki32, ki_sigcatch);
 1119         CP(*ki, *ki32, ki_uid);
 1120         CP(*ki, *ki32, ki_ruid);
 1121         CP(*ki, *ki32, ki_svuid);
 1122         CP(*ki, *ki32, ki_rgid);
 1123         CP(*ki, *ki32, ki_svgid);
 1124         CP(*ki, *ki32, ki_ngroups);
 1125         for (i = 0; i < KI_NGROUPS; i++)
 1126                 CP(*ki, *ki32, ki_groups[i]);
 1127         CP(*ki, *ki32, ki_size);
 1128         CP(*ki, *ki32, ki_rssize);
 1129         CP(*ki, *ki32, ki_swrss);
 1130         CP(*ki, *ki32, ki_tsize);
 1131         CP(*ki, *ki32, ki_dsize);
 1132         CP(*ki, *ki32, ki_ssize);
 1133         CP(*ki, *ki32, ki_xstat);
 1134         CP(*ki, *ki32, ki_acflag);
 1135         CP(*ki, *ki32, ki_pctcpu);
 1136         CP(*ki, *ki32, ki_estcpu);
 1137         CP(*ki, *ki32, ki_slptime);
 1138         CP(*ki, *ki32, ki_swtime);
 1139         CP(*ki, *ki32, ki_cow);
 1140         CP(*ki, *ki32, ki_runtime);
 1141         TV_CP(*ki, *ki32, ki_start);
 1142         TV_CP(*ki, *ki32, ki_childtime);
 1143         CP(*ki, *ki32, ki_flag);
 1144         CP(*ki, *ki32, ki_kiflag);
 1145         CP(*ki, *ki32, ki_traceflag);
 1146         CP(*ki, *ki32, ki_stat);
 1147         CP(*ki, *ki32, ki_nice);
 1148         CP(*ki, *ki32, ki_lock);
 1149         CP(*ki, *ki32, ki_rqindex);
 1150         CP(*ki, *ki32, ki_oncpu);
 1151         CP(*ki, *ki32, ki_lastcpu);
 1152         bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
 1153         bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
 1154         bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
 1155         bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
 1156         bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
 1157         bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
 1158         bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
 1159         CP(*ki, *ki32, ki_cr_flags);
 1160         CP(*ki, *ki32, ki_jid);
 1161         CP(*ki, *ki32, ki_numthreads);
 1162         CP(*ki, *ki32, ki_tid);
 1163         CP(*ki, *ki32, ki_pri);
 1164         freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
 1165         freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
 1166         PTRTRIM_CP(*ki, *ki32, ki_pcb);
 1167         PTRTRIM_CP(*ki, *ki32, ki_kstack);
 1168         PTRTRIM_CP(*ki, *ki32, ki_udata);
 1169         CP(*ki, *ki32, ki_sflag);
 1170         CP(*ki, *ki32, ki_tdflags);
 1171 }
 1172 
 1173 static int
 1174 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req)
 1175 {
 1176         struct kinfo_proc32 ki32;
 1177         int error;
 1178 
 1179         if (req->flags & SCTL_MASK32) {
 1180                 freebsd32_kinfo_proc_out(ki, &ki32);
 1181                 error = SYSCTL_OUT(req, &ki32, sizeof(struct kinfo_proc32));
 1182         } else
 1183                 error = SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc));
 1184         return (error);
 1185 }
 1186 #else
 1187 static int
 1188 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req)
 1189 {
 1190 
 1191         return (SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc)));
 1192 }
 1193 #endif
 1194 
 1195 /*
 1196  * Must be called with the process locked and will return with it unlocked.
 1197  */
 1198 static int
 1199 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
 1200 {
 1201         struct thread *td;
 1202         struct kinfo_proc kinfo_proc;
 1203         int error = 0;
 1204         struct proc *np;
 1205         pid_t pid = p->p_pid;
 1206 
 1207         PROC_LOCK_ASSERT(p, MA_OWNED);
 1208         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1209 
 1210         fill_kinfo_proc(p, &kinfo_proc);
 1211         if (flags & KERN_PROC_NOTHREADS)
 1212                 error = sysctl_out_proc_copyout(&kinfo_proc, req);
 1213         else {
 1214                 FOREACH_THREAD_IN_PROC(p, td) {
 1215                         fill_kinfo_thread(td, &kinfo_proc, 1);
 1216                         error = sysctl_out_proc_copyout(&kinfo_proc, req);
 1217                         if (error)
 1218                                 break;
 1219                 }
 1220         }
 1221         PROC_UNLOCK(p);
 1222         if (error)
 1223                 return (error);
 1224         if (flags & KERN_PROC_ZOMBMASK)
 1225                 np = zpfind(pid);
 1226         else {
 1227                 if (pid == 0)
 1228                         return (0);
 1229                 np = pfind(pid);
 1230         }
 1231         if (np == NULL)
 1232                 return (ESRCH);
 1233         if (np != p) {
 1234                 PROC_UNLOCK(np);
 1235                 return (ESRCH);
 1236         }
 1237         PROC_UNLOCK(np);
 1238         return (0);
 1239 }
 1240 
 1241 static int
 1242 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
 1243 {
 1244         int *name = (int *)arg1;
 1245         u_int namelen = arg2;
 1246         struct proc *p;
 1247         int flags, doingzomb, oid_number;
 1248         int error = 0;
 1249 
 1250         oid_number = oidp->oid_number;
 1251         if (oid_number != KERN_PROC_ALL &&
 1252             (oid_number & KERN_PROC_INC_THREAD) == 0)
 1253                 flags = KERN_PROC_NOTHREADS;
 1254         else {
 1255                 flags = 0;
 1256                 oid_number &= ~KERN_PROC_INC_THREAD;
 1257         }
 1258         if (oid_number == KERN_PROC_PID) {
 1259                 if (namelen != 1)
 1260                         return (EINVAL);
 1261                 error = sysctl_wire_old_buffer(req, 0);
 1262                 if (error)
 1263                         return (error);
 1264                 error = pget((pid_t)name[0], PGET_CANSEE, &p);
 1265                 if (error != 0)
 1266                         return (error);
 1267                 error = sysctl_out_proc(p, req, flags);
 1268                 return (error);
 1269         }
 1270 
 1271         switch (oid_number) {
 1272         case KERN_PROC_ALL:
 1273                 if (namelen != 0)
 1274                         return (EINVAL);
 1275                 break;
 1276         case KERN_PROC_PROC:
 1277                 if (namelen != 0 && namelen != 1)
 1278                         return (EINVAL);
 1279                 break;
 1280         default:
 1281                 if (namelen != 1)
 1282                         return (EINVAL);
 1283                 break;
 1284         }
 1285 
 1286         if (!req->oldptr) {
 1287                 /* overestimate by 5 procs */
 1288                 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
 1289                 if (error)
 1290                         return (error);
 1291         }
 1292         error = sysctl_wire_old_buffer(req, 0);
 1293         if (error != 0)
 1294                 return (error);
 1295         sx_slock(&allproc_lock);
 1296         for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
 1297                 if (!doingzomb)
 1298                         p = LIST_FIRST(&allproc);
 1299                 else
 1300                         p = LIST_FIRST(&zombproc);
 1301                 for (; p != 0; p = LIST_NEXT(p, p_list)) {
 1302                         /*
 1303                          * Skip embryonic processes.
 1304                          */
 1305                         PROC_LOCK(p);
 1306                         if (p->p_state == PRS_NEW) {
 1307                                 PROC_UNLOCK(p);
 1308                                 continue;
 1309                         }
 1310                         KASSERT(p->p_ucred != NULL,
 1311                             ("process credential is NULL for non-NEW proc"));
 1312                         /*
 1313                          * Show a user only appropriate processes.
 1314                          */
 1315                         if (p_cansee(curthread, p)) {
 1316                                 PROC_UNLOCK(p);
 1317                                 continue;
 1318                         }
 1319                         /*
 1320                          * TODO - make more efficient (see notes below).
 1321                          * do by session.
 1322                          */
 1323                         switch (oid_number) {
 1324 
 1325                         case KERN_PROC_GID:
 1326                                 if (p->p_ucred->cr_gid != (gid_t)name[0]) {
 1327                                         PROC_UNLOCK(p);
 1328                                         continue;
 1329                                 }
 1330                                 break;
 1331 
 1332                         case KERN_PROC_PGRP:
 1333                                 /* could do this by traversing pgrp */
 1334                                 if (p->p_pgrp == NULL ||
 1335                                     p->p_pgrp->pg_id != (pid_t)name[0]) {
 1336                                         PROC_UNLOCK(p);
 1337                                         continue;
 1338                                 }
 1339                                 break;
 1340 
 1341                         case KERN_PROC_RGID:
 1342                                 if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
 1343                                         PROC_UNLOCK(p);
 1344                                         continue;
 1345                                 }
 1346                                 break;
 1347 
 1348                         case KERN_PROC_SESSION:
 1349                                 if (p->p_session == NULL ||
 1350                                     p->p_session->s_sid != (pid_t)name[0]) {
 1351                                         PROC_UNLOCK(p);
 1352                                         continue;
 1353                                 }
 1354                                 break;
 1355 
 1356                         case KERN_PROC_TTY:
 1357                                 if ((p->p_flag & P_CONTROLT) == 0 ||
 1358                                     p->p_session == NULL) {
 1359                                         PROC_UNLOCK(p);
 1360                                         continue;
 1361                                 }
 1362                                 /* XXX proctree_lock */
 1363                                 SESS_LOCK(p->p_session);
 1364                                 if (p->p_session->s_ttyp == NULL ||
 1365                                     tty_udev(p->p_session->s_ttyp) !=
 1366                                     (dev_t)name[0]) {
 1367                                         SESS_UNLOCK(p->p_session);
 1368                                         PROC_UNLOCK(p);
 1369                                         continue;
 1370                                 }
 1371                                 SESS_UNLOCK(p->p_session);
 1372                                 break;
 1373 
 1374                         case KERN_PROC_UID:
 1375                                 if (p->p_ucred->cr_uid != (uid_t)name[0]) {
 1376                                         PROC_UNLOCK(p);
 1377                                         continue;
 1378                                 }
 1379                                 break;
 1380 
 1381                         case KERN_PROC_RUID:
 1382                                 if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
 1383                                         PROC_UNLOCK(p);
 1384                                         continue;
 1385                                 }
 1386                                 break;
 1387 
 1388                         case KERN_PROC_PROC:
 1389                                 break;
 1390 
 1391                         default:
 1392                                 break;
 1393 
 1394                         }
 1395 
 1396                         error = sysctl_out_proc(p, req, flags | doingzomb);
 1397                         if (error) {
 1398                                 sx_sunlock(&allproc_lock);
 1399                                 return (error);
 1400                         }
 1401                 }
 1402         }
 1403         sx_sunlock(&allproc_lock);
 1404         return (0);
 1405 }
 1406 
 1407 struct pargs *
 1408 pargs_alloc(int len)
 1409 {
 1410         struct pargs *pa;
 1411 
 1412         pa = malloc(sizeof(struct pargs) + len, M_PARGS,
 1413                 M_WAITOK);
 1414         refcount_init(&pa->ar_ref, 1);
 1415         pa->ar_length = len;
 1416         return (pa);
 1417 }
 1418 
 1419 static void
 1420 pargs_free(struct pargs *pa)
 1421 {
 1422 
 1423         free(pa, M_PARGS);
 1424 }
 1425 
 1426 void
 1427 pargs_hold(struct pargs *pa)
 1428 {
 1429 
 1430         if (pa == NULL)
 1431                 return;
 1432         refcount_acquire(&pa->ar_ref);
 1433 }
 1434 
 1435 void
 1436 pargs_drop(struct pargs *pa)
 1437 {
 1438 
 1439         if (pa == NULL)
 1440                 return;
 1441         if (refcount_release(&pa->ar_ref))
 1442                 pargs_free(pa);
 1443 }
 1444 
 1445 static int
 1446 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf,
 1447     size_t len)
 1448 {
 1449         struct iovec iov;
 1450         struct uio uio;
 1451 
 1452         iov.iov_base = (caddr_t)buf;
 1453         iov.iov_len = len;
 1454         uio.uio_iov = &iov;
 1455         uio.uio_iovcnt = 1;
 1456         uio.uio_offset = offset;
 1457         uio.uio_resid = (ssize_t)len;
 1458         uio.uio_segflg = UIO_SYSSPACE;
 1459         uio.uio_rw = UIO_READ;
 1460         uio.uio_td = td;
 1461 
 1462         return (proc_rwmem(p, &uio));
 1463 }
 1464 
 1465 static int
 1466 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
 1467     size_t len)
 1468 {
 1469         size_t i;
 1470         int error;
 1471 
 1472         error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len);
 1473         /*
 1474          * Reading the chunk may validly return EFAULT if the string is shorter
 1475          * than the chunk and is aligned at the end of the page, assuming the
 1476          * next page is not mapped.  So if EFAULT is returned do a fallback to
 1477          * one byte read loop.
 1478          */
 1479         if (error == EFAULT) {
 1480                 for (i = 0; i < len; i++, buf++, sptr++) {
 1481                         error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1);
 1482                         if (error != 0)
 1483                                 return (error);
 1484                         if (*buf == '\0')
 1485                                 break;
 1486                 }
 1487                 error = 0;
 1488         }
 1489         return (error);
 1490 }
 1491 
 1492 #define PROC_AUXV_MAX   256     /* Safety limit on auxv size. */
 1493 
 1494 enum proc_vector_type {
 1495         PROC_ARG,
 1496         PROC_ENV,
 1497         PROC_AUX,
 1498 };
 1499 
 1500 #ifdef COMPAT_FREEBSD32
 1501 static int
 1502 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
 1503     size_t *vsizep, enum proc_vector_type type)
 1504 {
 1505         struct freebsd32_ps_strings pss;
 1506         Elf32_Auxinfo aux;
 1507         vm_offset_t vptr, ptr;
 1508         uint32_t *proc_vector32;
 1509         char **proc_vector;
 1510         size_t vsize, size;
 1511         int i, error;
 1512 
 1513         error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
 1514             &pss, sizeof(pss));
 1515         if (error != 0)
 1516                 return (error);
 1517         switch (type) {
 1518         case PROC_ARG:
 1519                 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
 1520                 vsize = pss.ps_nargvstr;
 1521                 if (vsize > ARG_MAX)
 1522                         return (ENOEXEC);
 1523                 size = vsize * sizeof(int32_t);
 1524                 break;
 1525         case PROC_ENV:
 1526                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
 1527                 vsize = pss.ps_nenvstr;
 1528                 if (vsize > ARG_MAX)
 1529                         return (ENOEXEC);
 1530                 size = vsize * sizeof(int32_t);
 1531                 break;
 1532         case PROC_AUX:
 1533                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
 1534                     (pss.ps_nenvstr + 1) * sizeof(int32_t);
 1535                 if (vptr % 4 != 0)
 1536                         return (ENOEXEC);
 1537                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 1538                         error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
 1539                         if (error != 0)
 1540                                 return (error);
 1541                         if (aux.a_type == AT_NULL)
 1542                                 break;
 1543                         ptr += sizeof(aux);
 1544                 }
 1545                 if (aux.a_type != AT_NULL)
 1546                         return (ENOEXEC);
 1547                 vsize = i + 1;
 1548                 size = vsize * sizeof(aux);
 1549                 break;
 1550         default:
 1551                 KASSERT(0, ("Wrong proc vector type: %d", type));
 1552                 return (EINVAL);
 1553         }
 1554         proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
 1555         error = proc_read_mem(td, p, vptr, proc_vector32, size);
 1556         if (error != 0)
 1557                 goto done;
 1558         if (type == PROC_AUX) {
 1559                 *proc_vectorp = (char **)proc_vector32;
 1560                 *vsizep = vsize;
 1561                 return (0);
 1562         }
 1563         proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
 1564         for (i = 0; i < (int)vsize; i++)
 1565                 proc_vector[i] = PTRIN(proc_vector32[i]);
 1566         *proc_vectorp = proc_vector;
 1567         *vsizep = vsize;
 1568 done:
 1569         free(proc_vector32, M_TEMP);
 1570         return (error);
 1571 }
 1572 #endif
 1573 
 1574 static int
 1575 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
 1576     size_t *vsizep, enum proc_vector_type type)
 1577 {
 1578         struct ps_strings pss;
 1579         Elf_Auxinfo aux;
 1580         vm_offset_t vptr, ptr;
 1581         char **proc_vector;
 1582         size_t vsize, size;
 1583         int error, i;
 1584 
 1585 #ifdef COMPAT_FREEBSD32
 1586         if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 1587                 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
 1588 #endif
 1589         error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
 1590             &pss, sizeof(pss));
 1591         if (error != 0)
 1592                 return (error);
 1593         switch (type) {
 1594         case PROC_ARG:
 1595                 vptr = (vm_offset_t)pss.ps_argvstr;
 1596                 vsize = pss.ps_nargvstr;
 1597                 if (vsize > ARG_MAX)
 1598                         return (ENOEXEC);
 1599                 size = vsize * sizeof(char *);
 1600                 break;
 1601         case PROC_ENV:
 1602                 vptr = (vm_offset_t)pss.ps_envstr;
 1603                 vsize = pss.ps_nenvstr;
 1604                 if (vsize > ARG_MAX)
 1605                         return (ENOEXEC);
 1606                 size = vsize * sizeof(char *);
 1607                 break;
 1608         case PROC_AUX:
 1609                 /*
 1610                  * The aux array is just above env array on the stack. Check
 1611                  * that the address is naturally aligned.
 1612                  */
 1613                 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
 1614                     * sizeof(char *);
 1615 #if __ELF_WORD_SIZE == 64
 1616                 if (vptr % sizeof(uint64_t) != 0)
 1617 #else
 1618                 if (vptr % sizeof(uint32_t) != 0)
 1619 #endif
 1620                         return (ENOEXEC);
 1621                 /*
 1622                  * We count the array size reading the aux vectors from the
 1623                  * stack until AT_NULL vector is returned.  So (to keep the code
 1624                  * simple) we read the process stack twice: the first time here
 1625                  * to find the size and the second time when copying the vectors
 1626                  * to the allocated proc_vector.
 1627                  */
 1628                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 1629                         error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
 1630                         if (error != 0)
 1631                                 return (error);
 1632                         if (aux.a_type == AT_NULL)
 1633                                 break;
 1634                         ptr += sizeof(aux);
 1635                 }
 1636                 /*
 1637                  * If the PROC_AUXV_MAX entries are iterated over, and we have
 1638                  * not reached AT_NULL, it is most likely we are reading wrong
 1639                  * data: either the process doesn't have auxv array or data has
 1640                  * been modified. Return the error in this case.
 1641                  */
 1642                 if (aux.a_type != AT_NULL)
 1643                         return (ENOEXEC);
 1644                 vsize = i + 1;
 1645                 size = vsize * sizeof(aux);
 1646                 break;
 1647         default:
 1648                 KASSERT(0, ("Wrong proc vector type: %d", type));
 1649                 return (EINVAL); /* In case we are built without INVARIANTS. */
 1650         }
 1651         proc_vector = malloc(size, M_TEMP, M_WAITOK);
 1652         if (proc_vector == NULL)
 1653                 return (ENOMEM);
 1654         error = proc_read_mem(td, p, vptr, proc_vector, size);
 1655         if (error != 0) {
 1656                 free(proc_vector, M_TEMP);
 1657                 return (error);
 1658         }
 1659         *proc_vectorp = proc_vector;
 1660         *vsizep = vsize;
 1661 
 1662         return (0);
 1663 }
 1664 
 1665 #define GET_PS_STRINGS_CHUNK_SZ 256     /* Chunk size (bytes) for ps_strings operations. */
 1666 
 1667 static int
 1668 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
 1669     enum proc_vector_type type)
 1670 {
 1671         size_t done, len, nchr, vsize;
 1672         int error, i;
 1673         char **proc_vector, *sptr;
 1674         char pss_string[GET_PS_STRINGS_CHUNK_SZ];
 1675 
 1676         PROC_ASSERT_HELD(p);
 1677 
 1678         /*
 1679          * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
 1680          */
 1681         nchr = 2 * (PATH_MAX + ARG_MAX);
 1682 
 1683         error = get_proc_vector(td, p, &proc_vector, &vsize, type);
 1684         if (error != 0)
 1685                 return (error);
 1686         for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
 1687                 /*
 1688                  * The program may have scribbled into its argv array, e.g. to
 1689                  * remove some arguments.  If that has happened, break out
 1690                  * before trying to read from NULL.
 1691                  */
 1692                 if (proc_vector[i] == NULL)
 1693                         break;
 1694                 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
 1695                         error = proc_read_string(td, p, sptr, pss_string,
 1696                             sizeof(pss_string));
 1697                         if (error != 0)
 1698                                 goto done;
 1699                         len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
 1700                         if (done + len >= nchr)
 1701                                 len = nchr - done - 1;
 1702                         sbuf_bcat(sb, pss_string, len);
 1703                         if (len != GET_PS_STRINGS_CHUNK_SZ)
 1704                                 break;
 1705                         done += GET_PS_STRINGS_CHUNK_SZ;
 1706                 }
 1707                 sbuf_bcat(sb, "", 1);
 1708                 done += len + 1;
 1709         }
 1710 done:
 1711         free(proc_vector, M_TEMP);
 1712         return (error);
 1713 }
 1714 
 1715 int
 1716 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
 1717 {
 1718 
 1719         return (get_ps_strings(curthread, p, sb, PROC_ARG));
 1720 }
 1721 
 1722 int
 1723 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
 1724 {
 1725 
 1726         return (get_ps_strings(curthread, p, sb, PROC_ENV));
 1727 }
 1728 
 1729 /*
 1730  * This sysctl allows a process to retrieve the argument list or process
 1731  * title for another process without groping around in the address space
 1732  * of the other process.  It also allow a process to set its own "process 
 1733  * title to a string of its own choice.
 1734  */
 1735 static int
 1736 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
 1737 {
 1738         int *name = (int *)arg1;
 1739         u_int namelen = arg2;
 1740         struct pargs *newpa, *pa;
 1741         struct proc *p;
 1742         struct sbuf sb;
 1743         int flags, error = 0, error2;
 1744 
 1745         if (namelen != 1)
 1746                 return (EINVAL);
 1747 
 1748         flags = PGET_CANSEE;
 1749         if (req->newptr != NULL)
 1750                 flags |= PGET_ISCURRENT;
 1751         error = pget((pid_t)name[0], flags, &p);
 1752         if (error)
 1753                 return (error);
 1754 
 1755         pa = p->p_args;
 1756         if (pa != NULL) {
 1757                 pargs_hold(pa);
 1758                 PROC_UNLOCK(p);
 1759                 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
 1760                 pargs_drop(pa);
 1761         } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
 1762                 _PHOLD(p);
 1763                 PROC_UNLOCK(p);
 1764                 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1765                 error = proc_getargv(curthread, p, &sb);
 1766                 error2 = sbuf_finish(&sb);
 1767                 PRELE(p);
 1768                 sbuf_delete(&sb);
 1769                 if (error == 0 && error2 != 0)
 1770                         error = error2;
 1771         } else {
 1772                 PROC_UNLOCK(p);
 1773         }
 1774         if (error != 0 || req->newptr == NULL)
 1775                 return (error);
 1776 
 1777         if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
 1778                 return (ENOMEM);
 1779         newpa = pargs_alloc(req->newlen);
 1780         error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
 1781         if (error != 0) {
 1782                 pargs_free(newpa);
 1783                 return (error);
 1784         }
 1785         PROC_LOCK(p);
 1786         pa = p->p_args;
 1787         p->p_args = newpa;
 1788         PROC_UNLOCK(p);
 1789         pargs_drop(pa);
 1790         return (0);
 1791 }
 1792 
 1793 /*
 1794  * This sysctl allows a process to retrieve environment of another process.
 1795  */
 1796 static int
 1797 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
 1798 {
 1799         int *name = (int *)arg1;
 1800         u_int namelen = arg2;
 1801         struct proc *p;
 1802         struct sbuf sb;
 1803         int error, error2;
 1804 
 1805         if (namelen != 1)
 1806                 return (EINVAL);
 1807 
 1808         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1809         if (error != 0)
 1810                 return (error);
 1811         if ((p->p_flag & P_SYSTEM) != 0) {
 1812                 PRELE(p);
 1813                 return (0);
 1814         }
 1815 
 1816         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1817         error = proc_getenvv(curthread, p, &sb);
 1818         error2 = sbuf_finish(&sb);
 1819         PRELE(p);
 1820         sbuf_delete(&sb);
 1821         return (error != 0 ? error : error2);
 1822 }
 1823 
 1824 /*
 1825  * This sysctl allows a process to retrieve ELF auxiliary vector of
 1826  * another process.
 1827  */
 1828 static int
 1829 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
 1830 {
 1831         int *name = (int *)arg1;
 1832         u_int namelen = arg2;
 1833         struct proc *p;
 1834         size_t vsize, size;
 1835         char **auxv;
 1836         int error;
 1837 
 1838         if (namelen != 1)
 1839                 return (EINVAL);
 1840 
 1841         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1842         if (error != 0)
 1843                 return (error);
 1844         if ((p->p_flag & P_SYSTEM) != 0) {
 1845                 PRELE(p);
 1846                 return (0);
 1847         }
 1848         error = get_proc_vector(curthread, p, &auxv, &vsize, PROC_AUX);
 1849         if (error == 0) {
 1850 #ifdef COMPAT_FREEBSD32
 1851                 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 1852                         size = vsize * sizeof(Elf32_Auxinfo);
 1853                 else
 1854 #endif
 1855                 size = vsize * sizeof(Elf_Auxinfo);
 1856                 PRELE(p);
 1857                 error = SYSCTL_OUT(req, auxv, size);
 1858                 free(auxv, M_TEMP);
 1859         } else {
 1860                 PRELE(p);
 1861         }
 1862         return (error);
 1863 }
 1864 
 1865 /*
 1866  * This sysctl allows a process to retrieve the path of the executable for
 1867  * itself or another process.
 1868  */
 1869 static int
 1870 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
 1871 {
 1872         pid_t *pidp = (pid_t *)arg1;
 1873         unsigned int arglen = arg2;
 1874         struct proc *p;
 1875         struct vnode *vp;
 1876         char *retbuf, *freebuf;
 1877         int error, vfslocked;
 1878 
 1879         if (arglen != 1)
 1880                 return (EINVAL);
 1881         if (*pidp == -1) {      /* -1 means this process */
 1882                 p = req->td->td_proc;
 1883         } else {
 1884                 error = pget(*pidp, PGET_CANSEE, &p);
 1885                 if (error != 0)
 1886                         return (error);
 1887         }
 1888 
 1889         vp = p->p_textvp;
 1890         if (vp == NULL) {
 1891                 if (*pidp != -1)
 1892                         PROC_UNLOCK(p);
 1893                 return (0);
 1894         }
 1895         vref(vp);
 1896         if (*pidp != -1)
 1897                 PROC_UNLOCK(p);
 1898         error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
 1899         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 1900         vrele(vp);
 1901         VFS_UNLOCK_GIANT(vfslocked);
 1902         if (error)
 1903                 return (error);
 1904         error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
 1905         free(freebuf, M_TEMP);
 1906         return (error);
 1907 }
 1908 
 1909 static int
 1910 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
 1911 {
 1912         struct proc *p;
 1913         char *sv_name;
 1914         int *name;
 1915         int namelen;
 1916         int error;
 1917 
 1918         namelen = arg2;
 1919         if (namelen != 1)
 1920                 return (EINVAL);
 1921 
 1922         name = (int *)arg1;
 1923         error = pget((pid_t)name[0], PGET_CANSEE, &p);
 1924         if (error != 0)
 1925                 return (error);
 1926         sv_name = p->p_sysent->sv_name;
 1927         PROC_UNLOCK(p);
 1928         return (sysctl_handle_string(oidp, sv_name, 0, req));
 1929 }
 1930 
 1931 #ifdef KINFO_OVMENTRY_SIZE
 1932 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
 1933 #endif
 1934 
 1935 #ifdef COMPAT_FREEBSD7
 1936 static int
 1937 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
 1938 {
 1939         vm_map_entry_t entry, tmp_entry;
 1940         unsigned int last_timestamp;
 1941         char *fullpath, *freepath;
 1942         struct kinfo_ovmentry *kve;
 1943         struct vattr va;
 1944         struct ucred *cred;
 1945         int error, *name;
 1946         struct vnode *vp;
 1947         struct proc *p;
 1948         vm_map_t map;
 1949         struct vmspace *vm;
 1950 
 1951         name = (int *)arg1;
 1952         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1953         if (error != 0)
 1954                 return (error);
 1955         vm = vmspace_acquire_ref(p);
 1956         if (vm == NULL) {
 1957                 PRELE(p);
 1958                 return (ESRCH);
 1959         }
 1960         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
 1961 
 1962         map = &p->p_vmspace->vm_map;    /* XXXRW: More locking required? */
 1963         vm_map_lock_read(map);
 1964         for (entry = map->header.next; entry != &map->header;
 1965             entry = entry->next) {
 1966                 vm_object_t obj, tobj, lobj;
 1967                 vm_offset_t addr;
 1968                 int vfslocked;
 1969 
 1970                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 1971                         continue;
 1972 
 1973                 bzero(kve, sizeof(*kve));
 1974                 kve->kve_structsize = sizeof(*kve);
 1975 
 1976                 kve->kve_private_resident = 0;
 1977                 obj = entry->object.vm_object;
 1978                 if (obj != NULL) {
 1979                         VM_OBJECT_LOCK(obj);
 1980                         if (obj->shadow_count == 1)
 1981                                 kve->kve_private_resident =
 1982                                     obj->resident_page_count;
 1983                 }
 1984                 kve->kve_resident = 0;
 1985                 addr = entry->start;
 1986                 while (addr < entry->end) {
 1987                         if (pmap_extract(map->pmap, addr))
 1988                                 kve->kve_resident++;
 1989                         addr += PAGE_SIZE;
 1990                 }
 1991 
 1992                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
 1993                         if (tobj != obj)
 1994                                 VM_OBJECT_LOCK(tobj);
 1995                         if (lobj != obj)
 1996                                 VM_OBJECT_UNLOCK(lobj);
 1997                         lobj = tobj;
 1998                 }
 1999 
 2000                 kve->kve_start = (void*)entry->start;
 2001                 kve->kve_end = (void*)entry->end;
 2002                 kve->kve_offset = (off_t)entry->offset;
 2003 
 2004                 if (entry->protection & VM_PROT_READ)
 2005                         kve->kve_protection |= KVME_PROT_READ;
 2006                 if (entry->protection & VM_PROT_WRITE)
 2007                         kve->kve_protection |= KVME_PROT_WRITE;
 2008                 if (entry->protection & VM_PROT_EXECUTE)
 2009                         kve->kve_protection |= KVME_PROT_EXEC;
 2010 
 2011                 if (entry->eflags & MAP_ENTRY_COW)
 2012                         kve->kve_flags |= KVME_FLAG_COW;
 2013                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 2014                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 2015                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 2016                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 2017 
 2018                 last_timestamp = map->timestamp;
 2019                 vm_map_unlock_read(map);
 2020 
 2021                 kve->kve_fileid = 0;
 2022                 kve->kve_fsid = 0;
 2023                 freepath = NULL;
 2024                 fullpath = "";
 2025                 if (lobj) {
 2026                         vp = NULL;
 2027                         switch (lobj->type) {
 2028                         case OBJT_DEFAULT:
 2029                                 kve->kve_type = KVME_TYPE_DEFAULT;
 2030                                 break;
 2031                         case OBJT_VNODE:
 2032                                 kve->kve_type = KVME_TYPE_VNODE;
 2033                                 vp = lobj->handle;
 2034                                 vref(vp);
 2035                                 break;
 2036                         case OBJT_SWAP:
 2037                                 kve->kve_type = KVME_TYPE_SWAP;
 2038                                 break;
 2039                         case OBJT_DEVICE:
 2040                                 kve->kve_type = KVME_TYPE_DEVICE;
 2041                                 break;
 2042                         case OBJT_PHYS:
 2043                                 kve->kve_type = KVME_TYPE_PHYS;
 2044                                 break;
 2045                         case OBJT_DEAD:
 2046                                 kve->kve_type = KVME_TYPE_DEAD;
 2047                                 break;
 2048                         case OBJT_SG:
 2049                                 kve->kve_type = KVME_TYPE_SG;
 2050                                 break;
 2051                         default:
 2052                                 kve->kve_type = KVME_TYPE_UNKNOWN;
 2053                                 break;
 2054                         }
 2055                         if (lobj != obj)
 2056                                 VM_OBJECT_UNLOCK(lobj);
 2057 
 2058                         kve->kve_ref_count = obj->ref_count;
 2059                         kve->kve_shadow_count = obj->shadow_count;
 2060                         VM_OBJECT_UNLOCK(obj);
 2061                         if (vp != NULL) {
 2062                                 vn_fullpath(curthread, vp, &fullpath,
 2063                                     &freepath);
 2064                                 cred = curthread->td_ucred;
 2065                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 2066                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2067                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 2068                                         kve->kve_fileid = va.va_fileid;
 2069                                         kve->kve_fsid = va.va_fsid;
 2070                                 }
 2071                                 vput(vp);
 2072                                 VFS_UNLOCK_GIANT(vfslocked);
 2073                         }
 2074                 } else {
 2075                         kve->kve_type = KVME_TYPE_NONE;
 2076                         kve->kve_ref_count = 0;
 2077                         kve->kve_shadow_count = 0;
 2078                 }
 2079 
 2080                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 2081                 if (freepath != NULL)
 2082                         free(freepath, M_TEMP);
 2083 
 2084                 error = SYSCTL_OUT(req, kve, sizeof(*kve));
 2085                 vm_map_lock_read(map);
 2086                 if (error)
 2087                         break;
 2088                 if (last_timestamp != map->timestamp) {
 2089                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 2090                         entry = tmp_entry;
 2091                 }
 2092         }
 2093         vm_map_unlock_read(map);
 2094         vmspace_free(vm);
 2095         PRELE(p);
 2096         free(kve, M_TEMP);
 2097         return (error);
 2098 }
 2099 #endif  /* COMPAT_FREEBSD7 */
 2100 
 2101 #ifdef KINFO_VMENTRY_SIZE
 2102 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
 2103 #endif
 2104 
 2105 static int
 2106 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
 2107 {
 2108         vm_map_entry_t entry, tmp_entry;
 2109         unsigned int last_timestamp;
 2110         char *fullpath, *freepath;
 2111         struct kinfo_vmentry *kve;
 2112         struct vattr va;
 2113         struct ucred *cred;
 2114         int error, *name;
 2115         struct vnode *vp;
 2116         struct proc *p;
 2117         struct vmspace *vm;
 2118         vm_map_t map;
 2119 
 2120         name = (int *)arg1;
 2121         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 2122         if (error != 0)
 2123                 return (error);
 2124         vm = vmspace_acquire_ref(p);
 2125         if (vm == NULL) {
 2126                 PRELE(p);
 2127                 return (ESRCH);
 2128         }
 2129         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
 2130 
 2131         map = &vm->vm_map;      /* XXXRW: More locking required? */
 2132         vm_map_lock_read(map);
 2133         for (entry = map->header.next; entry != &map->header;
 2134             entry = entry->next) {
 2135                 vm_object_t obj, tobj, lobj;
 2136                 vm_offset_t addr;
 2137                 vm_paddr_t locked_pa;
 2138                 int vfslocked, mincoreinfo;
 2139 
 2140                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 2141                         continue;
 2142 
 2143                 bzero(kve, sizeof(*kve));
 2144 
 2145                 kve->kve_private_resident = 0;
 2146                 obj = entry->object.vm_object;
 2147                 if (obj != NULL) {
 2148                         VM_OBJECT_LOCK(obj);
 2149                         if (obj->shadow_count == 1)
 2150                                 kve->kve_private_resident =
 2151                                     obj->resident_page_count;
 2152                 }
 2153                 kve->kve_resident = 0;
 2154                 addr = entry->start;
 2155                 while (addr < entry->end) {
 2156                         locked_pa = 0;
 2157                         mincoreinfo = pmap_mincore(map->pmap, addr, &locked_pa);
 2158                         if (locked_pa != 0)
 2159                                 vm_page_unlock(PHYS_TO_VM_PAGE(locked_pa));
 2160                         if (mincoreinfo & MINCORE_INCORE)
 2161                                 kve->kve_resident++;
 2162                         if (mincoreinfo & MINCORE_SUPER)
 2163                                 kve->kve_flags |= KVME_FLAG_SUPER;
 2164                         addr += PAGE_SIZE;
 2165                 }
 2166 
 2167                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
 2168                         if (tobj != obj)
 2169                                 VM_OBJECT_LOCK(tobj);
 2170                         if (lobj != obj)
 2171                                 VM_OBJECT_UNLOCK(lobj);
 2172                         lobj = tobj;
 2173                 }
 2174 
 2175                 kve->kve_start = entry->start;
 2176                 kve->kve_end = entry->end;
 2177                 kve->kve_offset = entry->offset;
 2178 
 2179                 if (entry->protection & VM_PROT_READ)
 2180                         kve->kve_protection |= KVME_PROT_READ;
 2181                 if (entry->protection & VM_PROT_WRITE)
 2182                         kve->kve_protection |= KVME_PROT_WRITE;
 2183                 if (entry->protection & VM_PROT_EXECUTE)
 2184                         kve->kve_protection |= KVME_PROT_EXEC;
 2185 
 2186                 if (entry->eflags & MAP_ENTRY_COW)
 2187                         kve->kve_flags |= KVME_FLAG_COW;
 2188                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 2189                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 2190                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 2191                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 2192                 if (entry->eflags & MAP_ENTRY_GROWS_UP)
 2193                         kve->kve_flags |= KVME_FLAG_GROWS_UP;
 2194                 if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
 2195                         kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
 2196 
 2197                 last_timestamp = map->timestamp;
 2198                 vm_map_unlock_read(map);
 2199 
 2200                 freepath = NULL;
 2201                 fullpath = "";
 2202                 if (lobj) {
 2203                         vp = NULL;
 2204                         switch (lobj->type) {
 2205                         case OBJT_DEFAULT:
 2206                                 kve->kve_type = KVME_TYPE_DEFAULT;
 2207                                 break;
 2208                         case OBJT_VNODE:
 2209                                 kve->kve_type = KVME_TYPE_VNODE;
 2210                                 vp = lobj->handle;
 2211                                 vref(vp);
 2212                                 break;
 2213                         case OBJT_SWAP:
 2214                                 kve->kve_type = KVME_TYPE_SWAP;
 2215                                 break;
 2216                         case OBJT_DEVICE:
 2217                                 kve->kve_type = KVME_TYPE_DEVICE;
 2218                                 break;
 2219                         case OBJT_PHYS:
 2220                                 kve->kve_type = KVME_TYPE_PHYS;
 2221                                 break;
 2222                         case OBJT_DEAD:
 2223                                 kve->kve_type = KVME_TYPE_DEAD;
 2224                                 break;
 2225                         case OBJT_SG:
 2226                                 kve->kve_type = KVME_TYPE_SG;
 2227                                 break;
 2228                         default:
 2229                                 kve->kve_type = KVME_TYPE_UNKNOWN;
 2230                                 break;
 2231                         }
 2232                         if (lobj != obj)
 2233                                 VM_OBJECT_UNLOCK(lobj);
 2234 
 2235                         kve->kve_ref_count = obj->ref_count;
 2236                         kve->kve_shadow_count = obj->shadow_count;
 2237                         VM_OBJECT_UNLOCK(obj);
 2238                         if (vp != NULL) {
 2239                                 vn_fullpath(curthread, vp, &fullpath,
 2240                                     &freepath);
 2241                                 kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
 2242                                 cred = curthread->td_ucred;
 2243                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 2244                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2245                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 2246                                         kve->kve_vn_fileid = va.va_fileid;
 2247                                         kve->kve_vn_fsid = va.va_fsid;
 2248                                         kve->kve_vn_mode =
 2249                                             MAKEIMODE(va.va_type, va.va_mode);
 2250                                         kve->kve_vn_size = va.va_size;
 2251                                         kve->kve_vn_rdev = va.va_rdev;
 2252                                         kve->kve_status = KF_ATTR_VALID;
 2253                                 }
 2254                                 vput(vp);
 2255                                 VFS_UNLOCK_GIANT(vfslocked);
 2256                         }
 2257                 } else {
 2258                         kve->kve_type = KVME_TYPE_NONE;
 2259                         kve->kve_ref_count = 0;
 2260                         kve->kve_shadow_count = 0;
 2261                 }
 2262 
 2263                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 2264                 if (freepath != NULL)
 2265                         free(freepath, M_TEMP);
 2266 
 2267                 /* Pack record size down */
 2268                 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
 2269                     strlen(kve->kve_path) + 1;
 2270                 kve->kve_structsize = roundup(kve->kve_structsize,
 2271                     sizeof(uint64_t));
 2272                 error = SYSCTL_OUT(req, kve, kve->kve_structsize);
 2273                 vm_map_lock_read(map);
 2274                 if (error)
 2275                         break;
 2276                 if (last_timestamp != map->timestamp) {
 2277                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 2278                         entry = tmp_entry;
 2279                 }
 2280         }
 2281         vm_map_unlock_read(map);
 2282         vmspace_free(vm);
 2283         PRELE(p);
 2284         free(kve, M_TEMP);
 2285         return (error);
 2286 }
 2287 
 2288 #if defined(STACK) || defined(DDB)
 2289 static int
 2290 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
 2291 {
 2292         struct kinfo_kstack *kkstp;
 2293         int error, i, *name, numthreads;
 2294         lwpid_t *lwpidarray;
 2295         struct thread *td;
 2296         struct stack *st;
 2297         struct sbuf sb;
 2298         struct proc *p;
 2299 
 2300         name = (int *)arg1;
 2301         error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
 2302         if (error != 0)
 2303                 return (error);
 2304 
 2305         kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
 2306         st = stack_create();
 2307 
 2308         lwpidarray = NULL;
 2309         numthreads = 0;
 2310         PROC_LOCK(p);
 2311 repeat:
 2312         if (numthreads < p->p_numthreads) {
 2313                 if (lwpidarray != NULL) {
 2314                         free(lwpidarray, M_TEMP);
 2315                         lwpidarray = NULL;
 2316                 }
 2317                 numthreads = p->p_numthreads;
 2318                 PROC_UNLOCK(p);
 2319                 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
 2320                     M_WAITOK | M_ZERO);
 2321                 PROC_LOCK(p);
 2322                 goto repeat;
 2323         }
 2324         i = 0;
 2325 
 2326         /*
 2327          * XXXRW: During the below loop, execve(2) and countless other sorts
 2328          * of changes could have taken place.  Should we check to see if the
 2329          * vmspace has been replaced, or the like, in order to prevent
 2330          * giving a snapshot that spans, say, execve(2), with some threads
 2331          * before and some after?  Among other things, the credentials could
 2332          * have changed, in which case the right to extract debug info might
 2333          * no longer be assured.
 2334          */
 2335         FOREACH_THREAD_IN_PROC(p, td) {
 2336                 KASSERT(i < numthreads,
 2337                     ("sysctl_kern_proc_kstack: numthreads"));
 2338                 lwpidarray[i] = td->td_tid;
 2339                 i++;
 2340         }
 2341         numthreads = i;
 2342         for (i = 0; i < numthreads; i++) {
 2343                 td = thread_find(p, lwpidarray[i]);
 2344                 if (td == NULL) {
 2345                         continue;
 2346                 }
 2347                 bzero(kkstp, sizeof(*kkstp));
 2348                 (void)sbuf_new(&sb, kkstp->kkst_trace,
 2349                     sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
 2350                 thread_lock(td);
 2351                 kkstp->kkst_tid = td->td_tid;
 2352                 if (TD_IS_SWAPPED(td))
 2353                         kkstp->kkst_state = KKST_STATE_SWAPPED;
 2354                 else if (TD_IS_RUNNING(td))
 2355                         kkstp->kkst_state = KKST_STATE_RUNNING;
 2356                 else {
 2357                         kkstp->kkst_state = KKST_STATE_STACKOK;
 2358                         stack_save_td(st, td);
 2359                 }
 2360                 thread_unlock(td);
 2361                 PROC_UNLOCK(p);
 2362                 stack_sbuf_print(&sb, st);
 2363                 sbuf_finish(&sb);
 2364                 sbuf_delete(&sb);
 2365                 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
 2366                 PROC_LOCK(p);
 2367                 if (error)
 2368                         break;
 2369         }
 2370         _PRELE(p);
 2371         PROC_UNLOCK(p);
 2372         if (lwpidarray != NULL)
 2373                 free(lwpidarray, M_TEMP);
 2374         stack_destroy(st);
 2375         free(kkstp, M_TEMP);
 2376         return (error);
 2377 }
 2378 #endif
 2379 
 2380 /*
 2381  * This sysctl allows a process to retrieve the full list of groups from
 2382  * itself or another process.
 2383  */
 2384 static int
 2385 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
 2386 {
 2387         pid_t *pidp = (pid_t *)arg1;
 2388         unsigned int arglen = arg2;
 2389         struct proc *p;
 2390         struct ucred *cred;
 2391         int error;
 2392 
 2393         if (arglen != 1)
 2394                 return (EINVAL);
 2395         if (*pidp == -1) {      /* -1 means this process */
 2396                 p = req->td->td_proc;
 2397         } else {
 2398                 error = pget(*pidp, PGET_CANSEE, &p);
 2399                 if (error != 0)
 2400                         return (error);
 2401         }
 2402 
 2403         cred = crhold(p->p_ucred);
 2404         if (*pidp != -1)
 2405                 PROC_UNLOCK(p);
 2406 
 2407         error = SYSCTL_OUT(req, cred->cr_groups,
 2408             cred->cr_ngroups * sizeof(gid_t));
 2409         crfree(cred);
 2410         return (error);
 2411 }
 2412 
 2413 /*
 2414  * This sysctl allows a process to retrieve or/and set the resource limit for
 2415  * another process.
 2416  */
 2417 static int
 2418 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
 2419 {
 2420         int *name = (int *)arg1;
 2421         u_int namelen = arg2;
 2422         struct rlimit rlim;
 2423         struct proc *p;
 2424         u_int which;
 2425         int flags, error;
 2426 
 2427         if (namelen != 2)
 2428                 return (EINVAL);
 2429 
 2430         which = (u_int)name[1];
 2431         if (which >= RLIM_NLIMITS)
 2432                 return (EINVAL);
 2433 
 2434         if (req->newptr != NULL && req->newlen != sizeof(rlim))
 2435                 return (EINVAL);
 2436 
 2437         flags = PGET_HOLD | PGET_NOTWEXIT;
 2438         if (req->newptr != NULL)
 2439                 flags |= PGET_CANDEBUG;
 2440         else
 2441                 flags |= PGET_CANSEE;
 2442         error = pget((pid_t)name[0], flags, &p);
 2443         if (error != 0)
 2444                 return (error);
 2445 
 2446         /*
 2447          * Retrieve limit.
 2448          */
 2449         if (req->oldptr != NULL) {
 2450                 PROC_LOCK(p);
 2451                 lim_rlimit(p, which, &rlim);
 2452                 PROC_UNLOCK(p);
 2453         }
 2454         error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
 2455         if (error != 0)
 2456                 goto errout;
 2457 
 2458         /*
 2459          * Set limit.
 2460          */
 2461         if (req->newptr != NULL) {
 2462                 error = SYSCTL_IN(req, &rlim, sizeof(rlim));
 2463                 if (error == 0)
 2464                         error = kern_proc_setrlimit(curthread, p, which, &rlim);
 2465         }
 2466 
 2467 errout:
 2468         PRELE(p);
 2469         return (error);
 2470 }
 2471 
 2472 /*
 2473  * This sysctl allows a process to retrieve ps_strings structure location of
 2474  * another process.
 2475  */
 2476 static int
 2477 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
 2478 {
 2479         int *name = (int *)arg1;
 2480         u_int namelen = arg2;
 2481         struct proc *p;
 2482         vm_offset_t ps_strings;
 2483         int error;
 2484 #ifdef COMPAT_FREEBSD32
 2485         uint32_t ps_strings32;
 2486 #endif
 2487 
 2488         if (namelen != 1)
 2489                 return (EINVAL);
 2490 
 2491         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 2492         if (error != 0)
 2493                 return (error);
 2494 #ifdef COMPAT_FREEBSD32
 2495         if ((req->flags & SCTL_MASK32) != 0) {
 2496                 /*
 2497                  * We return 0 if the 32 bit emulation request is for a 64 bit
 2498                  * process.
 2499                  */
 2500                 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
 2501                     PTROUT(p->p_sysent->sv_psstrings) : 0;
 2502                 PROC_UNLOCK(p);
 2503                 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
 2504                 return (error);
 2505         }
 2506 #endif
 2507         ps_strings = p->p_sysent->sv_psstrings;
 2508         PROC_UNLOCK(p);
 2509         error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
 2510         return (error);
 2511 }
 2512 
 2513 /*
 2514  * This sysctl allows a process to retrieve umask of another process.
 2515  */
 2516 static int
 2517 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
 2518 {
 2519         int *name = (int *)arg1;
 2520         u_int namelen = arg2;
 2521         struct proc *p;
 2522         int error;
 2523         u_short fd_cmask;
 2524 
 2525         if (namelen != 1)
 2526                 return (EINVAL);
 2527 
 2528         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 2529         if (error != 0)
 2530                 return (error);
 2531 
 2532         FILEDESC_SLOCK(p->p_fd);
 2533         fd_cmask = p->p_fd->fd_cmask;
 2534         FILEDESC_SUNLOCK(p->p_fd);
 2535         PRELE(p);
 2536         error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
 2537         return (error);
 2538 }
 2539 
 2540 /*
 2541  * This sysctl allows a process to set and retrieve binary osreldate of
 2542  * another process.
 2543  */
 2544 static int
 2545 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
 2546 {
 2547         int *name = (int *)arg1;
 2548         u_int namelen = arg2;
 2549         struct proc *p;
 2550         int flags, error, osrel;
 2551 
 2552         if (namelen != 1)
 2553                 return (EINVAL);
 2554 
 2555         if (req->newptr != NULL && req->newlen != sizeof(osrel))
 2556                 return (EINVAL);
 2557 
 2558         flags = PGET_HOLD | PGET_NOTWEXIT;
 2559         if (req->newptr != NULL)
 2560                 flags |= PGET_CANDEBUG;
 2561         else
 2562                 flags |= PGET_CANSEE;
 2563         error = pget((pid_t)name[0], flags, &p);
 2564         if (error != 0)
 2565                 return (error);
 2566 
 2567         error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
 2568         if (error != 0)
 2569                 goto errout;
 2570 
 2571         if (req->newptr != NULL) {
 2572                 error = SYSCTL_IN(req, &osrel, sizeof(osrel));
 2573                 if (error != 0)
 2574                         goto errout;
 2575                 if (osrel < 0) {
 2576                         error = EINVAL;
 2577                         goto errout;
 2578                 }
 2579                 p->p_osrel = osrel;
 2580         }
 2581 errout:
 2582         PRELE(p);
 2583         return (error);
 2584 }
 2585 
 2586 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
 2587 
 2588 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
 2589         CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
 2590         "Return entire process table");
 2591 
 2592 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2593         sysctl_kern_proc, "Process table");
 2594 
 2595 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2596         sysctl_kern_proc, "Process table");
 2597 
 2598 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2599         sysctl_kern_proc, "Process table");
 2600 
 2601 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
 2602         CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2603 
 2604 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2605         sysctl_kern_proc, "Process table");
 2606 
 2607 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2608         sysctl_kern_proc, "Process table");
 2609 
 2610 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2611         sysctl_kern_proc, "Process table");
 2612 
 2613 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2614         sysctl_kern_proc, "Process table");
 2615 
 2616 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2617         sysctl_kern_proc, "Return process table, no threads");
 2618 
 2619 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
 2620         CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
 2621         sysctl_kern_proc_args, "Process argument list");
 2622 
 2623 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2624         sysctl_kern_proc_env, "Process environment");
 2625 
 2626 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
 2627         CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
 2628 
 2629 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
 2630         CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
 2631 
 2632 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
 2633         CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
 2634         "Process syscall vector name (ABI type)");
 2635 
 2636 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
 2637         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2638 
 2639 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
 2640         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2641 
 2642 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
 2643         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2644 
 2645 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
 2646         sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2647 
 2648 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
 2649         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2650 
 2651 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
 2652         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2653 
 2654 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
 2655         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2656 
 2657 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
 2658         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2659 
 2660 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
 2661         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
 2662         "Return process table, no threads");
 2663 
 2664 #ifdef COMPAT_FREEBSD7
 2665 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
 2666         CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
 2667 #endif
 2668 
 2669 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
 2670         CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
 2671 
 2672 #if defined(STACK) || defined(DDB)
 2673 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
 2674         CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
 2675 #endif
 2676 
 2677 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
 2678         CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
 2679 
 2680 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
 2681         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
 2682         "Process resource limits");
 2683 
 2684 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
 2685         CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
 2686         "Process ps_strings location");
 2687 
 2688 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
 2689         CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
 2690 
 2691 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
 2692         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
 2693         "Process binary osreldate");

Cache object: a2acae964638f55c54b458125fbdd1f9


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.