The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/kern/kern_proc.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: kern_proc.c,v 1.99.2.1 2007/04/01 16:16:20 bouyer Exp $        */
    2 
    3 /*-
    4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
    5  * All rights reserved.
    6  *
    7  * This code is derived from software contributed to The NetBSD Foundation
    8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
    9  * NASA Ames Research Center.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. All advertising materials mentioning features or use of this software
   20  *    must display the following acknowledgement:
   21  *      This product includes software developed by the NetBSD
   22  *      Foundation, Inc. and its contributors.
   23  * 4. Neither the name of The NetBSD Foundation nor the names of its
   24  *    contributors may be used to endorse or promote products derived
   25  *    from this software without specific prior written permission.
   26  *
   27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   37  * POSSIBILITY OF SUCH DAMAGE.
   38  */
   39 
   40 /*
   41  * Copyright (c) 1982, 1986, 1989, 1991, 1993
   42  *      The Regents of the University of California.  All rights reserved.
   43  *
   44  * Redistribution and use in source and binary forms, with or without
   45  * modification, are permitted provided that the following conditions
   46  * are met:
   47  * 1. Redistributions of source code must retain the above copyright
   48  *    notice, this list of conditions and the following disclaimer.
   49  * 2. Redistributions in binary form must reproduce the above copyright
   50  *    notice, this list of conditions and the following disclaimer in the
   51  *    documentation and/or other materials provided with the distribution.
   52  * 3. Neither the name of the University nor the names of its contributors
   53  *    may be used to endorse or promote products derived from this software
   54  *    without specific prior written permission.
   55  *
   56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   66  * SUCH DAMAGE.
   67  *
   68  *      @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
   69  */
   70 
   71 #include <sys/cdefs.h>
   72 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.99.2.1 2007/04/01 16:16:20 bouyer Exp $");
   73 
   74 #include "opt_kstack.h"
   75 #include "opt_maxuprc.h"
   76 #include "opt_multiprocessor.h"
   77 #include "opt_lockdebug.h"
   78 
   79 #include <sys/param.h>
   80 #include <sys/systm.h>
   81 #include <sys/kernel.h>
   82 #include <sys/proc.h>
   83 #include <sys/resourcevar.h>
   84 #include <sys/buf.h>
   85 #include <sys/acct.h>
   86 #include <sys/wait.h>
   87 #include <sys/file.h>
   88 #include <ufs/ufs/quota.h>
   89 #include <sys/uio.h>
   90 #include <sys/malloc.h>
   91 #include <sys/pool.h>
   92 #include <sys/mbuf.h>
   93 #include <sys/ioctl.h>
   94 #include <sys/tty.h>
   95 #include <sys/signalvar.h>
   96 #include <sys/ras.h>
   97 #include <sys/sa.h>
   98 #include <sys/savar.h>
   99 #include <sys/filedesc.h>
  100 #include <sys/kauth.h>
  101 
  102 #include <uvm/uvm.h>
  103 #include <uvm/uvm_extern.h>
  104 
  105 /*
  106  * Other process lists
  107  */
  108 
  109 struct proclist allproc;
  110 struct proclist zombproc;       /* resources have been freed */
  111 
  112 
  113 /*
  114  * Process list locking:
  115  *
  116  * We have two types of locks on the proclists: read locks and write
  117  * locks.  Read locks can be used in interrupt context, so while we
  118  * hold the write lock, we must also block clock interrupts to
  119  * lock out any scheduling changes that may happen in interrupt
  120  * context.
  121  *
  122  * The proclist lock locks the following structures:
  123  *
  124  *      allproc
  125  *      zombproc
  126  *      pid_table
  127  */
  128 struct lock proclist_lock;
  129 
  130 /*
  131  * pid to proc lookup is done by indexing the pid_table array.
  132  * Since pid numbers are only allocated when an empty slot
  133  * has been found, there is no need to search any lists ever.
  134  * (an orphaned pgrp will lock the slot, a session will lock
  135  * the pgrp with the same number.)
  136  * If the table is too small it is reallocated with twice the
  137  * previous size and the entries 'unzipped' into the two halves.
  138  * A linked list of free entries is passed through the pt_proc
  139  * field of 'free' items - set odd to be an invalid ptr.
  140  */
  141 
  142 struct pid_table {
  143         struct proc     *pt_proc;
  144         struct pgrp     *pt_pgrp;
  145 };
  146 #if 1   /* strongly typed cast - should be a noop */
  147 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
  148 #else
  149 #define p2u(p) ((uint)p)
  150 #endif
  151 #define P_VALID(p) (!(p2u(p) & 1))
  152 #define P_NEXT(p) (p2u(p) >> 1)
  153 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
  154 
  155 #define INITIAL_PID_TABLE_SIZE  (1 << 5)
  156 static struct pid_table *pid_table;
  157 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
  158 static uint pid_alloc_lim;      /* max we allocate before growing table */
  159 static uint pid_alloc_cnt;      /* number of allocated pids */
  160 
  161 /* links through free slots - never empty! */
  162 static uint next_free_pt, last_free_pt;
  163 static pid_t pid_max = PID_MAX;         /* largest value we allocate */
  164 
  165 /* Components of the first process -- never freed. */
  166 struct session session0;
  167 struct pgrp pgrp0;
  168 struct proc proc0;
  169 struct lwp lwp0;
  170 kauth_cred_t cred0;
  171 struct filedesc0 filedesc0;
  172 struct cwdinfo cwdi0;
  173 struct plimit limit0;
  174 struct pstats pstat0;
  175 struct vmspace vmspace0;
  176 struct sigacts sigacts0;
  177 
  178 extern struct user *proc0paddr;
  179 
  180 extern const struct emul emul_netbsd;   /* defined in kern_exec.c */
  181 
  182 int nofile = NOFILE;
  183 int maxuprc = MAXUPRC;
  184 int cmask = CMASK;
  185 
  186 POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
  187     &pool_allocator_nointr);
  188 POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
  189     &pool_allocator_nointr);
  190 POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
  191     &pool_allocator_nointr);
  192 POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
  193     &pool_allocator_nointr);
  194 POOL_INIT(rusage_pool, sizeof(struct rusage), 0, 0, 0, "rusgepl",
  195     &pool_allocator_nointr);
  196 POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
  197     &pool_allocator_nointr);
  198 
  199 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
  200 MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
  201 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
  202 
  203 /*
  204  * The process list descriptors, used during pid allocation and
  205  * by sysctl.  No locking on this data structure is needed since
  206  * it is completely static.
  207  */
  208 const struct proclist_desc proclists[] = {
  209         { &allproc      },
  210         { &zombproc     },
  211         { NULL          },
  212 };
  213 
  214 static void orphanpg(struct pgrp *);
  215 static void pg_delete(pid_t);
  216 
  217 static specificdata_domain_t proc_specificdata_domain;
  218 
  219 /*
  220  * Initialize global process hashing structures.
  221  */
  222 void
  223 procinit(void)
  224 {
  225         const struct proclist_desc *pd;
  226         int i;
  227 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
  228 
  229         for (pd = proclists; pd->pd_list != NULL; pd++)
  230                 LIST_INIT(pd->pd_list);
  231 
  232         spinlockinit(&proclist_lock, "proclk", 0);
  233 
  234         pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
  235                             M_PROC, M_WAITOK);
  236         /* Set free list running through table...
  237            Preset 'use count' above PID_MAX so we allocate pid 1 next. */
  238         for (i = 0; i <= pid_tbl_mask; i++) {
  239                 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
  240                 pid_table[i].pt_pgrp = 0;
  241         }
  242         /* slot 0 is just grabbed */
  243         next_free_pt = 1;
  244         /* Need to fix last entry. */
  245         last_free_pt = pid_tbl_mask;
  246         pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
  247         /* point at which we grow table - to avoid reusing pids too often */
  248         pid_alloc_lim = pid_tbl_mask - 1;
  249 #undef LINK_EMPTY
  250 
  251         LIST_INIT(&alllwp);
  252 
  253         uihashtbl =
  254             hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
  255 
  256         proc_specificdata_domain = specificdata_domain_create();
  257         KASSERT(proc_specificdata_domain != NULL);
  258 }
  259 
  260 /*
  261  * Initialize process 0.
  262  */
  263 void
  264 proc0_init(void)
  265 {
  266         struct proc *p;
  267         struct pgrp *pg;
  268         struct session *sess;
  269         struct lwp *l;
  270         int s;
  271         u_int i;
  272         rlim_t lim;
  273 
  274         p = &proc0;
  275         pg = &pgrp0;
  276         sess = &session0;
  277         l = &lwp0;
  278 
  279         simple_lock_init(&p->p_lock);
  280         LIST_INIT(&p->p_lwps);
  281         LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
  282         p->p_nlwps = 1;
  283         simple_lock_init(&p->p_sigctx.ps_silock);
  284         CIRCLEQ_INIT(&p->p_sigctx.ps_siginfo);
  285 
  286         s = proclist_lock_write();
  287 
  288         pid_table[0].pt_proc = p;
  289         LIST_INSERT_HEAD(&allproc, p, p_list);
  290         LIST_INSERT_HEAD(&alllwp, l, l_list);
  291 
  292         p->p_pgrp = pg;
  293         pid_table[0].pt_pgrp = pg;
  294         LIST_INIT(&pg->pg_members);
  295         LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
  296 
  297         pg->pg_session = sess;
  298         sess->s_count = 1;
  299         sess->s_sid = 0;
  300         sess->s_leader = p;
  301 
  302         proclist_unlock_write(s);
  303 
  304         /*
  305          * Set P_NOCLDWAIT so that kernel threads are reparented to
  306          * init(8) when they exit.  init(8) can easily wait them out
  307          * for us.
  308          */
  309         p->p_flag = P_SYSTEM | P_NOCLDWAIT;
  310         p->p_stat = SACTIVE;
  311         p->p_nice = NZERO;
  312         p->p_emul = &emul_netbsd;
  313 #ifdef __HAVE_SYSCALL_INTERN
  314         (*p->p_emul->e_syscall_intern)(p);
  315 #endif
  316         strncpy(p->p_comm, "swapper", MAXCOMLEN);
  317 
  318         l->l_flag = L_INMEM;
  319         l->l_stat = LSONPROC;
  320         p->p_nrlwps = 1;
  321 
  322         callout_init(&l->l_tsleep_ch);
  323 
  324         /* Create credentials. */
  325         cred0 = kauth_cred_alloc();
  326         p->p_cred = cred0;
  327         lwp_update_creds(l);
  328 
  329         /* Create the CWD info. */
  330         p->p_cwdi = &cwdi0;
  331         cwdi0.cwdi_cmask = cmask;
  332         cwdi0.cwdi_refcnt = 1;
  333         simple_lock_init(&cwdi0.cwdi_slock);
  334 
  335         /* Create the limits structures. */
  336         p->p_limit = &limit0;
  337         simple_lock_init(&limit0.p_slock);
  338         for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
  339                 limit0.pl_rlimit[i].rlim_cur =
  340                     limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
  341 
  342         limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
  343         limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
  344             maxfiles < nofile ? maxfiles : nofile;
  345 
  346         limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
  347         limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
  348             maxproc < maxuprc ? maxproc : maxuprc;
  349 
  350         lim = ptoa(uvmexp.free);
  351         limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
  352         limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
  353         limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
  354         limit0.pl_corename = defcorename;
  355         limit0.p_refcnt = 1;
  356 
  357         /* Configure virtual memory system, set vm rlimits. */
  358         uvm_init_limits(p);
  359 
  360         /* Initialize file descriptor table for proc0. */
  361         p->p_fd = &filedesc0.fd_fd;
  362         fdinit1(&filedesc0);
  363 
  364         /*
  365          * Initialize proc0's vmspace, which uses the kernel pmap.
  366          * All kernel processes (which never have user space mappings)
  367          * share proc0's vmspace, and thus, the kernel pmap.
  368          */
  369         uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
  370             trunc_page(VM_MAX_ADDRESS));
  371         p->p_vmspace = &vmspace0;
  372 
  373         l->l_addr = proc0paddr;                         /* XXX */
  374 
  375         p->p_stats = &pstat0;
  376 
  377         /* Initialize signal state for proc0. */
  378         p->p_sigacts = &sigacts0;
  379         siginit(p);
  380 
  381         proc_initspecific(p);
  382         lwp_initspecific(l);
  383 }
  384 
  385 /*
  386  * Acquire a read lock on the proclist.
  387  */
  388 void
  389 proclist_lock_read(void)
  390 {
  391         int error;
  392 
  393         error = spinlockmgr(&proclist_lock, LK_SHARED, NULL);
  394 #ifdef DIAGNOSTIC
  395         if (__predict_false(error != 0))
  396                 panic("proclist_lock_read: failed to acquire lock");
  397 #endif
  398 }
  399 
  400 /*
  401  * Release a read lock on the proclist.
  402  */
  403 void
  404 proclist_unlock_read(void)
  405 {
  406 
  407         (void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
  408 }
  409 
  410 /*
  411  * Acquire a write lock on the proclist.
  412  */
  413 int
  414 proclist_lock_write(void)
  415 {
  416         int s, error;
  417 
  418         s = splclock();
  419         error = spinlockmgr(&proclist_lock, LK_EXCLUSIVE, NULL);
  420 #ifdef DIAGNOSTIC
  421         if (__predict_false(error != 0))
  422                 panic("proclist_lock: failed to acquire lock");
  423 #endif
  424         return s;
  425 }
  426 
  427 /*
  428  * Release a write lock on the proclist.
  429  */
  430 void
  431 proclist_unlock_write(int s)
  432 {
  433 
  434         (void) spinlockmgr(&proclist_lock, LK_RELEASE, NULL);
  435         splx(s);
  436 }
  437 
  438 /*
  439  * Check that the specified process group is in the session of the
  440  * specified process.
  441  * Treats -ve ids as process ids.
  442  * Used to validate TIOCSPGRP requests.
  443  */
  444 int
  445 pgid_in_session(struct proc *p, pid_t pg_id)
  446 {
  447         struct pgrp *pgrp;
  448 
  449         if (pg_id < 0) {
  450                 struct proc *p1 = pfind(-pg_id);
  451                 if (p1 == NULL)
  452                         return EINVAL;
  453                 pgrp = p1->p_pgrp;
  454         } else {
  455                 pgrp = pgfind(pg_id);
  456                 if (pgrp == NULL)
  457                         return EINVAL;
  458         }
  459         if (pgrp->pg_session != p->p_pgrp->pg_session)
  460                 return EPERM;
  461         return 0;
  462 }
  463 
  464 /*
  465  * Is p an inferior of q?
  466  *
  467  * Call with the proclist_lock held.
  468  */
  469 int
  470 inferior(struct proc *p, struct proc *q)
  471 {
  472 
  473         for (; p != q; p = p->p_pptr)
  474                 if (p->p_pid == 0)
  475                         return 0;
  476         return 1;
  477 }
  478 
  479 /*
  480  * Locate a process by number
  481  */
  482 struct proc *
  483 p_find(pid_t pid, uint flags)
  484 {
  485         struct proc *p;
  486         char stat;
  487 
  488         if (!(flags & PFIND_LOCKED))
  489                 proclist_lock_read();
  490         p = pid_table[pid & pid_tbl_mask].pt_proc;
  491         /* Only allow live processes to be found by pid. */
  492         if (P_VALID(p) && p->p_pid == pid &&
  493             ((stat = p->p_stat) == SACTIVE || stat == SSTOP ||
  494              ((flags & PFIND_ZOMBIE) && (stat == SDYING || stat == SZOMB)))) {
  495                 if (flags & PFIND_UNLOCK_OK)
  496                          proclist_unlock_read();
  497                 return p;
  498         }
  499         if (flags & PFIND_UNLOCK_FAIL)
  500                  proclist_unlock_read();
  501         return NULL;
  502 }
  503 
  504 
  505 /*
  506  * Locate a process group by number
  507  */
  508 struct pgrp *
  509 pg_find(pid_t pgid, uint flags)
  510 {
  511         struct pgrp *pg;
  512 
  513         if (!(flags & PFIND_LOCKED))
  514                 proclist_lock_read();
  515         pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
  516         /*
  517          * Can't look up a pgrp that only exists because the session
  518          * hasn't died yet (traditional)
  519          */
  520         if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
  521                 if (flags & PFIND_UNLOCK_FAIL)
  522                          proclist_unlock_read();
  523                 return NULL;
  524         }
  525 
  526         if (flags & PFIND_UNLOCK_OK)
  527                 proclist_unlock_read();
  528         return pg;
  529 }
  530 
  531 static void
  532 expand_pid_table(void)
  533 {
  534         uint pt_size = pid_tbl_mask + 1;
  535         struct pid_table *n_pt, *new_pt;
  536         struct proc *proc;
  537         struct pgrp *pgrp;
  538         int i;
  539         int s;
  540         pid_t pid;
  541 
  542         new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
  543 
  544         s = proclist_lock_write();
  545         if (pt_size != pid_tbl_mask + 1) {
  546                 /* Another process beat us to it... */
  547                 proclist_unlock_write(s);
  548                 FREE(new_pt, M_PROC);
  549                 return;
  550         }
  551 
  552         /*
  553          * Copy entries from old table into new one.
  554          * If 'pid' is 'odd' we need to place in the upper half,
  555          * even pid's to the lower half.
  556          * Free items stay in the low half so we don't have to
  557          * fixup the reference to them.
  558          * We stuff free items on the front of the freelist
  559          * because we can't write to unmodified entries.
  560          * Processing the table backwards maintains a semblance
  561          * of issueing pid numbers that increase with time.
  562          */
  563         i = pt_size - 1;
  564         n_pt = new_pt + i;
  565         for (; ; i--, n_pt--) {
  566                 proc = pid_table[i].pt_proc;
  567                 pgrp = pid_table[i].pt_pgrp;
  568                 if (!P_VALID(proc)) {
  569                         /* Up 'use count' so that link is valid */
  570                         pid = (P_NEXT(proc) + pt_size) & ~pt_size;
  571                         proc = P_FREE(pid);
  572                         if (pgrp)
  573                                 pid = pgrp->pg_id;
  574                 } else
  575                         pid = proc->p_pid;
  576 
  577                 /* Save entry in appropriate half of table */
  578                 n_pt[pid & pt_size].pt_proc = proc;
  579                 n_pt[pid & pt_size].pt_pgrp = pgrp;
  580 
  581                 /* Put other piece on start of free list */
  582                 pid = (pid ^ pt_size) & ~pid_tbl_mask;
  583                 n_pt[pid & pt_size].pt_proc =
  584                                     P_FREE((pid & ~pt_size) | next_free_pt);
  585                 n_pt[pid & pt_size].pt_pgrp = 0;
  586                 next_free_pt = i | (pid & pt_size);
  587                 if (i == 0)
  588                         break;
  589         }
  590 
  591         /* Switch tables */
  592         n_pt = pid_table;
  593         pid_table = new_pt;
  594         pid_tbl_mask = pt_size * 2 - 1;
  595 
  596         /*
  597          * pid_max starts as PID_MAX (= 30000), once we have 16384
  598          * allocated pids we need it to be larger!
  599          */
  600         if (pid_tbl_mask > PID_MAX) {
  601                 pid_max = pid_tbl_mask * 2 + 1;
  602                 pid_alloc_lim |= pid_alloc_lim << 1;
  603         } else
  604                 pid_alloc_lim <<= 1;    /* doubles number of free slots... */
  605 
  606         proclist_unlock_write(s);
  607         FREE(n_pt, M_PROC);
  608 }
  609 
  610 struct proc *
  611 proc_alloc(void)
  612 {
  613         struct proc *p;
  614         int s, nxt;
  615         pid_t pid;
  616         struct pid_table *pt;
  617 
  618         p = pool_get(&proc_pool, PR_WAITOK);
  619         p->p_stat = SIDL;                       /* protect against others */
  620 
  621         proc_initspecific(p);
  622         /* allocate next free pid */
  623 
  624         for (;;expand_pid_table()) {
  625                 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
  626                         /* ensure pids cycle through 2000+ values */
  627                         continue;
  628                 s = proclist_lock_write();
  629                 pt = &pid_table[next_free_pt];
  630 #ifdef DIAGNOSTIC
  631                 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
  632                         panic("proc_alloc: slot busy");
  633 #endif
  634                 nxt = P_NEXT(pt->pt_proc);
  635                 if (nxt & pid_tbl_mask)
  636                         break;
  637                 /* Table full - expand (NB last entry not used....) */
  638                 proclist_unlock_write(s);
  639         }
  640 
  641         /* pid is 'saved use count' + 'size' + entry */
  642         pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
  643         if ((uint)pid > (uint)pid_max)
  644                 pid &= pid_tbl_mask;
  645         p->p_pid = pid;
  646         next_free_pt = nxt & pid_tbl_mask;
  647 
  648         /* Grab table slot */
  649         pt->pt_proc = p;
  650         pid_alloc_cnt++;
  651 
  652         proclist_unlock_write(s);
  653 
  654         return p;
  655 }
  656 
  657 /*
  658  * Free last resources of a process - called from proc_free (in kern_exit.c)
  659  */
  660 void
  661 proc_free_mem(struct proc *p)
  662 {
  663         int s;
  664         pid_t pid = p->p_pid;
  665         struct pid_table *pt;
  666 
  667         s = proclist_lock_write();
  668 
  669         pt = &pid_table[pid & pid_tbl_mask];
  670 #ifdef DIAGNOSTIC
  671         if (__predict_false(pt->pt_proc != p))
  672                 panic("proc_free: pid_table mismatch, pid %x, proc %p",
  673                         pid, p);
  674 #endif
  675         /* save pid use count in slot */
  676         pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
  677 
  678         if (pt->pt_pgrp == NULL) {
  679                 /* link last freed entry onto ours */
  680                 pid &= pid_tbl_mask;
  681                 pt = &pid_table[last_free_pt];
  682                 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
  683                 last_free_pt = pid;
  684                 pid_alloc_cnt--;
  685         }
  686 
  687         nprocs--;
  688         proclist_unlock_write(s);
  689 
  690         pool_put(&proc_pool, p);
  691 }
  692 
  693 /*
  694  * Move p to a new or existing process group (and session)
  695  *
  696  * If we are creating a new pgrp, the pgid should equal
  697  * the calling process' pid.
  698  * If is only valid to enter a process group that is in the session
  699  * of the process.
  700  * Also mksess should only be set if we are creating a process group
  701  *
  702  * Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
  703  * SYSV setpgrp support for hpux == enterpgrp(curproc, curproc->p_pid)
  704  */
  705 int
  706 enterpgrp(struct proc *p, pid_t pgid, int mksess)
  707 {
  708         struct pgrp *new_pgrp, *pgrp;
  709         struct session *sess;
  710         struct proc *curp = curproc;
  711         pid_t pid = p->p_pid;
  712         int rval;
  713         int s;
  714         pid_t pg_id = NO_PGID;
  715 
  716         /* Allocate data areas we might need before doing any validity checks */
  717         proclist_lock_read();           /* Because pid_table might change */
  718         if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
  719                 proclist_unlock_read();
  720                 new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
  721         } else {
  722                 proclist_unlock_read();
  723                 new_pgrp = NULL;
  724         }
  725         if (mksess)
  726                 sess = pool_get(&session_pool, PR_WAITOK);
  727         else
  728                 sess = NULL;
  729 
  730         s = proclist_lock_write();
  731         rval = EPERM;   /* most common error (to save typing) */
  732 
  733         /* Check pgrp exists or can be created */
  734         pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
  735         if (pgrp != NULL && pgrp->pg_id != pgid)
  736                 goto done;
  737 
  738         /* Can only set another process under restricted circumstances. */
  739         if (p != curp) {
  740                 /* must exist and be one of our children... */
  741                 if (p != pid_table[pid & pid_tbl_mask].pt_proc
  742                     || !inferior(p, curp)) {
  743                         rval = ESRCH;
  744                         goto done;
  745                 }
  746                 /* ... in the same session... */
  747                 if (sess != NULL || p->p_session != curp->p_session)
  748                         goto done;
  749                 /* ... existing pgid must be in same session ... */
  750                 if (pgrp != NULL && pgrp->pg_session != p->p_session)
  751                         goto done;
  752                 /* ... and not done an exec. */
  753                 if (p->p_flag & P_EXEC) {
  754                         rval = EACCES;
  755                         goto done;
  756                 }
  757         }
  758 
  759         /* Changing the process group/session of a session
  760            leader is definitely off limits. */
  761         if (SESS_LEADER(p)) {
  762                 if (sess == NULL && p->p_pgrp == pgrp)
  763                         /* unless it's a definite noop */
  764                         rval = 0;
  765                 goto done;
  766         }
  767 
  768         /* Can only create a process group with id of process */
  769         if (pgrp == NULL && pgid != pid)
  770                 goto done;
  771 
  772         /* Can only create a session if creating pgrp */
  773         if (sess != NULL && pgrp != NULL)
  774                 goto done;
  775 
  776         /* Check we allocated memory for a pgrp... */
  777         if (pgrp == NULL && new_pgrp == NULL)
  778                 goto done;
  779 
  780         /* Don't attach to 'zombie' pgrp */
  781         if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
  782                 goto done;
  783 
  784         /* Expect to succeed now */
  785         rval = 0;
  786 
  787         if (pgrp == p->p_pgrp)
  788                 /* nothing to do */
  789                 goto done;
  790 
  791         /* Ok all setup, link up required structures */
  792         if (pgrp == NULL) {
  793                 pgrp = new_pgrp;
  794                 new_pgrp = 0;
  795                 if (sess != NULL) {
  796                         sess->s_sid = p->p_pid;
  797                         sess->s_leader = p;
  798                         sess->s_count = 1;
  799                         sess->s_ttyvp = NULL;
  800                         sess->s_ttyp = NULL;
  801                         sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
  802                         memcpy(sess->s_login, p->p_session->s_login,
  803                             sizeof(sess->s_login));
  804                         p->p_flag &= ~P_CONTROLT;
  805                 } else {
  806                         sess = p->p_pgrp->pg_session;
  807                         SESSHOLD(sess);
  808                 }
  809                 pgrp->pg_session = sess;
  810                 sess = 0;
  811 
  812                 pgrp->pg_id = pgid;
  813                 LIST_INIT(&pgrp->pg_members);
  814 #ifdef DIAGNOSTIC
  815                 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
  816                         panic("enterpgrp: pgrp table slot in use");
  817                 if (__predict_false(mksess && p != curp))
  818                         panic("enterpgrp: mksession and p != curproc");
  819 #endif
  820                 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
  821                 pgrp->pg_jobc = 0;
  822         }
  823 
  824         /*
  825          * Adjust eligibility of affected pgrps to participate in job control.
  826          * Increment eligibility counts before decrementing, otherwise we
  827          * could reach 0 spuriously during the first call.
  828          */
  829         fixjobc(p, pgrp, 1);
  830         fixjobc(p, p->p_pgrp, 0);
  831 
  832         /* Move process to requested group */
  833         LIST_REMOVE(p, p_pglist);
  834         if (LIST_EMPTY(&p->p_pgrp->pg_members))
  835                 /* defer delete until we've dumped the lock */
  836                 pg_id = p->p_pgrp->pg_id;
  837         p->p_pgrp = pgrp;
  838         LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
  839 
  840     done:
  841         proclist_unlock_write(s);
  842         if (sess != NULL)
  843                 pool_put(&session_pool, sess);
  844         if (new_pgrp != NULL)
  845                 pool_put(&pgrp_pool, new_pgrp);
  846         if (pg_id != NO_PGID)
  847                 pg_delete(pg_id);
  848 #ifdef DEBUG_PGRP
  849         if (__predict_false(rval))
  850                 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
  851                         pid, pgid, mksess, curp->p_pid, rval);
  852 #endif
  853         return rval;
  854 }
  855 
  856 /*
  857  * Remove a process from its process group.
  858  */
  859 int
  860 leavepgrp(struct proc *p)
  861 {
  862         int s;
  863         struct pgrp *pgrp;
  864         pid_t pg_id;
  865 
  866         s = proclist_lock_write();
  867         pgrp = p->p_pgrp;
  868         LIST_REMOVE(p, p_pglist);
  869         p->p_pgrp = NULL;
  870         pg_id = LIST_EMPTY(&pgrp->pg_members) ? pgrp->pg_id : NO_PGID;
  871         proclist_unlock_write(s);
  872 
  873         if (pg_id != NO_PGID)
  874                 pg_delete(pg_id);
  875         return 0;
  876 }
  877 
  878 static void
  879 pg_free(pid_t pg_id)
  880 {
  881         struct pgrp *pgrp;
  882         struct pid_table *pt;
  883         int s;
  884 
  885         s = proclist_lock_write();
  886         pt = &pid_table[pg_id & pid_tbl_mask];
  887         pgrp = pt->pt_pgrp;
  888 #ifdef DIAGNOSTIC
  889         if (__predict_false(!pgrp || pgrp->pg_id != pg_id
  890             || !LIST_EMPTY(&pgrp->pg_members)))
  891                 panic("pg_free: process group absent or has members");
  892 #endif
  893         pt->pt_pgrp = 0;
  894 
  895         if (!P_VALID(pt->pt_proc)) {
  896                 /* orphaned pgrp, put slot onto free list */
  897 #ifdef DIAGNOSTIC
  898                 if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
  899                         panic("pg_free: process slot on free list");
  900 #endif
  901 
  902                 pg_id &= pid_tbl_mask;
  903                 pt = &pid_table[last_free_pt];
  904                 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
  905                 last_free_pt = pg_id;
  906                 pid_alloc_cnt--;
  907         }
  908         proclist_unlock_write(s);
  909 
  910         pool_put(&pgrp_pool, pgrp);
  911 }
  912 
  913 /*
  914  * delete a process group
  915  */
  916 static void
  917 pg_delete(pid_t pg_id)
  918 {
  919         struct pgrp *pgrp;
  920         struct tty *ttyp;
  921         struct session *ss;
  922         int s, is_pgrp_leader;
  923 
  924         s = proclist_lock_write();
  925         pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
  926         if (pgrp == NULL || pgrp->pg_id != pg_id ||
  927             !LIST_EMPTY(&pgrp->pg_members)) {
  928                 proclist_unlock_write(s);
  929                 return;
  930         }
  931 
  932         ss = pgrp->pg_session;
  933 
  934         /* Remove reference (if any) from tty to this process group */
  935         ttyp = ss->s_ttyp;
  936         if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
  937                 ttyp->t_pgrp = NULL;
  938 #ifdef DIAGNOSTIC
  939                 if (ttyp->t_session != ss)
  940                         panic("pg_delete: wrong session on terminal");
  941 #endif
  942         }
  943 
  944         /*
  945          * The leading process group in a session is freed
  946          * by sessdelete() if last reference.
  947          */
  948         is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
  949         proclist_unlock_write(s);
  950         SESSRELE(ss);
  951 
  952         if (is_pgrp_leader)
  953                 return;
  954 
  955         pg_free(pg_id);
  956 }
  957 
  958 /*
  959  * Delete session - called from SESSRELE when s_count becomes zero.
  960  */
  961 void
  962 sessdelete(struct session *ss)
  963 {
  964         /*
  965          * We keep the pgrp with the same id as the session in
  966          * order to stop a process being given the same pid.
  967          * Since the pgrp holds a reference to the session, it
  968          * must be a 'zombie' pgrp by now.
  969          */
  970 
  971         pg_free(ss->s_sid);
  972 
  973         pool_put(&session_pool, ss);
  974 }
  975 
  976 /*
  977  * Adjust pgrp jobc counters when specified process changes process group.
  978  * We count the number of processes in each process group that "qualify"
  979  * the group for terminal job control (those with a parent in a different
  980  * process group of the same session).  If that count reaches zero, the
  981  * process group becomes orphaned.  Check both the specified process'
  982  * process group and that of its children.
  983  * entering == 0 => p is leaving specified group.
  984  * entering == 1 => p is entering specified group.
  985  *
  986  * Call with proclist_lock held.
  987  */
  988 void
  989 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
  990 {
  991         struct pgrp *hispgrp;
  992         struct session *mysession = pgrp->pg_session;
  993         struct proc *child;
  994 
  995         /*
  996          * Check p's parent to see whether p qualifies its own process
  997          * group; if so, adjust count for p's process group.
  998          */
  999         hispgrp = p->p_pptr->p_pgrp;
 1000         if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
 1001                 if (entering)
 1002                         pgrp->pg_jobc++;
 1003                 else if (--pgrp->pg_jobc == 0)
 1004                         orphanpg(pgrp);
 1005         }
 1006 
 1007         /*
 1008          * Check this process' children to see whether they qualify
 1009          * their process groups; if so, adjust counts for children's
 1010          * process groups.
 1011          */
 1012         LIST_FOREACH(child, &p->p_children, p_sibling) {
 1013                 hispgrp = child->p_pgrp;
 1014                 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
 1015                     !P_ZOMBIE(child)) {
 1016                         if (entering)
 1017                                 hispgrp->pg_jobc++;
 1018                         else if (--hispgrp->pg_jobc == 0)
 1019                                 orphanpg(hispgrp);
 1020                 }
 1021         }
 1022 }
 1023 
 1024 /*
 1025  * A process group has become orphaned;
 1026  * if there are any stopped processes in the group,
 1027  * hang-up all process in that group.
 1028  *
 1029  * Call with proclist_lock held.
 1030  */
 1031 static void
 1032 orphanpg(struct pgrp *pg)
 1033 {
 1034         struct proc *p;
 1035 
 1036         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
 1037                 if (p->p_stat == SSTOP) {
 1038                         LIST_FOREACH(p, &pg->pg_members, p_pglist) {
 1039                                 psignal(p, SIGHUP);
 1040                                 psignal(p, SIGCONT);
 1041                         }
 1042                         return;
 1043                 }
 1044         }
 1045 }
 1046 
 1047 /* mark process as suid/sgid, reset some values to defaults */
 1048 void
 1049 p_sugid(struct proc *p)
 1050 {
 1051         struct plimit *lim;
 1052         char *cn;
 1053 
 1054         p->p_flag |= P_SUGID;
 1055         /* reset what needs to be reset in plimit */
 1056         lim = p->p_limit;
 1057         if (lim->pl_corename != defcorename) {
 1058                 if (lim->p_refcnt > 1 &&
 1059                     (lim->p_lflags & PL_SHAREMOD) == 0) {
 1060                         p->p_limit = limcopy(lim);
 1061                         limfree(lim);
 1062                         lim = p->p_limit;
 1063                 }
 1064                 simple_lock(&lim->p_slock);
 1065                 cn = lim->pl_corename;
 1066                 lim->pl_corename = defcorename;
 1067                 simple_unlock(&lim->p_slock);
 1068                 if (cn != defcorename)
 1069                         free(cn, M_TEMP);
 1070         }
 1071 }
 1072 
 1073 #ifdef DDB
 1074 #include <ddb/db_output.h>
 1075 void pidtbl_dump(void);
 1076 void
 1077 pidtbl_dump(void)
 1078 {
 1079         struct pid_table *pt;
 1080         struct proc *p;
 1081         struct pgrp *pgrp;
 1082         int id;
 1083 
 1084         db_printf("pid table %p size %x, next %x, last %x\n",
 1085                 pid_table, pid_tbl_mask+1,
 1086                 next_free_pt, last_free_pt);
 1087         for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
 1088                 p = pt->pt_proc;
 1089                 if (!P_VALID(p) && !pt->pt_pgrp)
 1090                         continue;
 1091                 db_printf("  id %x: ", id);
 1092                 if (P_VALID(p))
 1093                         db_printf("proc %p id %d (0x%x) %s\n",
 1094                                 p, p->p_pid, p->p_pid, p->p_comm);
 1095                 else
 1096                         db_printf("next %x use %x\n",
 1097                                 P_NEXT(p) & pid_tbl_mask,
 1098                                 P_NEXT(p) & ~pid_tbl_mask);
 1099                 if ((pgrp = pt->pt_pgrp)) {
 1100                         db_printf("\tsession %p, sid %d, count %d, login %s\n",
 1101                             pgrp->pg_session, pgrp->pg_session->s_sid,
 1102                             pgrp->pg_session->s_count,
 1103                             pgrp->pg_session->s_login);
 1104                         db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
 1105                             pgrp, pgrp->pg_id, pgrp->pg_jobc,
 1106                             pgrp->pg_members.lh_first);
 1107                         for (p = pgrp->pg_members.lh_first; p != 0;
 1108                             p = p->p_pglist.le_next) {
 1109                                 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
 1110                                     p->p_pid, p, p->p_pgrp, p->p_comm);
 1111                         }
 1112                 }
 1113         }
 1114 }
 1115 #endif /* DDB */
 1116 
 1117 #ifdef KSTACK_CHECK_MAGIC
 1118 #include <sys/user.h>
 1119 
 1120 #define KSTACK_MAGIC    0xdeadbeaf
 1121 
 1122 /* XXX should be per process basis? */
 1123 int kstackleftmin = KSTACK_SIZE;
 1124 int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
 1125                                           less than this */
 1126 
 1127 void
 1128 kstack_setup_magic(const struct lwp *l)
 1129 {
 1130         uint32_t *ip;
 1131         uint32_t const *end;
 1132 
 1133         KASSERT(l != NULL);
 1134         KASSERT(l != &lwp0);
 1135 
 1136         /*
 1137          * fill all the stack with magic number
 1138          * so that later modification on it can be detected.
 1139          */
 1140         ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
 1141         end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
 1142         for (; ip < end; ip++) {
 1143                 *ip = KSTACK_MAGIC;
 1144         }
 1145 }
 1146 
 1147 void
 1148 kstack_check_magic(const struct lwp *l)
 1149 {
 1150         uint32_t const *ip, *end;
 1151         int stackleft;
 1152 
 1153         KASSERT(l != NULL);
 1154 
 1155         /* don't check proc0 */ /*XXX*/
 1156         if (l == &lwp0)
 1157                 return;
 1158 
 1159 #ifdef __MACHINE_STACK_GROWS_UP
 1160         /* stack grows upwards (eg. hppa) */
 1161         ip = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
 1162         end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
 1163         for (ip--; ip >= end; ip--)
 1164                 if (*ip != KSTACK_MAGIC)
 1165                         break;
 1166 
 1167         stackleft = (caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (caddr_t)ip;
 1168 #else /* __MACHINE_STACK_GROWS_UP */
 1169         /* stack grows downwards (eg. i386) */
 1170         ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
 1171         end = (uint32_t *)((caddr_t)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
 1172         for (; ip < end; ip++)
 1173                 if (*ip != KSTACK_MAGIC)
 1174                         break;
 1175 
 1176         stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
 1177 #endif /* __MACHINE_STACK_GROWS_UP */
 1178 
 1179         if (kstackleftmin > stackleft) {
 1180                 kstackleftmin = stackleft;
 1181                 if (stackleft < kstackleftthres)
 1182                         printf("warning: kernel stack left %d bytes"
 1183                             "(pid %u:lid %u)\n", stackleft,
 1184                             (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
 1185         }
 1186 
 1187         if (stackleft <= 0) {
 1188                 panic("magic on the top of kernel stack changed for "
 1189                     "pid %u, lid %u: maybe kernel stack overflow",
 1190                     (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
 1191         }
 1192 }
 1193 #endif /* KSTACK_CHECK_MAGIC */
 1194 
 1195 /* XXX shouldn't be here */
 1196 #if defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
 1197 #define PROCLIST_ASSERT_LOCKED_READ()   \
 1198         KASSERT(lockstatus(&proclist_lock) == LK_SHARED)
 1199 #else
 1200 #define PROCLIST_ASSERT_LOCKED_READ()   /* nothing */
 1201 #endif
 1202 
 1203 int
 1204 proclist_foreach_call(struct proclist *list,
 1205     int (*callback)(struct proc *, void *arg), void *arg)
 1206 {
 1207         struct proc marker;
 1208         struct proc *p;
 1209         struct lwp * const l = curlwp;
 1210         int ret = 0;
 1211 
 1212         marker.p_flag = P_MARKER;
 1213         PHOLD(l);
 1214         proclist_lock_read();
 1215         for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
 1216                 if (p->p_flag & P_MARKER) {
 1217                         p = LIST_NEXT(p, p_list);
 1218                         continue;
 1219                 }
 1220                 LIST_INSERT_AFTER(p, &marker, p_list);
 1221                 ret = (*callback)(p, arg);
 1222                 PROCLIST_ASSERT_LOCKED_READ();
 1223                 p = LIST_NEXT(&marker, p_list);
 1224                 LIST_REMOVE(&marker, p_list);
 1225         }
 1226         proclist_unlock_read();
 1227         PRELE(l);
 1228 
 1229         return ret;
 1230 }
 1231 
 1232 int
 1233 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
 1234 {
 1235 
 1236         /* XXXCDC: how should locking work here? */
 1237 
 1238         /* curproc exception is for coredump. */
 1239 
 1240         if ((p != curproc && (p->p_flag & P_WEXIT) != 0) ||
 1241             (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
 1242                 return EFAULT;
 1243         }
 1244 
 1245         uvmspace_addref(p->p_vmspace);
 1246         *vm = p->p_vmspace;
 1247 
 1248         return 0;
 1249 }
 1250 
 1251 /*
 1252  * Acquire a write lock on the process credential.
 1253  */
 1254 void 
 1255 proc_crmod_enter(struct proc *p)
 1256 {
 1257 
 1258         /*
 1259          * XXXSMP This should be a lightweight sleep lock.  'struct lock' is
 1260          * too large.
 1261          */
 1262         simple_lock(&p->p_lock);
 1263         while ((p->p_flag & P_CRLOCK) != 0)
 1264                 ltsleep(&p->p_cred, PLOCK, "crlock", 0, &p->p_lock);
 1265         p->p_flag |= P_CRLOCK;
 1266         simple_unlock(&p->p_lock);
 1267 }
 1268 
 1269 /*
 1270  * Block out readers, set in a new process credential, and drop the write
 1271  * lock.  The credential must have a reference already.  Optionally, free a
 1272  * no-longer required credential.
 1273  */
 1274 void
 1275 proc_crmod_leave(struct proc *p, kauth_cred_t scred, kauth_cred_t fcred)
 1276 {
 1277 
 1278         KDASSERT((p->p_flag & P_CRLOCK) != 0);
 1279         simple_lock(&p->p_lock);
 1280         p->p_cred = scred;
 1281         p->p_flag &= ~P_CRLOCK;
 1282         simple_unlock(&p->p_lock);
 1283         wakeup(&p->p_cred);
 1284         if (fcred != NULL)
 1285                 kauth_cred_free(fcred);
 1286 }
 1287 
 1288 /*
 1289  * proc_specific_key_create --
 1290  *      Create a key for subsystem proc-specific data.
 1291  */
 1292 int
 1293 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
 1294 {
 1295 
 1296         return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
 1297 }
 1298 
 1299 /*
 1300  * proc_specific_key_delete --
 1301  *      Delete a key for subsystem proc-specific data.
 1302  */
 1303 void
 1304 proc_specific_key_delete(specificdata_key_t key)
 1305 {
 1306 
 1307         specificdata_key_delete(proc_specificdata_domain, key);
 1308 }
 1309 
 1310 /*
 1311  * proc_initspecific --
 1312  *      Initialize a proc's specificdata container.
 1313  */
 1314 void
 1315 proc_initspecific(struct proc *p)
 1316 {
 1317         int error;
 1318 
 1319         error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
 1320         KASSERT(error == 0);
 1321 }
 1322 
 1323 /*
 1324  * proc_finispecific --
 1325  *      Finalize a proc's specificdata container.
 1326  */
 1327 void
 1328 proc_finispecific(struct proc *p)
 1329 {
 1330 
 1331         specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
 1332 }
 1333 
 1334 /*
 1335  * proc_getspecific --
 1336  *      Return proc-specific data corresponding to the specified key.
 1337  */
 1338 void *
 1339 proc_getspecific(struct proc *p, specificdata_key_t key)
 1340 {
 1341 
 1342         return (specificdata_getspecific(proc_specificdata_domain,
 1343                                          &p->p_specdataref, key));
 1344 }
 1345 
 1346 /*
 1347  * proc_setspecific --
 1348  *      Set proc-specific data corresponding to the specified key.
 1349  */
 1350 void
 1351 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
 1352 {
 1353 
 1354         specificdata_setspecific(proc_specificdata_domain,
 1355                                  &p->p_specdataref, key, data);
 1356 }

Cache object: 4278258e3277e325959ebee57176ecb8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.