The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_proc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/9.2/sys/kern/kern_proc.c 250416 2013-05-09 18:38:49Z trociny $");
   34 
   35 #include "opt_compat.h"
   36 #include "opt_ddb.h"
   37 #include "opt_kdtrace.h"
   38 #include "opt_ktrace.h"
   39 #include "opt_kstack_pages.h"
   40 #include "opt_stack.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/elf.h>
   45 #include <sys/exec.h>
   46 #include <sys/kernel.h>
   47 #include <sys/limits.h>
   48 #include <sys/lock.h>
   49 #include <sys/loginclass.h>
   50 #include <sys/malloc.h>
   51 #include <sys/mman.h>
   52 #include <sys/mount.h>
   53 #include <sys/mutex.h>
   54 #include <sys/proc.h>
   55 #include <sys/ptrace.h>
   56 #include <sys/refcount.h>
   57 #include <sys/resourcevar.h>
   58 #include <sys/sbuf.h>
   59 #include <sys/sysent.h>
   60 #include <sys/sched.h>
   61 #include <sys/smp.h>
   62 #include <sys/stack.h>
   63 #include <sys/stat.h>
   64 #include <sys/sysctl.h>
   65 #include <sys/filedesc.h>
   66 #include <sys/tty.h>
   67 #include <sys/signalvar.h>
   68 #include <sys/sdt.h>
   69 #include <sys/sx.h>
   70 #include <sys/user.h>
   71 #include <sys/jail.h>
   72 #include <sys/vnode.h>
   73 #include <sys/eventhandler.h>
   74 
   75 #ifdef DDB
   76 #include <ddb/ddb.h>
   77 #endif
   78 
   79 #include <vm/vm.h>
   80 #include <vm/vm_param.h>
   81 #include <vm/vm_extern.h>
   82 #include <vm/pmap.h>
   83 #include <vm/vm_map.h>
   84 #include <vm/vm_object.h>
   85 #include <vm/vm_page.h>
   86 #include <vm/uma.h>
   87 
   88 #ifdef COMPAT_FREEBSD32
   89 #include <compat/freebsd32/freebsd32.h>
   90 #include <compat/freebsd32/freebsd32_util.h>
   91 #endif
   92 
   93 SDT_PROVIDER_DEFINE(proc);
   94 SDT_PROBE_DEFINE(proc, kernel, ctor, entry, entry);
   95 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *");
   96 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int");
   97 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *");
   98 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int");
   99 SDT_PROBE_DEFINE(proc, kernel, ctor, return, return);
  100 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *");
  101 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int");
  102 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *");
  103 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int");
  104 SDT_PROBE_DEFINE(proc, kernel, dtor, entry, entry);
  105 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *");
  106 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int");
  107 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *");
  108 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *");
  109 SDT_PROBE_DEFINE(proc, kernel, dtor, return, return);
  110 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *");
  111 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int");
  112 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *");
  113 SDT_PROBE_DEFINE(proc, kernel, init, entry, entry);
  114 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *");
  115 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int");
  116 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int");
  117 SDT_PROBE_DEFINE(proc, kernel, init, return, return);
  118 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *");
  119 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int");
  120 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int");
  121 
  122 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
  123 MALLOC_DEFINE(M_SESSION, "session", "session header");
  124 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
  125 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
  126 
  127 static void doenterpgrp(struct proc *, struct pgrp *);
  128 static void orphanpg(struct pgrp *pg);
  129 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
  130 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
  131 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
  132     int preferthread);
  133 static void pgadjustjobc(struct pgrp *pgrp, int entering);
  134 static void pgdelete(struct pgrp *);
  135 static int proc_ctor(void *mem, int size, void *arg, int flags);
  136 static void proc_dtor(void *mem, int size, void *arg);
  137 static int proc_init(void *mem, int size, int flags);
  138 static void proc_fini(void *mem, int size);
  139 static void pargs_free(struct pargs *pa);
  140 static struct proc *zpfind_locked(pid_t pid);
  141 
  142 /*
  143  * Other process lists
  144  */
  145 struct pidhashhead *pidhashtbl;
  146 u_long pidhash;
  147 struct pgrphashhead *pgrphashtbl;
  148 u_long pgrphash;
  149 struct proclist allproc;
  150 struct proclist zombproc;
  151 struct sx allproc_lock;
  152 struct sx proctree_lock;
  153 struct mtx ppeers_lock;
  154 uma_zone_t proc_zone;
  155 
  156 int kstack_pages = KSTACK_PAGES;
  157 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
  158     "Kernel stack size in pages");
  159 
  160 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
  161 #ifdef COMPAT_FREEBSD32
  162 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
  163 #endif
  164 
  165 /*
  166  * Initialize global process hashing structures.
  167  */
  168 void
  169 procinit()
  170 {
  171 
  172         sx_init(&allproc_lock, "allproc");
  173         sx_init(&proctree_lock, "proctree");
  174         mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
  175         LIST_INIT(&allproc);
  176         LIST_INIT(&zombproc);
  177         pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
  178         pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
  179         proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
  180             proc_ctor, proc_dtor, proc_init, proc_fini,
  181             UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  182         uihashinit();
  183 }
  184 
  185 /*
  186  * Prepare a proc for use.
  187  */
  188 static int
  189 proc_ctor(void *mem, int size, void *arg, int flags)
  190 {
  191         struct proc *p;
  192 
  193         p = (struct proc *)mem;
  194         SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
  195         EVENTHANDLER_INVOKE(process_ctor, p);
  196         SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
  197         return (0);
  198 }
  199 
  200 /*
  201  * Reclaim a proc after use.
  202  */
  203 static void
  204 proc_dtor(void *mem, int size, void *arg)
  205 {
  206         struct proc *p;
  207         struct thread *td;
  208 
  209         /* INVARIANTS checks go here */
  210         p = (struct proc *)mem;
  211         td = FIRST_THREAD_IN_PROC(p);
  212         SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
  213         if (td != NULL) {
  214 #ifdef INVARIANTS
  215                 KASSERT((p->p_numthreads == 1),
  216                     ("bad number of threads in exiting process"));
  217                 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
  218 #endif
  219                 /* Free all OSD associated to this thread. */
  220                 osd_thread_exit(td);
  221         }
  222         EVENTHANDLER_INVOKE(process_dtor, p);
  223         if (p->p_ksi != NULL)
  224                 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
  225         SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
  226 }
  227 
  228 /*
  229  * Initialize type-stable parts of a proc (when newly created).
  230  */
  231 static int
  232 proc_init(void *mem, int size, int flags)
  233 {
  234         struct proc *p;
  235 
  236         p = (struct proc *)mem;
  237         SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
  238         p->p_sched = (struct p_sched *)&p[1];
  239         bzero(&p->p_mtx, sizeof(struct mtx));
  240         mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
  241         mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
  242         cv_init(&p->p_pwait, "ppwait");
  243         cv_init(&p->p_dbgwait, "dbgwait");
  244         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
  245         EVENTHANDLER_INVOKE(process_init, p);
  246         p->p_stats = pstats_alloc();
  247         SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
  248         return (0);
  249 }
  250 
  251 /*
  252  * UMA should ensure that this function is never called.
  253  * Freeing a proc structure would violate type stability.
  254  */
  255 static void
  256 proc_fini(void *mem, int size)
  257 {
  258 #ifdef notnow
  259         struct proc *p;
  260 
  261         p = (struct proc *)mem;
  262         EVENTHANDLER_INVOKE(process_fini, p);
  263         pstats_free(p->p_stats);
  264         thread_free(FIRST_THREAD_IN_PROC(p));
  265         mtx_destroy(&p->p_mtx);
  266         if (p->p_ksi != NULL)
  267                 ksiginfo_free(p->p_ksi);
  268 #else
  269         panic("proc reclaimed");
  270 #endif
  271 }
  272 
  273 /*
  274  * Is p an inferior of the current process?
  275  */
  276 int
  277 inferior(p)
  278         register struct proc *p;
  279 {
  280 
  281         sx_assert(&proctree_lock, SX_LOCKED);
  282         for (; p != curproc; p = p->p_pptr)
  283                 if (p->p_pid == 0)
  284                         return (0);
  285         return (1);
  286 }
  287 
  288 struct proc *
  289 pfind_locked(pid_t pid)
  290 {
  291         struct proc *p;
  292 
  293         sx_assert(&allproc_lock, SX_LOCKED);
  294         LIST_FOREACH(p, PIDHASH(pid), p_hash) {
  295                 if (p->p_pid == pid) {
  296                         PROC_LOCK(p);
  297                         if (p->p_state == PRS_NEW) {
  298                                 PROC_UNLOCK(p);
  299                                 p = NULL;
  300                         }
  301                         break;
  302                 }
  303         }
  304         return (p);
  305 }
  306 
  307 /*
  308  * Locate a process by number; return only "live" processes -- i.e., neither
  309  * zombies nor newly born but incompletely initialized processes.  By not
  310  * returning processes in the PRS_NEW state, we allow callers to avoid
  311  * testing for that condition to avoid dereferencing p_ucred, et al.
  312  */
  313 struct proc *
  314 pfind(pid_t pid)
  315 {
  316         struct proc *p;
  317 
  318         sx_slock(&allproc_lock);
  319         p = pfind_locked(pid);
  320         sx_sunlock(&allproc_lock);
  321         return (p);
  322 }
  323 
  324 static struct proc *
  325 pfind_tid_locked(pid_t tid)
  326 {
  327         struct proc *p;
  328         struct thread *td;
  329 
  330         sx_assert(&allproc_lock, SX_LOCKED);
  331         FOREACH_PROC_IN_SYSTEM(p) {
  332                 PROC_LOCK(p);
  333                 if (p->p_state == PRS_NEW) {
  334                         PROC_UNLOCK(p);
  335                         continue;
  336                 }
  337                 FOREACH_THREAD_IN_PROC(p, td) {
  338                         if (td->td_tid == tid)
  339                                 goto found;
  340                 }
  341                 PROC_UNLOCK(p);
  342         }
  343 found:
  344         return (p);
  345 }
  346 
  347 /*
  348  * Locate a process group by number.
  349  * The caller must hold proctree_lock.
  350  */
  351 struct pgrp *
  352 pgfind(pgid)
  353         register pid_t pgid;
  354 {
  355         register struct pgrp *pgrp;
  356 
  357         sx_assert(&proctree_lock, SX_LOCKED);
  358 
  359         LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
  360                 if (pgrp->pg_id == pgid) {
  361                         PGRP_LOCK(pgrp);
  362                         return (pgrp);
  363                 }
  364         }
  365         return (NULL);
  366 }
  367 
  368 /*
  369  * Locate process and do additional manipulations, depending on flags.
  370  */
  371 int
  372 pget(pid_t pid, int flags, struct proc **pp)
  373 {
  374         struct proc *p;
  375         int error;
  376 
  377         sx_slock(&allproc_lock);
  378         if (pid <= PID_MAX) {
  379                 p = pfind_locked(pid);
  380                 if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
  381                         p = zpfind_locked(pid);
  382         } else if ((flags & PGET_NOTID) == 0) {
  383                 p = pfind_tid_locked(pid);
  384         } else {
  385                 p = NULL;
  386         }
  387         sx_sunlock(&allproc_lock);
  388         if (p == NULL)
  389                 return (ESRCH);
  390         if ((flags & PGET_CANSEE) != 0) {
  391                 error = p_cansee(curthread, p);
  392                 if (error != 0)
  393                         goto errout;
  394         }
  395         if ((flags & PGET_CANDEBUG) != 0) {
  396                 error = p_candebug(curthread, p);
  397                 if (error != 0)
  398                         goto errout;
  399         }
  400         if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
  401                 error = EPERM;
  402                 goto errout;
  403         }
  404         if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
  405                 error = ESRCH;
  406                 goto errout;
  407         }
  408         if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
  409                 /*
  410                  * XXXRW: Not clear ESRCH is the right error during proc
  411                  * execve().
  412                  */
  413                 error = ESRCH;
  414                 goto errout;
  415         }
  416         if ((flags & PGET_HOLD) != 0) {
  417                 _PHOLD(p);
  418                 PROC_UNLOCK(p);
  419         }
  420         *pp = p;
  421         return (0);
  422 errout:
  423         PROC_UNLOCK(p);
  424         return (error);
  425 }
  426 
  427 /*
  428  * Create a new process group.
  429  * pgid must be equal to the pid of p.
  430  * Begin a new session if required.
  431  */
  432 int
  433 enterpgrp(p, pgid, pgrp, sess)
  434         register struct proc *p;
  435         pid_t pgid;
  436         struct pgrp *pgrp;
  437         struct session *sess;
  438 {
  439 
  440         sx_assert(&proctree_lock, SX_XLOCKED);
  441 
  442         KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
  443         KASSERT(p->p_pid == pgid,
  444             ("enterpgrp: new pgrp and pid != pgid"));
  445         KASSERT(pgfind(pgid) == NULL,
  446             ("enterpgrp: pgrp with pgid exists"));
  447         KASSERT(!SESS_LEADER(p),
  448             ("enterpgrp: session leader attempted setpgrp"));
  449 
  450         mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
  451 
  452         if (sess != NULL) {
  453                 /*
  454                  * new session
  455                  */
  456                 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
  457                 PROC_LOCK(p);
  458                 p->p_flag &= ~P_CONTROLT;
  459                 PROC_UNLOCK(p);
  460                 PGRP_LOCK(pgrp);
  461                 sess->s_leader = p;
  462                 sess->s_sid = p->p_pid;
  463                 refcount_init(&sess->s_count, 1);
  464                 sess->s_ttyvp = NULL;
  465                 sess->s_ttydp = NULL;
  466                 sess->s_ttyp = NULL;
  467                 bcopy(p->p_session->s_login, sess->s_login,
  468                             sizeof(sess->s_login));
  469                 pgrp->pg_session = sess;
  470                 KASSERT(p == curproc,
  471                     ("enterpgrp: mksession and p != curproc"));
  472         } else {
  473                 pgrp->pg_session = p->p_session;
  474                 sess_hold(pgrp->pg_session);
  475                 PGRP_LOCK(pgrp);
  476         }
  477         pgrp->pg_id = pgid;
  478         LIST_INIT(&pgrp->pg_members);
  479 
  480         /*
  481          * As we have an exclusive lock of proctree_lock,
  482          * this should not deadlock.
  483          */
  484         LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
  485         pgrp->pg_jobc = 0;
  486         SLIST_INIT(&pgrp->pg_sigiolst);
  487         PGRP_UNLOCK(pgrp);
  488 
  489         doenterpgrp(p, pgrp);
  490 
  491         return (0);
  492 }
  493 
  494 /*
  495  * Move p to an existing process group
  496  */
  497 int
  498 enterthispgrp(p, pgrp)
  499         register struct proc *p;
  500         struct pgrp *pgrp;
  501 {
  502 
  503         sx_assert(&proctree_lock, SX_XLOCKED);
  504         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  505         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  506         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  507         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  508         KASSERT(pgrp->pg_session == p->p_session,
  509                 ("%s: pgrp's session %p, p->p_session %p.\n",
  510                 __func__,
  511                 pgrp->pg_session,
  512                 p->p_session));
  513         KASSERT(pgrp != p->p_pgrp,
  514                 ("%s: p belongs to pgrp.", __func__));
  515 
  516         doenterpgrp(p, pgrp);
  517 
  518         return (0);
  519 }
  520 
  521 /*
  522  * Move p to a process group
  523  */
  524 static void
  525 doenterpgrp(p, pgrp)
  526         struct proc *p;
  527         struct pgrp *pgrp;
  528 {
  529         struct pgrp *savepgrp;
  530 
  531         sx_assert(&proctree_lock, SX_XLOCKED);
  532         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  533         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  534         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  535         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  536 
  537         savepgrp = p->p_pgrp;
  538 
  539         /*
  540          * Adjust eligibility of affected pgrps to participate in job control.
  541          * Increment eligibility counts before decrementing, otherwise we
  542          * could reach 0 spuriously during the first call.
  543          */
  544         fixjobc(p, pgrp, 1);
  545         fixjobc(p, p->p_pgrp, 0);
  546 
  547         PGRP_LOCK(pgrp);
  548         PGRP_LOCK(savepgrp);
  549         PROC_LOCK(p);
  550         LIST_REMOVE(p, p_pglist);
  551         p->p_pgrp = pgrp;
  552         PROC_UNLOCK(p);
  553         LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
  554         PGRP_UNLOCK(savepgrp);
  555         PGRP_UNLOCK(pgrp);
  556         if (LIST_EMPTY(&savepgrp->pg_members))
  557                 pgdelete(savepgrp);
  558 }
  559 
  560 /*
  561  * remove process from process group
  562  */
  563 int
  564 leavepgrp(p)
  565         register struct proc *p;
  566 {
  567         struct pgrp *savepgrp;
  568 
  569         sx_assert(&proctree_lock, SX_XLOCKED);
  570         savepgrp = p->p_pgrp;
  571         PGRP_LOCK(savepgrp);
  572         PROC_LOCK(p);
  573         LIST_REMOVE(p, p_pglist);
  574         p->p_pgrp = NULL;
  575         PROC_UNLOCK(p);
  576         PGRP_UNLOCK(savepgrp);
  577         if (LIST_EMPTY(&savepgrp->pg_members))
  578                 pgdelete(savepgrp);
  579         return (0);
  580 }
  581 
  582 /*
  583  * delete a process group
  584  */
  585 static void
  586 pgdelete(pgrp)
  587         register struct pgrp *pgrp;
  588 {
  589         struct session *savesess;
  590         struct tty *tp;
  591 
  592         sx_assert(&proctree_lock, SX_XLOCKED);
  593         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  594         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  595 
  596         /*
  597          * Reset any sigio structures pointing to us as a result of
  598          * F_SETOWN with our pgid.
  599          */
  600         funsetownlst(&pgrp->pg_sigiolst);
  601 
  602         PGRP_LOCK(pgrp);
  603         tp = pgrp->pg_session->s_ttyp;
  604         LIST_REMOVE(pgrp, pg_hash);
  605         savesess = pgrp->pg_session;
  606         PGRP_UNLOCK(pgrp);
  607 
  608         /* Remove the reference to the pgrp before deallocating it. */
  609         if (tp != NULL) {
  610                 tty_lock(tp);
  611                 tty_rel_pgrp(tp, pgrp);
  612         }
  613 
  614         mtx_destroy(&pgrp->pg_mtx);
  615         free(pgrp, M_PGRP);
  616         sess_release(savesess);
  617 }
  618 
  619 static void
  620 pgadjustjobc(pgrp, entering)
  621         struct pgrp *pgrp;
  622         int entering;
  623 {
  624 
  625         PGRP_LOCK(pgrp);
  626         if (entering)
  627                 pgrp->pg_jobc++;
  628         else {
  629                 --pgrp->pg_jobc;
  630                 if (pgrp->pg_jobc == 0)
  631                         orphanpg(pgrp);
  632         }
  633         PGRP_UNLOCK(pgrp);
  634 }
  635 
  636 /*
  637  * Adjust pgrp jobc counters when specified process changes process group.
  638  * We count the number of processes in each process group that "qualify"
  639  * the group for terminal job control (those with a parent in a different
  640  * process group of the same session).  If that count reaches zero, the
  641  * process group becomes orphaned.  Check both the specified process'
  642  * process group and that of its children.
  643  * entering == 0 => p is leaving specified group.
  644  * entering == 1 => p is entering specified group.
  645  */
  646 void
  647 fixjobc(p, pgrp, entering)
  648         register struct proc *p;
  649         register struct pgrp *pgrp;
  650         int entering;
  651 {
  652         register struct pgrp *hispgrp;
  653         register struct session *mysession;
  654 
  655         sx_assert(&proctree_lock, SX_LOCKED);
  656         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  657         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  658         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  659 
  660         /*
  661          * Check p's parent to see whether p qualifies its own process
  662          * group; if so, adjust count for p's process group.
  663          */
  664         mysession = pgrp->pg_session;
  665         if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
  666             hispgrp->pg_session == mysession)
  667                 pgadjustjobc(pgrp, entering);
  668 
  669         /*
  670          * Check this process' children to see whether they qualify
  671          * their process groups; if so, adjust counts for children's
  672          * process groups.
  673          */
  674         LIST_FOREACH(p, &p->p_children, p_sibling) {
  675                 hispgrp = p->p_pgrp;
  676                 if (hispgrp == pgrp ||
  677                     hispgrp->pg_session != mysession)
  678                         continue;
  679                 PROC_LOCK(p);
  680                 if (p->p_state == PRS_ZOMBIE) {
  681                         PROC_UNLOCK(p);
  682                         continue;
  683                 }
  684                 PROC_UNLOCK(p);
  685                 pgadjustjobc(hispgrp, entering);
  686         }
  687 }
  688 
  689 /*
  690  * A process group has become orphaned;
  691  * if there are any stopped processes in the group,
  692  * hang-up all process in that group.
  693  */
  694 static void
  695 orphanpg(pg)
  696         struct pgrp *pg;
  697 {
  698         register struct proc *p;
  699 
  700         PGRP_LOCK_ASSERT(pg, MA_OWNED);
  701 
  702         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  703                 PROC_LOCK(p);
  704                 if (P_SHOULDSTOP(p)) {
  705                         PROC_UNLOCK(p);
  706                         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  707                                 PROC_LOCK(p);
  708                                 kern_psignal(p, SIGHUP);
  709                                 kern_psignal(p, SIGCONT);
  710                                 PROC_UNLOCK(p);
  711                         }
  712                         return;
  713                 }
  714                 PROC_UNLOCK(p);
  715         }
  716 }
  717 
  718 void
  719 sess_hold(struct session *s)
  720 {
  721 
  722         refcount_acquire(&s->s_count);
  723 }
  724 
  725 void
  726 sess_release(struct session *s)
  727 {
  728 
  729         if (refcount_release(&s->s_count)) {
  730                 if (s->s_ttyp != NULL) {
  731                         tty_lock(s->s_ttyp);
  732                         tty_rel_sess(s->s_ttyp, s);
  733                 }
  734                 mtx_destroy(&s->s_mtx);
  735                 free(s, M_SESSION);
  736         }
  737 }
  738 
  739 #include "opt_ddb.h"
  740 #ifdef DDB
  741 #include <ddb/ddb.h>
  742 
  743 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
  744 {
  745         register struct pgrp *pgrp;
  746         register struct proc *p;
  747         register int i;
  748 
  749         for (i = 0; i <= pgrphash; i++) {
  750                 if (!LIST_EMPTY(&pgrphashtbl[i])) {
  751                         printf("\tindx %d\n", i);
  752                         LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
  753                                 printf(
  754                         "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
  755                                     (void *)pgrp, (long)pgrp->pg_id,
  756                                     (void *)pgrp->pg_session,
  757                                     pgrp->pg_session->s_count,
  758                                     (void *)LIST_FIRST(&pgrp->pg_members));
  759                                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
  760                                         printf("\t\tpid %ld addr %p pgrp %p\n", 
  761                                             (long)p->p_pid, (void *)p,
  762                                             (void *)p->p_pgrp);
  763                                 }
  764                         }
  765                 }
  766         }
  767 }
  768 #endif /* DDB */
  769 
  770 /*
  771  * Calculate the kinfo_proc members which contain process-wide
  772  * informations.
  773  * Must be called with the target process locked.
  774  */
  775 static void
  776 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
  777 {
  778         struct thread *td;
  779 
  780         PROC_LOCK_ASSERT(p, MA_OWNED);
  781 
  782         kp->ki_estcpu = 0;
  783         kp->ki_pctcpu = 0;
  784         FOREACH_THREAD_IN_PROC(p, td) {
  785                 thread_lock(td);
  786                 kp->ki_pctcpu += sched_pctcpu(td);
  787                 kp->ki_estcpu += td->td_estcpu;
  788                 thread_unlock(td);
  789         }
  790 }
  791 
  792 /*
  793  * Clear kinfo_proc and fill in any information that is common
  794  * to all threads in the process.
  795  * Must be called with the target process locked.
  796  */
  797 static void
  798 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
  799 {
  800         struct thread *td0;
  801         struct tty *tp;
  802         struct session *sp;
  803         struct ucred *cred;
  804         struct sigacts *ps;
  805 
  806         PROC_LOCK_ASSERT(p, MA_OWNED);
  807         bzero(kp, sizeof(*kp));
  808 
  809         kp->ki_structsize = sizeof(*kp);
  810         kp->ki_paddr = p;
  811         kp->ki_addr =/* p->p_addr; */0; /* XXX */
  812         kp->ki_args = p->p_args;
  813         kp->ki_textvp = p->p_textvp;
  814 #ifdef KTRACE
  815         kp->ki_tracep = p->p_tracevp;
  816         kp->ki_traceflag = p->p_traceflag;
  817 #endif
  818         kp->ki_fd = p->p_fd;
  819         kp->ki_vmspace = p->p_vmspace;
  820         kp->ki_flag = p->p_flag;
  821         cred = p->p_ucred;
  822         if (cred) {
  823                 kp->ki_uid = cred->cr_uid;
  824                 kp->ki_ruid = cred->cr_ruid;
  825                 kp->ki_svuid = cred->cr_svuid;
  826                 kp->ki_cr_flags = 0;
  827                 if (cred->cr_flags & CRED_FLAG_CAPMODE)
  828                         kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
  829                 /* XXX bde doesn't like KI_NGROUPS */
  830                 if (cred->cr_ngroups > KI_NGROUPS) {
  831                         kp->ki_ngroups = KI_NGROUPS;
  832                         kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
  833                 } else
  834                         kp->ki_ngroups = cred->cr_ngroups;
  835                 bcopy(cred->cr_groups, kp->ki_groups,
  836                     kp->ki_ngroups * sizeof(gid_t));
  837                 kp->ki_rgid = cred->cr_rgid;
  838                 kp->ki_svgid = cred->cr_svgid;
  839                 /* If jailed(cred), emulate the old P_JAILED flag. */
  840                 if (jailed(cred)) {
  841                         kp->ki_flag |= P_JAILED;
  842                         /* If inside the jail, use 0 as a jail ID. */
  843                         if (cred->cr_prison != curthread->td_ucred->cr_prison)
  844                                 kp->ki_jid = cred->cr_prison->pr_id;
  845                 }
  846                 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
  847                     sizeof(kp->ki_loginclass));
  848         }
  849         ps = p->p_sigacts;
  850         if (ps) {
  851                 mtx_lock(&ps->ps_mtx);
  852                 kp->ki_sigignore = ps->ps_sigignore;
  853                 kp->ki_sigcatch = ps->ps_sigcatch;
  854                 mtx_unlock(&ps->ps_mtx);
  855         }
  856         if (p->p_state != PRS_NEW &&
  857             p->p_state != PRS_ZOMBIE &&
  858             p->p_vmspace != NULL) {
  859                 struct vmspace *vm = p->p_vmspace;
  860 
  861                 kp->ki_size = vm->vm_map.size;
  862                 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
  863                 FOREACH_THREAD_IN_PROC(p, td0) {
  864                         if (!TD_IS_SWAPPED(td0))
  865                                 kp->ki_rssize += td0->td_kstack_pages;
  866                 }
  867                 kp->ki_swrss = vm->vm_swrss;
  868                 kp->ki_tsize = vm->vm_tsize;
  869                 kp->ki_dsize = vm->vm_dsize;
  870                 kp->ki_ssize = vm->vm_ssize;
  871         } else if (p->p_state == PRS_ZOMBIE)
  872                 kp->ki_stat = SZOMB;
  873         if (kp->ki_flag & P_INMEM)
  874                 kp->ki_sflag = PS_INMEM;
  875         else
  876                 kp->ki_sflag = 0;
  877         /* Calculate legacy swtime as seconds since 'swtick'. */
  878         kp->ki_swtime = (ticks - p->p_swtick) / hz;
  879         kp->ki_pid = p->p_pid;
  880         kp->ki_nice = p->p_nice;
  881         kp->ki_start = p->p_stats->p_start;
  882         timevaladd(&kp->ki_start, &boottime);
  883         PROC_SLOCK(p);
  884         rufetch(p, &kp->ki_rusage);
  885         kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
  886         calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
  887         PROC_SUNLOCK(p);
  888         calccru(p, &kp->ki_childutime, &kp->ki_childstime);
  889         /* Some callers want child times in a single value. */
  890         kp->ki_childtime = kp->ki_childstime;
  891         timevaladd(&kp->ki_childtime, &kp->ki_childutime);
  892 
  893         FOREACH_THREAD_IN_PROC(p, td0)
  894                 kp->ki_cow += td0->td_cow;
  895 
  896         tp = NULL;
  897         if (p->p_pgrp) {
  898                 kp->ki_pgid = p->p_pgrp->pg_id;
  899                 kp->ki_jobc = p->p_pgrp->pg_jobc;
  900                 sp = p->p_pgrp->pg_session;
  901 
  902                 if (sp != NULL) {
  903                         kp->ki_sid = sp->s_sid;
  904                         SESS_LOCK(sp);
  905                         strlcpy(kp->ki_login, sp->s_login,
  906                             sizeof(kp->ki_login));
  907                         if (sp->s_ttyvp)
  908                                 kp->ki_kiflag |= KI_CTTY;
  909                         if (SESS_LEADER(p))
  910                                 kp->ki_kiflag |= KI_SLEADER;
  911                         /* XXX proctree_lock */
  912                         tp = sp->s_ttyp;
  913                         SESS_UNLOCK(sp);
  914                 }
  915         }
  916         if ((p->p_flag & P_CONTROLT) && tp != NULL) {
  917                 kp->ki_tdev = tty_udev(tp);
  918                 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
  919                 if (tp->t_session)
  920                         kp->ki_tsid = tp->t_session->s_sid;
  921         } else
  922                 kp->ki_tdev = NODEV;
  923         if (p->p_comm[0] != '\0')
  924                 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
  925         if (p->p_sysent && p->p_sysent->sv_name != NULL &&
  926             p->p_sysent->sv_name[0] != '\0')
  927                 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
  928         kp->ki_siglist = p->p_siglist;
  929         kp->ki_xstat = p->p_xstat;
  930         kp->ki_acflag = p->p_acflag;
  931         kp->ki_lock = p->p_lock;
  932         if (p->p_pptr)
  933                 kp->ki_ppid = p->p_pptr->p_pid;
  934 }
  935 
  936 /*
  937  * Fill in information that is thread specific.  Must be called with
  938  * target process locked.  If 'preferthread' is set, overwrite certain
  939  * process-related fields that are maintained for both threads and
  940  * processes.
  941  */
  942 static void
  943 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
  944 {
  945         struct proc *p;
  946 
  947         p = td->td_proc;
  948         kp->ki_tdaddr = td;
  949         PROC_LOCK_ASSERT(p, MA_OWNED);
  950 
  951         if (preferthread)
  952                 PROC_SLOCK(p);
  953         thread_lock(td);
  954         if (td->td_wmesg != NULL)
  955                 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
  956         else
  957                 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
  958         strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname));
  959         if (TD_ON_LOCK(td)) {
  960                 kp->ki_kiflag |= KI_LOCKBLOCK;
  961                 strlcpy(kp->ki_lockname, td->td_lockname,
  962                     sizeof(kp->ki_lockname));
  963         } else {
  964                 kp->ki_kiflag &= ~KI_LOCKBLOCK;
  965                 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
  966         }
  967 
  968         if (p->p_state == PRS_NORMAL) { /* approximate. */
  969                 if (TD_ON_RUNQ(td) ||
  970                     TD_CAN_RUN(td) ||
  971                     TD_IS_RUNNING(td)) {
  972                         kp->ki_stat = SRUN;
  973                 } else if (P_SHOULDSTOP(p)) {
  974                         kp->ki_stat = SSTOP;
  975                 } else if (TD_IS_SLEEPING(td)) {
  976                         kp->ki_stat = SSLEEP;
  977                 } else if (TD_ON_LOCK(td)) {
  978                         kp->ki_stat = SLOCK;
  979                 } else {
  980                         kp->ki_stat = SWAIT;
  981                 }
  982         } else if (p->p_state == PRS_ZOMBIE) {
  983                 kp->ki_stat = SZOMB;
  984         } else {
  985                 kp->ki_stat = SIDL;
  986         }
  987 
  988         /* Things in the thread */
  989         kp->ki_wchan = td->td_wchan;
  990         kp->ki_pri.pri_level = td->td_priority;
  991         kp->ki_pri.pri_native = td->td_base_pri;
  992         kp->ki_lastcpu = td->td_lastcpu;
  993         kp->ki_oncpu = td->td_oncpu;
  994         kp->ki_tdflags = td->td_flags;
  995         kp->ki_tid = td->td_tid;
  996         kp->ki_numthreads = p->p_numthreads;
  997         kp->ki_pcb = td->td_pcb;
  998         kp->ki_kstack = (void *)td->td_kstack;
  999         kp->ki_slptime = (ticks - td->td_slptick) / hz;
 1000         kp->ki_pri.pri_class = td->td_pri_class;
 1001         kp->ki_pri.pri_user = td->td_user_pri;
 1002 
 1003         if (preferthread) {
 1004                 rufetchtd(td, &kp->ki_rusage);
 1005                 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
 1006                 kp->ki_pctcpu = sched_pctcpu(td);
 1007                 kp->ki_estcpu = td->td_estcpu;
 1008                 kp->ki_cow = td->td_cow;
 1009         }
 1010 
 1011         /* We can't get this anymore but ps etc never used it anyway. */
 1012         kp->ki_rqindex = 0;
 1013 
 1014         if (preferthread)
 1015                 kp->ki_siglist = td->td_siglist;
 1016         kp->ki_sigmask = td->td_sigmask;
 1017         thread_unlock(td);
 1018         if (preferthread)
 1019                 PROC_SUNLOCK(p);
 1020 }
 1021 
 1022 /*
 1023  * Fill in a kinfo_proc structure for the specified process.
 1024  * Must be called with the target process locked.
 1025  */
 1026 void
 1027 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
 1028 {
 1029 
 1030         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1031 
 1032         fill_kinfo_proc_only(p, kp);
 1033         fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
 1034         fill_kinfo_aggregate(p, kp);
 1035 }
 1036 
 1037 struct pstats *
 1038 pstats_alloc(void)
 1039 {
 1040 
 1041         return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
 1042 }
 1043 
 1044 /*
 1045  * Copy parts of p_stats; zero the rest of p_stats (statistics).
 1046  */
 1047 void
 1048 pstats_fork(struct pstats *src, struct pstats *dst)
 1049 {
 1050 
 1051         bzero(&dst->pstat_startzero,
 1052             __rangeof(struct pstats, pstat_startzero, pstat_endzero));
 1053         bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
 1054             __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
 1055 }
 1056 
 1057 void
 1058 pstats_free(struct pstats *ps)
 1059 {
 1060 
 1061         free(ps, M_SUBPROC);
 1062 }
 1063 
 1064 static struct proc *
 1065 zpfind_locked(pid_t pid)
 1066 {
 1067         struct proc *p;
 1068 
 1069         sx_assert(&allproc_lock, SX_LOCKED);
 1070         LIST_FOREACH(p, &zombproc, p_list) {
 1071                 if (p->p_pid == pid) {
 1072                         PROC_LOCK(p);
 1073                         break;
 1074                 }
 1075         }
 1076         return (p);
 1077 }
 1078 
 1079 /*
 1080  * Locate a zombie process by number
 1081  */
 1082 struct proc *
 1083 zpfind(pid_t pid)
 1084 {
 1085         struct proc *p;
 1086 
 1087         sx_slock(&allproc_lock);
 1088         p = zpfind_locked(pid);
 1089         sx_sunlock(&allproc_lock);
 1090         return (p);
 1091 }
 1092 
 1093 #ifdef COMPAT_FREEBSD32
 1094 
 1095 /*
 1096  * This function is typically used to copy out the kernel address, so
 1097  * it can be replaced by assignment of zero.
 1098  */
 1099 static inline uint32_t
 1100 ptr32_trim(void *ptr)
 1101 {
 1102         uintptr_t uptr;
 1103 
 1104         uptr = (uintptr_t)ptr;
 1105         return ((uptr > UINT_MAX) ? 0 : uptr);
 1106 }
 1107 
 1108 #define PTRTRIM_CP(src,dst,fld) \
 1109         do { (dst).fld = ptr32_trim((src).fld); } while (0)
 1110 
 1111 static void
 1112 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
 1113 {
 1114         int i;
 1115 
 1116         bzero(ki32, sizeof(struct kinfo_proc32));
 1117         ki32->ki_structsize = sizeof(struct kinfo_proc32);
 1118         CP(*ki, *ki32, ki_layout);
 1119         PTRTRIM_CP(*ki, *ki32, ki_args);
 1120         PTRTRIM_CP(*ki, *ki32, ki_paddr);
 1121         PTRTRIM_CP(*ki, *ki32, ki_addr);
 1122         PTRTRIM_CP(*ki, *ki32, ki_tracep);
 1123         PTRTRIM_CP(*ki, *ki32, ki_textvp);
 1124         PTRTRIM_CP(*ki, *ki32, ki_fd);
 1125         PTRTRIM_CP(*ki, *ki32, ki_vmspace);
 1126         PTRTRIM_CP(*ki, *ki32, ki_wchan);
 1127         CP(*ki, *ki32, ki_pid);
 1128         CP(*ki, *ki32, ki_ppid);
 1129         CP(*ki, *ki32, ki_pgid);
 1130         CP(*ki, *ki32, ki_tpgid);
 1131         CP(*ki, *ki32, ki_sid);
 1132         CP(*ki, *ki32, ki_tsid);
 1133         CP(*ki, *ki32, ki_jobc);
 1134         CP(*ki, *ki32, ki_tdev);
 1135         CP(*ki, *ki32, ki_siglist);
 1136         CP(*ki, *ki32, ki_sigmask);
 1137         CP(*ki, *ki32, ki_sigignore);
 1138         CP(*ki, *ki32, ki_sigcatch);
 1139         CP(*ki, *ki32, ki_uid);
 1140         CP(*ki, *ki32, ki_ruid);
 1141         CP(*ki, *ki32, ki_svuid);
 1142         CP(*ki, *ki32, ki_rgid);
 1143         CP(*ki, *ki32, ki_svgid);
 1144         CP(*ki, *ki32, ki_ngroups);
 1145         for (i = 0; i < KI_NGROUPS; i++)
 1146                 CP(*ki, *ki32, ki_groups[i]);
 1147         CP(*ki, *ki32, ki_size);
 1148         CP(*ki, *ki32, ki_rssize);
 1149         CP(*ki, *ki32, ki_swrss);
 1150         CP(*ki, *ki32, ki_tsize);
 1151         CP(*ki, *ki32, ki_dsize);
 1152         CP(*ki, *ki32, ki_ssize);
 1153         CP(*ki, *ki32, ki_xstat);
 1154         CP(*ki, *ki32, ki_acflag);
 1155         CP(*ki, *ki32, ki_pctcpu);
 1156         CP(*ki, *ki32, ki_estcpu);
 1157         CP(*ki, *ki32, ki_slptime);
 1158         CP(*ki, *ki32, ki_swtime);
 1159         CP(*ki, *ki32, ki_cow);
 1160         CP(*ki, *ki32, ki_runtime);
 1161         TV_CP(*ki, *ki32, ki_start);
 1162         TV_CP(*ki, *ki32, ki_childtime);
 1163         CP(*ki, *ki32, ki_flag);
 1164         CP(*ki, *ki32, ki_kiflag);
 1165         CP(*ki, *ki32, ki_traceflag);
 1166         CP(*ki, *ki32, ki_stat);
 1167         CP(*ki, *ki32, ki_nice);
 1168         CP(*ki, *ki32, ki_lock);
 1169         CP(*ki, *ki32, ki_rqindex);
 1170         CP(*ki, *ki32, ki_oncpu);
 1171         CP(*ki, *ki32, ki_lastcpu);
 1172         bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
 1173         bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
 1174         bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
 1175         bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
 1176         bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
 1177         bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
 1178         bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
 1179         CP(*ki, *ki32, ki_cr_flags);
 1180         CP(*ki, *ki32, ki_jid);
 1181         CP(*ki, *ki32, ki_numthreads);
 1182         CP(*ki, *ki32, ki_tid);
 1183         CP(*ki, *ki32, ki_pri);
 1184         freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
 1185         freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
 1186         PTRTRIM_CP(*ki, *ki32, ki_pcb);
 1187         PTRTRIM_CP(*ki, *ki32, ki_kstack);
 1188         PTRTRIM_CP(*ki, *ki32, ki_udata);
 1189         CP(*ki, *ki32, ki_sflag);
 1190         CP(*ki, *ki32, ki_tdflags);
 1191 }
 1192 #endif
 1193 
 1194 int
 1195 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
 1196 {
 1197         struct thread *td;
 1198         struct kinfo_proc ki;
 1199 #ifdef COMPAT_FREEBSD32
 1200         struct kinfo_proc32 ki32;
 1201 #endif
 1202         int error;
 1203 
 1204         PROC_LOCK_ASSERT(p, MA_OWNED);
 1205         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1206 
 1207         error = 0;
 1208         fill_kinfo_proc(p, &ki);
 1209         if ((flags & KERN_PROC_NOTHREADS) != 0) {
 1210 #ifdef COMPAT_FREEBSD32
 1211                 if ((flags & KERN_PROC_MASK32) != 0) {
 1212                         freebsd32_kinfo_proc_out(&ki, &ki32);
 1213                         error = sbuf_bcat(sb, &ki32, sizeof(ki32));
 1214                 } else
 1215 #endif
 1216                         error = sbuf_bcat(sb, &ki, sizeof(ki));
 1217         } else {
 1218                 FOREACH_THREAD_IN_PROC(p, td) {
 1219                         fill_kinfo_thread(td, &ki, 1);
 1220 #ifdef COMPAT_FREEBSD32
 1221                         if ((flags & KERN_PROC_MASK32) != 0) {
 1222                                 freebsd32_kinfo_proc_out(&ki, &ki32);
 1223                                 error = sbuf_bcat(sb, &ki32, sizeof(ki32));
 1224                         } else
 1225 #endif
 1226                                 error = sbuf_bcat(sb, &ki, sizeof(ki));
 1227                         if (error)
 1228                                 break;
 1229                 }
 1230         }
 1231         PROC_UNLOCK(p);
 1232         return (error);
 1233 }
 1234 
 1235 static int
 1236 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
 1237     int doingzomb)
 1238 {
 1239         struct sbuf sb;
 1240         struct kinfo_proc ki;
 1241         struct proc *np;
 1242         int error, error2;
 1243         pid_t pid;
 1244 
 1245         pid = p->p_pid;
 1246         sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
 1247         error = kern_proc_out(p, &sb, flags);
 1248         error2 = sbuf_finish(&sb);
 1249         sbuf_delete(&sb);
 1250         if (error != 0)
 1251                 return (error);
 1252         else if (error2 != 0)
 1253                 return (error2);
 1254         if (doingzomb)
 1255                 np = zpfind(pid);
 1256         else {
 1257                 if (pid == 0)
 1258                         return (0);
 1259                 np = pfind(pid);
 1260         }
 1261         if (np == NULL)
 1262                 return (ESRCH);
 1263         if (np != p) {
 1264                 PROC_UNLOCK(np);
 1265                 return (ESRCH);
 1266         }
 1267         PROC_UNLOCK(np);
 1268         return (0);
 1269 }
 1270 
 1271 static int
 1272 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
 1273 {
 1274         int *name = (int *)arg1;
 1275         u_int namelen = arg2;
 1276         struct proc *p;
 1277         int flags, doingzomb, oid_number;
 1278         int error = 0;
 1279 
 1280         oid_number = oidp->oid_number;
 1281         if (oid_number != KERN_PROC_ALL &&
 1282             (oid_number & KERN_PROC_INC_THREAD) == 0)
 1283                 flags = KERN_PROC_NOTHREADS;
 1284         else {
 1285                 flags = 0;
 1286                 oid_number &= ~KERN_PROC_INC_THREAD;
 1287         }
 1288 #ifdef COMPAT_FREEBSD32
 1289         if (req->flags & SCTL_MASK32)
 1290                 flags |= KERN_PROC_MASK32;
 1291 #endif
 1292         if (oid_number == KERN_PROC_PID) {
 1293                 if (namelen != 1)
 1294                         return (EINVAL);
 1295                 error = sysctl_wire_old_buffer(req, 0);
 1296                 if (error)
 1297                         return (error);
 1298                 error = pget((pid_t)name[0], PGET_CANSEE, &p);
 1299                 if (error != 0)
 1300                         return (error);
 1301                 error = sysctl_out_proc(p, req, flags, 0);
 1302                 return (error);
 1303         }
 1304 
 1305         switch (oid_number) {
 1306         case KERN_PROC_ALL:
 1307                 if (namelen != 0)
 1308                         return (EINVAL);
 1309                 break;
 1310         case KERN_PROC_PROC:
 1311                 if (namelen != 0 && namelen != 1)
 1312                         return (EINVAL);
 1313                 break;
 1314         default:
 1315                 if (namelen != 1)
 1316                         return (EINVAL);
 1317                 break;
 1318         }
 1319 
 1320         if (!req->oldptr) {
 1321                 /* overestimate by 5 procs */
 1322                 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
 1323                 if (error)
 1324                         return (error);
 1325         }
 1326         error = sysctl_wire_old_buffer(req, 0);
 1327         if (error != 0)
 1328                 return (error);
 1329         sx_slock(&allproc_lock);
 1330         for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
 1331                 if (!doingzomb)
 1332                         p = LIST_FIRST(&allproc);
 1333                 else
 1334                         p = LIST_FIRST(&zombproc);
 1335                 for (; p != 0; p = LIST_NEXT(p, p_list)) {
 1336                         /*
 1337                          * Skip embryonic processes.
 1338                          */
 1339                         PROC_LOCK(p);
 1340                         if (p->p_state == PRS_NEW) {
 1341                                 PROC_UNLOCK(p);
 1342                                 continue;
 1343                         }
 1344                         KASSERT(p->p_ucred != NULL,
 1345                             ("process credential is NULL for non-NEW proc"));
 1346                         /*
 1347                          * Show a user only appropriate processes.
 1348                          */
 1349                         if (p_cansee(curthread, p)) {
 1350                                 PROC_UNLOCK(p);
 1351                                 continue;
 1352                         }
 1353                         /*
 1354                          * TODO - make more efficient (see notes below).
 1355                          * do by session.
 1356                          */
 1357                         switch (oid_number) {
 1358 
 1359                         case KERN_PROC_GID:
 1360                                 if (p->p_ucred->cr_gid != (gid_t)name[0]) {
 1361                                         PROC_UNLOCK(p);
 1362                                         continue;
 1363                                 }
 1364                                 break;
 1365 
 1366                         case KERN_PROC_PGRP:
 1367                                 /* could do this by traversing pgrp */
 1368                                 if (p->p_pgrp == NULL ||
 1369                                     p->p_pgrp->pg_id != (pid_t)name[0]) {
 1370                                         PROC_UNLOCK(p);
 1371                                         continue;
 1372                                 }
 1373                                 break;
 1374 
 1375                         case KERN_PROC_RGID:
 1376                                 if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
 1377                                         PROC_UNLOCK(p);
 1378                                         continue;
 1379                                 }
 1380                                 break;
 1381 
 1382                         case KERN_PROC_SESSION:
 1383                                 if (p->p_session == NULL ||
 1384                                     p->p_session->s_sid != (pid_t)name[0]) {
 1385                                         PROC_UNLOCK(p);
 1386                                         continue;
 1387                                 }
 1388                                 break;
 1389 
 1390                         case KERN_PROC_TTY:
 1391                                 if ((p->p_flag & P_CONTROLT) == 0 ||
 1392                                     p->p_session == NULL) {
 1393                                         PROC_UNLOCK(p);
 1394                                         continue;
 1395                                 }
 1396                                 /* XXX proctree_lock */
 1397                                 SESS_LOCK(p->p_session);
 1398                                 if (p->p_session->s_ttyp == NULL ||
 1399                                     tty_udev(p->p_session->s_ttyp) !=
 1400                                     (dev_t)name[0]) {
 1401                                         SESS_UNLOCK(p->p_session);
 1402                                         PROC_UNLOCK(p);
 1403                                         continue;
 1404                                 }
 1405                                 SESS_UNLOCK(p->p_session);
 1406                                 break;
 1407 
 1408                         case KERN_PROC_UID:
 1409                                 if (p->p_ucred->cr_uid != (uid_t)name[0]) {
 1410                                         PROC_UNLOCK(p);
 1411                                         continue;
 1412                                 }
 1413                                 break;
 1414 
 1415                         case KERN_PROC_RUID:
 1416                                 if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
 1417                                         PROC_UNLOCK(p);
 1418                                         continue;
 1419                                 }
 1420                                 break;
 1421 
 1422                         case KERN_PROC_PROC:
 1423                                 break;
 1424 
 1425                         default:
 1426                                 break;
 1427 
 1428                         }
 1429 
 1430                         error = sysctl_out_proc(p, req, flags, doingzomb);
 1431                         if (error) {
 1432                                 sx_sunlock(&allproc_lock);
 1433                                 return (error);
 1434                         }
 1435                 }
 1436         }
 1437         sx_sunlock(&allproc_lock);
 1438         return (0);
 1439 }
 1440 
 1441 struct pargs *
 1442 pargs_alloc(int len)
 1443 {
 1444         struct pargs *pa;
 1445 
 1446         pa = malloc(sizeof(struct pargs) + len, M_PARGS,
 1447                 M_WAITOK);
 1448         refcount_init(&pa->ar_ref, 1);
 1449         pa->ar_length = len;
 1450         return (pa);
 1451 }
 1452 
 1453 static void
 1454 pargs_free(struct pargs *pa)
 1455 {
 1456 
 1457         free(pa, M_PARGS);
 1458 }
 1459 
 1460 void
 1461 pargs_hold(struct pargs *pa)
 1462 {
 1463 
 1464         if (pa == NULL)
 1465                 return;
 1466         refcount_acquire(&pa->ar_ref);
 1467 }
 1468 
 1469 void
 1470 pargs_drop(struct pargs *pa)
 1471 {
 1472 
 1473         if (pa == NULL)
 1474                 return;
 1475         if (refcount_release(&pa->ar_ref))
 1476                 pargs_free(pa);
 1477 }
 1478 
 1479 static int
 1480 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf,
 1481     size_t len)
 1482 {
 1483         struct iovec iov;
 1484         struct uio uio;
 1485 
 1486         iov.iov_base = (caddr_t)buf;
 1487         iov.iov_len = len;
 1488         uio.uio_iov = &iov;
 1489         uio.uio_iovcnt = 1;
 1490         uio.uio_offset = offset;
 1491         uio.uio_resid = (ssize_t)len;
 1492         uio.uio_segflg = UIO_SYSSPACE;
 1493         uio.uio_rw = UIO_READ;
 1494         uio.uio_td = td;
 1495 
 1496         return (proc_rwmem(p, &uio));
 1497 }
 1498 
 1499 static int
 1500 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
 1501     size_t len)
 1502 {
 1503         size_t i;
 1504         int error;
 1505 
 1506         error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len);
 1507         /*
 1508          * Reading the chunk may validly return EFAULT if the string is shorter
 1509          * than the chunk and is aligned at the end of the page, assuming the
 1510          * next page is not mapped.  So if EFAULT is returned do a fallback to
 1511          * one byte read loop.
 1512          */
 1513         if (error == EFAULT) {
 1514                 for (i = 0; i < len; i++, buf++, sptr++) {
 1515                         error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1);
 1516                         if (error != 0)
 1517                                 return (error);
 1518                         if (*buf == '\0')
 1519                                 break;
 1520                 }
 1521                 error = 0;
 1522         }
 1523         return (error);
 1524 }
 1525 
 1526 #define PROC_AUXV_MAX   256     /* Safety limit on auxv size. */
 1527 
 1528 enum proc_vector_type {
 1529         PROC_ARG,
 1530         PROC_ENV,
 1531         PROC_AUX,
 1532 };
 1533 
 1534 #ifdef COMPAT_FREEBSD32
 1535 static int
 1536 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
 1537     size_t *vsizep, enum proc_vector_type type)
 1538 {
 1539         struct freebsd32_ps_strings pss;
 1540         Elf32_Auxinfo aux;
 1541         vm_offset_t vptr, ptr;
 1542         uint32_t *proc_vector32;
 1543         char **proc_vector;
 1544         size_t vsize, size;
 1545         int i, error;
 1546 
 1547         error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
 1548             &pss, sizeof(pss));
 1549         if (error != 0)
 1550                 return (error);
 1551         switch (type) {
 1552         case PROC_ARG:
 1553                 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
 1554                 vsize = pss.ps_nargvstr;
 1555                 if (vsize > ARG_MAX)
 1556                         return (ENOEXEC);
 1557                 size = vsize * sizeof(int32_t);
 1558                 break;
 1559         case PROC_ENV:
 1560                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
 1561                 vsize = pss.ps_nenvstr;
 1562                 if (vsize > ARG_MAX)
 1563                         return (ENOEXEC);
 1564                 size = vsize * sizeof(int32_t);
 1565                 break;
 1566         case PROC_AUX:
 1567                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
 1568                     (pss.ps_nenvstr + 1) * sizeof(int32_t);
 1569                 if (vptr % 4 != 0)
 1570                         return (ENOEXEC);
 1571                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 1572                         error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
 1573                         if (error != 0)
 1574                                 return (error);
 1575                         if (aux.a_type == AT_NULL)
 1576                                 break;
 1577                         ptr += sizeof(aux);
 1578                 }
 1579                 if (aux.a_type != AT_NULL)
 1580                         return (ENOEXEC);
 1581                 vsize = i + 1;
 1582                 size = vsize * sizeof(aux);
 1583                 break;
 1584         default:
 1585                 KASSERT(0, ("Wrong proc vector type: %d", type));
 1586                 return (EINVAL);
 1587         }
 1588         proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
 1589         error = proc_read_mem(td, p, vptr, proc_vector32, size);
 1590         if (error != 0)
 1591                 goto done;
 1592         if (type == PROC_AUX) {
 1593                 *proc_vectorp = (char **)proc_vector32;
 1594                 *vsizep = vsize;
 1595                 return (0);
 1596         }
 1597         proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
 1598         for (i = 0; i < (int)vsize; i++)
 1599                 proc_vector[i] = PTRIN(proc_vector32[i]);
 1600         *proc_vectorp = proc_vector;
 1601         *vsizep = vsize;
 1602 done:
 1603         free(proc_vector32, M_TEMP);
 1604         return (error);
 1605 }
 1606 #endif
 1607 
 1608 static int
 1609 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
 1610     size_t *vsizep, enum proc_vector_type type)
 1611 {
 1612         struct ps_strings pss;
 1613         Elf_Auxinfo aux;
 1614         vm_offset_t vptr, ptr;
 1615         char **proc_vector;
 1616         size_t vsize, size;
 1617         int error, i;
 1618 
 1619 #ifdef COMPAT_FREEBSD32
 1620         if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 1621                 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
 1622 #endif
 1623         error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
 1624             &pss, sizeof(pss));
 1625         if (error != 0)
 1626                 return (error);
 1627         switch (type) {
 1628         case PROC_ARG:
 1629                 vptr = (vm_offset_t)pss.ps_argvstr;
 1630                 vsize = pss.ps_nargvstr;
 1631                 if (vsize > ARG_MAX)
 1632                         return (ENOEXEC);
 1633                 size = vsize * sizeof(char *);
 1634                 break;
 1635         case PROC_ENV:
 1636                 vptr = (vm_offset_t)pss.ps_envstr;
 1637                 vsize = pss.ps_nenvstr;
 1638                 if (vsize > ARG_MAX)
 1639                         return (ENOEXEC);
 1640                 size = vsize * sizeof(char *);
 1641                 break;
 1642         case PROC_AUX:
 1643                 /*
 1644                  * The aux array is just above env array on the stack. Check
 1645                  * that the address is naturally aligned.
 1646                  */
 1647                 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
 1648                     * sizeof(char *);
 1649 #if __ELF_WORD_SIZE == 64
 1650                 if (vptr % sizeof(uint64_t) != 0)
 1651 #else
 1652                 if (vptr % sizeof(uint32_t) != 0)
 1653 #endif
 1654                         return (ENOEXEC);
 1655                 /*
 1656                  * We count the array size reading the aux vectors from the
 1657                  * stack until AT_NULL vector is returned.  So (to keep the code
 1658                  * simple) we read the process stack twice: the first time here
 1659                  * to find the size and the second time when copying the vectors
 1660                  * to the allocated proc_vector.
 1661                  */
 1662                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 1663                         error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
 1664                         if (error != 0)
 1665                                 return (error);
 1666                         if (aux.a_type == AT_NULL)
 1667                                 break;
 1668                         ptr += sizeof(aux);
 1669                 }
 1670                 /*
 1671                  * If the PROC_AUXV_MAX entries are iterated over, and we have
 1672                  * not reached AT_NULL, it is most likely we are reading wrong
 1673                  * data: either the process doesn't have auxv array or data has
 1674                  * been modified. Return the error in this case.
 1675                  */
 1676                 if (aux.a_type != AT_NULL)
 1677                         return (ENOEXEC);
 1678                 vsize = i + 1;
 1679                 size = vsize * sizeof(aux);
 1680                 break;
 1681         default:
 1682                 KASSERT(0, ("Wrong proc vector type: %d", type));
 1683                 return (EINVAL); /* In case we are built without INVARIANTS. */
 1684         }
 1685         proc_vector = malloc(size, M_TEMP, M_WAITOK);
 1686         if (proc_vector == NULL)
 1687                 return (ENOMEM);
 1688         error = proc_read_mem(td, p, vptr, proc_vector, size);
 1689         if (error != 0) {
 1690                 free(proc_vector, M_TEMP);
 1691                 return (error);
 1692         }
 1693         *proc_vectorp = proc_vector;
 1694         *vsizep = vsize;
 1695 
 1696         return (0);
 1697 }
 1698 
 1699 #define GET_PS_STRINGS_CHUNK_SZ 256     /* Chunk size (bytes) for ps_strings operations. */
 1700 
 1701 static int
 1702 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
 1703     enum proc_vector_type type)
 1704 {
 1705         size_t done, len, nchr, vsize;
 1706         int error, i;
 1707         char **proc_vector, *sptr;
 1708         char pss_string[GET_PS_STRINGS_CHUNK_SZ];
 1709 
 1710         PROC_ASSERT_HELD(p);
 1711 
 1712         /*
 1713          * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
 1714          */
 1715         nchr = 2 * (PATH_MAX + ARG_MAX);
 1716 
 1717         error = get_proc_vector(td, p, &proc_vector, &vsize, type);
 1718         if (error != 0)
 1719                 return (error);
 1720         for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
 1721                 /*
 1722                  * The program may have scribbled into its argv array, e.g. to
 1723                  * remove some arguments.  If that has happened, break out
 1724                  * before trying to read from NULL.
 1725                  */
 1726                 if (proc_vector[i] == NULL)
 1727                         break;
 1728                 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
 1729                         error = proc_read_string(td, p, sptr, pss_string,
 1730                             sizeof(pss_string));
 1731                         if (error != 0)
 1732                                 goto done;
 1733                         len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
 1734                         if (done + len >= nchr)
 1735                                 len = nchr - done - 1;
 1736                         sbuf_bcat(sb, pss_string, len);
 1737                         if (len != GET_PS_STRINGS_CHUNK_SZ)
 1738                                 break;
 1739                         done += GET_PS_STRINGS_CHUNK_SZ;
 1740                 }
 1741                 sbuf_bcat(sb, "", 1);
 1742                 done += len + 1;
 1743         }
 1744 done:
 1745         free(proc_vector, M_TEMP);
 1746         return (error);
 1747 }
 1748 
 1749 int
 1750 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
 1751 {
 1752 
 1753         return (get_ps_strings(curthread, p, sb, PROC_ARG));
 1754 }
 1755 
 1756 int
 1757 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
 1758 {
 1759 
 1760         return (get_ps_strings(curthread, p, sb, PROC_ENV));
 1761 }
 1762 
 1763 int
 1764 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
 1765 {
 1766         size_t vsize, size;
 1767         char **auxv;
 1768         int error;
 1769 
 1770         error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
 1771         if (error == 0) {
 1772 #ifdef COMPAT_FREEBSD32
 1773                 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 1774                         size = vsize * sizeof(Elf32_Auxinfo);
 1775                 else
 1776 #endif
 1777                         size = vsize * sizeof(Elf_Auxinfo);
 1778                 error = sbuf_bcat(sb, auxv, size);
 1779                 free(auxv, M_TEMP);
 1780         }
 1781         return (error);
 1782 }
 1783 
 1784 /*
 1785  * This sysctl allows a process to retrieve the argument list or process
 1786  * title for another process without groping around in the address space
 1787  * of the other process.  It also allow a process to set its own "process 
 1788  * title to a string of its own choice.
 1789  */
 1790 static int
 1791 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
 1792 {
 1793         int *name = (int *)arg1;
 1794         u_int namelen = arg2;
 1795         struct pargs *newpa, *pa;
 1796         struct proc *p;
 1797         struct sbuf sb;
 1798         int flags, error = 0, error2;
 1799 
 1800         if (namelen != 1)
 1801                 return (EINVAL);
 1802 
 1803         flags = PGET_CANSEE;
 1804         if (req->newptr != NULL)
 1805                 flags |= PGET_ISCURRENT;
 1806         error = pget((pid_t)name[0], flags, &p);
 1807         if (error)
 1808                 return (error);
 1809 
 1810         pa = p->p_args;
 1811         if (pa != NULL) {
 1812                 pargs_hold(pa);
 1813                 PROC_UNLOCK(p);
 1814                 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
 1815                 pargs_drop(pa);
 1816         } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
 1817                 _PHOLD(p);
 1818                 PROC_UNLOCK(p);
 1819                 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1820                 error = proc_getargv(curthread, p, &sb);
 1821                 error2 = sbuf_finish(&sb);
 1822                 PRELE(p);
 1823                 sbuf_delete(&sb);
 1824                 if (error == 0 && error2 != 0)
 1825                         error = error2;
 1826         } else {
 1827                 PROC_UNLOCK(p);
 1828         }
 1829         if (error != 0 || req->newptr == NULL)
 1830                 return (error);
 1831 
 1832         if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
 1833                 return (ENOMEM);
 1834         newpa = pargs_alloc(req->newlen);
 1835         error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
 1836         if (error != 0) {
 1837                 pargs_free(newpa);
 1838                 return (error);
 1839         }
 1840         PROC_LOCK(p);
 1841         pa = p->p_args;
 1842         p->p_args = newpa;
 1843         PROC_UNLOCK(p);
 1844         pargs_drop(pa);
 1845         return (0);
 1846 }
 1847 
 1848 /*
 1849  * This sysctl allows a process to retrieve environment of another process.
 1850  */
 1851 static int
 1852 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
 1853 {
 1854         int *name = (int *)arg1;
 1855         u_int namelen = arg2;
 1856         struct proc *p;
 1857         struct sbuf sb;
 1858         int error, error2;
 1859 
 1860         if (namelen != 1)
 1861                 return (EINVAL);
 1862 
 1863         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1864         if (error != 0)
 1865                 return (error);
 1866         if ((p->p_flag & P_SYSTEM) != 0) {
 1867                 PRELE(p);
 1868                 return (0);
 1869         }
 1870 
 1871         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1872         error = proc_getenvv(curthread, p, &sb);
 1873         error2 = sbuf_finish(&sb);
 1874         PRELE(p);
 1875         sbuf_delete(&sb);
 1876         return (error != 0 ? error : error2);
 1877 }
 1878 
 1879 /*
 1880  * This sysctl allows a process to retrieve ELF auxiliary vector of
 1881  * another process.
 1882  */
 1883 static int
 1884 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
 1885 {
 1886         int *name = (int *)arg1;
 1887         u_int namelen = arg2;
 1888         struct proc *p;
 1889         struct sbuf sb;
 1890         int error, error2;
 1891 
 1892         if (namelen != 1)
 1893                 return (EINVAL);
 1894 
 1895         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1896         if (error != 0)
 1897                 return (error);
 1898         if ((p->p_flag & P_SYSTEM) != 0) {
 1899                 PRELE(p);
 1900                 return (0);
 1901         }
 1902         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1903         error = proc_getauxv(curthread, p, &sb);
 1904         error2 = sbuf_finish(&sb);
 1905         PRELE(p);
 1906         sbuf_delete(&sb);
 1907         return (error != 0 ? error : error2);
 1908 }
 1909 
 1910 /*
 1911  * This sysctl allows a process to retrieve the path of the executable for
 1912  * itself or another process.
 1913  */
 1914 static int
 1915 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
 1916 {
 1917         pid_t *pidp = (pid_t *)arg1;
 1918         unsigned int arglen = arg2;
 1919         struct proc *p;
 1920         struct vnode *vp;
 1921         char *retbuf, *freebuf;
 1922         int error, vfslocked;
 1923 
 1924         if (arglen != 1)
 1925                 return (EINVAL);
 1926         if (*pidp == -1) {      /* -1 means this process */
 1927                 p = req->td->td_proc;
 1928         } else {
 1929                 error = pget(*pidp, PGET_CANSEE, &p);
 1930                 if (error != 0)
 1931                         return (error);
 1932         }
 1933 
 1934         vp = p->p_textvp;
 1935         if (vp == NULL) {
 1936                 if (*pidp != -1)
 1937                         PROC_UNLOCK(p);
 1938                 return (0);
 1939         }
 1940         vref(vp);
 1941         if (*pidp != -1)
 1942                 PROC_UNLOCK(p);
 1943         error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
 1944         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 1945         vrele(vp);
 1946         VFS_UNLOCK_GIANT(vfslocked);
 1947         if (error)
 1948                 return (error);
 1949         error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
 1950         free(freebuf, M_TEMP);
 1951         return (error);
 1952 }
 1953 
 1954 static int
 1955 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
 1956 {
 1957         struct proc *p;
 1958         char *sv_name;
 1959         int *name;
 1960         int namelen;
 1961         int error;
 1962 
 1963         namelen = arg2;
 1964         if (namelen != 1)
 1965                 return (EINVAL);
 1966 
 1967         name = (int *)arg1;
 1968         error = pget((pid_t)name[0], PGET_CANSEE, &p);
 1969         if (error != 0)
 1970                 return (error);
 1971         sv_name = p->p_sysent->sv_name;
 1972         PROC_UNLOCK(p);
 1973         return (sysctl_handle_string(oidp, sv_name, 0, req));
 1974 }
 1975 
 1976 #ifdef KINFO_OVMENTRY_SIZE
 1977 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
 1978 #endif
 1979 
 1980 #ifdef COMPAT_FREEBSD7
 1981 static int
 1982 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
 1983 {
 1984         vm_map_entry_t entry, tmp_entry;
 1985         unsigned int last_timestamp;
 1986         char *fullpath, *freepath;
 1987         struct kinfo_ovmentry *kve;
 1988         struct vattr va;
 1989         struct ucred *cred;
 1990         int error, *name;
 1991         struct vnode *vp;
 1992         struct proc *p;
 1993         vm_map_t map;
 1994         struct vmspace *vm;
 1995 
 1996         name = (int *)arg1;
 1997         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1998         if (error != 0)
 1999                 return (error);
 2000         vm = vmspace_acquire_ref(p);
 2001         if (vm == NULL) {
 2002                 PRELE(p);
 2003                 return (ESRCH);
 2004         }
 2005         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
 2006 
 2007         map = &p->p_vmspace->vm_map;    /* XXXRW: More locking required? */
 2008         vm_map_lock_read(map);
 2009         for (entry = map->header.next; entry != &map->header;
 2010             entry = entry->next) {
 2011                 vm_object_t obj, tobj, lobj;
 2012                 vm_offset_t addr;
 2013                 int vfslocked;
 2014 
 2015                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 2016                         continue;
 2017 
 2018                 bzero(kve, sizeof(*kve));
 2019                 kve->kve_structsize = sizeof(*kve);
 2020 
 2021                 kve->kve_private_resident = 0;
 2022                 obj = entry->object.vm_object;
 2023                 if (obj != NULL) {
 2024                         VM_OBJECT_LOCK(obj);
 2025                         if (obj->shadow_count == 1)
 2026                                 kve->kve_private_resident =
 2027                                     obj->resident_page_count;
 2028                 }
 2029                 kve->kve_resident = 0;
 2030                 addr = entry->start;
 2031                 while (addr < entry->end) {
 2032                         if (pmap_extract(map->pmap, addr))
 2033                                 kve->kve_resident++;
 2034                         addr += PAGE_SIZE;
 2035                 }
 2036 
 2037                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
 2038                         if (tobj != obj)
 2039                                 VM_OBJECT_LOCK(tobj);
 2040                         if (lobj != obj)
 2041                                 VM_OBJECT_UNLOCK(lobj);
 2042                         lobj = tobj;
 2043                 }
 2044 
 2045                 kve->kve_start = (void*)entry->start;
 2046                 kve->kve_end = (void*)entry->end;
 2047                 kve->kve_offset = (off_t)entry->offset;
 2048 
 2049                 if (entry->protection & VM_PROT_READ)
 2050                         kve->kve_protection |= KVME_PROT_READ;
 2051                 if (entry->protection & VM_PROT_WRITE)
 2052                         kve->kve_protection |= KVME_PROT_WRITE;
 2053                 if (entry->protection & VM_PROT_EXECUTE)
 2054                         kve->kve_protection |= KVME_PROT_EXEC;
 2055 
 2056                 if (entry->eflags & MAP_ENTRY_COW)
 2057                         kve->kve_flags |= KVME_FLAG_COW;
 2058                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 2059                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 2060                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 2061                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 2062 
 2063                 last_timestamp = map->timestamp;
 2064                 vm_map_unlock_read(map);
 2065 
 2066                 kve->kve_fileid = 0;
 2067                 kve->kve_fsid = 0;
 2068                 freepath = NULL;
 2069                 fullpath = "";
 2070                 if (lobj) {
 2071                         vp = NULL;
 2072                         switch (lobj->type) {
 2073                         case OBJT_DEFAULT:
 2074                                 kve->kve_type = KVME_TYPE_DEFAULT;
 2075                                 break;
 2076                         case OBJT_VNODE:
 2077                                 kve->kve_type = KVME_TYPE_VNODE;
 2078                                 vp = lobj->handle;
 2079                                 vref(vp);
 2080                                 break;
 2081                         case OBJT_SWAP:
 2082                                 kve->kve_type = KVME_TYPE_SWAP;
 2083                                 break;
 2084                         case OBJT_DEVICE:
 2085                                 kve->kve_type = KVME_TYPE_DEVICE;
 2086                                 break;
 2087                         case OBJT_PHYS:
 2088                                 kve->kve_type = KVME_TYPE_PHYS;
 2089                                 break;
 2090                         case OBJT_DEAD:
 2091                                 kve->kve_type = KVME_TYPE_DEAD;
 2092                                 break;
 2093                         case OBJT_SG:
 2094                                 kve->kve_type = KVME_TYPE_SG;
 2095                                 break;
 2096                         default:
 2097                                 kve->kve_type = KVME_TYPE_UNKNOWN;
 2098                                 break;
 2099                         }
 2100                         if (lobj != obj)
 2101                                 VM_OBJECT_UNLOCK(lobj);
 2102 
 2103                         kve->kve_ref_count = obj->ref_count;
 2104                         kve->kve_shadow_count = obj->shadow_count;
 2105                         VM_OBJECT_UNLOCK(obj);
 2106                         if (vp != NULL) {
 2107                                 vn_fullpath(curthread, vp, &fullpath,
 2108                                     &freepath);
 2109                                 cred = curthread->td_ucred;
 2110                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 2111                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2112                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 2113                                         kve->kve_fileid = va.va_fileid;
 2114                                         kve->kve_fsid = va.va_fsid;
 2115                                 }
 2116                                 vput(vp);
 2117                                 VFS_UNLOCK_GIANT(vfslocked);
 2118                         }
 2119                 } else {
 2120                         kve->kve_type = KVME_TYPE_NONE;
 2121                         kve->kve_ref_count = 0;
 2122                         kve->kve_shadow_count = 0;
 2123                 }
 2124 
 2125                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 2126                 if (freepath != NULL)
 2127                         free(freepath, M_TEMP);
 2128 
 2129                 error = SYSCTL_OUT(req, kve, sizeof(*kve));
 2130                 vm_map_lock_read(map);
 2131                 if (error)
 2132                         break;
 2133                 if (last_timestamp != map->timestamp) {
 2134                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 2135                         entry = tmp_entry;
 2136                 }
 2137         }
 2138         vm_map_unlock_read(map);
 2139         vmspace_free(vm);
 2140         PRELE(p);
 2141         free(kve, M_TEMP);
 2142         return (error);
 2143 }
 2144 #endif  /* COMPAT_FREEBSD7 */
 2145 
 2146 #ifdef KINFO_VMENTRY_SIZE
 2147 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
 2148 #endif
 2149 
 2150 /*
 2151  * Must be called with the process locked and will return unlocked.
 2152  */
 2153 int
 2154 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb)
 2155 {
 2156         vm_map_entry_t entry, tmp_entry;
 2157         unsigned int last_timestamp;
 2158         char *fullpath, *freepath;
 2159         struct kinfo_vmentry *kve;
 2160         struct vattr va;
 2161         struct ucred *cred;
 2162         int error;
 2163         struct vnode *vp;
 2164         struct vmspace *vm;
 2165         vm_map_t map;
 2166 
 2167         PROC_LOCK_ASSERT(p, MA_OWNED);
 2168 
 2169         _PHOLD(p);
 2170         PROC_UNLOCK(p);
 2171         vm = vmspace_acquire_ref(p);
 2172         if (vm == NULL) {
 2173                 PRELE(p);
 2174                 return (ESRCH);
 2175         }
 2176         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
 2177 
 2178         error = 0;
 2179         map = &vm->vm_map;      /* XXXRW: More locking required? */
 2180         vm_map_lock_read(map);
 2181         for (entry = map->header.next; entry != &map->header;
 2182             entry = entry->next) {
 2183                 vm_object_t obj, tobj, lobj;
 2184                 vm_offset_t addr;
 2185                 vm_paddr_t locked_pa;
 2186                 int vfslocked, mincoreinfo;
 2187 
 2188                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 2189                         continue;
 2190 
 2191                 bzero(kve, sizeof(*kve));
 2192 
 2193                 kve->kve_private_resident = 0;
 2194                 obj = entry->object.vm_object;
 2195                 if (obj != NULL) {
 2196                         VM_OBJECT_LOCK(obj);
 2197                         if (obj->shadow_count == 1)
 2198                                 kve->kve_private_resident =
 2199                                     obj->resident_page_count;
 2200                 }
 2201                 kve->kve_resident = 0;
 2202                 addr = entry->start;
 2203                 while (addr < entry->end) {
 2204                         locked_pa = 0;
 2205                         mincoreinfo = pmap_mincore(map->pmap, addr, &locked_pa);
 2206                         if (locked_pa != 0)
 2207                                 vm_page_unlock(PHYS_TO_VM_PAGE(locked_pa));
 2208                         if (mincoreinfo & MINCORE_INCORE)
 2209                                 kve->kve_resident++;
 2210                         if (mincoreinfo & MINCORE_SUPER)
 2211                                 kve->kve_flags |= KVME_FLAG_SUPER;
 2212                         addr += PAGE_SIZE;
 2213                 }
 2214 
 2215                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
 2216                         if (tobj != obj)
 2217                                 VM_OBJECT_LOCK(tobj);
 2218                         if (lobj != obj)
 2219                                 VM_OBJECT_UNLOCK(lobj);
 2220                         lobj = tobj;
 2221                 }
 2222 
 2223                 kve->kve_start = entry->start;
 2224                 kve->kve_end = entry->end;
 2225                 kve->kve_offset = entry->offset;
 2226 
 2227                 if (entry->protection & VM_PROT_READ)
 2228                         kve->kve_protection |= KVME_PROT_READ;
 2229                 if (entry->protection & VM_PROT_WRITE)
 2230                         kve->kve_protection |= KVME_PROT_WRITE;
 2231                 if (entry->protection & VM_PROT_EXECUTE)
 2232                         kve->kve_protection |= KVME_PROT_EXEC;
 2233 
 2234                 if (entry->eflags & MAP_ENTRY_COW)
 2235                         kve->kve_flags |= KVME_FLAG_COW;
 2236                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 2237                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 2238                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 2239                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 2240                 if (entry->eflags & MAP_ENTRY_GROWS_UP)
 2241                         kve->kve_flags |= KVME_FLAG_GROWS_UP;
 2242                 if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
 2243                         kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
 2244 
 2245                 last_timestamp = map->timestamp;
 2246                 vm_map_unlock_read(map);
 2247 
 2248                 freepath = NULL;
 2249                 fullpath = "";
 2250                 if (lobj) {
 2251                         vp = NULL;
 2252                         switch (lobj->type) {
 2253                         case OBJT_DEFAULT:
 2254                                 kve->kve_type = KVME_TYPE_DEFAULT;
 2255                                 break;
 2256                         case OBJT_VNODE:
 2257                                 kve->kve_type = KVME_TYPE_VNODE;
 2258                                 vp = lobj->handle;
 2259                                 vref(vp);
 2260                                 break;
 2261                         case OBJT_SWAP:
 2262                                 kve->kve_type = KVME_TYPE_SWAP;
 2263                                 break;
 2264                         case OBJT_DEVICE:
 2265                                 kve->kve_type = KVME_TYPE_DEVICE;
 2266                                 break;
 2267                         case OBJT_PHYS:
 2268                                 kve->kve_type = KVME_TYPE_PHYS;
 2269                                 break;
 2270                         case OBJT_DEAD:
 2271                                 kve->kve_type = KVME_TYPE_DEAD;
 2272                                 break;
 2273                         case OBJT_SG:
 2274                                 kve->kve_type = KVME_TYPE_SG;
 2275                                 break;
 2276                         default:
 2277                                 kve->kve_type = KVME_TYPE_UNKNOWN;
 2278                                 break;
 2279                         }
 2280                         if (lobj != obj)
 2281                                 VM_OBJECT_UNLOCK(lobj);
 2282 
 2283                         kve->kve_ref_count = obj->ref_count;
 2284                         kve->kve_shadow_count = obj->shadow_count;
 2285                         VM_OBJECT_UNLOCK(obj);
 2286                         if (vp != NULL) {
 2287                                 vn_fullpath(curthread, vp, &fullpath,
 2288                                     &freepath);
 2289                                 kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
 2290                                 cred = curthread->td_ucred;
 2291                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 2292                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2293                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 2294                                         kve->kve_vn_fileid = va.va_fileid;
 2295                                         kve->kve_vn_fsid = va.va_fsid;
 2296                                         kve->kve_vn_mode =
 2297                                             MAKEIMODE(va.va_type, va.va_mode);
 2298                                         kve->kve_vn_size = va.va_size;
 2299                                         kve->kve_vn_rdev = va.va_rdev;
 2300                                         kve->kve_status = KF_ATTR_VALID;
 2301                                 }
 2302                                 vput(vp);
 2303                                 VFS_UNLOCK_GIANT(vfslocked);
 2304                         }
 2305                 } else {
 2306                         kve->kve_type = KVME_TYPE_NONE;
 2307                         kve->kve_ref_count = 0;
 2308                         kve->kve_shadow_count = 0;
 2309                 }
 2310 
 2311                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 2312                 if (freepath != NULL)
 2313                         free(freepath, M_TEMP);
 2314 
 2315                 /* Pack record size down */
 2316                 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
 2317                     strlen(kve->kve_path) + 1;
 2318                 kve->kve_structsize = roundup(kve->kve_structsize,
 2319                     sizeof(uint64_t));
 2320                 error = sbuf_bcat(sb, kve, kve->kve_structsize);
 2321                 vm_map_lock_read(map);
 2322                 if (error)
 2323                         break;
 2324                 if (last_timestamp != map->timestamp) {
 2325                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 2326                         entry = tmp_entry;
 2327                 }
 2328         }
 2329         vm_map_unlock_read(map);
 2330         vmspace_free(vm);
 2331         PRELE(p);
 2332         free(kve, M_TEMP);
 2333         return (error);
 2334 }
 2335 
 2336 static int
 2337 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
 2338 {
 2339         struct proc *p;
 2340         struct sbuf sb;
 2341         int error, error2, *name;
 2342 
 2343         name = (int *)arg1;
 2344         sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
 2345         error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
 2346         if (error != 0) {
 2347                 sbuf_delete(&sb);
 2348                 return (error);
 2349         }
 2350         error = kern_proc_vmmap_out(p, &sb);
 2351         error2 = sbuf_finish(&sb);
 2352         sbuf_delete(&sb);
 2353         return (error != 0 ? error : error2);
 2354 }
 2355 
 2356 #if defined(STACK) || defined(DDB)
 2357 static int
 2358 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
 2359 {
 2360         struct kinfo_kstack *kkstp;
 2361         int error, i, *name, numthreads;
 2362         lwpid_t *lwpidarray;
 2363         struct thread *td;
 2364         struct stack *st;
 2365         struct sbuf sb;
 2366         struct proc *p;
 2367 
 2368         name = (int *)arg1;
 2369         error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
 2370         if (error != 0)
 2371                 return (error);
 2372 
 2373         kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
 2374         st = stack_create();
 2375 
 2376         lwpidarray = NULL;
 2377         numthreads = 0;
 2378         PROC_LOCK(p);
 2379 repeat:
 2380         if (numthreads < p->p_numthreads) {
 2381                 if (lwpidarray != NULL) {
 2382                         free(lwpidarray, M_TEMP);
 2383                         lwpidarray = NULL;
 2384                 }
 2385                 numthreads = p->p_numthreads;
 2386                 PROC_UNLOCK(p);
 2387                 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
 2388                     M_WAITOK | M_ZERO);
 2389                 PROC_LOCK(p);
 2390                 goto repeat;
 2391         }
 2392         i = 0;
 2393 
 2394         /*
 2395          * XXXRW: During the below loop, execve(2) and countless other sorts
 2396          * of changes could have taken place.  Should we check to see if the
 2397          * vmspace has been replaced, or the like, in order to prevent
 2398          * giving a snapshot that spans, say, execve(2), with some threads
 2399          * before and some after?  Among other things, the credentials could
 2400          * have changed, in which case the right to extract debug info might
 2401          * no longer be assured.
 2402          */
 2403         FOREACH_THREAD_IN_PROC(p, td) {
 2404                 KASSERT(i < numthreads,
 2405                     ("sysctl_kern_proc_kstack: numthreads"));
 2406                 lwpidarray[i] = td->td_tid;
 2407                 i++;
 2408         }
 2409         numthreads = i;
 2410         for (i = 0; i < numthreads; i++) {
 2411                 td = thread_find(p, lwpidarray[i]);
 2412                 if (td == NULL) {
 2413                         continue;
 2414                 }
 2415                 bzero(kkstp, sizeof(*kkstp));
 2416                 (void)sbuf_new(&sb, kkstp->kkst_trace,
 2417                     sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
 2418                 thread_lock(td);
 2419                 kkstp->kkst_tid = td->td_tid;
 2420                 if (TD_IS_SWAPPED(td))
 2421                         kkstp->kkst_state = KKST_STATE_SWAPPED;
 2422                 else if (TD_IS_RUNNING(td))
 2423                         kkstp->kkst_state = KKST_STATE_RUNNING;
 2424                 else {
 2425                         kkstp->kkst_state = KKST_STATE_STACKOK;
 2426                         stack_save_td(st, td);
 2427                 }
 2428                 thread_unlock(td);
 2429                 PROC_UNLOCK(p);
 2430                 stack_sbuf_print(&sb, st);
 2431                 sbuf_finish(&sb);
 2432                 sbuf_delete(&sb);
 2433                 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
 2434                 PROC_LOCK(p);
 2435                 if (error)
 2436                         break;
 2437         }
 2438         _PRELE(p);
 2439         PROC_UNLOCK(p);
 2440         if (lwpidarray != NULL)
 2441                 free(lwpidarray, M_TEMP);
 2442         stack_destroy(st);
 2443         free(kkstp, M_TEMP);
 2444         return (error);
 2445 }
 2446 #endif
 2447 
 2448 /*
 2449  * This sysctl allows a process to retrieve the full list of groups from
 2450  * itself or another process.
 2451  */
 2452 static int
 2453 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
 2454 {
 2455         pid_t *pidp = (pid_t *)arg1;
 2456         unsigned int arglen = arg2;
 2457         struct proc *p;
 2458         struct ucred *cred;
 2459         int error;
 2460 
 2461         if (arglen != 1)
 2462                 return (EINVAL);
 2463         if (*pidp == -1) {      /* -1 means this process */
 2464                 p = req->td->td_proc;
 2465         } else {
 2466                 error = pget(*pidp, PGET_CANSEE, &p);
 2467                 if (error != 0)
 2468                         return (error);
 2469         }
 2470 
 2471         cred = crhold(p->p_ucred);
 2472         if (*pidp != -1)
 2473                 PROC_UNLOCK(p);
 2474 
 2475         error = SYSCTL_OUT(req, cred->cr_groups,
 2476             cred->cr_ngroups * sizeof(gid_t));
 2477         crfree(cred);
 2478         return (error);
 2479 }
 2480 
 2481 /*
 2482  * This sysctl allows a process to retrieve or/and set the resource limit for
 2483  * another process.
 2484  */
 2485 static int
 2486 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
 2487 {
 2488         int *name = (int *)arg1;
 2489         u_int namelen = arg2;
 2490         struct rlimit rlim;
 2491         struct proc *p;
 2492         u_int which;
 2493         int flags, error;
 2494 
 2495         if (namelen != 2)
 2496                 return (EINVAL);
 2497 
 2498         which = (u_int)name[1];
 2499         if (which >= RLIM_NLIMITS)
 2500                 return (EINVAL);
 2501 
 2502         if (req->newptr != NULL && req->newlen != sizeof(rlim))
 2503                 return (EINVAL);
 2504 
 2505         flags = PGET_HOLD | PGET_NOTWEXIT;
 2506         if (req->newptr != NULL)
 2507                 flags |= PGET_CANDEBUG;
 2508         else
 2509                 flags |= PGET_CANSEE;
 2510         error = pget((pid_t)name[0], flags, &p);
 2511         if (error != 0)
 2512                 return (error);
 2513 
 2514         /*
 2515          * Retrieve limit.
 2516          */
 2517         if (req->oldptr != NULL) {
 2518                 PROC_LOCK(p);
 2519                 lim_rlimit(p, which, &rlim);
 2520                 PROC_UNLOCK(p);
 2521         }
 2522         error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
 2523         if (error != 0)
 2524                 goto errout;
 2525 
 2526         /*
 2527          * Set limit.
 2528          */
 2529         if (req->newptr != NULL) {
 2530                 error = SYSCTL_IN(req, &rlim, sizeof(rlim));
 2531                 if (error == 0)
 2532                         error = kern_proc_setrlimit(curthread, p, which, &rlim);
 2533         }
 2534 
 2535 errout:
 2536         PRELE(p);
 2537         return (error);
 2538 }
 2539 
 2540 /*
 2541  * This sysctl allows a process to retrieve ps_strings structure location of
 2542  * another process.
 2543  */
 2544 static int
 2545 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
 2546 {
 2547         int *name = (int *)arg1;
 2548         u_int namelen = arg2;
 2549         struct proc *p;
 2550         vm_offset_t ps_strings;
 2551         int error;
 2552 #ifdef COMPAT_FREEBSD32
 2553         uint32_t ps_strings32;
 2554 #endif
 2555 
 2556         if (namelen != 1)
 2557                 return (EINVAL);
 2558 
 2559         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 2560         if (error != 0)
 2561                 return (error);
 2562 #ifdef COMPAT_FREEBSD32
 2563         if ((req->flags & SCTL_MASK32) != 0) {
 2564                 /*
 2565                  * We return 0 if the 32 bit emulation request is for a 64 bit
 2566                  * process.
 2567                  */
 2568                 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
 2569                     PTROUT(p->p_sysent->sv_psstrings) : 0;
 2570                 PROC_UNLOCK(p);
 2571                 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
 2572                 return (error);
 2573         }
 2574 #endif
 2575         ps_strings = p->p_sysent->sv_psstrings;
 2576         PROC_UNLOCK(p);
 2577         error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
 2578         return (error);
 2579 }
 2580 
 2581 /*
 2582  * This sysctl allows a process to retrieve umask of another process.
 2583  */
 2584 static int
 2585 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
 2586 {
 2587         int *name = (int *)arg1;
 2588         u_int namelen = arg2;
 2589         struct proc *p;
 2590         int error;
 2591         u_short fd_cmask;
 2592 
 2593         if (namelen != 1)
 2594                 return (EINVAL);
 2595 
 2596         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 2597         if (error != 0)
 2598                 return (error);
 2599 
 2600         FILEDESC_SLOCK(p->p_fd);
 2601         fd_cmask = p->p_fd->fd_cmask;
 2602         FILEDESC_SUNLOCK(p->p_fd);
 2603         PRELE(p);
 2604         error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
 2605         return (error);
 2606 }
 2607 
 2608 /*
 2609  * This sysctl allows a process to set and retrieve binary osreldate of
 2610  * another process.
 2611  */
 2612 static int
 2613 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
 2614 {
 2615         int *name = (int *)arg1;
 2616         u_int namelen = arg2;
 2617         struct proc *p;
 2618         int flags, error, osrel;
 2619 
 2620         if (namelen != 1)
 2621                 return (EINVAL);
 2622 
 2623         if (req->newptr != NULL && req->newlen != sizeof(osrel))
 2624                 return (EINVAL);
 2625 
 2626         flags = PGET_HOLD | PGET_NOTWEXIT;
 2627         if (req->newptr != NULL)
 2628                 flags |= PGET_CANDEBUG;
 2629         else
 2630                 flags |= PGET_CANSEE;
 2631         error = pget((pid_t)name[0], flags, &p);
 2632         if (error != 0)
 2633                 return (error);
 2634 
 2635         error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
 2636         if (error != 0)
 2637                 goto errout;
 2638 
 2639         if (req->newptr != NULL) {
 2640                 error = SYSCTL_IN(req, &osrel, sizeof(osrel));
 2641                 if (error != 0)
 2642                         goto errout;
 2643                 if (osrel < 0) {
 2644                         error = EINVAL;
 2645                         goto errout;
 2646                 }
 2647                 p->p_osrel = osrel;
 2648         }
 2649 errout:
 2650         PRELE(p);
 2651         return (error);
 2652 }
 2653 
 2654 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
 2655 
 2656 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
 2657         CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
 2658         "Return entire process table");
 2659 
 2660 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2661         sysctl_kern_proc, "Process table");
 2662 
 2663 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2664         sysctl_kern_proc, "Process table");
 2665 
 2666 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2667         sysctl_kern_proc, "Process table");
 2668 
 2669 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
 2670         CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2671 
 2672 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2673         sysctl_kern_proc, "Process table");
 2674 
 2675 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2676         sysctl_kern_proc, "Process table");
 2677 
 2678 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2679         sysctl_kern_proc, "Process table");
 2680 
 2681 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2682         sysctl_kern_proc, "Process table");
 2683 
 2684 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2685         sysctl_kern_proc, "Return process table, no threads");
 2686 
 2687 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
 2688         CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
 2689         sysctl_kern_proc_args, "Process argument list");
 2690 
 2691 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2692         sysctl_kern_proc_env, "Process environment");
 2693 
 2694 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
 2695         CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
 2696 
 2697 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
 2698         CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
 2699 
 2700 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
 2701         CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
 2702         "Process syscall vector name (ABI type)");
 2703 
 2704 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
 2705         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2706 
 2707 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
 2708         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2709 
 2710 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
 2711         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2712 
 2713 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
 2714         sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2715 
 2716 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
 2717         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2718 
 2719 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
 2720         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2721 
 2722 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
 2723         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2724 
 2725 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
 2726         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2727 
 2728 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
 2729         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
 2730         "Return process table, no threads");
 2731 
 2732 #ifdef COMPAT_FREEBSD7
 2733 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
 2734         CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
 2735 #endif
 2736 
 2737 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
 2738         CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
 2739 
 2740 #if defined(STACK) || defined(DDB)
 2741 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
 2742         CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
 2743 #endif
 2744 
 2745 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
 2746         CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
 2747 
 2748 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
 2749         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
 2750         "Process resource limits");
 2751 
 2752 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
 2753         CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
 2754         "Process ps_strings location");
 2755 
 2756 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
 2757         CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
 2758 
 2759 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
 2760         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
 2761         "Process binary osreldate");

Cache object: 61de02aee42ff5cea539cb2267b19d14


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.