The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_proc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD$");
   34 
   35 #include "opt_compat.h"
   36 #include "opt_ddb.h"
   37 #include "opt_kdtrace.h"
   38 #include "opt_ktrace.h"
   39 #include "opt_kstack_pages.h"
   40 #include "opt_stack.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/elf.h>
   45 #include <sys/exec.h>
   46 #include <sys/kernel.h>
   47 #include <sys/limits.h>
   48 #include <sys/lock.h>
   49 #include <sys/loginclass.h>
   50 #include <sys/malloc.h>
   51 #include <sys/mman.h>
   52 #include <sys/mount.h>
   53 #include <sys/mutex.h>
   54 #include <sys/proc.h>
   55 #include <sys/ptrace.h>
   56 #include <sys/refcount.h>
   57 #include <sys/resourcevar.h>
   58 #include <sys/sbuf.h>
   59 #include <sys/sysent.h>
   60 #include <sys/sched.h>
   61 #include <sys/smp.h>
   62 #include <sys/stack.h>
   63 #include <sys/stat.h>
   64 #include <sys/sysctl.h>
   65 #include <sys/filedesc.h>
   66 #include <sys/tty.h>
   67 #include <sys/signalvar.h>
   68 #include <sys/sdt.h>
   69 #include <sys/sx.h>
   70 #include <sys/user.h>
   71 #include <sys/jail.h>
   72 #include <sys/vnode.h>
   73 #include <sys/eventhandler.h>
   74 
   75 #ifdef DDB
   76 #include <ddb/ddb.h>
   77 #endif
   78 
   79 #include <vm/vm.h>
   80 #include <vm/vm_param.h>
   81 #include <vm/vm_extern.h>
   82 #include <vm/pmap.h>
   83 #include <vm/vm_map.h>
   84 #include <vm/vm_object.h>
   85 #include <vm/vm_page.h>
   86 #include <vm/uma.h>
   87 
   88 #ifdef COMPAT_FREEBSD32
   89 #include <compat/freebsd32/freebsd32.h>
   90 #include <compat/freebsd32/freebsd32_util.h>
   91 #endif
   92 
   93 SDT_PROVIDER_DEFINE(proc);
   94 SDT_PROBE_DEFINE4(proc, kernel, ctor, entry, "struct proc *", "int",
   95     "void *", "int");
   96 SDT_PROBE_DEFINE4(proc, kernel, ctor, return, "struct proc *", "int",
   97     "void *", "int");
   98 SDT_PROBE_DEFINE4(proc, kernel, dtor, entry, "struct proc *", "int",
   99     "void *", "struct thread *");
  100 SDT_PROBE_DEFINE3(proc, kernel, dtor, return, "struct proc *", "int",
  101     "void *");
  102 SDT_PROBE_DEFINE3(proc, kernel, init, entry, "struct proc *", "int",
  103     "int");
  104 SDT_PROBE_DEFINE3(proc, kernel, init, return, "struct proc *", "int",
  105     "int");
  106 
  107 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
  108 MALLOC_DEFINE(M_SESSION, "session", "session header");
  109 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
  110 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
  111 
  112 static void doenterpgrp(struct proc *, struct pgrp *);
  113 static void orphanpg(struct pgrp *pg);
  114 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
  115 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
  116 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
  117     int preferthread);
  118 static void pgadjustjobc(struct pgrp *pgrp, int entering);
  119 static void pgdelete(struct pgrp *);
  120 static int proc_ctor(void *mem, int size, void *arg, int flags);
  121 static void proc_dtor(void *mem, int size, void *arg);
  122 static int proc_init(void *mem, int size, int flags);
  123 static void proc_fini(void *mem, int size);
  124 static void pargs_free(struct pargs *pa);
  125 static struct proc *zpfind_locked(pid_t pid);
  126 
  127 /*
  128  * Other process lists
  129  */
  130 struct pidhashhead *pidhashtbl;
  131 u_long pidhash;
  132 struct pgrphashhead *pgrphashtbl;
  133 u_long pgrphash;
  134 struct proclist allproc;
  135 struct proclist zombproc;
  136 struct sx allproc_lock;
  137 struct sx proctree_lock;
  138 struct mtx ppeers_lock;
  139 uma_zone_t proc_zone;
  140 
  141 int kstack_pages = KSTACK_PAGES;
  142 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
  143     "Kernel stack size in pages");
  144 static int vmmap_skip_res_cnt = 0;
  145 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
  146     &vmmap_skip_res_cnt, 0,
  147     "Skip calculation of the pages resident count in kern.proc.vmmap");
  148 
  149 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
  150 #ifdef COMPAT_FREEBSD32
  151 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
  152 #endif
  153 
  154 /*
  155  * Initialize global process hashing structures.
  156  */
  157 void
  158 procinit()
  159 {
  160 
  161         sx_init(&allproc_lock, "allproc");
  162         sx_init(&proctree_lock, "proctree");
  163         mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
  164         LIST_INIT(&allproc);
  165         LIST_INIT(&zombproc);
  166         pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
  167         pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
  168         proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
  169             proc_ctor, proc_dtor, proc_init, proc_fini,
  170             UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
  171         uihashinit();
  172 }
  173 
  174 /*
  175  * Prepare a proc for use.
  176  */
  177 static int
  178 proc_ctor(void *mem, int size, void *arg, int flags)
  179 {
  180         struct proc *p;
  181         struct thread *td;
  182 
  183         p = (struct proc *)mem;
  184         SDT_PROBE4(proc, kernel, ctor , entry, p, size, arg, flags);
  185         EVENTHANDLER_INVOKE(process_ctor, p);
  186         SDT_PROBE4(proc, kernel, ctor , return, p, size, arg, flags);
  187         td = FIRST_THREAD_IN_PROC(p);
  188         if (td != NULL) {
  189                 /* Make sure all thread constructors are executed */
  190                 EVENTHANDLER_INVOKE(thread_ctor, td);
  191         }
  192         return (0);
  193 }
  194 
  195 /*
  196  * Reclaim a proc after use.
  197  */
  198 static void
  199 proc_dtor(void *mem, int size, void *arg)
  200 {
  201         struct proc *p;
  202         struct thread *td;
  203 
  204         /* INVARIANTS checks go here */
  205         p = (struct proc *)mem;
  206         td = FIRST_THREAD_IN_PROC(p);
  207         SDT_PROBE4(proc, kernel, dtor, entry, p, size, arg, td);
  208         if (td != NULL) {
  209 #ifdef INVARIANTS
  210                 KASSERT((p->p_numthreads == 1),
  211                     ("bad number of threads in exiting process"));
  212                 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
  213 #endif
  214                 /* Free all OSD associated to this thread. */
  215                 osd_thread_exit(td);
  216 
  217                 /* Make sure all thread destructors are executed */
  218                 EVENTHANDLER_INVOKE(thread_dtor, td);
  219         }
  220         EVENTHANDLER_INVOKE(process_dtor, p);
  221         if (p->p_ksi != NULL)
  222                 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
  223         SDT_PROBE3(proc, kernel, dtor, return, p, size, arg);
  224 }
  225 
  226 /*
  227  * Initialize type-stable parts of a proc (when newly created).
  228  */
  229 static int
  230 proc_init(void *mem, int size, int flags)
  231 {
  232         struct proc *p;
  233 
  234         p = (struct proc *)mem;
  235         SDT_PROBE3(proc, kernel, init, entry, p, size, flags);
  236         p->p_sched = (struct p_sched *)&p[1];
  237         bzero(&p->p_mtx, sizeof(struct mtx));
  238         mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
  239         mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
  240         cv_init(&p->p_pwait, "ppwait");
  241         cv_init(&p->p_dbgwait, "dbgwait");
  242         TAILQ_INIT(&p->p_threads);           /* all threads in proc */
  243         EVENTHANDLER_INVOKE(process_init, p);
  244         p->p_stats = pstats_alloc();
  245         SDT_PROBE3(proc, kernel, init, return, p, size, flags);
  246         return (0);
  247 }
  248 
  249 /*
  250  * UMA should ensure that this function is never called.
  251  * Freeing a proc structure would violate type stability.
  252  */
  253 static void
  254 proc_fini(void *mem, int size)
  255 {
  256 #ifdef notnow
  257         struct proc *p;
  258 
  259         p = (struct proc *)mem;
  260         EVENTHANDLER_INVOKE(process_fini, p);
  261         pstats_free(p->p_stats);
  262         thread_free(FIRST_THREAD_IN_PROC(p));
  263         mtx_destroy(&p->p_mtx);
  264         if (p->p_ksi != NULL)
  265                 ksiginfo_free(p->p_ksi);
  266 #else
  267         panic("proc reclaimed");
  268 #endif
  269 }
  270 
  271 /*
  272  * Is p an inferior of the current process?
  273  */
  274 int
  275 inferior(struct proc *p)
  276 {
  277 
  278         sx_assert(&proctree_lock, SX_LOCKED);
  279         PROC_LOCK_ASSERT(p, MA_OWNED);
  280         for (; p != curproc; p = proc_realparent(p)) {
  281                 if (p->p_pid == 0)
  282                         return (0);
  283         }
  284         return (1);
  285 }
  286 
  287 struct proc *
  288 pfind_locked(pid_t pid)
  289 {
  290         struct proc *p;
  291 
  292         sx_assert(&allproc_lock, SX_LOCKED);
  293         LIST_FOREACH(p, PIDHASH(pid), p_hash) {
  294                 if (p->p_pid == pid) {
  295                         PROC_LOCK(p);
  296                         if (p->p_state == PRS_NEW) {
  297                                 PROC_UNLOCK(p);
  298                                 p = NULL;
  299                         }
  300                         break;
  301                 }
  302         }
  303         return (p);
  304 }
  305 
  306 /*
  307  * Locate a process by number; return only "live" processes -- i.e., neither
  308  * zombies nor newly born but incompletely initialized processes.  By not
  309  * returning processes in the PRS_NEW state, we allow callers to avoid
  310  * testing for that condition to avoid dereferencing p_ucred, et al.
  311  */
  312 struct proc *
  313 pfind(pid_t pid)
  314 {
  315         struct proc *p;
  316 
  317         sx_slock(&allproc_lock);
  318         p = pfind_locked(pid);
  319         sx_sunlock(&allproc_lock);
  320         return (p);
  321 }
  322 
  323 static struct proc *
  324 pfind_tid_locked(pid_t tid)
  325 {
  326         struct proc *p;
  327         struct thread *td;
  328 
  329         sx_assert(&allproc_lock, SX_LOCKED);
  330         FOREACH_PROC_IN_SYSTEM(p) {
  331                 PROC_LOCK(p);
  332                 if (p->p_state == PRS_NEW) {
  333                         PROC_UNLOCK(p);
  334                         continue;
  335                 }
  336                 FOREACH_THREAD_IN_PROC(p, td) {
  337                         if (td->td_tid == tid)
  338                                 goto found;
  339                 }
  340                 PROC_UNLOCK(p);
  341         }
  342 found:
  343         return (p);
  344 }
  345 
  346 /*
  347  * Locate a process group by number.
  348  * The caller must hold proctree_lock.
  349  */
  350 struct pgrp *
  351 pgfind(pgid)
  352         register pid_t pgid;
  353 {
  354         register struct pgrp *pgrp;
  355 
  356         sx_assert(&proctree_lock, SX_LOCKED);
  357 
  358         LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
  359                 if (pgrp->pg_id == pgid) {
  360                         PGRP_LOCK(pgrp);
  361                         return (pgrp);
  362                 }
  363         }
  364         return (NULL);
  365 }
  366 
  367 /*
  368  * Locate process and do additional manipulations, depending on flags.
  369  */
  370 int
  371 pget(pid_t pid, int flags, struct proc **pp)
  372 {
  373         struct proc *p;
  374         int error;
  375 
  376         sx_slock(&allproc_lock);
  377         if (pid <= PID_MAX) {
  378                 p = pfind_locked(pid);
  379                 if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
  380                         p = zpfind_locked(pid);
  381         } else if ((flags & PGET_NOTID) == 0) {
  382                 p = pfind_tid_locked(pid);
  383         } else {
  384                 p = NULL;
  385         }
  386         sx_sunlock(&allproc_lock);
  387         if (p == NULL)
  388                 return (ESRCH);
  389         if ((flags & PGET_CANSEE) != 0) {
  390                 error = p_cansee(curthread, p);
  391                 if (error != 0)
  392                         goto errout;
  393         }
  394         if ((flags & PGET_CANDEBUG) != 0) {
  395                 error = p_candebug(curthread, p);
  396                 if (error != 0)
  397                         goto errout;
  398         }
  399         if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
  400                 error = EPERM;
  401                 goto errout;
  402         }
  403         if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
  404                 error = ESRCH;
  405                 goto errout;
  406         }
  407         if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
  408                 /*
  409                  * XXXRW: Not clear ESRCH is the right error during proc
  410                  * execve().
  411                  */
  412                 error = ESRCH;
  413                 goto errout;
  414         }
  415         if ((flags & PGET_HOLD) != 0) {
  416                 _PHOLD(p);
  417                 PROC_UNLOCK(p);
  418         }
  419         *pp = p;
  420         return (0);
  421 errout:
  422         PROC_UNLOCK(p);
  423         return (error);
  424 }
  425 
  426 /*
  427  * Create a new process group.
  428  * pgid must be equal to the pid of p.
  429  * Begin a new session if required.
  430  */
  431 int
  432 enterpgrp(p, pgid, pgrp, sess)
  433         register struct proc *p;
  434         pid_t pgid;
  435         struct pgrp *pgrp;
  436         struct session *sess;
  437 {
  438 
  439         sx_assert(&proctree_lock, SX_XLOCKED);
  440 
  441         KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
  442         KASSERT(p->p_pid == pgid,
  443             ("enterpgrp: new pgrp and pid != pgid"));
  444         KASSERT(pgfind(pgid) == NULL,
  445             ("enterpgrp: pgrp with pgid exists"));
  446         KASSERT(!SESS_LEADER(p),
  447             ("enterpgrp: session leader attempted setpgrp"));
  448 
  449         mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
  450 
  451         if (sess != NULL) {
  452                 /*
  453                  * new session
  454                  */
  455                 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
  456                 PROC_LOCK(p);
  457                 p->p_flag &= ~P_CONTROLT;
  458                 PROC_UNLOCK(p);
  459                 PGRP_LOCK(pgrp);
  460                 sess->s_leader = p;
  461                 sess->s_sid = p->p_pid;
  462                 refcount_init(&sess->s_count, 1);
  463                 sess->s_ttyvp = NULL;
  464                 sess->s_ttydp = NULL;
  465                 sess->s_ttyp = NULL;
  466                 bcopy(p->p_session->s_login, sess->s_login,
  467                             sizeof(sess->s_login));
  468                 pgrp->pg_session = sess;
  469                 KASSERT(p == curproc,
  470                     ("enterpgrp: mksession and p != curproc"));
  471         } else {
  472                 pgrp->pg_session = p->p_session;
  473                 sess_hold(pgrp->pg_session);
  474                 PGRP_LOCK(pgrp);
  475         }
  476         pgrp->pg_id = pgid;
  477         LIST_INIT(&pgrp->pg_members);
  478 
  479         /*
  480          * As we have an exclusive lock of proctree_lock,
  481          * this should not deadlock.
  482          */
  483         LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
  484         pgrp->pg_jobc = 0;
  485         SLIST_INIT(&pgrp->pg_sigiolst);
  486         PGRP_UNLOCK(pgrp);
  487 
  488         doenterpgrp(p, pgrp);
  489 
  490         return (0);
  491 }
  492 
  493 /*
  494  * Move p to an existing process group
  495  */
  496 int
  497 enterthispgrp(p, pgrp)
  498         register struct proc *p;
  499         struct pgrp *pgrp;
  500 {
  501 
  502         sx_assert(&proctree_lock, SX_XLOCKED);
  503         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  504         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  505         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  506         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  507         KASSERT(pgrp->pg_session == p->p_session,
  508                 ("%s: pgrp's session %p, p->p_session %p.\n",
  509                 __func__,
  510                 pgrp->pg_session,
  511                 p->p_session));
  512         KASSERT(pgrp != p->p_pgrp,
  513                 ("%s: p belongs to pgrp.", __func__));
  514 
  515         doenterpgrp(p, pgrp);
  516 
  517         return (0);
  518 }
  519 
  520 /*
  521  * Move p to a process group
  522  */
  523 static void
  524 doenterpgrp(p, pgrp)
  525         struct proc *p;
  526         struct pgrp *pgrp;
  527 {
  528         struct pgrp *savepgrp;
  529 
  530         sx_assert(&proctree_lock, SX_XLOCKED);
  531         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  532         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  533         PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
  534         SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
  535 
  536         savepgrp = p->p_pgrp;
  537 
  538         /*
  539          * Adjust eligibility of affected pgrps to participate in job control.
  540          * Increment eligibility counts before decrementing, otherwise we
  541          * could reach 0 spuriously during the first call.
  542          */
  543         fixjobc(p, pgrp, 1);
  544         fixjobc(p, p->p_pgrp, 0);
  545 
  546         PGRP_LOCK(pgrp);
  547         PGRP_LOCK(savepgrp);
  548         PROC_LOCK(p);
  549         LIST_REMOVE(p, p_pglist);
  550         p->p_pgrp = pgrp;
  551         PROC_UNLOCK(p);
  552         LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
  553         PGRP_UNLOCK(savepgrp);
  554         PGRP_UNLOCK(pgrp);
  555         if (LIST_EMPTY(&savepgrp->pg_members))
  556                 pgdelete(savepgrp);
  557 }
  558 
  559 /*
  560  * remove process from process group
  561  */
  562 int
  563 leavepgrp(p)
  564         register struct proc *p;
  565 {
  566         struct pgrp *savepgrp;
  567 
  568         sx_assert(&proctree_lock, SX_XLOCKED);
  569         savepgrp = p->p_pgrp;
  570         PGRP_LOCK(savepgrp);
  571         PROC_LOCK(p);
  572         LIST_REMOVE(p, p_pglist);
  573         p->p_pgrp = NULL;
  574         PROC_UNLOCK(p);
  575         PGRP_UNLOCK(savepgrp);
  576         if (LIST_EMPTY(&savepgrp->pg_members))
  577                 pgdelete(savepgrp);
  578         return (0);
  579 }
  580 
  581 /*
  582  * delete a process group
  583  */
  584 static void
  585 pgdelete(pgrp)
  586         register struct pgrp *pgrp;
  587 {
  588         struct session *savesess;
  589         struct tty *tp;
  590 
  591         sx_assert(&proctree_lock, SX_XLOCKED);
  592         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  593         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  594 
  595         /*
  596          * Reset any sigio structures pointing to us as a result of
  597          * F_SETOWN with our pgid.
  598          */
  599         funsetownlst(&pgrp->pg_sigiolst);
  600 
  601         PGRP_LOCK(pgrp);
  602         tp = pgrp->pg_session->s_ttyp;
  603         LIST_REMOVE(pgrp, pg_hash);
  604         savesess = pgrp->pg_session;
  605         PGRP_UNLOCK(pgrp);
  606 
  607         /* Remove the reference to the pgrp before deallocating it. */
  608         if (tp != NULL) {
  609                 tty_lock(tp);
  610                 tty_rel_pgrp(tp, pgrp);
  611         }
  612 
  613         mtx_destroy(&pgrp->pg_mtx);
  614         free(pgrp, M_PGRP);
  615         sess_release(savesess);
  616 }
  617 
  618 static void
  619 pgadjustjobc(pgrp, entering)
  620         struct pgrp *pgrp;
  621         int entering;
  622 {
  623 
  624         PGRP_LOCK(pgrp);
  625         if (entering)
  626                 pgrp->pg_jobc++;
  627         else {
  628                 --pgrp->pg_jobc;
  629                 if (pgrp->pg_jobc == 0)
  630                         orphanpg(pgrp);
  631         }
  632         PGRP_UNLOCK(pgrp);
  633 }
  634 
  635 /*
  636  * Adjust pgrp jobc counters when specified process changes process group.
  637  * We count the number of processes in each process group that "qualify"
  638  * the group for terminal job control (those with a parent in a different
  639  * process group of the same session).  If that count reaches zero, the
  640  * process group becomes orphaned.  Check both the specified process'
  641  * process group and that of its children.
  642  * entering == 0 => p is leaving specified group.
  643  * entering == 1 => p is entering specified group.
  644  */
  645 void
  646 fixjobc(p, pgrp, entering)
  647         register struct proc *p;
  648         register struct pgrp *pgrp;
  649         int entering;
  650 {
  651         register struct pgrp *hispgrp;
  652         register struct session *mysession;
  653 
  654         sx_assert(&proctree_lock, SX_LOCKED);
  655         PROC_LOCK_ASSERT(p, MA_NOTOWNED);
  656         PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
  657         SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
  658 
  659         /*
  660          * Check p's parent to see whether p qualifies its own process
  661          * group; if so, adjust count for p's process group.
  662          */
  663         mysession = pgrp->pg_session;
  664         if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
  665             hispgrp->pg_session == mysession)
  666                 pgadjustjobc(pgrp, entering);
  667 
  668         /*
  669          * Check this process' children to see whether they qualify
  670          * their process groups; if so, adjust counts for children's
  671          * process groups.
  672          */
  673         LIST_FOREACH(p, &p->p_children, p_sibling) {
  674                 hispgrp = p->p_pgrp;
  675                 if (hispgrp == pgrp ||
  676                     hispgrp->pg_session != mysession)
  677                         continue;
  678                 PROC_LOCK(p);
  679                 if (p->p_state == PRS_ZOMBIE) {
  680                         PROC_UNLOCK(p);
  681                         continue;
  682                 }
  683                 PROC_UNLOCK(p);
  684                 pgadjustjobc(hispgrp, entering);
  685         }
  686 }
  687 
  688 /*
  689  * A process group has become orphaned;
  690  * if there are any stopped processes in the group,
  691  * hang-up all process in that group.
  692  */
  693 static void
  694 orphanpg(pg)
  695         struct pgrp *pg;
  696 {
  697         register struct proc *p;
  698 
  699         PGRP_LOCK_ASSERT(pg, MA_OWNED);
  700 
  701         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  702                 PROC_LOCK(p);
  703                 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
  704                         PROC_UNLOCK(p);
  705                         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
  706                                 PROC_LOCK(p);
  707                                 kern_psignal(p, SIGHUP);
  708                                 kern_psignal(p, SIGCONT);
  709                                 PROC_UNLOCK(p);
  710                         }
  711                         return;
  712                 }
  713                 PROC_UNLOCK(p);
  714         }
  715 }
  716 
  717 void
  718 sess_hold(struct session *s)
  719 {
  720 
  721         refcount_acquire(&s->s_count);
  722 }
  723 
  724 void
  725 sess_release(struct session *s)
  726 {
  727 
  728         if (refcount_release(&s->s_count)) {
  729                 if (s->s_ttyp != NULL) {
  730                         tty_lock(s->s_ttyp);
  731                         tty_rel_sess(s->s_ttyp, s);
  732                 }
  733                 mtx_destroy(&s->s_mtx);
  734                 free(s, M_SESSION);
  735         }
  736 }
  737 
  738 #include "opt_ddb.h"
  739 #ifdef DDB
  740 #include <ddb/ddb.h>
  741 
  742 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
  743 {
  744         register struct pgrp *pgrp;
  745         register struct proc *p;
  746         register int i;
  747 
  748         for (i = 0; i <= pgrphash; i++) {
  749                 if (!LIST_EMPTY(&pgrphashtbl[i])) {
  750                         printf("\tindx %d\n", i);
  751                         LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
  752                                 printf(
  753                         "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
  754                                     (void *)pgrp, (long)pgrp->pg_id,
  755                                     (void *)pgrp->pg_session,
  756                                     pgrp->pg_session->s_count,
  757                                     (void *)LIST_FIRST(&pgrp->pg_members));
  758                                 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
  759                                         printf("\t\tpid %ld addr %p pgrp %p\n", 
  760                                             (long)p->p_pid, (void *)p,
  761                                             (void *)p->p_pgrp);
  762                                 }
  763                         }
  764                 }
  765         }
  766 }
  767 #endif /* DDB */
  768 
  769 /*
  770  * Calculate the kinfo_proc members which contain process-wide
  771  * informations.
  772  * Must be called with the target process locked.
  773  */
  774 static void
  775 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
  776 {
  777         struct thread *td;
  778 
  779         PROC_LOCK_ASSERT(p, MA_OWNED);
  780 
  781         kp->ki_estcpu = 0;
  782         kp->ki_pctcpu = 0;
  783         FOREACH_THREAD_IN_PROC(p, td) {
  784                 thread_lock(td);
  785                 kp->ki_pctcpu += sched_pctcpu(td);
  786                 kp->ki_estcpu += td->td_estcpu;
  787                 thread_unlock(td);
  788         }
  789 }
  790 
  791 /*
  792  * Clear kinfo_proc and fill in any information that is common
  793  * to all threads in the process.
  794  * Must be called with the target process locked.
  795  */
  796 static void
  797 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
  798 {
  799         struct thread *td0;
  800         struct tty *tp;
  801         struct session *sp;
  802         struct ucred *cred;
  803         struct sigacts *ps;
  804 
  805         PROC_LOCK_ASSERT(p, MA_OWNED);
  806         bzero(kp, sizeof(*kp));
  807 
  808         kp->ki_structsize = sizeof(*kp);
  809         kp->ki_paddr = p;
  810         kp->ki_addr =/* p->p_addr; */0; /* XXX */
  811         kp->ki_args = p->p_args;
  812         kp->ki_textvp = p->p_textvp;
  813 #ifdef KTRACE
  814         kp->ki_tracep = p->p_tracevp;
  815         kp->ki_traceflag = p->p_traceflag;
  816 #endif
  817         kp->ki_fd = p->p_fd;
  818         kp->ki_vmspace = p->p_vmspace;
  819         kp->ki_flag = p->p_flag;
  820         kp->ki_flag2 = p->p_flag2;
  821         cred = p->p_ucred;
  822         if (cred) {
  823                 kp->ki_uid = cred->cr_uid;
  824                 kp->ki_ruid = cred->cr_ruid;
  825                 kp->ki_svuid = cred->cr_svuid;
  826                 kp->ki_cr_flags = 0;
  827                 if (cred->cr_flags & CRED_FLAG_CAPMODE)
  828                         kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
  829                 /* XXX bde doesn't like KI_NGROUPS */
  830                 if (cred->cr_ngroups > KI_NGROUPS) {
  831                         kp->ki_ngroups = KI_NGROUPS;
  832                         kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
  833                 } else
  834                         kp->ki_ngroups = cred->cr_ngroups;
  835                 bcopy(cred->cr_groups, kp->ki_groups,
  836                     kp->ki_ngroups * sizeof(gid_t));
  837                 kp->ki_rgid = cred->cr_rgid;
  838                 kp->ki_svgid = cred->cr_svgid;
  839                 /* If jailed(cred), emulate the old P_JAILED flag. */
  840                 if (jailed(cred)) {
  841                         kp->ki_flag |= P_JAILED;
  842                         /* If inside the jail, use 0 as a jail ID. */
  843                         if (cred->cr_prison != curthread->td_ucred->cr_prison)
  844                                 kp->ki_jid = cred->cr_prison->pr_id;
  845                 }
  846                 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
  847                     sizeof(kp->ki_loginclass));
  848         }
  849         ps = p->p_sigacts;
  850         if (ps) {
  851                 mtx_lock(&ps->ps_mtx);
  852                 kp->ki_sigignore = ps->ps_sigignore;
  853                 kp->ki_sigcatch = ps->ps_sigcatch;
  854                 mtx_unlock(&ps->ps_mtx);
  855         }
  856         if (p->p_state != PRS_NEW &&
  857             p->p_state != PRS_ZOMBIE &&
  858             p->p_vmspace != NULL) {
  859                 struct vmspace *vm = p->p_vmspace;
  860 
  861                 kp->ki_size = vm->vm_map.size;
  862                 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
  863                 FOREACH_THREAD_IN_PROC(p, td0) {
  864                         if (!TD_IS_SWAPPED(td0))
  865                                 kp->ki_rssize += td0->td_kstack_pages;
  866                 }
  867                 kp->ki_swrss = vm->vm_swrss;
  868                 kp->ki_tsize = vm->vm_tsize;
  869                 kp->ki_dsize = vm->vm_dsize;
  870                 kp->ki_ssize = vm->vm_ssize;
  871         } else if (p->p_state == PRS_ZOMBIE)
  872                 kp->ki_stat = SZOMB;
  873         if (kp->ki_flag & P_INMEM)
  874                 kp->ki_sflag = PS_INMEM;
  875         else
  876                 kp->ki_sflag = 0;
  877         /* Calculate legacy swtime as seconds since 'swtick'. */
  878         kp->ki_swtime = (ticks - p->p_swtick) / hz;
  879         kp->ki_pid = p->p_pid;
  880         kp->ki_nice = p->p_nice;
  881         kp->ki_fibnum = p->p_fibnum;
  882         kp->ki_start = p->p_stats->p_start;
  883         timevaladd(&kp->ki_start, &boottime);
  884         PROC_SLOCK(p);
  885         rufetch(p, &kp->ki_rusage);
  886         kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
  887         calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
  888         PROC_SUNLOCK(p);
  889         calccru(p, &kp->ki_childutime, &kp->ki_childstime);
  890         /* Some callers want child times in a single value. */
  891         kp->ki_childtime = kp->ki_childstime;
  892         timevaladd(&kp->ki_childtime, &kp->ki_childutime);
  893 
  894         FOREACH_THREAD_IN_PROC(p, td0)
  895                 kp->ki_cow += td0->td_cow;
  896 
  897         tp = NULL;
  898         if (p->p_pgrp) {
  899                 kp->ki_pgid = p->p_pgrp->pg_id;
  900                 kp->ki_jobc = p->p_pgrp->pg_jobc;
  901                 sp = p->p_pgrp->pg_session;
  902 
  903                 if (sp != NULL) {
  904                         kp->ki_sid = sp->s_sid;
  905                         SESS_LOCK(sp);
  906                         strlcpy(kp->ki_login, sp->s_login,
  907                             sizeof(kp->ki_login));
  908                         if (sp->s_ttyvp)
  909                                 kp->ki_kiflag |= KI_CTTY;
  910                         if (SESS_LEADER(p))
  911                                 kp->ki_kiflag |= KI_SLEADER;
  912                         /* XXX proctree_lock */
  913                         tp = sp->s_ttyp;
  914                         SESS_UNLOCK(sp);
  915                 }
  916         }
  917         if ((p->p_flag & P_CONTROLT) && tp != NULL) {
  918                 kp->ki_tdev = tty_udev(tp);
  919                 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
  920                 if (tp->t_session)
  921                         kp->ki_tsid = tp->t_session->s_sid;
  922         } else
  923                 kp->ki_tdev = NODEV;
  924         if (p->p_comm[0] != '\0')
  925                 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
  926         if (p->p_sysent && p->p_sysent->sv_name != NULL &&
  927             p->p_sysent->sv_name[0] != '\0')
  928                 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
  929         kp->ki_siglist = p->p_siglist;
  930         kp->ki_xstat = p->p_xstat;
  931         kp->ki_acflag = p->p_acflag;
  932         kp->ki_lock = p->p_lock;
  933         if (p->p_pptr)
  934                 kp->ki_ppid = p->p_pptr->p_pid;
  935 }
  936 
  937 /*
  938  * Fill in information that is thread specific.  Must be called with
  939  * target process locked.  If 'preferthread' is set, overwrite certain
  940  * process-related fields that are maintained for both threads and
  941  * processes.
  942  */
  943 static void
  944 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
  945 {
  946         struct proc *p;
  947 
  948         p = td->td_proc;
  949         kp->ki_tdaddr = td;
  950         PROC_LOCK_ASSERT(p, MA_OWNED);
  951 
  952         if (preferthread)
  953                 PROC_SLOCK(p);
  954         thread_lock(td);
  955         if (td->td_wmesg != NULL)
  956                 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
  957         else
  958                 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
  959         strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname));
  960         if (TD_ON_LOCK(td)) {
  961                 kp->ki_kiflag |= KI_LOCKBLOCK;
  962                 strlcpy(kp->ki_lockname, td->td_lockname,
  963                     sizeof(kp->ki_lockname));
  964         } else {
  965                 kp->ki_kiflag &= ~KI_LOCKBLOCK;
  966                 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
  967         }
  968 
  969         if (p->p_state == PRS_NORMAL) { /* approximate. */
  970                 if (TD_ON_RUNQ(td) ||
  971                     TD_CAN_RUN(td) ||
  972                     TD_IS_RUNNING(td)) {
  973                         kp->ki_stat = SRUN;
  974                 } else if (P_SHOULDSTOP(p)) {
  975                         kp->ki_stat = SSTOP;
  976                 } else if (TD_IS_SLEEPING(td)) {
  977                         kp->ki_stat = SSLEEP;
  978                 } else if (TD_ON_LOCK(td)) {
  979                         kp->ki_stat = SLOCK;
  980                 } else {
  981                         kp->ki_stat = SWAIT;
  982                 }
  983         } else if (p->p_state == PRS_ZOMBIE) {
  984                 kp->ki_stat = SZOMB;
  985         } else {
  986                 kp->ki_stat = SIDL;
  987         }
  988 
  989         /* Things in the thread */
  990         kp->ki_wchan = td->td_wchan;
  991         kp->ki_pri.pri_level = td->td_priority;
  992         kp->ki_pri.pri_native = td->td_base_pri;
  993         kp->ki_lastcpu = td->td_lastcpu;
  994         kp->ki_oncpu = td->td_oncpu;
  995         kp->ki_tdflags = td->td_flags;
  996         kp->ki_tid = td->td_tid;
  997         kp->ki_numthreads = p->p_numthreads;
  998         kp->ki_pcb = td->td_pcb;
  999         kp->ki_kstack = (void *)td->td_kstack;
 1000         kp->ki_slptime = (ticks - td->td_slptick) / hz;
 1001         kp->ki_pri.pri_class = td->td_pri_class;
 1002         kp->ki_pri.pri_user = td->td_user_pri;
 1003 
 1004         if (preferthread) {
 1005                 rufetchtd(td, &kp->ki_rusage);
 1006                 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
 1007                 kp->ki_pctcpu = sched_pctcpu(td);
 1008                 kp->ki_estcpu = td->td_estcpu;
 1009                 kp->ki_cow = td->td_cow;
 1010         }
 1011 
 1012         /* We can't get this anymore but ps etc never used it anyway. */
 1013         kp->ki_rqindex = 0;
 1014 
 1015         if (preferthread)
 1016                 kp->ki_siglist = td->td_siglist;
 1017         kp->ki_sigmask = td->td_sigmask;
 1018         thread_unlock(td);
 1019         if (preferthread)
 1020                 PROC_SUNLOCK(p);
 1021 }
 1022 
 1023 /*
 1024  * Fill in a kinfo_proc structure for the specified process.
 1025  * Must be called with the target process locked.
 1026  */
 1027 void
 1028 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
 1029 {
 1030 
 1031         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1032 
 1033         fill_kinfo_proc_only(p, kp);
 1034         fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
 1035         fill_kinfo_aggregate(p, kp);
 1036 }
 1037 
 1038 struct pstats *
 1039 pstats_alloc(void)
 1040 {
 1041 
 1042         return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
 1043 }
 1044 
 1045 /*
 1046  * Copy parts of p_stats; zero the rest of p_stats (statistics).
 1047  */
 1048 void
 1049 pstats_fork(struct pstats *src, struct pstats *dst)
 1050 {
 1051 
 1052         bzero(&dst->pstat_startzero,
 1053             __rangeof(struct pstats, pstat_startzero, pstat_endzero));
 1054         bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
 1055             __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
 1056 }
 1057 
 1058 void
 1059 pstats_free(struct pstats *ps)
 1060 {
 1061 
 1062         free(ps, M_SUBPROC);
 1063 }
 1064 
 1065 static struct proc *
 1066 zpfind_locked(pid_t pid)
 1067 {
 1068         struct proc *p;
 1069 
 1070         sx_assert(&allproc_lock, SX_LOCKED);
 1071         LIST_FOREACH(p, &zombproc, p_list) {
 1072                 if (p->p_pid == pid) {
 1073                         PROC_LOCK(p);
 1074                         break;
 1075                 }
 1076         }
 1077         return (p);
 1078 }
 1079 
 1080 /*
 1081  * Locate a zombie process by number
 1082  */
 1083 struct proc *
 1084 zpfind(pid_t pid)
 1085 {
 1086         struct proc *p;
 1087 
 1088         sx_slock(&allproc_lock);
 1089         p = zpfind_locked(pid);
 1090         sx_sunlock(&allproc_lock);
 1091         return (p);
 1092 }
 1093 
 1094 #ifdef COMPAT_FREEBSD32
 1095 
 1096 /*
 1097  * This function is typically used to copy out the kernel address, so
 1098  * it can be replaced by assignment of zero.
 1099  */
 1100 static inline uint32_t
 1101 ptr32_trim(void *ptr)
 1102 {
 1103         uintptr_t uptr;
 1104 
 1105         uptr = (uintptr_t)ptr;
 1106         return ((uptr > UINT_MAX) ? 0 : uptr);
 1107 }
 1108 
 1109 #define PTRTRIM_CP(src,dst,fld) \
 1110         do { (dst).fld = ptr32_trim((src).fld); } while (0)
 1111 
 1112 static void
 1113 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
 1114 {
 1115         int i;
 1116 
 1117         bzero(ki32, sizeof(struct kinfo_proc32));
 1118         ki32->ki_structsize = sizeof(struct kinfo_proc32);
 1119         CP(*ki, *ki32, ki_layout);
 1120         PTRTRIM_CP(*ki, *ki32, ki_args);
 1121         PTRTRIM_CP(*ki, *ki32, ki_paddr);
 1122         PTRTRIM_CP(*ki, *ki32, ki_addr);
 1123         PTRTRIM_CP(*ki, *ki32, ki_tracep);
 1124         PTRTRIM_CP(*ki, *ki32, ki_textvp);
 1125         PTRTRIM_CP(*ki, *ki32, ki_fd);
 1126         PTRTRIM_CP(*ki, *ki32, ki_vmspace);
 1127         PTRTRIM_CP(*ki, *ki32, ki_wchan);
 1128         CP(*ki, *ki32, ki_pid);
 1129         CP(*ki, *ki32, ki_ppid);
 1130         CP(*ki, *ki32, ki_pgid);
 1131         CP(*ki, *ki32, ki_tpgid);
 1132         CP(*ki, *ki32, ki_sid);
 1133         CP(*ki, *ki32, ki_tsid);
 1134         CP(*ki, *ki32, ki_jobc);
 1135         CP(*ki, *ki32, ki_tdev);
 1136         CP(*ki, *ki32, ki_siglist);
 1137         CP(*ki, *ki32, ki_sigmask);
 1138         CP(*ki, *ki32, ki_sigignore);
 1139         CP(*ki, *ki32, ki_sigcatch);
 1140         CP(*ki, *ki32, ki_uid);
 1141         CP(*ki, *ki32, ki_ruid);
 1142         CP(*ki, *ki32, ki_svuid);
 1143         CP(*ki, *ki32, ki_rgid);
 1144         CP(*ki, *ki32, ki_svgid);
 1145         CP(*ki, *ki32, ki_ngroups);
 1146         for (i = 0; i < KI_NGROUPS; i++)
 1147                 CP(*ki, *ki32, ki_groups[i]);
 1148         CP(*ki, *ki32, ki_size);
 1149         CP(*ki, *ki32, ki_rssize);
 1150         CP(*ki, *ki32, ki_swrss);
 1151         CP(*ki, *ki32, ki_tsize);
 1152         CP(*ki, *ki32, ki_dsize);
 1153         CP(*ki, *ki32, ki_ssize);
 1154         CP(*ki, *ki32, ki_xstat);
 1155         CP(*ki, *ki32, ki_acflag);
 1156         CP(*ki, *ki32, ki_pctcpu);
 1157         CP(*ki, *ki32, ki_estcpu);
 1158         CP(*ki, *ki32, ki_slptime);
 1159         CP(*ki, *ki32, ki_swtime);
 1160         CP(*ki, *ki32, ki_cow);
 1161         CP(*ki, *ki32, ki_runtime);
 1162         TV_CP(*ki, *ki32, ki_start);
 1163         TV_CP(*ki, *ki32, ki_childtime);
 1164         CP(*ki, *ki32, ki_flag);
 1165         CP(*ki, *ki32, ki_kiflag);
 1166         CP(*ki, *ki32, ki_traceflag);
 1167         CP(*ki, *ki32, ki_stat);
 1168         CP(*ki, *ki32, ki_nice);
 1169         CP(*ki, *ki32, ki_lock);
 1170         CP(*ki, *ki32, ki_rqindex);
 1171         CP(*ki, *ki32, ki_oncpu);
 1172         CP(*ki, *ki32, ki_lastcpu);
 1173         bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
 1174         bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
 1175         bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
 1176         bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
 1177         bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
 1178         bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
 1179         bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
 1180         CP(*ki, *ki32, ki_flag2);
 1181         CP(*ki, *ki32, ki_fibnum);
 1182         CP(*ki, *ki32, ki_cr_flags);
 1183         CP(*ki, *ki32, ki_jid);
 1184         CP(*ki, *ki32, ki_numthreads);
 1185         CP(*ki, *ki32, ki_tid);
 1186         CP(*ki, *ki32, ki_pri);
 1187         freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
 1188         freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
 1189         PTRTRIM_CP(*ki, *ki32, ki_pcb);
 1190         PTRTRIM_CP(*ki, *ki32, ki_kstack);
 1191         PTRTRIM_CP(*ki, *ki32, ki_udata);
 1192         CP(*ki, *ki32, ki_sflag);
 1193         CP(*ki, *ki32, ki_tdflags);
 1194 }
 1195 #endif
 1196 
 1197 int
 1198 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
 1199 {
 1200         struct thread *td;
 1201         struct kinfo_proc ki;
 1202 #ifdef COMPAT_FREEBSD32
 1203         struct kinfo_proc32 ki32;
 1204 #endif
 1205         int error;
 1206 
 1207         PROC_LOCK_ASSERT(p, MA_OWNED);
 1208         MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 1209 
 1210         error = 0;
 1211         fill_kinfo_proc(p, &ki);
 1212         if ((flags & KERN_PROC_NOTHREADS) != 0) {
 1213 #ifdef COMPAT_FREEBSD32
 1214                 if ((flags & KERN_PROC_MASK32) != 0) {
 1215                         freebsd32_kinfo_proc_out(&ki, &ki32);
 1216                         error = sbuf_bcat(sb, &ki32, sizeof(ki32));
 1217                 } else
 1218 #endif
 1219                         error = sbuf_bcat(sb, &ki, sizeof(ki));
 1220         } else {
 1221                 FOREACH_THREAD_IN_PROC(p, td) {
 1222                         fill_kinfo_thread(td, &ki, 1);
 1223 #ifdef COMPAT_FREEBSD32
 1224                         if ((flags & KERN_PROC_MASK32) != 0) {
 1225                                 freebsd32_kinfo_proc_out(&ki, &ki32);
 1226                                 error = sbuf_bcat(sb, &ki32, sizeof(ki32));
 1227                         } else
 1228 #endif
 1229                                 error = sbuf_bcat(sb, &ki, sizeof(ki));
 1230                         if (error)
 1231                                 break;
 1232                 }
 1233         }
 1234         PROC_UNLOCK(p);
 1235         return (error);
 1236 }
 1237 
 1238 static int
 1239 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
 1240     int doingzomb)
 1241 {
 1242         struct sbuf sb;
 1243         struct kinfo_proc ki;
 1244         struct proc *np;
 1245         int error, error2;
 1246         pid_t pid;
 1247 
 1248         pid = p->p_pid;
 1249         sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
 1250         error = kern_proc_out(p, &sb, flags);
 1251         error2 = sbuf_finish(&sb);
 1252         sbuf_delete(&sb);
 1253         if (error != 0)
 1254                 return (error);
 1255         else if (error2 != 0)
 1256                 return (error2);
 1257         if (doingzomb)
 1258                 np = zpfind(pid);
 1259         else {
 1260                 if (pid == 0)
 1261                         return (0);
 1262                 np = pfind(pid);
 1263         }
 1264         if (np == NULL)
 1265                 return (ESRCH);
 1266         if (np != p) {
 1267                 PROC_UNLOCK(np);
 1268                 return (ESRCH);
 1269         }
 1270         PROC_UNLOCK(np);
 1271         return (0);
 1272 }
 1273 
 1274 static int
 1275 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
 1276 {
 1277         int *name = (int *)arg1;
 1278         u_int namelen = arg2;
 1279         struct proc *p;
 1280         int flags, doingzomb, oid_number;
 1281         int error = 0;
 1282 
 1283         oid_number = oidp->oid_number;
 1284         if (oid_number != KERN_PROC_ALL &&
 1285             (oid_number & KERN_PROC_INC_THREAD) == 0)
 1286                 flags = KERN_PROC_NOTHREADS;
 1287         else {
 1288                 flags = 0;
 1289                 oid_number &= ~KERN_PROC_INC_THREAD;
 1290         }
 1291 #ifdef COMPAT_FREEBSD32
 1292         if (req->flags & SCTL_MASK32)
 1293                 flags |= KERN_PROC_MASK32;
 1294 #endif
 1295         if (oid_number == KERN_PROC_PID) {
 1296                 if (namelen != 1)
 1297                         return (EINVAL);
 1298                 error = sysctl_wire_old_buffer(req, 0);
 1299                 if (error)
 1300                         return (error);
 1301                 error = pget((pid_t)name[0], PGET_CANSEE, &p);
 1302                 if (error != 0)
 1303                         return (error);
 1304                 error = sysctl_out_proc(p, req, flags, 0);
 1305                 return (error);
 1306         }
 1307 
 1308         switch (oid_number) {
 1309         case KERN_PROC_ALL:
 1310                 if (namelen != 0)
 1311                         return (EINVAL);
 1312                 break;
 1313         case KERN_PROC_PROC:
 1314                 if (namelen != 0 && namelen != 1)
 1315                         return (EINVAL);
 1316                 break;
 1317         default:
 1318                 if (namelen != 1)
 1319                         return (EINVAL);
 1320                 break;
 1321         }
 1322 
 1323         if (!req->oldptr) {
 1324                 /* overestimate by 5 procs */
 1325                 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
 1326                 if (error)
 1327                         return (error);
 1328         }
 1329         error = sysctl_wire_old_buffer(req, 0);
 1330         if (error != 0)
 1331                 return (error);
 1332         sx_slock(&allproc_lock);
 1333         for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
 1334                 if (!doingzomb)
 1335                         p = LIST_FIRST(&allproc);
 1336                 else
 1337                         p = LIST_FIRST(&zombproc);
 1338                 for (; p != 0; p = LIST_NEXT(p, p_list)) {
 1339                         /*
 1340                          * Skip embryonic processes.
 1341                          */
 1342                         PROC_LOCK(p);
 1343                         if (p->p_state == PRS_NEW) {
 1344                                 PROC_UNLOCK(p);
 1345                                 continue;
 1346                         }
 1347                         KASSERT(p->p_ucred != NULL,
 1348                             ("process credential is NULL for non-NEW proc"));
 1349                         /*
 1350                          * Show a user only appropriate processes.
 1351                          */
 1352                         if (p_cansee(curthread, p)) {
 1353                                 PROC_UNLOCK(p);
 1354                                 continue;
 1355                         }
 1356                         /*
 1357                          * TODO - make more efficient (see notes below).
 1358                          * do by session.
 1359                          */
 1360                         switch (oid_number) {
 1361 
 1362                         case KERN_PROC_GID:
 1363                                 if (p->p_ucred->cr_gid != (gid_t)name[0]) {
 1364                                         PROC_UNLOCK(p);
 1365                                         continue;
 1366                                 }
 1367                                 break;
 1368 
 1369                         case KERN_PROC_PGRP:
 1370                                 /* could do this by traversing pgrp */
 1371                                 if (p->p_pgrp == NULL ||
 1372                                     p->p_pgrp->pg_id != (pid_t)name[0]) {
 1373                                         PROC_UNLOCK(p);
 1374                                         continue;
 1375                                 }
 1376                                 break;
 1377 
 1378                         case KERN_PROC_RGID:
 1379                                 if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
 1380                                         PROC_UNLOCK(p);
 1381                                         continue;
 1382                                 }
 1383                                 break;
 1384 
 1385                         case KERN_PROC_SESSION:
 1386                                 if (p->p_session == NULL ||
 1387                                     p->p_session->s_sid != (pid_t)name[0]) {
 1388                                         PROC_UNLOCK(p);
 1389                                         continue;
 1390                                 }
 1391                                 break;
 1392 
 1393                         case KERN_PROC_TTY:
 1394                                 if ((p->p_flag & P_CONTROLT) == 0 ||
 1395                                     p->p_session == NULL) {
 1396                                         PROC_UNLOCK(p);
 1397                                         continue;
 1398                                 }
 1399                                 /* XXX proctree_lock */
 1400                                 SESS_LOCK(p->p_session);
 1401                                 if (p->p_session->s_ttyp == NULL ||
 1402                                     tty_udev(p->p_session->s_ttyp) !=
 1403                                     (dev_t)name[0]) {
 1404                                         SESS_UNLOCK(p->p_session);
 1405                                         PROC_UNLOCK(p);
 1406                                         continue;
 1407                                 }
 1408                                 SESS_UNLOCK(p->p_session);
 1409                                 break;
 1410 
 1411                         case KERN_PROC_UID:
 1412                                 if (p->p_ucred->cr_uid != (uid_t)name[0]) {
 1413                                         PROC_UNLOCK(p);
 1414                                         continue;
 1415                                 }
 1416                                 break;
 1417 
 1418                         case KERN_PROC_RUID:
 1419                                 if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
 1420                                         PROC_UNLOCK(p);
 1421                                         continue;
 1422                                 }
 1423                                 break;
 1424 
 1425                         case KERN_PROC_PROC:
 1426                                 break;
 1427 
 1428                         default:
 1429                                 break;
 1430 
 1431                         }
 1432 
 1433                         error = sysctl_out_proc(p, req, flags, doingzomb);
 1434                         if (error) {
 1435                                 sx_sunlock(&allproc_lock);
 1436                                 return (error);
 1437                         }
 1438                 }
 1439         }
 1440         sx_sunlock(&allproc_lock);
 1441         return (0);
 1442 }
 1443 
 1444 struct pargs *
 1445 pargs_alloc(int len)
 1446 {
 1447         struct pargs *pa;
 1448 
 1449         pa = malloc(sizeof(struct pargs) + len, M_PARGS,
 1450                 M_WAITOK);
 1451         refcount_init(&pa->ar_ref, 1);
 1452         pa->ar_length = len;
 1453         return (pa);
 1454 }
 1455 
 1456 static void
 1457 pargs_free(struct pargs *pa)
 1458 {
 1459 
 1460         free(pa, M_PARGS);
 1461 }
 1462 
 1463 void
 1464 pargs_hold(struct pargs *pa)
 1465 {
 1466 
 1467         if (pa == NULL)
 1468                 return;
 1469         refcount_acquire(&pa->ar_ref);
 1470 }
 1471 
 1472 void
 1473 pargs_drop(struct pargs *pa)
 1474 {
 1475 
 1476         if (pa == NULL)
 1477                 return;
 1478         if (refcount_release(&pa->ar_ref))
 1479                 pargs_free(pa);
 1480 }
 1481 
 1482 static int
 1483 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf,
 1484     size_t len)
 1485 {
 1486         struct iovec iov;
 1487         struct uio uio;
 1488 
 1489         iov.iov_base = (caddr_t)buf;
 1490         iov.iov_len = len;
 1491         uio.uio_iov = &iov;
 1492         uio.uio_iovcnt = 1;
 1493         uio.uio_offset = offset;
 1494         uio.uio_resid = (ssize_t)len;
 1495         uio.uio_segflg = UIO_SYSSPACE;
 1496         uio.uio_rw = UIO_READ;
 1497         uio.uio_td = td;
 1498 
 1499         return (proc_rwmem(p, &uio));
 1500 }
 1501 
 1502 static int
 1503 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
 1504     size_t len)
 1505 {
 1506         size_t i;
 1507         int error;
 1508 
 1509         error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len);
 1510         /*
 1511          * Reading the chunk may validly return EFAULT if the string is shorter
 1512          * than the chunk and is aligned at the end of the page, assuming the
 1513          * next page is not mapped.  So if EFAULT is returned do a fallback to
 1514          * one byte read loop.
 1515          */
 1516         if (error == EFAULT) {
 1517                 for (i = 0; i < len; i++, buf++, sptr++) {
 1518                         error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1);
 1519                         if (error != 0)
 1520                                 return (error);
 1521                         if (*buf == '\0')
 1522                                 break;
 1523                 }
 1524                 error = 0;
 1525         }
 1526         return (error);
 1527 }
 1528 
 1529 #define PROC_AUXV_MAX   256     /* Safety limit on auxv size. */
 1530 
 1531 enum proc_vector_type {
 1532         PROC_ARG,
 1533         PROC_ENV,
 1534         PROC_AUX,
 1535 };
 1536 
 1537 #ifdef COMPAT_FREEBSD32
 1538 static int
 1539 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
 1540     size_t *vsizep, enum proc_vector_type type)
 1541 {
 1542         struct freebsd32_ps_strings pss;
 1543         Elf32_Auxinfo aux;
 1544         vm_offset_t vptr, ptr;
 1545         uint32_t *proc_vector32;
 1546         char **proc_vector;
 1547         size_t vsize, size;
 1548         int i, error;
 1549 
 1550         error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
 1551             &pss, sizeof(pss));
 1552         if (error != 0)
 1553                 return (error);
 1554         switch (type) {
 1555         case PROC_ARG:
 1556                 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
 1557                 vsize = pss.ps_nargvstr;
 1558                 if (vsize > ARG_MAX)
 1559                         return (ENOEXEC);
 1560                 size = vsize * sizeof(int32_t);
 1561                 break;
 1562         case PROC_ENV:
 1563                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
 1564                 vsize = pss.ps_nenvstr;
 1565                 if (vsize > ARG_MAX)
 1566                         return (ENOEXEC);
 1567                 size = vsize * sizeof(int32_t);
 1568                 break;
 1569         case PROC_AUX:
 1570                 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
 1571                     (pss.ps_nenvstr + 1) * sizeof(int32_t);
 1572                 if (vptr % 4 != 0)
 1573                         return (ENOEXEC);
 1574                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 1575                         error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
 1576                         if (error != 0)
 1577                                 return (error);
 1578                         if (aux.a_type == AT_NULL)
 1579                                 break;
 1580                         ptr += sizeof(aux);
 1581                 }
 1582                 if (aux.a_type != AT_NULL)
 1583                         return (ENOEXEC);
 1584                 vsize = i + 1;
 1585                 size = vsize * sizeof(aux);
 1586                 break;
 1587         default:
 1588                 KASSERT(0, ("Wrong proc vector type: %d", type));
 1589                 return (EINVAL);
 1590         }
 1591         proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
 1592         error = proc_read_mem(td, p, vptr, proc_vector32, size);
 1593         if (error != 0)
 1594                 goto done;
 1595         if (type == PROC_AUX) {
 1596                 *proc_vectorp = (char **)proc_vector32;
 1597                 *vsizep = vsize;
 1598                 return (0);
 1599         }
 1600         proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
 1601         for (i = 0; i < (int)vsize; i++)
 1602                 proc_vector[i] = PTRIN(proc_vector32[i]);
 1603         *proc_vectorp = proc_vector;
 1604         *vsizep = vsize;
 1605 done:
 1606         free(proc_vector32, M_TEMP);
 1607         return (error);
 1608 }
 1609 #endif
 1610 
 1611 static int
 1612 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
 1613     size_t *vsizep, enum proc_vector_type type)
 1614 {
 1615         struct ps_strings pss;
 1616         Elf_Auxinfo aux;
 1617         vm_offset_t vptr, ptr;
 1618         char **proc_vector;
 1619         size_t vsize, size;
 1620         int error, i;
 1621 
 1622 #ifdef COMPAT_FREEBSD32
 1623         if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 1624                 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
 1625 #endif
 1626         error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
 1627             &pss, sizeof(pss));
 1628         if (error != 0)
 1629                 return (error);
 1630         switch (type) {
 1631         case PROC_ARG:
 1632                 vptr = (vm_offset_t)pss.ps_argvstr;
 1633                 vsize = pss.ps_nargvstr;
 1634                 if (vsize > ARG_MAX)
 1635                         return (ENOEXEC);
 1636                 size = vsize * sizeof(char *);
 1637                 break;
 1638         case PROC_ENV:
 1639                 vptr = (vm_offset_t)pss.ps_envstr;
 1640                 vsize = pss.ps_nenvstr;
 1641                 if (vsize > ARG_MAX)
 1642                         return (ENOEXEC);
 1643                 size = vsize * sizeof(char *);
 1644                 break;
 1645         case PROC_AUX:
 1646                 /*
 1647                  * The aux array is just above env array on the stack. Check
 1648                  * that the address is naturally aligned.
 1649                  */
 1650                 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
 1651                     * sizeof(char *);
 1652 #if __ELF_WORD_SIZE == 64
 1653                 if (vptr % sizeof(uint64_t) != 0)
 1654 #else
 1655                 if (vptr % sizeof(uint32_t) != 0)
 1656 #endif
 1657                         return (ENOEXEC);
 1658                 /*
 1659                  * We count the array size reading the aux vectors from the
 1660                  * stack until AT_NULL vector is returned.  So (to keep the code
 1661                  * simple) we read the process stack twice: the first time here
 1662                  * to find the size and the second time when copying the vectors
 1663                  * to the allocated proc_vector.
 1664                  */
 1665                 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 1666                         error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
 1667                         if (error != 0)
 1668                                 return (error);
 1669                         if (aux.a_type == AT_NULL)
 1670                                 break;
 1671                         ptr += sizeof(aux);
 1672                 }
 1673                 /*
 1674                  * If the PROC_AUXV_MAX entries are iterated over, and we have
 1675                  * not reached AT_NULL, it is most likely we are reading wrong
 1676                  * data: either the process doesn't have auxv array or data has
 1677                  * been modified. Return the error in this case.
 1678                  */
 1679                 if (aux.a_type != AT_NULL)
 1680                         return (ENOEXEC);
 1681                 vsize = i + 1;
 1682                 size = vsize * sizeof(aux);
 1683                 break;
 1684         default:
 1685                 KASSERT(0, ("Wrong proc vector type: %d", type));
 1686                 return (EINVAL); /* In case we are built without INVARIANTS. */
 1687         }
 1688         proc_vector = malloc(size, M_TEMP, M_WAITOK);
 1689         if (proc_vector == NULL)
 1690                 return (ENOMEM);
 1691         error = proc_read_mem(td, p, vptr, proc_vector, size);
 1692         if (error != 0) {
 1693                 free(proc_vector, M_TEMP);
 1694                 return (error);
 1695         }
 1696         *proc_vectorp = proc_vector;
 1697         *vsizep = vsize;
 1698 
 1699         return (0);
 1700 }
 1701 
 1702 #define GET_PS_STRINGS_CHUNK_SZ 256     /* Chunk size (bytes) for ps_strings operations. */
 1703 
 1704 static int
 1705 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
 1706     enum proc_vector_type type)
 1707 {
 1708         size_t done, len, nchr, vsize;
 1709         int error, i;
 1710         char **proc_vector, *sptr;
 1711         char pss_string[GET_PS_STRINGS_CHUNK_SZ];
 1712 
 1713         PROC_ASSERT_HELD(p);
 1714 
 1715         /*
 1716          * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
 1717          */
 1718         nchr = 2 * (PATH_MAX + ARG_MAX);
 1719 
 1720         error = get_proc_vector(td, p, &proc_vector, &vsize, type);
 1721         if (error != 0)
 1722                 return (error);
 1723         for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
 1724                 /*
 1725                  * The program may have scribbled into its argv array, e.g. to
 1726                  * remove some arguments.  If that has happened, break out
 1727                  * before trying to read from NULL.
 1728                  */
 1729                 if (proc_vector[i] == NULL)
 1730                         break;
 1731                 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
 1732                         error = proc_read_string(td, p, sptr, pss_string,
 1733                             sizeof(pss_string));
 1734                         if (error != 0)
 1735                                 goto done;
 1736                         len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
 1737                         if (done + len >= nchr)
 1738                                 len = nchr - done - 1;
 1739                         sbuf_bcat(sb, pss_string, len);
 1740                         if (len != GET_PS_STRINGS_CHUNK_SZ)
 1741                                 break;
 1742                         done += GET_PS_STRINGS_CHUNK_SZ;
 1743                 }
 1744                 sbuf_bcat(sb, "", 1);
 1745                 done += len + 1;
 1746         }
 1747 done:
 1748         free(proc_vector, M_TEMP);
 1749         return (error);
 1750 }
 1751 
 1752 int
 1753 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
 1754 {
 1755 
 1756         return (get_ps_strings(curthread, p, sb, PROC_ARG));
 1757 }
 1758 
 1759 int
 1760 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
 1761 {
 1762 
 1763         return (get_ps_strings(curthread, p, sb, PROC_ENV));
 1764 }
 1765 
 1766 int
 1767 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
 1768 {
 1769         size_t vsize, size;
 1770         char **auxv;
 1771         int error;
 1772 
 1773         error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
 1774         if (error == 0) {
 1775 #ifdef COMPAT_FREEBSD32
 1776                 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 1777                         size = vsize * sizeof(Elf32_Auxinfo);
 1778                 else
 1779 #endif
 1780                         size = vsize * sizeof(Elf_Auxinfo);
 1781                 error = sbuf_bcat(sb, auxv, size);
 1782                 free(auxv, M_TEMP);
 1783         }
 1784         return (error);
 1785 }
 1786 
 1787 /*
 1788  * This sysctl allows a process to retrieve the argument list or process
 1789  * title for another process without groping around in the address space
 1790  * of the other process.  It also allow a process to set its own "process 
 1791  * title to a string of its own choice.
 1792  */
 1793 static int
 1794 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
 1795 {
 1796         int *name = (int *)arg1;
 1797         u_int namelen = arg2;
 1798         struct pargs *newpa, *pa;
 1799         struct proc *p;
 1800         struct sbuf sb;
 1801         int flags, error = 0, error2;
 1802 
 1803         if (namelen != 1)
 1804                 return (EINVAL);
 1805 
 1806         flags = PGET_CANSEE;
 1807         if (req->newptr != NULL)
 1808                 flags |= PGET_ISCURRENT;
 1809         error = pget((pid_t)name[0], flags, &p);
 1810         if (error)
 1811                 return (error);
 1812 
 1813         pa = p->p_args;
 1814         if (pa != NULL) {
 1815                 pargs_hold(pa);
 1816                 PROC_UNLOCK(p);
 1817                 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
 1818                 pargs_drop(pa);
 1819         } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
 1820                 _PHOLD(p);
 1821                 PROC_UNLOCK(p);
 1822                 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1823                 error = proc_getargv(curthread, p, &sb);
 1824                 error2 = sbuf_finish(&sb);
 1825                 PRELE(p);
 1826                 sbuf_delete(&sb);
 1827                 if (error == 0 && error2 != 0)
 1828                         error = error2;
 1829         } else {
 1830                 PROC_UNLOCK(p);
 1831         }
 1832         if (error != 0 || req->newptr == NULL)
 1833                 return (error);
 1834 
 1835         if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
 1836                 return (ENOMEM);
 1837         newpa = pargs_alloc(req->newlen);
 1838         error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
 1839         if (error != 0) {
 1840                 pargs_free(newpa);
 1841                 return (error);
 1842         }
 1843         PROC_LOCK(p);
 1844         pa = p->p_args;
 1845         p->p_args = newpa;
 1846         PROC_UNLOCK(p);
 1847         pargs_drop(pa);
 1848         return (0);
 1849 }
 1850 
 1851 /*
 1852  * This sysctl allows a process to retrieve environment of another process.
 1853  */
 1854 static int
 1855 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
 1856 {
 1857         int *name = (int *)arg1;
 1858         u_int namelen = arg2;
 1859         struct proc *p;
 1860         struct sbuf sb;
 1861         int error, error2;
 1862 
 1863         if (namelen != 1)
 1864                 return (EINVAL);
 1865 
 1866         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1867         if (error != 0)
 1868                 return (error);
 1869         if ((p->p_flag & P_SYSTEM) != 0) {
 1870                 PRELE(p);
 1871                 return (0);
 1872         }
 1873 
 1874         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1875         error = proc_getenvv(curthread, p, &sb);
 1876         error2 = sbuf_finish(&sb);
 1877         PRELE(p);
 1878         sbuf_delete(&sb);
 1879         return (error != 0 ? error : error2);
 1880 }
 1881 
 1882 /*
 1883  * This sysctl allows a process to retrieve ELF auxiliary vector of
 1884  * another process.
 1885  */
 1886 static int
 1887 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
 1888 {
 1889         int *name = (int *)arg1;
 1890         u_int namelen = arg2;
 1891         struct proc *p;
 1892         struct sbuf sb;
 1893         int error, error2;
 1894 
 1895         if (namelen != 1)
 1896                 return (EINVAL);
 1897 
 1898         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 1899         if (error != 0)
 1900                 return (error);
 1901         if ((p->p_flag & P_SYSTEM) != 0) {
 1902                 PRELE(p);
 1903                 return (0);
 1904         }
 1905         sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 1906         error = proc_getauxv(curthread, p, &sb);
 1907         error2 = sbuf_finish(&sb);
 1908         PRELE(p);
 1909         sbuf_delete(&sb);
 1910         return (error != 0 ? error : error2);
 1911 }
 1912 
 1913 /*
 1914  * This sysctl allows a process to retrieve the path of the executable for
 1915  * itself or another process.
 1916  */
 1917 static int
 1918 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
 1919 {
 1920         pid_t *pidp = (pid_t *)arg1;
 1921         unsigned int arglen = arg2;
 1922         struct proc *p;
 1923         struct vnode *vp;
 1924         char *retbuf, *freebuf;
 1925         int error, vfslocked;
 1926 
 1927         if (arglen != 1)
 1928                 return (EINVAL);
 1929         if (*pidp == -1) {      /* -1 means this process */
 1930                 p = req->td->td_proc;
 1931         } else {
 1932                 error = pget(*pidp, PGET_CANSEE, &p);
 1933                 if (error != 0)
 1934                         return (error);
 1935         }
 1936 
 1937         vp = p->p_textvp;
 1938         if (vp == NULL) {
 1939                 if (*pidp != -1)
 1940                         PROC_UNLOCK(p);
 1941                 return (0);
 1942         }
 1943         vref(vp);
 1944         if (*pidp != -1)
 1945                 PROC_UNLOCK(p);
 1946         error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
 1947         vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 1948         vrele(vp);
 1949         VFS_UNLOCK_GIANT(vfslocked);
 1950         if (error)
 1951                 return (error);
 1952         error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
 1953         free(freebuf, M_TEMP);
 1954         return (error);
 1955 }
 1956 
 1957 static int
 1958 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
 1959 {
 1960         struct proc *p;
 1961         char *sv_name;
 1962         int *name;
 1963         int namelen;
 1964         int error;
 1965 
 1966         namelen = arg2;
 1967         if (namelen != 1)
 1968                 return (EINVAL);
 1969 
 1970         name = (int *)arg1;
 1971         error = pget((pid_t)name[0], PGET_CANSEE, &p);
 1972         if (error != 0)
 1973                 return (error);
 1974         sv_name = p->p_sysent->sv_name;
 1975         PROC_UNLOCK(p);
 1976         return (sysctl_handle_string(oidp, sv_name, 0, req));
 1977 }
 1978 
 1979 #ifdef KINFO_OVMENTRY_SIZE
 1980 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
 1981 #endif
 1982 
 1983 #ifdef COMPAT_FREEBSD7
 1984 static int
 1985 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
 1986 {
 1987         vm_map_entry_t entry, tmp_entry;
 1988         unsigned int last_timestamp;
 1989         char *fullpath, *freepath;
 1990         struct kinfo_ovmentry *kve;
 1991         struct vattr va;
 1992         struct ucred *cred;
 1993         int error, *name;
 1994         struct vnode *vp;
 1995         struct proc *p;
 1996         vm_map_t map;
 1997         struct vmspace *vm;
 1998 
 1999         name = (int *)arg1;
 2000         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 2001         if (error != 0)
 2002                 return (error);
 2003         vm = vmspace_acquire_ref(p);
 2004         if (vm == NULL) {
 2005                 PRELE(p);
 2006                 return (ESRCH);
 2007         }
 2008         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
 2009 
 2010         map = &vm->vm_map;
 2011         vm_map_lock_read(map);
 2012         for (entry = map->header.next; entry != &map->header;
 2013             entry = entry->next) {
 2014                 vm_object_t obj, tobj, lobj;
 2015                 vm_offset_t addr;
 2016                 int vfslocked;
 2017 
 2018                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 2019                         continue;
 2020 
 2021                 bzero(kve, sizeof(*kve));
 2022                 kve->kve_structsize = sizeof(*kve);
 2023 
 2024                 kve->kve_private_resident = 0;
 2025                 obj = entry->object.vm_object;
 2026                 if (obj != NULL) {
 2027                         VM_OBJECT_LOCK(obj);
 2028                         if (obj->shadow_count == 1)
 2029                                 kve->kve_private_resident =
 2030                                     obj->resident_page_count;
 2031                 }
 2032                 kve->kve_resident = 0;
 2033                 addr = entry->start;
 2034                 while (addr < entry->end) {
 2035                         if (pmap_extract(map->pmap, addr))
 2036                                 kve->kve_resident++;
 2037                         addr += PAGE_SIZE;
 2038                 }
 2039 
 2040                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
 2041                         if (tobj != obj)
 2042                                 VM_OBJECT_LOCK(tobj);
 2043                         if (lobj != obj)
 2044                                 VM_OBJECT_UNLOCK(lobj);
 2045                         lobj = tobj;
 2046                 }
 2047 
 2048                 kve->kve_start = (void*)entry->start;
 2049                 kve->kve_end = (void*)entry->end;
 2050                 kve->kve_offset = (off_t)entry->offset;
 2051 
 2052                 if (entry->protection & VM_PROT_READ)
 2053                         kve->kve_protection |= KVME_PROT_READ;
 2054                 if (entry->protection & VM_PROT_WRITE)
 2055                         kve->kve_protection |= KVME_PROT_WRITE;
 2056                 if (entry->protection & VM_PROT_EXECUTE)
 2057                         kve->kve_protection |= KVME_PROT_EXEC;
 2058 
 2059                 if (entry->eflags & MAP_ENTRY_COW)
 2060                         kve->kve_flags |= KVME_FLAG_COW;
 2061                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 2062                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 2063                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 2064                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 2065 
 2066                 last_timestamp = map->timestamp;
 2067                 vm_map_unlock_read(map);
 2068 
 2069                 kve->kve_fileid = 0;
 2070                 kve->kve_fsid = 0;
 2071                 freepath = NULL;
 2072                 fullpath = "";
 2073                 if (lobj) {
 2074                         vp = NULL;
 2075                         switch (lobj->type) {
 2076                         case OBJT_DEFAULT:
 2077                                 kve->kve_type = KVME_TYPE_DEFAULT;
 2078                                 break;
 2079                         case OBJT_VNODE:
 2080                                 kve->kve_type = KVME_TYPE_VNODE;
 2081                                 vp = lobj->handle;
 2082                                 vref(vp);
 2083                                 break;
 2084                         case OBJT_SWAP:
 2085                                 kve->kve_type = KVME_TYPE_SWAP;
 2086                                 break;
 2087                         case OBJT_DEVICE:
 2088                                 kve->kve_type = KVME_TYPE_DEVICE;
 2089                                 break;
 2090                         case OBJT_PHYS:
 2091                                 kve->kve_type = KVME_TYPE_PHYS;
 2092                                 break;
 2093                         case OBJT_DEAD:
 2094                                 kve->kve_type = KVME_TYPE_DEAD;
 2095                                 break;
 2096                         case OBJT_SG:
 2097                                 kve->kve_type = KVME_TYPE_SG;
 2098                                 break;
 2099                         default:
 2100                                 kve->kve_type = KVME_TYPE_UNKNOWN;
 2101                                 break;
 2102                         }
 2103                         if (lobj != obj)
 2104                                 VM_OBJECT_UNLOCK(lobj);
 2105 
 2106                         kve->kve_ref_count = obj->ref_count;
 2107                         kve->kve_shadow_count = obj->shadow_count;
 2108                         VM_OBJECT_UNLOCK(obj);
 2109                         if (vp != NULL) {
 2110                                 vn_fullpath(curthread, vp, &fullpath,
 2111                                     &freepath);
 2112                                 cred = curthread->td_ucred;
 2113                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 2114                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2115                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 2116                                         kve->kve_fileid = va.va_fileid;
 2117                                         kve->kve_fsid = va.va_fsid;
 2118                                 }
 2119                                 vput(vp);
 2120                                 VFS_UNLOCK_GIANT(vfslocked);
 2121                         }
 2122                 } else {
 2123                         kve->kve_type = KVME_TYPE_NONE;
 2124                         kve->kve_ref_count = 0;
 2125                         kve->kve_shadow_count = 0;
 2126                 }
 2127 
 2128                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 2129                 if (freepath != NULL)
 2130                         free(freepath, M_TEMP);
 2131 
 2132                 error = SYSCTL_OUT(req, kve, sizeof(*kve));
 2133                 vm_map_lock_read(map);
 2134                 if (error)
 2135                         break;
 2136                 if (last_timestamp != map->timestamp) {
 2137                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 2138                         entry = tmp_entry;
 2139                 }
 2140         }
 2141         vm_map_unlock_read(map);
 2142         vmspace_free(vm);
 2143         PRELE(p);
 2144         free(kve, M_TEMP);
 2145         return (error);
 2146 }
 2147 #endif  /* COMPAT_FREEBSD7 */
 2148 
 2149 #ifdef KINFO_VMENTRY_SIZE
 2150 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
 2151 #endif
 2152 
 2153 /*
 2154  * Must be called with the process locked and will return unlocked.
 2155  */
 2156 int
 2157 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb)
 2158 {
 2159         vm_map_entry_t entry, tmp_entry;
 2160         unsigned int last_timestamp;
 2161         char *fullpath, *freepath;
 2162         struct kinfo_vmentry *kve;
 2163         struct vattr va;
 2164         struct ucred *cred;
 2165         int error;
 2166         struct vnode *vp;
 2167         struct vmspace *vm;
 2168         vm_map_t map;
 2169 
 2170         PROC_LOCK_ASSERT(p, MA_OWNED);
 2171 
 2172         _PHOLD(p);
 2173         PROC_UNLOCK(p);
 2174         vm = vmspace_acquire_ref(p);
 2175         if (vm == NULL) {
 2176                 PRELE(p);
 2177                 return (ESRCH);
 2178         }
 2179         kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
 2180 
 2181         error = 0;
 2182         map = &vm->vm_map;
 2183         vm_map_lock_read(map);
 2184         for (entry = map->header.next; entry != &map->header;
 2185             entry = entry->next) {
 2186                 vm_object_t obj, tobj, lobj;
 2187                 vm_offset_t addr;
 2188                 vm_paddr_t locked_pa;
 2189                 int vfslocked, mincoreinfo;
 2190 
 2191                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 2192                         continue;
 2193 
 2194                 bzero(kve, sizeof(*kve));
 2195 
 2196                 kve->kve_private_resident = 0;
 2197                 obj = entry->object.vm_object;
 2198                 if (obj != NULL) {
 2199                         VM_OBJECT_LOCK(obj);
 2200                         if (obj->shadow_count == 1)
 2201                                 kve->kve_private_resident =
 2202                                     obj->resident_page_count;
 2203                 }
 2204                 kve->kve_resident = 0;
 2205                 addr = entry->start;
 2206                 if (vmmap_skip_res_cnt)
 2207                         goto skip_resident_count;
 2208                 while (addr < entry->end) {
 2209                         locked_pa = 0;
 2210                         mincoreinfo = pmap_mincore(map->pmap, addr, &locked_pa);
 2211                         if (locked_pa != 0)
 2212                                 vm_page_unlock(PHYS_TO_VM_PAGE(locked_pa));
 2213                         if (mincoreinfo & MINCORE_INCORE)
 2214                                 kve->kve_resident++;
 2215                         if (mincoreinfo & MINCORE_SUPER)
 2216                                 kve->kve_flags |= KVME_FLAG_SUPER;
 2217                         addr += PAGE_SIZE;
 2218                 }
 2219 
 2220 skip_resident_count:
 2221                 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
 2222                         if (tobj != obj)
 2223                                 VM_OBJECT_LOCK(tobj);
 2224                         if (lobj != obj)
 2225                                 VM_OBJECT_UNLOCK(lobj);
 2226                         lobj = tobj;
 2227                 }
 2228 
 2229                 kve->kve_start = entry->start;
 2230                 kve->kve_end = entry->end;
 2231                 kve->kve_offset = entry->offset;
 2232 
 2233                 if (entry->protection & VM_PROT_READ)
 2234                         kve->kve_protection |= KVME_PROT_READ;
 2235                 if (entry->protection & VM_PROT_WRITE)
 2236                         kve->kve_protection |= KVME_PROT_WRITE;
 2237                 if (entry->protection & VM_PROT_EXECUTE)
 2238                         kve->kve_protection |= KVME_PROT_EXEC;
 2239 
 2240                 if (entry->eflags & MAP_ENTRY_COW)
 2241                         kve->kve_flags |= KVME_FLAG_COW;
 2242                 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 2243                         kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 2244                 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 2245                         kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 2246                 if (entry->eflags & MAP_ENTRY_GROWS_UP)
 2247                         kve->kve_flags |= KVME_FLAG_GROWS_UP;
 2248                 if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
 2249                         kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
 2250 
 2251                 last_timestamp = map->timestamp;
 2252                 vm_map_unlock_read(map);
 2253 
 2254                 freepath = NULL;
 2255                 fullpath = "";
 2256                 if (lobj) {
 2257                         vp = NULL;
 2258                         switch (lobj->type) {
 2259                         case OBJT_DEFAULT:
 2260                                 kve->kve_type = KVME_TYPE_DEFAULT;
 2261                                 break;
 2262                         case OBJT_VNODE:
 2263                                 kve->kve_type = KVME_TYPE_VNODE;
 2264                                 vp = lobj->handle;
 2265                                 vref(vp);
 2266                                 break;
 2267                         case OBJT_SWAP:
 2268                                 kve->kve_type = KVME_TYPE_SWAP;
 2269                                 break;
 2270                         case OBJT_DEVICE:
 2271                                 kve->kve_type = KVME_TYPE_DEVICE;
 2272                                 break;
 2273                         case OBJT_PHYS:
 2274                                 kve->kve_type = KVME_TYPE_PHYS;
 2275                                 break;
 2276                         case OBJT_DEAD:
 2277                                 kve->kve_type = KVME_TYPE_DEAD;
 2278                                 break;
 2279                         case OBJT_SG:
 2280                                 kve->kve_type = KVME_TYPE_SG;
 2281                                 break;
 2282                         case OBJT_MGTDEVICE:
 2283                                 kve->kve_type = KVME_TYPE_MGTDEVICE;
 2284                                 break;
 2285                         default:
 2286                                 kve->kve_type = KVME_TYPE_UNKNOWN;
 2287                                 break;
 2288                         }
 2289                         if (lobj != obj)
 2290                                 VM_OBJECT_UNLOCK(lobj);
 2291 
 2292                         kve->kve_ref_count = obj->ref_count;
 2293                         kve->kve_shadow_count = obj->shadow_count;
 2294                         VM_OBJECT_UNLOCK(obj);
 2295                         if (vp != NULL) {
 2296                                 vn_fullpath(curthread, vp, &fullpath,
 2297                                     &freepath);
 2298                                 kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
 2299                                 cred = curthread->td_ucred;
 2300                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
 2301                                 vn_lock(vp, LK_SHARED | LK_RETRY);
 2302                                 if (VOP_GETATTR(vp, &va, cred) == 0) {
 2303                                         kve->kve_vn_fileid = va.va_fileid;
 2304                                         kve->kve_vn_fsid = va.va_fsid;
 2305                                         kve->kve_vn_mode =
 2306                                             MAKEIMODE(va.va_type, va.va_mode);
 2307                                         kve->kve_vn_size = va.va_size;
 2308                                         kve->kve_vn_rdev = va.va_rdev;
 2309                                         kve->kve_status = KF_ATTR_VALID;
 2310                                 }
 2311                                 vput(vp);
 2312                                 VFS_UNLOCK_GIANT(vfslocked);
 2313                         }
 2314                 } else {
 2315                         kve->kve_type = KVME_TYPE_NONE;
 2316                         kve->kve_ref_count = 0;
 2317                         kve->kve_shadow_count = 0;
 2318                 }
 2319 
 2320                 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 2321                 if (freepath != NULL)
 2322                         free(freepath, M_TEMP);
 2323 
 2324                 /* Pack record size down */
 2325                 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
 2326                     strlen(kve->kve_path) + 1;
 2327                 kve->kve_structsize = roundup(kve->kve_structsize,
 2328                     sizeof(uint64_t));
 2329                 error = sbuf_bcat(sb, kve, kve->kve_structsize);
 2330                 vm_map_lock_read(map);
 2331                 if (error)
 2332                         break;
 2333                 if (last_timestamp != map->timestamp) {
 2334                         vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 2335                         entry = tmp_entry;
 2336                 }
 2337         }
 2338         vm_map_unlock_read(map);
 2339         vmspace_free(vm);
 2340         PRELE(p);
 2341         free(kve, M_TEMP);
 2342         return (error);
 2343 }
 2344 
 2345 static int
 2346 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
 2347 {
 2348         struct proc *p;
 2349         struct sbuf sb;
 2350         int error, error2, *name;
 2351 
 2352         name = (int *)arg1;
 2353         sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
 2354         error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
 2355         if (error != 0) {
 2356                 sbuf_delete(&sb);
 2357                 return (error);
 2358         }
 2359         error = kern_proc_vmmap_out(p, &sb);
 2360         error2 = sbuf_finish(&sb);
 2361         sbuf_delete(&sb);
 2362         return (error != 0 ? error : error2);
 2363 }
 2364 
 2365 #if defined(STACK) || defined(DDB)
 2366 static int
 2367 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
 2368 {
 2369         struct kinfo_kstack *kkstp;
 2370         int error, i, *name, numthreads;
 2371         lwpid_t *lwpidarray;
 2372         struct thread *td;
 2373         struct stack *st;
 2374         struct sbuf sb;
 2375         struct proc *p;
 2376 
 2377         name = (int *)arg1;
 2378         error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
 2379         if (error != 0)
 2380                 return (error);
 2381 
 2382         kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
 2383         st = stack_create();
 2384 
 2385         lwpidarray = NULL;
 2386         numthreads = 0;
 2387         PROC_LOCK(p);
 2388 repeat:
 2389         if (numthreads < p->p_numthreads) {
 2390                 if (lwpidarray != NULL) {
 2391                         free(lwpidarray, M_TEMP);
 2392                         lwpidarray = NULL;
 2393                 }
 2394                 numthreads = p->p_numthreads;
 2395                 PROC_UNLOCK(p);
 2396                 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
 2397                     M_WAITOK | M_ZERO);
 2398                 PROC_LOCK(p);
 2399                 goto repeat;
 2400         }
 2401         i = 0;
 2402 
 2403         /*
 2404          * XXXRW: During the below loop, execve(2) and countless other sorts
 2405          * of changes could have taken place.  Should we check to see if the
 2406          * vmspace has been replaced, or the like, in order to prevent
 2407          * giving a snapshot that spans, say, execve(2), with some threads
 2408          * before and some after?  Among other things, the credentials could
 2409          * have changed, in which case the right to extract debug info might
 2410          * no longer be assured.
 2411          */
 2412         FOREACH_THREAD_IN_PROC(p, td) {
 2413                 KASSERT(i < numthreads,
 2414                     ("sysctl_kern_proc_kstack: numthreads"));
 2415                 lwpidarray[i] = td->td_tid;
 2416                 i++;
 2417         }
 2418         numthreads = i;
 2419         for (i = 0; i < numthreads; i++) {
 2420                 td = thread_find(p, lwpidarray[i]);
 2421                 if (td == NULL) {
 2422                         continue;
 2423                 }
 2424                 bzero(kkstp, sizeof(*kkstp));
 2425                 (void)sbuf_new(&sb, kkstp->kkst_trace,
 2426                     sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
 2427                 thread_lock(td);
 2428                 kkstp->kkst_tid = td->td_tid;
 2429                 if (TD_IS_SWAPPED(td))
 2430                         kkstp->kkst_state = KKST_STATE_SWAPPED;
 2431                 else if (TD_IS_RUNNING(td))
 2432                         kkstp->kkst_state = KKST_STATE_RUNNING;
 2433                 else {
 2434                         kkstp->kkst_state = KKST_STATE_STACKOK;
 2435                         stack_save_td(st, td);
 2436                 }
 2437                 thread_unlock(td);
 2438                 PROC_UNLOCK(p);
 2439                 stack_sbuf_print(&sb, st);
 2440                 sbuf_finish(&sb);
 2441                 sbuf_delete(&sb);
 2442                 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
 2443                 PROC_LOCK(p);
 2444                 if (error)
 2445                         break;
 2446         }
 2447         _PRELE(p);
 2448         PROC_UNLOCK(p);
 2449         if (lwpidarray != NULL)
 2450                 free(lwpidarray, M_TEMP);
 2451         stack_destroy(st);
 2452         free(kkstp, M_TEMP);
 2453         return (error);
 2454 }
 2455 #endif
 2456 
 2457 /*
 2458  * This sysctl allows a process to retrieve the full list of groups from
 2459  * itself or another process.
 2460  */
 2461 static int
 2462 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
 2463 {
 2464         pid_t *pidp = (pid_t *)arg1;
 2465         unsigned int arglen = arg2;
 2466         struct proc *p;
 2467         struct ucred *cred;
 2468         int error;
 2469 
 2470         if (arglen != 1)
 2471                 return (EINVAL);
 2472         if (*pidp == -1) {      /* -1 means this process */
 2473                 p = req->td->td_proc;
 2474         } else {
 2475                 error = pget(*pidp, PGET_CANSEE, &p);
 2476                 if (error != 0)
 2477                         return (error);
 2478         }
 2479 
 2480         cred = crhold(p->p_ucred);
 2481         if (*pidp != -1)
 2482                 PROC_UNLOCK(p);
 2483 
 2484         error = SYSCTL_OUT(req, cred->cr_groups,
 2485             cred->cr_ngroups * sizeof(gid_t));
 2486         crfree(cred);
 2487         return (error);
 2488 }
 2489 
 2490 /*
 2491  * This sysctl allows a process to retrieve or/and set the resource limit for
 2492  * another process.
 2493  */
 2494 static int
 2495 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
 2496 {
 2497         int *name = (int *)arg1;
 2498         u_int namelen = arg2;
 2499         struct rlimit rlim;
 2500         struct proc *p;
 2501         u_int which;
 2502         int flags, error;
 2503 
 2504         if (namelen != 2)
 2505                 return (EINVAL);
 2506 
 2507         which = (u_int)name[1];
 2508         if (which >= RLIM_NLIMITS)
 2509                 return (EINVAL);
 2510 
 2511         if (req->newptr != NULL && req->newlen != sizeof(rlim))
 2512                 return (EINVAL);
 2513 
 2514         flags = PGET_HOLD | PGET_NOTWEXIT;
 2515         if (req->newptr != NULL)
 2516                 flags |= PGET_CANDEBUG;
 2517         else
 2518                 flags |= PGET_CANSEE;
 2519         error = pget((pid_t)name[0], flags, &p);
 2520         if (error != 0)
 2521                 return (error);
 2522 
 2523         /*
 2524          * Retrieve limit.
 2525          */
 2526         if (req->oldptr != NULL) {
 2527                 PROC_LOCK(p);
 2528                 lim_rlimit(p, which, &rlim);
 2529                 PROC_UNLOCK(p);
 2530         }
 2531         error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
 2532         if (error != 0)
 2533                 goto errout;
 2534 
 2535         /*
 2536          * Set limit.
 2537          */
 2538         if (req->newptr != NULL) {
 2539                 error = SYSCTL_IN(req, &rlim, sizeof(rlim));
 2540                 if (error == 0)
 2541                         error = kern_proc_setrlimit(curthread, p, which, &rlim);
 2542         }
 2543 
 2544 errout:
 2545         PRELE(p);
 2546         return (error);
 2547 }
 2548 
 2549 /*
 2550  * This sysctl allows a process to retrieve ps_strings structure location of
 2551  * another process.
 2552  */
 2553 static int
 2554 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
 2555 {
 2556         int *name = (int *)arg1;
 2557         u_int namelen = arg2;
 2558         struct proc *p;
 2559         vm_offset_t ps_strings;
 2560         int error;
 2561 #ifdef COMPAT_FREEBSD32
 2562         uint32_t ps_strings32;
 2563 #endif
 2564 
 2565         if (namelen != 1)
 2566                 return (EINVAL);
 2567 
 2568         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 2569         if (error != 0)
 2570                 return (error);
 2571 #ifdef COMPAT_FREEBSD32
 2572         if ((req->flags & SCTL_MASK32) != 0) {
 2573                 /*
 2574                  * We return 0 if the 32 bit emulation request is for a 64 bit
 2575                  * process.
 2576                  */
 2577                 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
 2578                     PTROUT(p->p_sysent->sv_psstrings) : 0;
 2579                 PROC_UNLOCK(p);
 2580                 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
 2581                 return (error);
 2582         }
 2583 #endif
 2584         ps_strings = p->p_sysent->sv_psstrings;
 2585         PROC_UNLOCK(p);
 2586         error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
 2587         return (error);
 2588 }
 2589 
 2590 /*
 2591  * This sysctl allows a process to retrieve umask of another process.
 2592  */
 2593 static int
 2594 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
 2595 {
 2596         int *name = (int *)arg1;
 2597         u_int namelen = arg2;
 2598         struct proc *p;
 2599         int error;
 2600         u_short fd_cmask;
 2601 
 2602         if (namelen != 1)
 2603                 return (EINVAL);
 2604 
 2605         error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 2606         if (error != 0)
 2607                 return (error);
 2608 
 2609         FILEDESC_SLOCK(p->p_fd);
 2610         fd_cmask = p->p_fd->fd_cmask;
 2611         FILEDESC_SUNLOCK(p->p_fd);
 2612         PRELE(p);
 2613         error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
 2614         return (error);
 2615 }
 2616 
 2617 /*
 2618  * This sysctl allows a process to set and retrieve binary osreldate of
 2619  * another process.
 2620  */
 2621 static int
 2622 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
 2623 {
 2624         int *name = (int *)arg1;
 2625         u_int namelen = arg2;
 2626         struct proc *p;
 2627         int flags, error, osrel;
 2628 
 2629         if (namelen != 1)
 2630                 return (EINVAL);
 2631 
 2632         if (req->newptr != NULL && req->newlen != sizeof(osrel))
 2633                 return (EINVAL);
 2634 
 2635         flags = PGET_HOLD | PGET_NOTWEXIT;
 2636         if (req->newptr != NULL)
 2637                 flags |= PGET_CANDEBUG;
 2638         else
 2639                 flags |= PGET_CANSEE;
 2640         error = pget((pid_t)name[0], flags, &p);
 2641         if (error != 0)
 2642                 return (error);
 2643 
 2644         error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
 2645         if (error != 0)
 2646                 goto errout;
 2647 
 2648         if (req->newptr != NULL) {
 2649                 error = SYSCTL_IN(req, &osrel, sizeof(osrel));
 2650                 if (error != 0)
 2651                         goto errout;
 2652                 if (osrel < 0) {
 2653                         error = EINVAL;
 2654                         goto errout;
 2655                 }
 2656                 p->p_osrel = osrel;
 2657         }
 2658 errout:
 2659         PRELE(p);
 2660         return (error);
 2661 }
 2662 
 2663 static int
 2664 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
 2665 {
 2666         int *name = (int *)arg1;
 2667         u_int namelen = arg2;
 2668         struct proc *p;
 2669         struct kinfo_sigtramp kst;
 2670         const struct sysentvec *sv;
 2671         int error;
 2672 #ifdef COMPAT_FREEBSD32
 2673         struct kinfo_sigtramp32 kst32;
 2674 #endif
 2675 
 2676         if (namelen != 1)
 2677                 return (EINVAL);
 2678 
 2679         error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 2680         if (error != 0)
 2681                 return (error);
 2682         sv = p->p_sysent;
 2683 #ifdef COMPAT_FREEBSD32
 2684         if ((req->flags & SCTL_MASK32) != 0) {
 2685                 bzero(&kst32, sizeof(kst32));
 2686                 if (SV_PROC_FLAG(p, SV_ILP32)) {
 2687                         if (sv->sv_sigcode_base != 0) {
 2688                                 kst32.ksigtramp_start = sv->sv_sigcode_base;
 2689                                 kst32.ksigtramp_end = sv->sv_sigcode_base +
 2690                                     *sv->sv_szsigcode;
 2691                         } else {
 2692                                 kst32.ksigtramp_start = sv->sv_psstrings -
 2693                                     *sv->sv_szsigcode;
 2694                                 kst32.ksigtramp_end = sv->sv_psstrings;
 2695                         }
 2696                 }
 2697                 PROC_UNLOCK(p);
 2698                 error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
 2699                 return (error);
 2700         }
 2701 #endif
 2702         bzero(&kst, sizeof(kst));
 2703         if (sv->sv_sigcode_base != 0) {
 2704                 kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
 2705                 kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
 2706                     *sv->sv_szsigcode;
 2707         } else {
 2708                 kst.ksigtramp_start = (char *)sv->sv_psstrings -
 2709                     *sv->sv_szsigcode;
 2710                 kst.ksigtramp_end = (char *)sv->sv_psstrings;
 2711         }
 2712         PROC_UNLOCK(p);
 2713         error = SYSCTL_OUT(req, &kst, sizeof(kst));
 2714         return (error);
 2715 }
 2716 
 2717 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
 2718 
 2719 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
 2720         CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
 2721         "Return entire process table");
 2722 
 2723 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2724         sysctl_kern_proc, "Process table");
 2725 
 2726 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2727         sysctl_kern_proc, "Process table");
 2728 
 2729 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2730         sysctl_kern_proc, "Process table");
 2731 
 2732 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
 2733         CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2734 
 2735 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2736         sysctl_kern_proc, "Process table");
 2737 
 2738 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2739         sysctl_kern_proc, "Process table");
 2740 
 2741 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2742         sysctl_kern_proc, "Process table");
 2743 
 2744 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2745         sysctl_kern_proc, "Process table");
 2746 
 2747 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2748         sysctl_kern_proc, "Return process table, no threads");
 2749 
 2750 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
 2751         CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
 2752         sysctl_kern_proc_args, "Process argument list");
 2753 
 2754 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
 2755         sysctl_kern_proc_env, "Process environment");
 2756 
 2757 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
 2758         CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
 2759 
 2760 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
 2761         CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
 2762 
 2763 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
 2764         CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
 2765         "Process syscall vector name (ABI type)");
 2766 
 2767 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
 2768         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2769 
 2770 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
 2771         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2772 
 2773 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
 2774         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2775 
 2776 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
 2777         sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2778 
 2779 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
 2780         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2781 
 2782 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
 2783         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2784 
 2785 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
 2786         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2787 
 2788 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
 2789         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 2790 
 2791 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
 2792         CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
 2793         "Return process table, no threads");
 2794 
 2795 #ifdef COMPAT_FREEBSD7
 2796 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
 2797         CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
 2798 #endif
 2799 
 2800 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
 2801         CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
 2802 
 2803 #if defined(STACK) || defined(DDB)
 2804 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
 2805         CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
 2806 #endif
 2807 
 2808 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
 2809         CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
 2810 
 2811 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
 2812         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
 2813         "Process resource limits");
 2814 
 2815 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
 2816         CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
 2817         "Process ps_strings location");
 2818 
 2819 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
 2820         CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
 2821 
 2822 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
 2823         CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
 2824         "Process binary osreldate");
 2825 
 2826 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
 2827         CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
 2828         "Process signal trampoline location");

Cache object: 1a63a117449c69fb3594bf3714e341c6


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.